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Vibrational vs. electronic coherences in 2D spectrum of molecular systems
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Two-dimensional spectroscopy has recently revealed the oscillatory behavior of the excitation dynamics of
molecular systems. However, in the majority of cases there is considerable debate over what is actually being
observed: excitonic or vibrational wavepacket motion or evidence of quantum transport. In this letter we
present a method for distinguishing between vibrational and excitonic wavepacket motion, based on the phase
and amplitude relationships of oscillations of distinct peaks as revealed through a fundamental analysis of the
two-dimensional spectra of two representative systems.

Two-dimensional photon-echo (2DPE) spectroscopy is
a powerful tool capable of resolving quantum correlations
on the femtosecond timescale1–3. They appear as beats
of specific peaks in the 2DPE spectrum for a number of
molecular systems3,4. However, the underlying processes
are often ambiguous. At first, the beats were attributed
to the wave-like quantum transport with quantum coher-
ences being responsible for an ultra-efficient excitation
transfer3–6. The same process was associated with the
opposite phase beats in the spectral regions which are
symmetric with respect to the diagonal line7.
In molecules and their aggregates, electronic transi-

tions are coupled to various intra- and intermolecular vi-
brational modes. Vibrational energies of these are of the
order of 100 - 3000 cm−1, while the magnitudes of the res-
onant couplings, J , in excitonic aggregates (e.g. in photo-
synthetic pigment-protein complexes or in J-aggregates)
are in the same range. Thus, vibronic and excitonic sys-
tems show considerable spectroscopic similarities, and
presence of electronic and/or vibrational beats in the
2DPE spectrum is expected. Indeed, similar spectral
beats originating entirely from a high-energy vibrational
wavepacket motion have been observed8,9. The possibil-
ity of distinguishing the electronic and vibrational origin
of the beats from a 2DPE spectrum has been empha-
sized in a recent letter10. However, the reported conclu-
sions have not been supported by theoretical arguments,
and thus are questionable. Therefore, the highly rele-
vant question of how vibrations interfere with electronic
coherences in 2DPE spectrum is still an open one. A the-
oretical study of the origin of spectral beats, their phase
relationships in the rephasing and non-rephasing compo-
nents of the 2DPE spectrum is presented in this article.
We address this problem by considering two generic

model systems which exhibit distinct internal coherent
dynamics. The simplest model of an isolated molecular
electronic excitation is the vibronic system represented
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FIG. 1. Energy level structure of the displaced oscillator (a)
and electronic dimer (b) and corresponding linear absorption
spectra.

by two electronic states, |g〉 and |e〉, which are coupled to
a one-dimensional nuclear coordinate q. We denote the
model by a displaced oscillator (DO) system (Fig. 1a).
Taking ~ =1, the vibronic potential energy surface of
the |e〉 state is shifted up by electronic transition energy
ωeg and its minimum is shifted by d with respect to the
ground state |g〉; d is the dimensionless displacement.
This setup results in two vibrational ladders of quantum
sub-states |gm〉 and |en〉, m,n = 0 . . .∞, characterized
by the Huang-Rhys (HR) factor HR = d2/211,12.

The other model system, which shows similar spec-
troscopic properties but has completely different coher-
ent internal dynamics without vibrations, is an excitonic

dimer (ED). It consists of two two-level chromophores
(sites) with identical transition energies ǫ. The two sites
are coupled by the inter-site resonance coupling J . As
a result, the ED has one ground state |g〉, two single-
exciton states |e1〉 and |e2〉 with energies εe1,e2 = ǫ ± J ,
respectively, and a single double-exciton state |f〉 with
energy εf = 2ǫ − ∆, where ∆ is the bi-exciton binding
energy (Fig. 1b)13.

The absorption spectrum of both systems is as fol-
lows. The absorption of the DO is determined by transi-
tions from the |gm〉 vibrational ladder into |en〉 scaled
by the Franck-Condon (FC) vibrational wavefunction
overlaps11,13. Choosing HR = 0.3 and kBT ≈ 1

3ω0 and
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assuming Lorentzian lineshapes with linewidth γ, we get
the vibrational progression in the absorption spectrum
(dashed line in Fig. 1). Here ω0 is the vibrational energy.
The most intensive peaks at ωeg and ωeg+ω0 correspond
to 0-0 and 0-1 vibronic transitions. Qualitatively similar
peak structure is featured in the absorption of ED, where
the spectrum shows two optical transitions |g〉 → |e1〉
and |g〉 → |e2〉, assuming both are allowed. Choosing
J = ω0/2 and the angle ϕ between the chromophore tran-
sition dipoles equal to π/6, and using adequate linewidth
parameters, we get absorption peaks (solid line in Fig. 1)
that exactly match the strongest peaks of the DO. As
expected one cannot distinguish between these two inter-
nally different systems from the absorption spectra alone.
The 2DPE spectrum carries more information than ab-

sorption. However, it consists of many contributions and
unambiguous distinction between the ED and DO sys-
tems becomes difficult. In order to unravel the 2DPE
spectra we thus need to construct the entire 2D signal
from the first principles for both systems and recover the
source of oscillations in the 2DPE spectrum.
In the conventional scheme of the 2DPE measurement,

two primary excitation pulses with wavevectors k1 and
k2 followed by the probe pulse k3 are used; kj are pulse
wavevectors. The signal is detected at the kS = −k1 +
k2+k3 phase-matching direction. The order of k1 and k2

defines the rephasing configuration (kI) when k1 comes
first and the non-rephasing configuration (kII) when k2

comes first.
Semiclassical perturbation theory with respect to the

incoming fields reveals the system-field interaction and
evolution sequences, often denoted by the Liouville space
pathways. Three types of distinct interaction config-
urations are denoted by the Excited State Emission
(ESE), Ground State Bleaching (GSB) and Excited
State Absorption (ESA) contributions12,14. If we ne-
glect environment-induced relaxation, the signals are
given as sums of resonant contributions, S(ω3, t2, ω1) =
∑

n Sn(ω3, t2, ω1) of the type

Sn(ω3, t2, ω1) = A(n)

∫∫

dt1dt3e
+iω3t3+iω1t1

×[±G3(t3)G2(t2)G1(t1)](n), (1)

where the subscript n denotes different terms of the sum-
mation. A(n) is a complex prefactor, given by the tran-
sition dipoles and excitation fields, the propagator of the
density matrix G for the jth (j = 1, 2, 3) time delay is of
the one-sided exponential function type

Gj(tj) = θ(tj) exp(−iεjtj) (2)

(θ(t) is the Heaviside step-function). Here εj coincides
with the energy gap ωab between the left and right states
of the system density matrix relevant to the time interval
tj . ESE and GSB carry ‘+’ sign while ESA has ‘−’ overall
sign.
The Fourier transforms in Eq. (1) map the con-

tributions to the frequency-frequency plot (t1, t3) →

ω3
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FIG. 2. (a) Scheme of contributions to 2DPE spectrum of
the kI and kII signals for the reduced DO and ED (∆ =
0) systems. The ESE contribution is indicated by squares,
GSB – diamonds, ESA – circles. Solid symbols denote non-
oscillating contributions in t2, open – oscillatory in the form
of ± cos(ε2t2), where ε2 = ω0 for DO and ε2 = 2J for ED.
(b) Phase φ of the contribution (Eq. 3) and peak profile Sn

as a function of the shift from the peak center (s1 = s3 = 0)
using relative coordinates. The diagonal lines of the kI and
kII contributions to the 2D spectra are shown by dashed lines.
Peaks are labeled in plots as ‘1-1’, ‘1-2’, etc.

(ω1, ω3) ∼ (∓|ε1|, ε3) (the upper sign is for kI, the lower
– for kII). Diagonal peaks at ω1 = ∓ω3 are usually
distinguished, while the anti-diagonal line is defined as
∓ω1 + ω3 = Const. The whole 2DPE signal becomes
a function of t2: either oscillatory for density matrix
coherences |a〉〈b| with characteristic oscillation energy
ε2 = ωab 6= 0, or static for populations |a〉〈a| (ε2 = 0).

To reveal oscillatory contributions in the DO and ED
systems we have grouped all contributions into either
oscillatory or static as shown in Fig. 2a. If we con-
sider only the two main vibrational sub-states in DO,
the 2DPE spectrum will have only ESE and GSB contri-
butions, while ED additionally has ESA. As a function
of t2, the DO system has 8 oscillatory and 8 static con-
figurations, which organize into six peaks, while the ED
system has only 4 oscillatory and 8 static contributions
which give four peaks. The net result is that the diagonal
peaks in the kI and cross-peaks in the kII signals are non-
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oscillatory in the ED, while all peaks except the upper
diagonal peak in kI are oscillatory in the DO. We thus
find significant differences in oscillatory peaks between
ED and DO systems.
An important additional parameter to consider is a

phase of oscillation. Eq. (1) can be analytically inte-
grated for Gj(tj) ∝ exp(−iεjtj − γjtj). For a single con-
tribution Sn giving rise to a peak at (ω1, ω3) = (∓|ε1|, ε3)
we shift the origin of (ω1, ω3) plot to the peak cen-
ter by introducing the displacements (ω1 + ε1 = −s1,
ω3− ε3 = s3 for the rephasing pathways, while ω1− ε1 =
s1, ω3 − ε3 = s3 for the nonrephasing). For γ ≈ γ1 ≈ γ3
we get the peak profile

Sn(s3, t2, s1) = AnL(s1, s3)e
−γ2t2 cos(|ε2| t2 + φ(s1, s3)),

(3)
where the lineshape and phase for the kI (upper sign)
and kII (lower sign) signals are

L(s1, s3) =

√

[γ2 ± s1s3]2 + γ2(s3 ∓ s1)2

(s21 + γ2)(s23 + γ2)
, (4)

φ(s1, s3) = sgn (ε2) arctan

(

γ(s3 ∓ s1)

(∓s1s3 − γ2)

)

. (5)

The phase φ and the full profile for An = 1 and t2 = 0
are shown in Fig. 2c. The rephasing and non-rephasing
configurations are obtained by flipping the direction of
the s1 axis. At the center of the peak (s1 = s3 = 0), we
have and φ = 0, leading to Sn ∝ cos(|ε2| t2). However,
for (s1 6= 0, s3 6= 0) we find Sn ∝ cos(|ε2| t2 + φ(s1, s3))
with φ(s1, s3) 6= 0. Thus, the displacement from the peak

center determines the phase of the spectral oscillations.
Note that the sign of the phase φ is opposite for the peaks
above (ε2 < 0) and below (ε2 > 0) the diagonal line, and
this applies for all contributions.
The whole 2DPE spectrum is a sum of all relevant

contributions. Assuming that all dephasings are similar,
different contributions to the same peak will have the
same spectral shape and they may be summed. We can
then simplify the 2DPE plot by writing the signal as a
sum of peaks ¯∑, which have static (from populations)
and oscillatory (from coherences) parts:

S(ω3, t2, ω1) = e−γ2t2 ¯∑

i,j
Lij(ω1, ω3)

×
[

Ap
ij +Ac

ij · cos(|ωij |t2 + φij(ω1, ω3))
]

. (6)

Here ωij is the characteristic oscillatory frequency of
a peak (ij), Ap

ij(t2) and Ac
ij(t2) are the real parts of

orientationally-averaged prefactors of population and co-
herence (electronic or vibronic) contributions, respec-
tively. The spectral lineshape is given by Lij(ω1, ω3).
Here we clearly identify the oscillatory amplitude and its
phase for a specific peak.
To apply this expression to our systems, we assume a

typical situation where the spectrum of the laser pulses is
tuned to the center of the absorption spectrum and the
limited bandwidth selects the two strongest absorption
peaks. In the 2DPE spectra two diagonal and two off-
diagonal peaks for ED and DO are observed. Indices i
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FIG. 3. The amplitudes of oscillatory peaks of 2D spectra of
the DO model for kI and kII signal. Note that the negative
amplitude denotes a phase shift of πof the oscillation.

and j in Eq. (6) run over the positions of the peaks and
thus can be (1,1), (1,2), (2,1), and (2,2). For clarity we
study the spectral dynamics with t2 at the short delays,
t2 ≪ γ−1

2 , and use notations A, L for the kI signal and

Ã, L̃ for the kII signal.

The transition dipole properties of the ED results in
the picture where all static amplitudes of the ED are posi-
tive and Ap

11 = Ãp
11, A

p
22 = Ãp

22, A
p
12 = Ap

21 = Ãp
21 = Ãp

12.
The oscillatory amplitudes are equal: Ac

12 = Ac
21 =

Ãc
11 = Ãc

22. Such relationships are obtained by consider-
ing the all-parallel organization of polarization of incom-
ing electric fields and neglecting the bi-exciton binding
energy. The spectral beats with t2 can thus only have
the same phases in the kI or kII spectrum, when mea-
sured at peak centers. Additionally the oscillatory ESE
and ESA parts in ED cancel each other if ∆ = 0 and their
broadenings are equal. As these relationships do not de-
pend on coupling J and transition dipole orientations,
all ED systems should behave similarly. By studying the
whole parameter space, it can also be shown that these
relations hold for a hetero-dimer.

The amplitude-relationships, however, are different for

the DO system. The amplitudes A
(c)
ij of the oscillatory

peaks are plotted in Fig. 3 as a function of the HR factor,
where now we include all vibrational levels in the |gm〉
and |en〉 ladders. For kI, the amplitudes Ac

11 and Ac
22

maintain the opposite sign when HR < 2 and are both
positive when 2 < HR < 3 (note that Ac

22 = 0 when
only two vibrational levels are considered in Fig. 2b).
The oscillation amplitudes Ac

11 and Ac
22 change sign at

HR = 1. Amplitudes Ac
12 and Ac

21 are always positive.
Spectrum oscillations with t2 for both diagonal peaks in
the kII signal will be in-phase for the whole range of the
HR factor. The same pattern holds for the 1-2 and 2-1
cross-peaks, which will oscillate in-phase, but will be of
opposite phase compared to the diagonal peaks in the
region of HR < 1. Note that the sign of amplitudes
changes with the HR factor, since the overlap integral
between vibrational wavefunctions can be both positive
and negative. The amplitudes of static contributions are
positive in the whole range of parameters and are iden-
tical for both kI and kII signals.
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FIG. 4. 2DPE spectra and peak values of the DO and ED as
the function of population time t2, of the kI and kII signals.
Spectra are normalized to the maxima of the total spectra of
the DO and ED.

We thus find very different behaviour of oscillatory
peaks of DO and ED systems. The above analysis ap-
plies for the central positions of the peaks, which may
be difficult to determine if the broadening is large. Note
that the phase φ varies from −π/2 to +π/2 (Eq. (3) and
Fig. 2c) when probing in the vicinity of the peak. How-
ever, φ = 0 along the diagonal line for kI and along the
anti-diagonal line for kII. These lines can thus be used
as guidelines for reading phase relations of distinct peaks
in the 2DPE spectrum. For instance, the two diagonal
peaks can be calibrated by reading their amplitudes at
the diagonal line, or the two opposite cross-peaks can be
compared by drawing anti-diagonal lines.
The 2DPE spectra for both DO and ED systems cal-

culated by including phenomenological relaxation and
Gaussian laser pulse shapes 14,15 are plotted in Fig. 4.
The structure and the t2 evolution of the spectra illus-
trate the dynamics discussed above and clearly shows the
distinctive spectral properties of the vibronic vs. elec-
tronic system: (i) diagonal peaks in the kI signal are
oscillating in DO, but only exponentially decaying in ED
(the oscillatory traces come from the overlapping tails
of off-diagonal peaks), (ii) the relative amplitude of os-
cillations is much stronger in DO as compared to ED,
where the ESA and ESE cancellation suppresses the os-
cillations, (iii) opposite oscillation phases are observed in
DO, while all peaks oscillate in-phase in ED.
The up-to-date experiments are capable of creating

broad-band pulses9. Thus, the overtones in DO can be
excited and beats of nω0 frequencies (n is integer) ob-

served. These may become important in the case of large
HR factors. Such frequencies are absent in the ED sys-
tem, since only one oscillatory frequency, equal to 2J is
available.
The analysis presented in this article provides a clear

physical picture of electronic and vibronic coherence
beatings in 2DPE spectra. We are able to discrimi-
nate weakly damped electronic and vibronic coherent
wavepackets in molecular systems based on fundamental
theoretical considerations. Dynamics of diagonal peaks
and cross-peaks as well as relative phase between them
in the rephasing signal can now be classified for vibra-
tional and excitonic systems as follows. (i) Static diago-
nal peaks and oscillatory off-diagonal peaks signify pure
electronic coherences, not involved in energy transport.
(ii) Oscillatory diagonal peaks in accord with off-diagonal
peaks (0 or π phase relationships) signify vibronic origins.
The oscillation phase is 0 for electronic coherences and 0
or π for vibronic coherences. These outcomes hold if the
signal is probed at the very centers of the spectral reso-
nances. The observed phase of the beatings varies as the
signal is recorded away from the center of an oscillating
peak.
Our results might be useful in analysis of recently ob-

served beatings in molecular systems. For instance phase
relations of the beatings detected at separate points in
the vicinity of the same cross-peak of the photosynthetic
LH2 complex16 might be the result of measurement away
from the peak center (see Fig. 2b). The issue of probing
away from the peak centers also applies to the opposite-
phase beatings reported by Collini et al.7. Our analysis
thus shows that the detailed phase relationships in the
two dimensional spectra may be of critical importance.
By helping to identify spectral beats in photosynthetic
aggregates, the presented analysis should facilitate an-
swering the question of importance of electronic coher-
ences in excitonic energy transfer, its efficiency and ro-
bustness.
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