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a b s t r a c t

Many of the static and dynamic properties of an atomic Bose–Einstein condensate (BEC) are usually
studied by solving the mean-field Gross–Pitaevskii (GP) equation, which is a nonlinear partial differential
equation for short-range atomic interaction. More recently, BEC of atoms with long-range dipolar atomic
interaction are used in theoretical and experimental studies. For dipolar atomic interaction, the GP
equation is a partial integro-differential equation, requiring complex algorithm for its numerical solution.
Here we present numerical algorithms for both stationary and non-stationary solutions of the full three-
dimensional (3D) GP equation for a dipolar BEC, including the contact interaction. We also consider the
simplified one- (1D) and two-dimensional (2D) GP equations satisfied by cigar- and disk-shaped dipolar
BECs. We employ the split-step Crank–Nicolson method with real- and imaginary-time propagations,
respectively, for the numerical solution of the GP equation for dynamic and static properties of a dipolar
BEC. The atoms are considered to be polarized along the z axis and we consider ten different cases,
e.g., stationary and non-stationary solutions of the GP equation for a dipolar BEC in 1D (along x and z
axes), 2D (in x–y and x–z planes), and 3D, and we provide working codes in Fortran 90/95 and C for these
ten cases (twenty programs in all). We present numerical results for energy, chemical potential, root-
mean-square sizes and density of the dipolar BECs and, where available, compare them with results of
other authors and of variational and Thomas–Fermi approximations.

Program summary

Program title: (i) imag1dZ, (ii) imag1dX, (iii) imag2dXY, (iv) imag2dXZ, (v) imag3d, (vi) real1dZ, (vii)
real1dX, (viii) real2dXY, (ix) real2dXZ, (x) real3d
Catalogue identifier: AEWL_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWL_v1_0.html
Program obtainable from: CPC Program Library, Queens University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 111384
No. of bytes in distributed program, including test data, etc.: 604013
Distribution format: tar.gz
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1. Introduction

After the experimental realization of atomic Bose–Einstein con-
densate (BEC) of alkali-metal and some other atoms, there has
been a great deal of theoretical activity in studying the stat-
ics and dynamics of the condensate using the mean-field time-
dependent Gross–Pitaevskii (GP) equation under different trap
symmetries [1]. The GP equation in three dimensions (3D) is a
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nonlinear partial differential equation in three space variables and
a time variable and its numerical solution is indeed a difficult task
specially for large nonlinearities encountered in realistic experi-
mental situations [2]. Very special numerical algorithms are nec-
essary for its precise numerical solution. In the case of alkali-metal
atoms the atomic interaction in dilute BEC is essentially of short-
range in nature and is approximated by a contact interaction and
at zero temperature is parametrized by a single parameter in a
dilute BEC — the s-wave atomic scattering length. Under this ap-
proximation the atomic interaction is represented by a cubic non-
linearity in the GP equation. Recently, we published the Fortran [3]
and C [4] versions of useful programs for the numerical solution
of the time-dependent GP equation with cubic nonlinearity under
different trap symmetries using split-step Crank–Nicolson scheme
and real- and imaginary-time propagations. Since then, these pro-
grams enjoyed widespread use [5].

More recently, there has been experimental observation of BEC
of 52Cr [6], 164Dy [7] and 168Er [8] atomswith largemagnetic dipole
moments. In this paper, for all trap symmetries the dipolar atoms
are considered to be polarized along the z axis. In these cases the
atomic interaction has a long-range dipolar counterpart in addition
to the usual contact interaction. The s-wave contact interaction is
local and spherically symmetric, whereas the dipolar interaction
acting in all partial waves is nonlocal and asymmetric. The
resulting GP equation in this case is a partial integro-differential
equation and special algorithms are required for its numerical
solution. Different approaches to the numerical solution of the
dipolar GP equation have been suggested [9–14]. Yi and You [10]
solve the dipolarGP equation for axially-symmetric trapwhile they
perform the angular integral of the dipolar term, thus reducing it
to one in axial (z, z ′) and radial (ρ, ρ ′) variables involving standard
Elliptical integrals. The dipolar term is regularized by a cut-off
at small distances and then evaluated numerically. The dipolar
GP equation is then solved by imaginary-time propagation. Gòral
and Santos [11] treat the dipolar term by a convolution theorem
without approximation, thus transforming it to an inverse Fourier
transformation (FT) of a product of the FT of the dipolar potential
and the condensate density. The FT and inverse FT are then
numerically evaluated by standard fast Fourier transformation
(FFT) routines in Cartesian coordinates. The ground state of
the system is obtained by employing a standard split-operator
technique in imaginary time. This approach is used by some
others [15]. Ronen et al. perform the angular integral in the dipolar
term using axial symmetry. To evaluate it, in stead of FT in x, y, and
z [11], they use Hankel transformation in the radial ρ variable and
FT in the axial z variable. The ground state wave function is then
obtained by imaginary-time propagation and dynamics by real-
time propagation. This approach is also used by some others [16].
Bao et al. use Euler sine pseudospectral method for computing the
ground states and a time-splitting sine pseudospectral method for
computing the dynamics of dipolar BECs [9]. Blakie et al. solve the
projected dipolar GP equation using a Hermite polynomial-based
spectral representation [13]. Lahaye et al. use FT in x, y, and z to
evaluate the dipolar term and employ imaginary- and real-time
propagation after Crank–Nicolson discretization for stationary and
nonstationary solution of the dipolar GP equation [14].

Here we provide Fortran and C versions of programs for the
solution of the dipolar GP equation in a fully anisotropic 3D
trap by real- and imaginary-time propagation. We use split-step
Crank–Nicolson scheme for the nondipolar part as in Refs. [3,4] and
the dipolar term is treated by FT in x, y, z variables.We also present
the Fortran and C programs for reduced dipolar GP equation in one
(1D) and two dimensions (2D) appropriate for a cigar- and disk-
shaped BEC under tight radial (ρ) and axial (z) trapping, respec-
tively [17]. In the 1D case,we consider twopossibilities: the 1DBEC
could be aligned along the polarization direction z or be aligned
perpendicular to the polarization direction along x axis. Similarly,
in the 2D case, two possibilities are considered taking the 2D plane
as x–y, perpendicular to polarization direction z or as x–z contain-
ing the polarization direction. This amounts to five different trap-
ping possibilities – two in 1D and 2D each and one in 3D – and two
solution schemes involving real- and imaginary-time propagation
resulting in ten programs each in Fortran and C.

In Section 2 we present the 3D dipolar GP equation in an
anisotropic trap. In addition to presenting the mean-field model
and a general scheme for its numerical solution in Sections 2.1
and 2.2, we also present two approximate solution schemes in
Sections 2.3 and 2.4 – Gaussian variational approximation and
Thomas–Fermi (TF) approximation – in this case. The reduced 1D
and 2D GP equations appropriate for a cigar- and a disk-shaped
dipolar BEC are next presented in Sections 2.5 and 2.6, respectively.
The details about the computer programs, and their input/output
files, etc. are given in Section 3. The numerical method and results
are given in Section 4. Finally, a brief summary is given in Section 5.

2. Gross–Pitaevskii (GP) equation for dipolar condensates in
three dimensions

2.1. The mean-field Gross–Pitaevskii equation

At ultra-low temperatures the properties of a dipolar conden-
sate of Nat atoms, each of mass m, can be described by the mean-
field GP equation with nonlocal nonlinearity of the form: [10,18]

ih̄
∂φ(r, t)
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=


−

h̄2

2m
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2
+ Vtrap(r) +

4π h̄2 aNat
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whereωx, ωy andωz are the trap frequencies, a the atomic scatter-
ing length. The dipolar interaction, for magnetic dipoles, is given
by [11,16]

Udd(R) =
µ0µ̄

2

4π
1 − 3 cos2 θ

|R|3
, (2)

where R = r − r ′ determines the relative position of dipoles
and θ is the angle between R and the direction of polarization z,
µ0 is the permeability of free space and µ̄ is the dipole moment
of the condensate atom. To compare the contact and dipolar in-
teractions, often it is useful to introduce the length scale add ≡

µ0µ̄
2m/(12π h̄2) [6].

Convenient dimensionless parameters can be defined in terms
of a reference frequency ω̄ and the corresponding oscillator length
l =

√
h̄/(mω̄). Using dimensionless variables r̄ = r/l, R̄ =

R/l, ā = a/l, ādd = add/l, t̄ = tω̄, x̄ = x/l, ȳ = y/l, z̄ = z/l, φ̄ =

l3/2φ, Eq. (1) can be rewritten (after removing the overhead bar
from all the variables) as

i
∂φ(r, t)

∂t
=


−

1
2
∇

2
+

1
2


γ 2x2 + ν2y2 + λ2z2


+ 4πaNat|φ|

2

+ 3Natadd


V 3D
dd (R)|φ(r′, t)|2dr′


φ(r, t), (3)

with

V 3D
dd (R) =

1 − 3 cos2 θ

|R|3
, (4)
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where γ = ωx/ω̄, ν = ωy/ω̄, λ = ωz/ω̄. The reference frequency
ω̄ can be taken as one of the frequencies ωx, ωy or ωz or their
geometric mean (ωxωyωz)

1/3. In the following we shall use Eq. (3)
where we have removed the ‘bar’ from all variables.

Although we are mostly interested in the numerical solution of
Eq. (3), in the following we describe two analytical approximation
methods for its solution in the axially-symmetric case. These ap-
proximation methods – the Gaussian variational and TF approxi-
mations – provide reasonably accurate results under some limiting
conditions and will be used for comparison with the numerical re-
sults. Also, we present reduced 1D and 2Dmean-field GP equations
appropriate for the description of a cigar and disk-shaped dipolar
BEC under appropriate trapping condition. The numerical solution
and variational approximation of these reduced equations will be
discussed in this paper. A brief algebraic description of these topics
are presented for the sake of completeness as appropriate for this
study. For a full description of the same the reader is referred to
the original publications.

2.2. Methodology

We perform numerical simulation of the 3D GP equation (3)
using the split-step Crank–Nicolson method described in detail
in Ref. [3]. Here we present the procedure to include the dipolar
term in that algorithm. The inclusion of the dipolar integral term
in theGP equation in coordinate space is not straightforward due to
the singular behavior of the dipolar potential at short distances. It
is interesting to note that this integral is well defined and finite.
This problem has been tackled by evaluating the dipolar term
in the momentum (k) space, where we do not face a singular
behavior. The integral can be simplified in Fourier space by means
of convolution as

dr′V 3D
dd (r − r′)n(r′, t) =


dk

(2π)3
e−ik·rV 3D

dd (k)n(k, t), (5)

where n(r, t) = |φ(r, t)|2. The Fourier transformation (FT) and
inverse FT, respectively, are defined by

A(k) =


drA(r)eik·r, A(r) =

1
(2π)3


dkA(k)e−ik·r. (6)

The FT of the dipole potential can be obtained analytically [19]

V 3D
dd (k) ≡

4π
3

h3D(k) =
4π
3
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3k2z
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

, (7)

so that
dr′V 3D

dd (r − r′)n(r′, t) =
4π
3


dk

(2π)3
e−ik·rh3D(k)n(k, t). (8)

To obtain Eq. (7), first the angular integration is performed. Then
a cut-off at small r is introduced to perform the radial integration
and eventually the zero cut-off limit is taken in the final result as
shown inAppendix A of Ref. [19]. The FT of density n(r) is evaluated
numerically by means of a standard FFT algorithm. The dipolar
integral in Eq. (3) involving the FT of density multiplied by FT of
dipolar interaction is evaluated by the convolution theorem (5).
The inverse FT is taken by means of the standard FFT algorithm.
The FFT algorithm is carried out in Cartesian coordinates and the
GP equation is solved in 3D irrespective of the symmetry of the
trapping potential. The dipolar interaction integrals in 1D and 2D
GP equations are also evaluated inmomentum spaces. The solution
algorithm of the GP equation by the split-step Crank–Nicolson
method is adopted from Refs. [3,4].

The 3DGP equation (3) is numerically themost difficult to solve
involving large RAM and CPU time. A requirement for the success
of the split-step Crank–Nicolson method using a FT continuous at
the origin is that on the boundary of the space discretization region
the wave function and the interaction term should vanish. For the
long-range dipolar potential this is not true and the FT (7) is discon-
tinuous at the origin. The space domain (from −∞ to +∞) cannot
be restricted to a small region in space just covering the spatial ex-
tension of the BEC as the same domain is also used to calculate the
FT and inverse FT used in treating the long-range dipolar potential.
The use and success of FFT implies a set of noninteracting 3D peri-
odic lattice of BECs in different unit cells. This is not true for long-
range dipolar interactionwhichwill lead to an interaction between
BECs in different cells. Thus, boundary effects can play a role when
finding the FT. Hence a sufficiently large space domain is to be used
to have accurate values of the FT involving the long-range dipolar
potential. It was suggested [12] that this could be avoided by trun-
cating the dipolar interaction conveniently at large distances r = R
so that it does not affect the boundary, provided R is taken to be
larger than the size of the condensate. Then the truncated dipolar
potential will cover the whole condensate wave function and will
have a continuous FT at the origin. This will improve the accuracy
of a calculation using a small space domain. The FT of the dipolar
potential truncated at r = R, as suggested in Ref. [12], is used in
the numerical routines

V 3D
dd (k) =

4π
3


3k2z
k2

− 1


1 + 3
cos(kR)
k2R2

− 3
sin(kR)
k3R3


,

k = |k|. (9)

Needless to say, the difficulty in using a large space domain is the
most severe in 3D. In 3D programs the cut-off R of Eq. (9) improves
the accuracy of calculation and a smaller space region can be used
in numerical treatment. In 1D and 2D, a larger space domain can be
used relatively easily and no cut-off has been used. Also, no conve-
nient and efficient analytic cut-off is known in 1D and 2D [12]. The
truncated dipolar potential (9) has only been used in the numeri-
cal programs in 3D, e.g., imag3d* and real3d*. In all other numerical
programs in 1D and 2D, and in all analytic results reported in the
following the untruncated potential (7) has been used.

2.3. Gaussian variational approximation

In the axially-symmetric case (γ = ν), convenient analytic La-
grangian variational approximation of Eq. (3) can be obtained with
the following Gaussian ansatz for the wave function [20]

φ(r, t) =
π−3/4

wρ(t)
√

wz(t)

× exp


−

ρ2

2w2
ρ(t)

−
z2

2w2
z (t)

+ iα(t)ρ2
+ iβ(t)z2


(10)

where r = {ρ, z}, ρ = {x, y}, wρ(t) and wz(t) are widths and α(t)
andβ(t) are chirps. The time dependence of the variational param-
eterswρ(t),wz(t),α(t) andβ(t)will not be explicitly shown in the
following.

The Lagrangian density corresponding to Eq. (3) is given by
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Consequently, the effective Lagrangian L ≡


L(r)dr (per particle)
becomes [6,21]

L = ω2
ρ α̇ +

ω2
z β̇

2
+

γ 2ω2
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+

Nat[a − addf (κ)]
√
2πω2

ρωz
. (12)

The Euler–Lagrangian equations with this Lagrangian leads to the
following set of coupled ordinary differential equations (ODE) for
the widths wρ and wz [22]:

ẅρ + γ 2wρ =
1

w3
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+
Nat

√
2π

[2a − addg(κ)]
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ρwz
, (13)
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z
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with κ = wρ/wz and
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− 4κ4
+ 9κ4d(κ)
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, (15)
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, (16)

f (κ) =
1 + 2κ2

− 3κ2d(κ)

1 − κ2
, d(κ) =

atanh
√
1 − κ2

√
1 − κ2

. (17)

The widths of a (time-independent) stationary state are obtained
from Eqs. (13) and (14) by setting ẅρ = ẅz = 0. The energy
(per particle) of the stationary state is the Lagrangian (12) with
α = β = 0, e.g.,

E
Nat

=
1

2w2
ρ

+
1

4w2
z

+
Nat[a − addf (κ)]

√
2πwzw2

ρ

+
γ 2w2

ρ

2
+
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z

4
. (18)

The chemical potentialµ = ∂E/∂Nat of the stationary state is given
by [22]

µ =
1

2w2
ρ

+
1

4w2
z

+
2Nat[a − addf (κ)]

√
2πwzw2

ρ

+
γ 2w2

ρ

2
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λ2w2
z

4
. (19)

2.4. Thomas–Fermi (TF) approximation

In the time-dependent axially-symmetric GP equation (3),
when the atomic interaction term is large compared to the kinetic
energy gradient term, the kinetic energy can be neglected and
the useful TF approximation emerges. We assume the normalized
density of the dipolar BEC of the form [1,23–25]

n(r, t) ≡ |φ(r, t)|2 =
15

8πR2
ρ(t)Rz(t)


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ρ2

R2
ρ(t)

−
z2

R2
z (t)


, (20)

where Rρ(t) and Rz(t) are the radial and axial sizes. The time
dependence of these sizes will not be explicitly shown in the
following. Using the parabolic density (20), the energy functional
ETF may be written as [24]

ETF ≡ Etrap + Eint =

N(2γ 2R2
ρ + λ2R2
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28π
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where κ̄ = Rρ/Rz is the ratio of the condensate sizes and f (κ̄) is
given by Eq. (17). In Eq. (21), Etrap is the energy in the trap and Eint is
the interaction or release energy in the TF approximation. In the TF
regime one has the following set of coupled ODEs for the evolution
of the condensate sizes [23]:
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+
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The sizes of a stationary state can be calculated from Eqs. (22) and
(23) by setting the time derivatives R̈ρ and R̈z to zero leading to the
transcendental equation for κ̄ [23]:
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with Rz = Rρ/κ̄ . The chemical potential is given by [24]

µTF ≡ Etrap + 2Eint =
15
8π

4πaNat

R2
ρRz


1 −

add
a

f (κ̄)

. (26)

We have the identities ETF/Nat = 5µTF/7, Eint/Nat = 2µTF/7,
Etrap/Nat = 3µTF/7.

2.5. One-dimensional GP equation for a cigar-shaped dipolar BEC

2.5.1. z direction
For a cigar-shaped dipolar BEC with a strong axially-symmetric

(ν = γ ) radial trap (λ < ν, γ ), we assume that the dynamics of
the BEC in the radial direction is confined in the radial ground state
[22,26,27]

φ(ρ) = exp(−ρ2/2d2ρ)/(dρ

√
π), γ d2ρ = 1, ρ ≡ (x, y), (27)

of the transverse trap and the wave function φ(r) can be written
as

φ(r, t) ≡ φ1D(z, t) × φ(ρ)

=
1
πd2ρ

exp


−

ρ2

2d2ρ


φ1D(z, t), (28)

where φ1D(z, t) is the effective 1D wave function for the axial
dynamics and dρ is the radial harmonic oscillator length.

To derive the effective 1D equation for the cigar-shaped dipolar
BEC, we substitute the ansatz (28) in Eq. (3), multiply by the
ground-state wave function φ(ρ) and integrate over ρ to get the
1D equation [22,26]
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where w = [Z/(
√
2dρ)]2, Z = |z − z ′

|. Here and in all reductions
in Sections 2.5 and 2.6 we use the untruncated dipolar potential
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(7) and not the truncated potential (9). The integral term in the 1D
GP equation (29) is conveniently evaluated in momentum space
using the following convolution identity [22]

∞

−∞

V 1D
dd (|z − z ′

|)|φ1D(z ′, t)|2dz ′

=
4π
3


∞

−∞

dkz
2π

e−ikz zn(kz, t)h1D


kzdρ
√
2


, (31)

where

n(kz, t) =


∞

−∞

eikz z |φ1D(z, t)|2dz, (32)

n(kρ) =


eikρ ·ρ

|φ2D(ρ)|2dρ = e−k2ρd
2
ρ/4, kρ =


k2x + k2y (33)

h1D(ζ ) ≡
1

(2π)2


dkρ


3k2z
k2

− 1


|n(kρ)|2

=
1

2πd2ρ


∞

0
du


3ζ 2

u + ζ 2
− 1


e−u, ζ =

kzdρ
√
2

. (34)

The 1D GP equation (29) can be solved analytically using the
Lagrangian variational formalism with the following Gaussian
ansatz for the wave function [22]:

φ1D(z, t) =
π−1/4

√
wz(t)

exp

−

z2

2w2
z (t)

+ iβ(t)z2


, (35)

where wz(t) is the width and β(t) is the chirp. The Lagrangian
variational formalism leads to the following equation for thewidth
wz(t) [22]:

ẅz(t) + λ2wz(t) =
1

w3
z (t)

+
2Nat
√
2π


a − addc(κ̂)


d2ρw2

z (t)
,

κ̂ =
dρ

wz(t)
. (36)

The time-independent width of a stationary state can be obtained
from Eq. (36) by setting ẅz(t) = 0. The variational chemical
potential for the stationary state is given by [22]

µ =
1

4w2
z

+
2Nat[a − addf (κ̂)]

√
2πwzd2ρ

+
λ2w2

z

4
. (37)

The energy per particle is given by

E
Nat

=
1

4w2
z

+
Nat[a − addf (κ̂)]

√
2πwzd2ρ

+
λ2w2

z

4
. (38)

2.5.2. x direction
For a cigar-shaped dipolar BEC with a strong axially-symmetric

(ν = λ) radial trap (γ < ν, λ), we assume that the dynamics of the
BEC in the radial direction is confined in the radial ground state
[22,26,27]

φ(ρ) = exp(−ρ2/2d2ρ)/(dρ

√
π), νd2ρ = 1, ρ ≡ (y, z), (39)

of the transverse trap and thewave function φ(r) can bewritten as

φ(r, t) ≡ φ1D(x, t) × φ(ρ) =
1
πd2ρ

exp


−

ρ2

2d2ρ


φ1D(x, t), (40)

where φ1D(x, t) is the effective 1D wave function for the dynamics
along x axis and dρ is the radial harmonic oscillator length.

To derive the effective 1D equation for the cigar-shaped dipolar
BEC, we substitute the ansatz (40) in Eq. (3), multiply by the
ground-state wave function φ(ρ) and integrate over ρ to get the
1D equation

i
∂φ1D(x, t)

∂t
=


−

∂2
x

2
+

γ 2x2

2
+

2aNat|φ1D|
2

d2ρ

+ 4πaddNat


∞

−∞

dkx
2π

e−ikxxn(kx, t)j1D(τx)φ1D(x, t), (41)

where τx = dρkx/
√
2 and

j1D(τx) ≡
1

(2π)2


dkρ


3k2z
k2

− 1


|n(kρ)|2

=

√
2

2πdρ


∞

−∞

dτye−τ2
y h2D(τ ), τy =

dρky
√
2

, τ =


τ 2
x + τ 2

y ,

(42)

h2D(τ ) =
1

√
2πdρ

[2 − 3
√

πeτ2
τ {1 − erf(τ )}]. (43)

To derive Eq. (41), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integrations over ky and
kz are performed in the dipolar term.

2.6. Two-dimensional GP equation for a disk-shaped dipolar BEC

2.6.1. x–y plane
For an axially-symmetric (ν = γ ) disk-shaped dipolar BECwith

a strong axial trap (λ > ν, γ ), we assume that the dynamics of the
BEC in the axial direction is confined in the axial ground state

φ(z) = exp(−z2/2d2z )/(πd2z )
1/4, dz =


1/(λ), (44)

and we have for the wave function

φ(r) ≡ φ(z) × φ2D(ρ, t) =
1

(πd2z )1/4
exp


−

z2

2d2z


φ2D(ρ, t),

(45)

whereρ ≡ (x, y),φ2D(ρ, t) is the effective 2Dwave function for the
radial dynamics and dz is the axial harmonic oscillator length. To
derive the effective 2D equation for the disk-shaped dipolar BEC,
we use ansatz (45) in Eq. (3), multiply by the ground-state wave
function φ(z) and integrate over z to get the 2D equation [22,28]

i
∂φ2D(ρ, t)

∂t
=


−

∇
2
ρ

2
+

γ 2x2 + ν2y2

2
+

4πaNat|φ2D|
2

√
2πdz

+ 4πaddNat


dkρ

(2π)2
e−ikρ .ρn(kρ, t)h2D


kρdz
√
2


φ2D(ρ, t), (46)

where kρ =


k2x + k2y , and

n(kρ, t) =


dρeikρ .ρ

|φ2D(ρ, t)|2,

n(kz) =


dzeikz z |φ(z)|2 = e−k2z d

2
z /4,

(47)

h2D(ξ) ≡
1
2π


∞

−∞

dkz


3k2z
k2

− 1


|n(kz)|2
=

1
√
2πdz

[2 − 3
√

πξ exp(ξ 2){1 − erf(ξ)}], ξ =
kρdz
√
2

. (48)

To derive Eq. (46), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integration over kz is
performed in the dipolar term.
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The 2D GP equation (46) can be solved analytically using the
Lagrangian variational formalism with the following Gaussian
ansatz for the wave function [22]:

φ2D(ρ, t) =
π−1/2

wρ(t)
exp


−

ρ2

2w2
ρ(t)

+ iα(t)ρ2


, (49)

where wρ(t) is the width and α(t) is the chirp. The Lagrangian
variational formalism leads to the following equation for thewidth
wρ [22]:

ẅρ(t) + γ 2wρ(t) =
1

w3
ρ(t)

+
Nat

√
2π

[2a − addg(κ̄)]
w3

ρ(t)dz
,

κ̄ =
wρ(t)
dz

. (50)

The time-independent width of a stationary state can be obtained
from Eq. (50) by setting ẅρ(t) = 0. The variational chemical
potential for the stationary state is given by [22]

µ =
1

2w2
ρ

+
2Nat[a − addf (κ̄)]

√
2πdzw2

ρ

+
γ 2w2

ρ

2
. (51)

The energy per particle is given by

E
Nat

=
1

2w2
ρ

+
Nat[a − addf (κ̄)]

√
2πdzw2

ρ

+
γ 2w2

ρ

2
. (52)

2.6.2. x–z plane
For a disk-shaped dipolar BEC with a strong axial trap along y

direction (ν > λ, γ ), we assume that the dynamics of the BEC in
the y direction is confined in the ground state

φ(y) = exp(−y2/2d2y)/(πd2y)
1/4, dy =


1/(ν), (53)

and we have for the wave function

φ(r) ≡ φ(y) × φ2D(ρ, t) =
1

(πd2y)1/4
exp


−

y2

2d2y


φ2D(ρ, t),

(54)

where now ρ ≡ (x, z), and φ2D(ρ, t) is the circularly-asymmetric
effective 2D wave function for the 2D dynamics and dy is the
harmonic oscillator length along y direction. To derive the effective
2D equation for the disk-shaped dipolar BEC, we use ansatz (54)
in Eq. (3), multiply by the ground-state wave function φ(y) and
integrate over y to get the 2D equation

i
∂φ2D(ρ, t)

∂t
=


−

∇
2
ρ

2
+

γ 2x2 + λ2z2

2
+

4πaNat|φ2D|
2

√
2πdy

+ 4πaddNat


dkρ

(2π)2
e−ikρ .ρn(kρ, t)j2D


kρdy
√
2


φ2D(ρ, t), (55)

where kρ =

k2z + k2x , and

j2D(ξ) ≡
1
2π


∞

−∞

dky


3k2z
k2

− 1


|n(ky)|2
=

1
√
2πdy


−1 + 3

√
π

ξ 2
z

ξ
exp(ξ 2){1 − erf(ξ)}


,

ξ =
kρdy
√
2

, ξz =
kzdy
√
2

. (56)

To derive Eq. (55), the dipolar term in Eq. (3) is first written in
momentum space using Eq. (8) and the integration over ky is
performed in the dipolar term.
3. Details about the programs

3.1. Description of the programs

In this subsection we describe the numerical codes for solving
the dipolar GP equations (29) and (41) in 1D, Eqs. (46) and (55) in
2D, and Eq. (3) in 3D using real- and imaginary-time propagations.
The real-time propagation yields the time-dependent dynamical
results and the imaginary-time propagation yields the time-
independent stationary solution for the lowest-energy state for a
specific symmetry. We use the split-step Crank–Nicolson method
for the solution of the equations described in Ref. [3]. The present
programs have the same structure as in Ref. [3] with added
subroutines to calculate the dipolar integrals. In the absence of
dipolar interaction the present programs will be identical with the
previously published ones [3]. A general instruction to use these
programs in the nondipolar case can be found in Ref. [3] and we
refer the interested reader to this article for the same.

The present Fortran programs named (‘imag1dX.f90’,
‘imag1dZ.f90’), (‘imag2dXY.f90’, ‘imag2dXZ.f90’), ‘imag3d.f90’,
(‘real1dX.f90’, ‘real1dZ.f90’), (‘real2dXY.f90’, ‘real2dXZ.f90’),
‘real3d.f90’, deal with imaginary- and real-time propagations
in 1D, 2D, and 3D and are to be contrasted with previously
published programs [3] ‘imagtime1d.F’, ‘imagtime2d.f90’, ‘imag-
time3d.f90’, ‘realtime1d.F’, ‘realtime2d.f90’, and ‘realtime3d.f90’,
for the nondipolar case. The input parameters in Fortran pro-
grams are introduced in the beginning of each program. The cor-
responding C codes are called (imag1dX.c, imag1dX.h, imag1dZ.c,
imag1dZ.h,), (imag2dXY.c, imag2dXY.h, imag2dXZ.c, imag2dXZ.h,),
(imag3d.c, imag3d.h), (real1dX.c, real1dX.h, real1dZ.c, real1dZ.h,),
(real2dXY.c, real2dXY.h, real2dXZ.c, real2dXZ.h,), (real3d.c,
real3d.h), with respective input files (‘imag1dX-input’, ‘imag1dZ-
input’), (‘imag2dXY-input’, ‘imag2dXZ-input’), ‘imag3d-input’,
(‘real1dX-input’, ‘real1dZ-input’), (‘real2dXY-input’, ‘real1dXZ
-input’), ‘real3d-input’, which perform identical executions as in
the Fortran programs.

We present in the following a description of input parameters.
The parameters NX, NY, and NZ in 3D (NX and NY in 2DXY, NX
and NZ in 2DXZ), and N in 1D stand for total number of space
points in x, y and z directions, where the respective space steps
DX, DY, and DZ can be made equal or different; DT is the time
step. The parameters NSTP, NPAS, and NRUN denote number of
time iterations. The parameters GAMMA (γ ), NU (ν), and LAMBDA
(λ) denote the anisotropy of the trap. The number of atoms is
denoted NATOMS (Nat), the scattering length is denoted AS (a) and
dipolar length ADD (add). The parameters G0 (4πNata) and GDD0
(3addNat) are the contact and dipolar nonlinearities. The parameter
OPTION = 2 (default) defines the equations of the present paper
with a factor of half before the kinetic energy and trap;OPTION = 1
defines a different set of GP equations without these factors, viz
Ref. [3]. The parameter AHO is the unit of length and Bohr_a0 is
the Bohr radius. In 1D the parameter DRHO is the radial harmonic
oscillator dρ and in 2D the parameter D_Z or D_Y is the axial
harmonic oscillator length dz or dy. The parameter CUTOFF is the
cut-off R of Eq. (9) in the 3D programs. The parameters GPAR and
GDPAR are constants which multiply the nonlinearities G0 and
GDD0 in realtime routines before NRUN time iterations to study
the dynamics.

The programs, as supplied, solve the GP equations for specific
values of dipolar and contact nonlinearities and write the wave
function, chemical potential, energy, and root-mean-square (rms)
size(s), etc. For solving a stationary problem, the imaginary-time
programs are far more accurate and should be used. The real-time
programs should be used for studying non-equilibrium problems
reading an initial wave function calculated by the imaginary-time
program with identical set of parameters (set NSTP = 0, for this
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purpose, in the real-time programs). The real-time programs can
also calculate stationary solutions in NSTP time steps (set NSTP ≠

0 in real-time programs), however, with less accuracy compared to
the imaginary-time programs. The larger the value of NSTP in real-
time programs, more accurate will be the result [3]. The nonzero
integer parameter NSTP refers to the number of time iterations
during which the nonlinear terms are slowly introduced during
the time propagation for calculating the wave function. After
introducing the nonlinearities in NSTP iterations the imaginary-
time programs calculate the final result in NPAS plus NRUN time
steps and write some of the results after NPAS steps to check
convergence. The real-time programs run the dynamics during
NPAS steps with unchanged initial parameters so as to check the
stability and accuracy of the results. Some of the nonlinearities
are then slightly modified after NPAS iterations and the small
oscillation of the system is studied during NRUN iterations.

Each program is preset at fixed values of contact and dipolar
nonlinearities as calculated from input scattering length(s), dipolar
strength(s), and number of atom(s), correlated DX–DT values and
NSTP, NPAS, and NRUN, etc. A study of the correlated DX and DT
values in the nondipolar case can be found in Ref. [3]. Smaller the
steps DX, DY, DZ and DT, more accurate will be the result, provided
we integrate over a reasonably large space region by increasingNX,
NY, and NZ, etc. Each supplied program produces result up to a
desired precision consistent with the parameters employed — G0,
GDD0, DX, DY, DZ, DT, NX, NY, NZ, NSTP, NPAS, and NRUN, etc.

3.2. Description of Output files

Programs ‘imagnd*’ (n = 1, 2, 3, C and Fortran): They write fi-
nal density in files ‘imagnd-den.txt’ after NRUN iterations. In addi-
tion, in 2D and 3D, integrated 1D densities ‘imagnd*-den1d_x.txt’,
‘imagnd*-den1d_y.txt’, ‘imagnd*-den1d_z.txt’, along x, y, and z,
etc., are given. These densities are obtained by integrating the
densities over eliminated space variables. In addition, in 3D inte-
grated 2Ddensities ‘imag3d-den2d_xy.txt’, ‘imag3d-den2d_yz.txt’,
‘imag3d-den2d_zx.txt’, in xy, yz, and zxplanes can bewritten (com-
mented out by default). The files ‘imagnd*-out.txt’ provide differ-
ent initial input data, aswell as chemical potential, energy, size, etc.
at different stages (initial, after NSTP, NPAS, and after NRUN itera-
tions), from which a convergence of the result can be inferred. The
files ‘imagnd*-rms.txt’ provide the different rms sizes at different
stages (initial, after NSTP, NPAS, and after NRUN iterations).

Programs ‘realnd*’ (n = 1, 2, 3, C and Fortran): The sameoutput
files as in the imaginary-time programs are available in the real-
time programs. The real-time densities are reported after NPAS
iterations. In addition in the ‘realnd*-dyna.txt’ file the temporal
evolution of the widths are given during NPAS and NRUN itera-
tions. Before NRUN iterations the nonlinearities G0 and GDD0 are
multiplied by parameters GPAR and GDPAR to start an oscillation
dynamics.

3.3. Running the programs

In addition to installing the respective Fortran and C compil-
ers one needs also to install the FFT routine FFTW in the com-
puter. To run the Fortran programs the supplied routine fftw3.f03
should be included in compilation. The commands for running
the Fortran programs using INTEL, GFortran, and Oracle Sun com-
pilers are given inside the Fortran programs. The programs are
submitted in directories with option to compile using the com-
mand ‘make’. There are two files with general information about
the programs and FT for user named ‘readme.txt’ and ‘readme-
fftw.txt’. The Fortran and C programs are in directories./f_program
and./c_program. Inside these directories there are subdirectories
such as./input,./output,./src. The subdirectory ./output contains
output files the programs generate, ./input contains input files for C
programs, and ./src contains the different programs. The command
‘make’ in the directory ./f_program or ./c_program compiles all the
programs and generates the corresponding executable files to run.
The command ‘make’ for INTEL, GFortran and OracleSun Fortran
are given.

4. Numerical results

In this section we present results for energy, chemical potential
and root-mean-square (rms) sizes for different stationary BECs
in 1D, 2D, and 3D, and compare with those obtained by using
Gaussian variational and TF approximations, wherever possible.
Wealso comparewith available results by other authors. For a fixed
space and time step, sufficient number of space discretizing points
and time iterations are to be allowed to get convergence.

First we present in Table 1 numerical results for the energy
E, chemical potential µ, and rms size ⟨z⟩ calculated using the
imaginary-time program for the 1D dipolar GP Eq. (29) for 52Cr
atoms with a = 6 nm (≈113a0 with a0 the Bohr radius), and
add = 16a0 for λ = 1, dρ = 1, l = 1 µm and for different num-
ber of atoms Nat and different space and time steps dz and dt . The
Gaussian variational approximations obtained from Eqs. (36)–(38)
are also given for comparison. The variational results provide bet-
ter approximation to the numerical solution for a smaller number
of atoms.

In Table 2 we present results for the energy E, chemical
potential µ, and rms size ⟨ρ⟩ of the 2D GP Eq. (46) for γ =

ν = 1, dz = 1, l = 1 µm. The numerical results are calculated
using different space and time steps dx, dy and dt and different
number Nat of 52Cr atoms with add = 16a0 and a = 6 nm.
Axially-symmetric Gaussian variational approximations obtained
from Eqs. (50)–(52) are also presented for comparison.

Nowwe present results of the solution of the 3D GP Eq. (3) with
some axially-symmetric traps. In this case we take advantage of
the cut-off introduced in Eq. (9) to improve the accuracy of the nu-
merical calculation. The cut-off parameter Rwas taken larger than
the condensate size and smaller than the discretization box. First
we consider the model 3D GP equation with a = 0 and different
gdd = 3addNat = 1, 2, 3, 4 in an axially-symmetric trap with λ =

1/2 and ν = γ = 1. The numerical results for different number of
space and time steps togetherwith Gaussian variational results ob-
tained from Eqs. (18) and (19) are shown in Table 3. These results
for energy E and chemical potentialµ are comparedwith those cal-
culated by Asad-uz-Zaman et al. [16,29]. The present calculation is
performed in the Cartesian x, y, z coordinates and the dipolar term
is evaluated by FT to momentum space. Asad-uz-Zaman et al. take
advantage of the axial symmetry and perform the calculation in the
axial ρ, z (ρ ≡ x, y) variables and evaluate the dipolar term by a
combined Hankel–Fourier transformation to momentum space for
ρ and z, respectively. The calculations of Asad-uz-Zaman et al. for
stationary states involving two variables (ρ and z) thus could be
more economic and accurate than the present calculation involv-
ing three Cartesian variables for the axially-symmetric configura-
tion considered in Table 3. However, the present method, unlike
that of Ref. [16], is readily applicable to the fully asymmetric con-
figurations. Moreover, the present calculation for dynamics (non-
stationary states) in 3D are more realistic than the calculations of
Asad-uz-Zaman et al., where one degree of freedom is frozen. For
example, a vortex could be unstable [30] in a full 3D calculation,
whereas a 2D calculation could make the same vortex stable.

Next we consider the solution of the 3D GP Eq. (3) for a model
condensate of 52Cr atoms in a cigar-shaped axially-symmetric trap
with γ = ν = 1, λ = 1/2, first considered by Bao et al. [9].
The nonlinearities considered there (4πa = 0.20716, 4πadd =

0.033146) correspond to the following approximate values of
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Table 1
The energy per particle E/Nat , chemical potential µ, and rms size ⟨z⟩ of the 1D GP Eq. (29) for λ = 1, dρ = 1 µm for the 52Cr BEC with a = 6 nm, add = 16a0
and different number of atoms Nat . In Eqs. (3) and (29) the lengths are expressed in oscillator unit: l = 1 µm. Numerical results are calculated for parameters (A)
dz = 0.05, dt = 0.0005,N = 2048 (B) dz = 0.1, dt = 0.001,N = 1024 and compared with variational results obtained from Eqs. (36)–(38).

Nat ⟨z⟩ ⟨z⟩ ⟨z⟩ E/Nat E/Nat E/Nat µ µ µ

var (B) (A) var (B) (A) var (B) (A)

100 0.7939 0.7937 0.7937 0.7239 0.7222 0.7222 0.9344 0.9297 0.9297
500 1.0425 1.0381 1.0381 1.4371 1.4166 1.4166 2.2157 2.1691 2.1691

1000 1.2477 1.2375 1.2375 2.1376 2.0920 2.0920 3.4165 3.3234 3.3234
5000 2.0249 1.9939 1.9939 5.8739 5.6910 5.6910 9.6671 9.3488 9.3488

10,000 2.5233 2.4815 2.4815 9.2129 8.913 8.913 15.223 14.715 14.715
50,000 4.2451 4.1719 4.1719 26.505 25.622 25.622 43.993 42.527 42.527
Table 2
The energy per particle E/Nat , chemical potential µ, and rms size ⟨ρ⟩ of the 2D GP Eq. (46) for γ = ν = 1, dz = 1 µm for the 52Cr BEC with a = 6 nm, add = 16a0 and
different number of atoms Nat . In Eqs. (3) and (46) the lengths are expressed in oscillator unit: l = 1 µm. Numerical results are calculated for space and time steps (A)
dx = dy = 0.1, dt = 0.0005,NX = NY ≡ N = 768, (B) dx = dy = 0.2, dt = 0.002, N = 384, and compared with variational results obtained from Eqs. (50), (51) and
(52).

Nat ⟨ρ⟩ ⟨ρ⟩ ⟨ρ⟩ E/Nat E/Nat E/Nat µ µ µ

var (B) (A) var (B) (A) var (B) (A)

100 1.0985 1.097 1.097 1.2182 1.2156 1.2157 1.4187 1.4120 1.4119
500 1.3514 1.342 1.342 1.8653 1.8383 1.8383 2.5437 2.4840 2.4840

1000 1.5482 1.530 1.531 2.4571 2.3988 2.3988 3.5070 3.3901 3.3901
5000 2.2549 2.208 2.208 5.2206 4.9989 4.9989 7.8005 7.4249 7.4249

10,000 2.6824 2.619 2.619 7.3787 7.029 7.029 11.090 10.522 10.522
50,000 4.0420 3.934 3.934 16.680 15.793 15.793 25.161 23.789 23.789
Table 3
Energy per particle E/Nat and chemical potentialµ from a solution of Eq. (3) for γ = ν = 1, λ2

= 0.25, a = 0 and different nonlinearity gdd ≡ 3addNat . The present numerical
results are compared with Gaussian variational results obtained from Eqs. (18) and (19) as well as numerical results of Asad-uz-Zaman et al. [16,29]. Numerical results are
calculated for the following space and time steps and the following space discretizing points in the Crank–Nicolson discretization: (A) dx = dy = dz = 0.05, dt = 0.0004,
(NX = NY = NZ ≡ N = 384); (B) 0.1, dt = 0.002, (N = 128, R = 6); and (C) 0.2, dt = 0.007, (N = 64, R = 6).

gdd E/Nat E/Nat E/Nat E/Nat E/Nat µ µ µ µ µ

var (C) (B) (A) [29] var (C) (B) (A) [29]

0 1.2500 1.2498 1.2500 1.2500 1.2500 1.2500 1.2498 1.2500 1.2500 1.2500
1 1.2230 1.2220 1.2222 1.2222 1.2222 1.1934 1.1910 1.1912 1.1911 1.1911
2 1.1907 1.1872 1.1875 1.1874 1.1874 1.1203 1.1100 1.1100 1.1100 1.1100
3 1.1521 1.143 1.1439 1.1438 1.1437 1.0253 0.995 0.996 0.996 0.9955
4 1.1051 1.085 1.0857 1.0857 1.0856 0.8950 0.805 0.803 0.806 0.8062
Table 4
Energy per particle E/Nat , and chemical potential µ from a solution of Eq. (3) for γ = ν = 1, λ2

= 0.25, 4πa = 0.20716, 4πadd = 0.033146 and different number
Nat of atoms. These nonlinearity parameters taken from Ref. [9] correspond to a 52Cr dipolar BEC with a ≈ 100a0 and add ≈ 16a0 and oscillator length l ≈ 0.321 µm.
Variational and TF results as well as numerical results of Bao et al. [9] are also shown. Numerical results are calculated using the following space and time steps and the
following space discretizing points in the Crank–Nicolson discretization: (A) dx = dy = dz = 0.15, dt = 0.002; (B) dx = dy = dz = 0.3, dt = 0.005. In (A) we
take NX = NY = NZ ≡ N = 128, R = 9 for Nat = 100, 500, 1000 and N = 192, R = 14, for Nat = 5000, 10,000, 50,000; and in (B) we take N = 64, R = 9, for
Nat = 100, 500, 1000 and N = 96, R = 14, for Nat = 5000, 10,000, 50,000.

Nat E/Nat E/Nat E/Nat E/Nat E/Nat µ µ µ µ µ

var TF (B) (A) [9] var TF (B) (A) [9]

100 1.579 0.945 1.567 1.567 1.567 1.840 1.322 1.813 1.813 1.813
500 2.287 1.798 2.224 2.224 2.225 2.951 2.518 2.835 2.835 2.837

1000 2.836 2.373 2.728 2.728 2.728 3.767 3.322 3.583 3.582 3.583
5000 5.036 4.517 4.744 4.744 4.745 6.935 6.324 6.485 6.486 6.488

10,000 6.563 5.960 6.146 6.146 6.147 9.100 8.344 8.475 8.475 8.479
50,000 12.34 11.35 11.46 11.46 11.47 17.23 15.89 15.96 15.97 15.98
Table 5
The rms sizes ⟨x⟩ and ⟨z⟩ for the same systems illustrated in Table 4 using the same cut-off parameter R.

N ⟨z⟩ ⟨z⟩ ⟨z⟩ ⟨z⟩ ⟨z⟩ ⟨x⟩ ⟨x⟩ ⟨x⟩ ⟨x⟩ ⟨x⟩
TF var (B) (A) [9] TF var (B) (A) [9]

100 1.285 1.316 1.305 1.303 1.299 0.600 0.799 0.794 0.795 0.796
500 1.773 1.797 1.752 1.752 1.745 0.828 0.952 0.938 0.939 0.940

1000 2.037 2.079 2.014 2.014 2.009 0.951 1.054 1.035 1.035 1.035
5000 2.810 2.904 2.795 2.795 2.790 1.313 1.392 1.353 1.353 1.354

10,000 3.228 3.345 3.217 3.216 3.212 1.508 1.586 1.537 1.537 1.538
50,000 4.454 4.629 4.450 4.450 4.441 2.080 2.171 2.093 2.093 2.095
a, add and l: a ≈ 100a0, add ≈ 16a0, and l = 0.321 µm.
We present results for energy E and chemical potential µ in
Table 4 and rms sizes ⟨z⟩ and ⟨x⟩ in Table 5. We also present
variational and Thomas–Fermi (TF) results in this case together
with results of numerical calculation of Bao et al. [9]. The TF energy
and chemical potential in Table 4 are calculated using Eqs. (21)
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Table 6
Energy per particle E/Nat , chemical potentialµ, and rms sizes froma solution of Eq. (3) for 52Cr atomswith γ = 1, ν2

= 1/2, λ2
= 1/4, a = 110a0 , add = 16a0 , and harmonic

oscillator length l = 1 µm for different Nat . Numerical results are calculated using the following space and time steps and the following space discretizing points in the
Crank–Nicolson discretization: (A) dx = dy = dz = 0.1, dt = 0.001; and (B) 0.2, dt = 0.003. In (A) we take NX = NY = NZ ≡ N = 128, R = 6 for Nat = 100, 500, 1000
andN = 256, R = 10.5, forNat = 5000, 10,000, 50,000; and in (B)we takeN = 64, R = 6, forNat = 100, 500, 1000 andN = 128, R = 12, forNat = 5000, 10,000, 50,000.

N E/Nat E/Nat µ µ ⟨x⟩ ⟨y⟩ ⟨z⟩ ⟨x⟩ ⟨y⟩ ⟨z⟩
(B) (A) (B) (A) (B) (B) (B) (A) (A) (A)

100 1.219 1.219 1.321 1.321 0.742 0.901 1.120 0.742 0.901 1.119
500 1.525 1.525 1.830 1.830 0.818 1.032 1.379 0.818 1.032 1.379

1000 1.784 1.784 2.232 2.232 0.874 1.128 1.559 0.874 1.129 1.558
5000 2.885 2.885 3.857 3.858 1.079 1.463 2.132 1.079 1.463 2.132

10,000 3.673 3.673 4.992 4.992 1.206 1.660 2.450 1.206 1.660 2.449
50,000 6.713 6.713 9.306 9.306 1.609 2.260 3.383 1.609 2.260 3.383
Fig. 1. (a) Numerical (num) and variational (var) results for the one-dimensional axial density n1D(z) = |φ1D(z)|2 along z axis for ν = γ = 1, λ = 0.25 of a cigar-
shaped BEC of Nat = 1000 atoms obtained using the 1D Eq. (29) and that obtained after integrating the 3D density from Eq. (3) over x and y: n1D(z) =


|φ(r)|2dxdy. (b)

Numerical (num) and variational (var) results for the 1D radial density n1D(x) =


|φ(r)|2dydz along x axis for ν = γ = 1, λ = 4 of a disk-shaped BEC of Nat = 1000
atoms obtained after integrating the 3D density from Eq. (3) over y and z and after integrating the 2D density from Eq. (46) over y as follows: n1D(x) =


dy|φ2D(x, y)|2 and

n1D(x) =

dydz|φ3D(x, y, z)|2 . In all cases a = 6 nm and add = 16a0 .
and (26), respectively. The TF sizes ⟨x⟩ and ⟨z⟩ in Table 5 are
obtained fromEqs. (24) and (25) using the TF density (20). For small
nonlinearities or small number of atoms, the Gaussian variational
results obtained from Eqs. (13), (14), (18), and (19) are in good
agreement with the numerical calculations as the wave function
for small nonlinearities has a quasi-Gaussian shape. However, for
large nonlinearities or large number of atoms, the wave function
has an approximate TF shape (20), and the TF results provide
better approximation to the numerical results, as can be seen from
Tables 4 and 5.

After the consideration of 3D axially-symmetric trap now we
consider a fully anisotropic trap in 3D. In Table 6 we present
the results for energy E/Nat, chemical potential µ and rms sizes
⟨x⟩, ⟨y⟩, ⟨z⟩ of a 52Cr BEC in a fully anisotropic trapwith γ = 1, ν =

1/
√
2, λ = 1/2 for different number of atoms. In this case we take

a = 110a0, add = 16a0 and l = 1 µm. The convergence of the cal-
culation is studied by taking reduced space and time steps dx and
dt and different number of space discretization points. Sufficient
number of time iterations are to be allowed in each case to obtain
convergence. In 3D the estimated numerical error in the calcula-
tion is less than 0.05%. The error is associated with the intrinsic
accuracy of the FFT routine for long-range dipolar interaction.

The 1D and 2D GP Eqs. (29) and (46) are valid for cigar- and
disk-shaped BECs, respectively. In case of cigar shape the 1D GP
equation yields results for axial density and in this case it is
appropriate to compare this density with the reduced axial density
obtained by integrating the 3D density over radial coordinates:
n(z) ≡ |ϕ(z)|2 =


|φ(x, y, z)|2 dx dy. In Fig. 1(a) we compare

two axial densities obtained from the 1D and 3D GP equations. We
also show the densities calculated from the Gaussian variational
approximation in both cases. In the cigar case the trap parameters
are ν = γ = 1, λ = 1/4. Similarly, for the disk shape it is
interesting to compare the density along the radial direction in the
plane of the disk as obtained from the 3DEq. (3) and the 2DEq. (46).
In this case it is appropriate to calculate the 1D radial density along,
say, x direction by integrating 2D and 3D densities as follows:
n1D(x) =


dy|φ2D(x, y)|2 and n1D(x) =


dydz|φ3D(x, y, z)|2.
In Fig. 1(b) we compare two radial densities obtained from the
2D and 3D GP equations. We also show the densities calculated
from the Gaussian variational approximation in both cases. For this
illustration, we consider the trap parameters ν = γ = 1, λ = 4.
In both Figs. 1(a) and (b), the densities obtained from the solution
of the 3D GP equation are in satisfactory agreement with those
obtained from a solution of the reduced 1D and 2D equations. In
Fig. 1, the numerical and variational densities are pretty close to
each other, so are the results obtained from the 3D Eq. (3), on the
one hand, and the ones obtained from the 1D and 2D Eqs. (29) and
(46), on the other.

A dipolar BEC is stable for the number of atoms Nat below a
critical value [31]. Independent of trap parameters, such a BEC
collapses as Nat crosses the critical value. This can be studied
by solving the 3D GP equation using imaginary-time propagation
with a nonzero value of NSTP while the nonlinearities are slowly
increased. In Fig. 2(a) we present the Nat − a stability phase plot
for a 164Dy BEC with add = 130a0 in the disk-shaped trap with
ν = γ = 1, λ = 5 and 7. The oscillator length is taken to be
l = 1µm.The shaded area in these plots shows ametastable region
where biconcave structure in 3D density appears. The metastable
region corresponds to a local minimum in energy in contrast to a
global minimum for a stable state. It has been established that this
metastability is amanifestation of roton instability encountered by
the system in the shaded region [31]. The biconcave structure in
3D density in a disk-shaped dipolar BEC is a direct consequence
of dipolar interaction: the dipolar repulsion in the plane of the
disk removes the atoms from the center to the peripheral region
thus creating a biconcave shape in density. In Fig. 2(b) and (c) we
plot the 3D isodensity contour of the condensate for λ = 5 with
parameters in the shaded region corresponding tometastability. In
Fig. 2(b) the density on the contour is 0.001whereas in Fig. 2(c), it is
0.027. Only for a larger density on the contour the biconcave shape
is visible. The biconcave shape predominates near the central
region of the metastable dipolar BEC.

In Fig. 1 we critically tested the reduced 1D and 2D Eqs. (29)
and (46) along the z axis and in the x–y plane, respectively, by



126 R. Kishor Kumar et al. / Computer Physics Communications 195 (2015) 117–128
Fig. 2. (a) The Nat − a stability phase plot for a 164Dy BEC with add = 130a0 in a disk-shaped trap with ν = γ = 1, λ = 5 and 7 and harmonic oscillator length l = 1 µm.
The 3D isodensity contour plot of density of a disk-shaped 164Dy BEC with add = 130a0 for ν = γ = 1, λ = 5, l = 1 µm, Nat = 3000 and a = 40a0 for densities |φ(x, y, z)|2
= (b) 0.001 and (c) 0.027 on the contour.
Fig. 3. (a) Numerical results for the 1D radial density n1D(x) =


|φ(r)|2dydz along x axis and n1D(z) =


|φ(r)|2dxdy along z axis for λ = γ = 1, ν = 4 of a disk-shaped
BEC of Nat = 2000 164Dy atoms obtained after integrating the 3D density from Eq. (3) and the 2D density from Eq. (55) over the eliminated variables. (b) Numerical results
for the 1D axial density n1D(x) = along x axis for ν = λ = 16, γ = 1 of a cigar-shaped BEC of Nat = 2000 52Cr atoms obtained using the 1D Eq. (41) and that obtained after
integrating the 3D density from Eq. (3) over z and y: n1D(x) =


|φ(r)|2dzdy. In all cases a = 120a0 and (a) add = 132.7a0 (b) add = 16a0 .
comparing the different 1D densities from these equations with
those obtained from a solution of the 3D Eq. (3) as well as with
the variational densities. Now we perform a similar test with the
reduced 1D and 2D Eqs. (41) and (55) along the x axis and in the
x–z plane, respectively. We consider a BEC of 2000 atoms in a disk-
shaped trap in the x–z plane with λ = γ = 1 and ν = 4. Because
of the strong trap in the y direction, the resultant BEC is of quasi-
2D shape in the x–z plane without circular symmetry in that plane
because of the anisotropic dipolar interaction. The integrated linear
density along the x and z axes as calculated from the 2D GP Eq. (55)
and the 3D GP Eq. (3) are illustrated in Fig. 3(a). Next we consider
the BEC of 2000 atoms in a cigar-shaped trap along the x axis with
ν = λ = 16 and γ = 1. The integrated linear density along the
x axis in this case calculated from the 3D Eq. (3) is compared with
the same as calculate using the reduced 1D Eq. (41) in Fig. 3(b). In
both cases the densities calculated from the 3D GP equation are
in reasonable agreement with those calculated using the reduced
Eqs. (55) and (41). Another interesting feature emerges from Figs. 1
and 3: the reduced 2D GP Eqs. (46) and (55) with appropriate disk-
shaped traps yield results for densities in better agreement with
the 3D GP Eq. (3) as compared to the 1D GP Eqs. (29) and (41)
with appropriate cigar-shaped traps. This feature, also observed in
non-dipolar BECs [17], is expected as the derivation of the reduced
1D equations involving two spatial integrations represent more
drastic approximation compared to the same of the reduced 2D
equations involving one spatial integration.

Now we report the dynamics of the dipolar BEC by real-time
propagation using the stationary state calculated by imaginary-
time propagation. In Fig. 4(a) we show the oscillation of the rms
sizes ⟨z⟩ and ⟨ρ⟩ from the reduced 1D and 2DGP Eqs. (29) and (46),
respectively. In Fig. 4(a) we consider Nat = 10,000, add = 16a0
(appropriate for 52Cr), a = 6 nm (≈113a0) and oscillator length
l = 1µm. In 1D, we take dx = 0.025, dt = 0.0001, λ = 1, dρ = 1,
number of space points N = 2048, and in 2D, we take dx = dy =

0.2, dt = 0.001, γ = ν = 1, dz = 1,NX = NY = 512. in
real-time simulation the oscillation is started by multiplying the
nonlinearities with the factor 1.05. To implement this, in real-time
routine we take GPAR = GDPAR = 1.1 and also take NSTP = 0 to
read the initial wave function. In 1D and 2D we also present re-
sults of the Gaussian variational approximations after a numeri-
cal solution of Eqs. (36) and (50), respectively. The frequency of
the resultant oscillations agree well with the numerical 1D and 2D
calculations. However, slight adjustment of the initial conditions,
or initial values of width and its derivative, were necessary to get
an agreement of the amplitude of oscillation obtained from varia-
tional approximation and numerical simulation. The initial values
of width and its derivative are necessary to solve the variational
equations (36) and (50). In Fig. 4(b) we illustrate the oscillation of
the rms sizes ⟨x⟩, ⟨y⟩, and ⟨z⟩ in 3D using Eq. (3), wherewe perform
real-time simulation using the bound state obtained by imaginary-
time simulation as the initial state. The parameters used are Nat =

1000, a = 110a0, add = 16a0, γ = 1, ν = 1/
√
2, λ = 1/2, l =

1 µm, NX = NY = NZ = 128, dx = dy = dz = 0.2, dt = 0.002
in both real- and imaginary-time simulations. In addition, in real-
time simulation the oscillation is started bymultiplying the nonlin-
earities with the factor 1.1. To implement this, in real-time routine
we take GPAR = GDPAR = 1.1 and also take NSTP = 0 to read the
initial wave function.

5. Summary

We have presented useful numerical programs in Fortran
and C for solving the dipolar GP equation including the contact
interaction in 1D, 2D, 3D. Two sets of programs are provided.
The imaginary-time programs are appropriate for solving the
stationary problems, while the real-time codes can be used for
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Fig. 4. (a) Numerical (n) and variational (v) results for oscillation of rms sizes ⟨z⟩ and ⟨ρ⟩ from the real-time simulation using Eq. (29) in 1D and Eq. (46) in 2D, respectively,
for Nat = 10,000, a = 6 nm, add = 16a0 , l = 1 µm, while a and add were both multiplied by 1.05 after NPAS iterations at t = 10. The wave function was first calculated
by imaginary-time routine with parameters dx = 0.025, dt = 0.0001, λ = 1, dρ = 1, NPAS = 105 , N = 2048 in 1D, and dx = dy = 0.2, dt = 0.001, γ = 1, dz =

1NPAS = 104 , NX = NY = 512 in 2D. The results of the variational approximations in 1D and 2D as obtained from a numerical solution of Eqs. (36) and (50) are also
shown. (b) Numerical results for oscillation of rms sizes ⟨x⟩, ⟨y⟩ and ⟨z⟩ from the real-time simulation in 3D using Eq. (3), for Nat = 1000, a = 110a0 , add = 16a0 , l = 1 µm,
γ = 1, ν = 1/

√
2, λ = 1/2, NX = NY = NZ = 128, dx = dy = dz = 0.2, and dt = 0.002 while a and add were both multiplied by 1.1 after NPAS iterations. In all cases the

real-time calculation was performed with NSTP = 0 reading the 3D density from the numerical solution of the imaginary-time program using the same parameters.
studying non-stationary dynamics. The programs are developed
in Cartesian coordinates. We have compared the results of
numerical calculations for statics and dynamics of dipolar BECs
with those of Gaussian variational approximation, Thomas–Fermi
approximation, and numerical calculations of other authors, where
possible.
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