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ScienceDirect
Long-term synaptic modification is not the exclusive mode of

memory storage, and persistent regulation of voltage-gated ion

channels also participates in memory formation. Intrinsic

plasticity is expressed in virtually all neuronal types including

principal cells and interneurons. Activation of synaptic

glutamate receptors initiates long-lasting changes in neuronal

excitability at presynaptic and postsynaptic side. As synaptic

plasticity, intrinsic plasticity is bi-directional and expresses a

certain level of input-specificity or cell-specificity. We discuss

here the nature of the learning rules shared by intrinsic and

synaptic plasticity and the impact of intrinsic plasticity on

temporal processing.
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Introduction
Long-lasting plasticity of chemical synaptic transmission is

usually considered as the main mechanism accounting for

information storage in the brain. Synapse-specific changes

in transmission from a large array of inputs appears particu-

larly appealing for maintaining a high computational capac-

ity in the brain. However, this appears not to be the whole

story and many other factors involved in the transfer of

neuronal information occupy today a key position in func-

tional plasticity. Voltage-gated channels located at the

input or output side of neurons are involved in a form of

activity-dependent plasticity called intrinsic plasticity (for

review, see Refs. [1–5]).

Here, we review recent in vitro works devoted to the study

of intrinsic plasticity in mammalian neurons. First, we will

discuss new expression mechanisms of graded persistent

firing, a form of short-term plasticity that may account for

working memory. Second, we review some recent findings
www.sciencedirect.com 
that illustrate cellular correlates of learning mediated by

changes in intrinsic excitability. Next, we will describe

different ways of modulating input–output function at the

neuronal scale. Then, we will consider the learning rules of

intrinsic plasticity on the basis of those defined for synaptic

modifications. Next, we will review recently identified

mechanisms of intrinsic plasticity in GABAergic interneur-

ons. Finally, we will discuss the consequences of intrinsic

plasticity on temporal processing.

Graded firing: a cellular analog of working
memory
Working memory is an ephemeral retention of informa-

tion whose neurobiological substrate can be seen as a

stimulus-specific modulation of neural activity that lasts

until a new stimulus is presented (Figure 1a). The neu-

ronal basis for this form of memory was first identified in

associative cortices of the monkey (for review, see Ref.

[6]). In the prefrontal cortex, the posterior parietal cortex

or the inferotemporal cortex, a subset of neurons called

‘memory neurons’ show persistent activity during a

delayed response task, in which the animal is required

to retain information of a sensory cue across a delay period

between the stimulus and the behavioral response. In

contrast with long-lasting forms of memory requiring

molecular and/or structural changes, this form of short-

term memory (or working memory) is a dynamic and

ephemeral process. According to the classical view, the

stimulation is memorized through reverberating activity

within interconnected groups of neurons (Figure 1b).

Inhibition of one of the neurons may stop activity within

interconnected neurons. Egorov et al. [7] discovered that

single isolated neurons are able to memorize the stimulus

that was transiently applied (Figure 1b). During basal

stimulation of muscarinic acetylcholine receptors

(mAChR), neurons from the entorhinal cortex may, upon

brief stimulation, generate sustained increases in their

electrical activity that are graded in frequency and revers-

ible by hyperpolarization. Persistent firing is cell-specific

[8] and it has been also reported in CA3 [9] and CA1 [10]

hippocampal pyramidal neurons, mitral cells from the

olfactory bulb [11] and L5 cortical pyramidal neurons

[8,12��] under stimulation of mAChR. Graded persistent

firing requires postsynaptic calcium influx mediated by

spiking activity. The original mechanism of graded firing

was thought to be mediated by calcium-activated non-

selective (CAN) cationic current that in turn depolarizes

the cell [7] (Figure 1c). But, the molecular identity of

CAN channels remains elusive and alternative mecha-

nisms have been considered. The inversion of the Na+/

Ca2+ exchanger activity by accumulation of intracellular

Na+ has been proposed to account for persistent firing in
Current Opinion in Neurobiology 2019, 54:73–82
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Persistent firing as a cellular model of working memory.

(a) Brief excitation of the neuron by the stimulus leads to persistent firing that is persistently maintained at the same rate. Adapted from Ref. [7] (b)

Reverberatory circuit versus single neuron mnemonics. In both cases, an external stimulation leads to persistent activity through synaptic

connections (reverberatory circuit) or through a calcium-dependent afterdepolarization (ADP). (c) Two possible mechanisms for ADP. Left, the

opening of CAN channel leads to sustained firing through Na+ influx (adapted from Ref. [7]). Right, the closure of an ether-à-gogo related gene

(ERG) channel leads to persistent firing through a depolarization of the membrane conjugated with an increase in input resistance (adapted from

Ref. [12��]).
mitral cells of the olfactory bulb [11]. Although attractive,

this mechanism seems unable to explain all forms of

persistent firing since in neocortical pyramidal neurons,

persistent firing is still observed in the presence of tetro-

dotoxin, a potent Nav channel blocker [12��] (in this case,

calcium spikes replace sodium spikes). In this study,

persistent firing is mediated by the modulation of

ether-à-Go-Go related gene (ERG) K+ channel [12��].
ERG channels mediate a leak potassium current that is

downregulated by calcium entry induced with repetitive

spiking (Figure 1c).

Cellular correlates of learning
The search for cellular excitability correlates of learning and

memory inthemammalianbrainhas focusedonneurons that
Current Opinion in Neurobiology 2019, 54:73–82 
arethoughttobeactiveduring learning.Sincethepioneering

work of C. Woody, many studies have shown that classical

conditioning alters intrinsic excitability (IE) in neurons from

the pericruciate cortex [13], hippocampus [14,15] or cere-

bellum [16]. All these studies indicate that intrinsic plasticity

occurs in neurons following learning but the activity of the

recorded cell was not accurately controlled during learning.

A recent study went a step further by showing using a

fluorescent activity-reporter that intrinsic excitability is

altered only in cells that are active during learning [17��].

Regulations of neuronal excitability have been involved

in others forms of learning such as spatial learning [18],

fear conditioning [19–22], odor discrimination [23–25].
www.sciencedirect.com



Intrinsic plasticity Debanne, Inglebert and Russier 75
Experiencing new or enriched environment is also known

to affect intrinsic excitability [26,27]. Following learning,

usually after-hyperpolarization (AHP), AP threshold and

accommodation are decreased resulting in an enhance-

ment of AP firing and neuronal IE in the hippocampus

(spatial and fear conditioning), amygdala (fear condition-

ing and odor discrimination), or prefrontal cortex (fear

conditioning). While most of excitability changes dis-

cussed so far corresponds to enhanced IE, decrease in

IE has been observed in mitral cells of the accessory

olfactory bulb following social learning [17��]. In fact,

mitral cells showed an unusual reduction in cell firing

during repetitive stimulation. The reason why polarity is

changes in this particular case is not yet elucidated but it

may act to filter sustained or repetitive signals.

Multiple mechanisms for modulating input–
output function
Input–output function is a critical operation achieved

by synaptic and intrinsic mechanisms. Whereas expres-

sion mechanisms of synaptic plasticity are rather simple

and involve either presynaptic change in neurotrans-

mitter release or postsynaptic change in glutamate

receptor density or function, plasticity of IE can be

expressed through at least three different types of
Figure 2
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functional modulation (Figure 2). Ion channels located

in dendrites shape EPSP waveform by either boosting

or attenuating the synaptic response. Thus, a given

EPSP may lead to an action potential if the net ampli-

fication is enhanced. Two ion channels located in the

dendrites, the hyperpolarization-activated cyclic nucle-

otide-gated (HCN) channel and the voltage-gated

potassium channel (Kv4.2) attenuate the EPSP ampli-

tude. Their downregulation following induction of syn-

aptic potentiation enhances input–output function [28–

31]. As synaptic plasticity, the modulation of EPSP

amplification is generally local as other inputs remain

unchanged [28,32].

Input–output function may be altered via modulation of

spike threshold (Figure 2). The spike threshold is deter-

mined by voltage-gated Na+ (Nav) and K+ (Kv) channels.

Shift of Nav activation towards hyperpolarized values

lowers the spike threshold and increases excitability

following induction of synaptic potentiation in CA1 pyra-

midal neurons [33]. Similarly, downregulation of Kv1

channels, as observed in auditory neurons following

cochlea removal, lowers the spike threshold and increases

intrinsic excitability [34��]. This type of modulation is

global since it may affect all incoming inputs.
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Input–output function can be modulated by changing the

resting membrane potential (RMP) of the neuron (Fig-

ure 2). Hippocampal granule cells display long-term

depolarization (LT-Depol) of the RMP by approximately

8–10 mV following high frequency firing [35]. LT-Depol

in granule cells is mediated by a protein kinase A-depen-

dent upregulation of HCN channels. While, the regula-

tion of HCN channels leads to attenuated EPSP ampli-

tude and therefore to a reduction in intrinsic excitability

(see above), the net effect here is however an increase in

excitability. In fact, the large depolarization of resting

membrane potential (8–10 mV) largely dominates the

excitability reduction caused by the attenuation of excit-

atory synaptic inputs. This sustained depolarization may

not only lead to granule cell firing in response to incoming

excitatory inputs but also to the facilitation of
Figure 3
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Cooperation between synaptic and intrinsic plasticity rules.

(a) Synergistic changes in synaptic and intrinsic plasticity (Hebbian). Left, B

intrinsic modification following low (uD < frequency < uP) or high (>uP) stimu

from Ref. [41]. Middle, STDP (spike-timing dependent plasticity) rule defines

positive spike timing. Adapted from Refs. [28,32,50,51]. Right, synaptic and

(b) Homeostatic plasticity rule. Increase in synaptic activity induces an oppo

induces an elevation in excitability. Note that homeostatic plasticity rule onl

not for intermediate changes in synaptic activity. Adapted from Refs. [56,63

homeostatic plasticity as defined in panel (b) to Hebbian changes in intrinsic
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transmission at their mossy-fiber boutons through an

analog-digital signaling mechanism [36]. Here again, this

modulation is global as all inputs will be equally affected.

Learning rules of intrinsic plasticity
Hebbian changes in IE

Hebbian plasticity has been first defined for synaptic

transmission in the form of the Bienenstock-Cooper-

Munro (BCM) rule. BCM rule stipulates that synaptic

modification correlates with the activity modulation dur-

ing learning (for a recent review, see Ref. [37]; Figure 3a).

Hebbian synaptic modification in the hippocampus and

neocortex is also induced by the degree of correlation

between presynaptic and postsynaptic activity and is

referred to as spike-timing dependent plasticity or STDP

[38]. Both types of Hebbian plasticity are associated with
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lation frequency. uD = LTD threshold, uP = LTP threshold. Adapted

 synergistic synaptic and intrinsic modification following negative or

 intrinsic plasticity change synergistically. Adapted from Refs. [32,41].

site decrease in excitability whereas reduction in synaptic drive

y accounts for intrinsic excitability changes following low or high, but

,64]. (c) Hebbian-homeostatic plasticity rule. This plasticity rule links

 excitability as defined in panel (a). Adapted from Refs. [29,69�].
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intrinsic plasticity that are synergistic to the induced

synaptic changes (Figure 3a).

At the postsynaptic side, synaptic modifications are asso-

ciated with synergistic plasticity of IE that affects the

input–output function of the neuron (i.e. excitatory post-

synaptic potential-spike (or EPSP-spike) coupling; see for

review Refs. [1,39]). In CA1 pyramidal neurons, long-

term synaptic potentiation (LTP) is associated with an

increased firing probability in response to the tetanized or

paired input [32,40,41] whereas long-term synaptic

depression (LTD) is associated with a decreased firing

probability in response to the stimulated input [32,41].

EPSP summation is changed synergistically with synaptic

modifications induced by STDP protocols [28]

(Figure 3a). All these Hebbian modifications in IE require

NMDA-receptor activation and are input-specific, that is

no modification occurs on other inputs. Hebbian intrinsic

plasticity is not specific to hippocampal neurons and long-

lasting increase in IE has been induced in neocortical

neurons following synaptic [42] or intrinsic [43,44,45�]
activation paradigms.

Intrinsic plasticity has been reported in at least three

different types of cerebellar neurons. In deep cerebellar

nuclei, granule and Purkinje neurons, IE is enhanced

following high frequency stimulation that induces LTP

[46–48]. Here again, NMDA-receptor activation is

required for induction of intrinsic plasticity. In Purkinje

cells, enhanced IE is mediated by the downregulation of

SK channels and requires activation of PKA and casein

kinase 2 (CK2). As in cortical neurons, the reciprocal is

true and long-lasting decrease in IE is observed following

LTD induction [49]. This LTD-IE is mediated by the

upregulation of HCN channels.

Synergistic changes in IE have been also identified at the

presynaptic side when LTP or LTD is induced by STDP

protocols in hippocampal and neocortical neurons [50,51]

(Figure 3a). IE in the presynaptic neuron was found to be

enhanced following induction of synaptic LTP by posi-

tive correlation whereas IE of the presynaptic cell was

decreased following induction of LTD by negative cor-

relation. Presynaptic intrinsic plasticity involves yet

unidentified retrograde messengers and might be of great

importance for the dynamics of neural circuits by creating

privileged pathways of activity in the brain where pre-

synaptic and postsynaptic excitability as well as synaptic

transmission change harmoniously.

Homeostatic plasticity of IE

Hebbian mechanisms appear insufficient to explain activ-

ity-dependent plasticity during development because

they tend to reinforce active circuits and depress inactive

ones and are thus destabilizing. In fact, stability in neural

circuits can be achieved by introducing homeostatic

plasticity that adjust synaptic strength and intrinsic
www.sciencedirect.com 
excitability [52]. Initially reported in cultured visual

cortical neurons [53], homeostatic plasticity of IE has

been observed in virtually all neuronal types. IE is

enhanced in response to chronic activity deprivation

induced pharmacologically [54–57] or by sensory depri-

vation [34��,58,59], whereas it is reduced in response to

elevated network activity [54,56,60], leading to a homeo-

static plasticity rule that is globally anti-Hebbian

(Figure 3b).

While many ion channels are regulated in parallel [61],

two inhibitory channels have recently retain attention:

Kv1 channels located in the axon that determine spike

threshold and intrinsic excitability [62], and HCN chan-

nels located in the dendrites that dampens all depolariz-

ing events such as EPSPs. Downregulation of Kv1 chan-

nel activity has been identified as a major mechanism for

the increased excitability observed in CA3 pyramidal

neurons after chronic blockade of glutamate receptors

[55] and in auditory neurons following cochlear removal

[34��]. Conversely, Kv1 currents are upregulated follow-

ing epileptiform activity [60], indicating that Kv1 channel

activity is bi-directionally regulated. In CA1 pyramidal

neurons, HCN channels are homeostatically regulated

following bidirectional chronic manipulation of network

activity [56] or following induction of large synaptic

modification [63,64].

Whereas homeostatic plasticity in cortical pyramidal cells

is usually induced by persistent modulation of activity

lasting few tens of hours [53–56], homeostatic potentia-

tion of IE can be induced by a transient hyperpolarization

(20–300 s) in vestibular neurons [65] and cerebellar Golgi

cells [66]. Both forms of plasticity involve the down-

regulation of BK channel activity. It should be noted

that in contrast to pyramidal cells that are silent at rest,

these cells correspond to pacemaker neurons that contin-

uously fire at 5–10 Hz. Interestingly, vestibular sensory

loss triggers rapid potentiation of excitability in vestibular

neurons thus enabling adaptive compensatory increases

in optokinetic reflex gain [67�].

Linking Hebbian and homeostatic intrinsic plasticity

Despite their apparent antagonistic feature, Hebbian and

homeostatic plasticity are thought to work hand-in-hand

[68]. The modulation of HCN channel following induc-

tion of synaptic modification provides a good example for

such interaction. Whereas large LTP is associated with

decreased IE due to the upregulation of HCN channel

activity [63], small LTP is combined with increased IE

resulting from downregulation of HCN channel [32]. The

opposite is true for LTD with a HCN-dependent increase

in IE induced in parallel of large LTD [64] and a HCN-

dependent decrease in IE for small LTD [69�]. The

multiple regulation of HCN channel implies distinct

induction and expression pathways [63,64,69�,70]. Thus,
Current Opinion in Neurobiology 2019, 54:73–82
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IE follows a single plasticity rule linking Hebbian and

homeostatic plasticity (Figure 3c).

Intrinsic plasticity in GABAergic interneurons
Intrinsic plasticity is not exclusively expressed in principal

neurons and GABAergic interneurons also display several

forms of long-term intrinsic plasticity. Basket cells of the

dentate gyrus exhibit LT-Depol of their resting membrane

potential following high-frequency stimulation of the glu-

tamatergic inputs [71]. As in granule cells, LT-Depol
Figure 4
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enhances the efficacy of EPSPs to fire the interneuron

but in basket cells LT-Depol results from changes in the

Na+/K+ ATPase pump function and requires the activation

of calcium-permeable AMPA receptor.

Voltage-dependent excitability is also finely tuned in

basket cells by Kv1-dependent modulation of the spike

threshold to adjust inhibition levels in cortical circuits.

Stimulation of the Neuregulin 1 receptor ErbB4 has been

shown to strongly regulate Kv1 channel activity and
ed
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intrinsic excitability in parvalbumin positive basket cells

(PV-BC) [72]. Likewise, PV-BCs exhibit potentiation of

IE mediated by the downregulation of Kv1 channel

activity and induced by synaptic activation of metabo-

tropic glutamate receptor subtype 5 (mGluR5) [73��]
(Figure 4a). This facilitation is responsible for most of

the increased firing and is thought to compensate

enhanced synaptic and intrinsic excitation in pyramidal

neurons. The reciprocal modulation has been recently

observed in somatosensory PV interneuron following

activity-deprivation [74�], indicating that Kv1-dependent

regulation of neuronal excitability is bidirectional

(Figure 4a). In the cortex, most PV interneurons express

Er81, a transcription factor involved in the activation

pathway of Ca2+/calmodulin-dependent kinase I [75�].
Noteworthy, Er81 is highly regulated by activity and

controls levels of Kv1.1 channel in PV interneurons

[75�]. In fact, Er81 level is high in weakly active circuits

whereas it is low in highly active circuits (Figure 4a).

Incidence of intrinsic plasticity on temporal
processing
Temporal processing is thought to represent a key factor

in brain function and is controlled by synaptic circuits and

by intrinsic properties [76,77]. For example, during initial

storage of fear learning, spiking activity among adjacent

CA1 pyramidal neurons becomes more synchronized [78].

At a cellular scale, spike-timing, membrane resonance

and pacemaker activity are all controlled by voltage-gated

ion channels including those involved in intrinsic plastic-

ity [55,79,80]. Both Hebbian and homeostatic regulations

of IE are associated with improved spike-time precision

[42,45�,55]. In all cases, improved precision results from

an ion channel-dependent enhancement of the voltage

rising-slope preceding the action potential.

HCN channels set resonance frequency in hippocampal

CA1 neurons in the u range. Following large synaptic

modifications, the resonance frequency is modulated as

the sign of the induced synaptic change through mod-

ifications in HCN channel properties [64,81]. This shows

that oscillatory intrinsic dynamics in the hippocampus can

be finely tuned under homeostatic plasticity of IE.

Modulation of the temporal structure of firing has been

described in two cell types. In Purkinje cells, SK-depen-

dent enhancement of intrinsic excitability leads to

increased burst firing in response to climbing fiber dis-

charge and shortening of spike pauses [82�]. As Purkinje

cells inhibit deep cerebellar nuclei, these briefer spike

pauses are seen as enhanced excitation at the output side

of the cerebellum. Likewise, enhanced IE in PV-BC

promotes clustered spiking activity in the gamma-fre-

quency range [73��] (Figure 4b). As PV-BC represents

the main cell-type orchestrating network oscillations in

the hippocampus, this modulation in the temporal
www.sciencedirect.com 
structure of PV-BC firing suggests use-dependent modu-

lation of gamma oscillations [83].

Conclusion and perspective
Remarkable progress in understanding learning rules and

in identifying mechanisms of intrinsic plasticity has been

made these recent years. However, many issues remain.

For instance, most studies reported in this review comes

from in vitro works and very few studies have been

performed in vivo [44,45�] with physiologically realistic

induction protocols. One may dream in the nearest future

of monitoring IE in cortical or cerebellar neurons during

the acquisition of a simple behavioral task. To achieve

this goal, development of new tools will be required.

Another challenge will consist in identifying why oppo-

site changes in intrinsic excitability is observed in differ-

ent types of neuron within the same structure following

sensory deprivation [58,84]. Whereas changes in IE are

clearly homeostatic in layer 2/3 principal neurons [58],

they are Hebbian in layer five pyramidal cells [84]. The

future will probably help to answer all these questions.
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