
A Location-to-Segmentation Strategy for Automatic Exudate Segmentation in Colour
Retinal Fundus Images

Qing Liua,b,c, Beiji Zoua,b, Jie Chenc, Wei Kec, Kejuan Yued, Zailiang Chena,b,∗, Guoying Zhaoc

aSchool of information science and engineering, Central South university, Changsha 410083, China
bMinistry of Education-China Mobile Joint Laboratory For Mobile Health, Changsha 410083, China

cCenter for Machine Vision and Signal Analysis, University of Oulu, Oulu, 90570, Finland
dHunan First Normal University, School of Information Science and Engineering, Changsha 410205, China

Abstract

The automatic exudate segmentation in colour retinal fundus images is an important task in computer aided diagnosis and
screening systems for diabetic retinopathy. In this paper, we present a location-to-segmentation strategy for automatic exudate
segmentation in colour retinal fundus images, which includes three stages: anatomic structure removal, exudate location and
exudate segmentation. In anatomic structure removal stage, matched filters based main vessels segmentation method and a saliency
based optic disk segmentation method are proposed. The main vessel and optic disk are then removed to eliminate the adverse
affects that they bring to the second stage. In the location stage, we learn a random forest classifier to classify patches into two
classes: exudate patches and exudate-free patches, in which the histograms of completed local binary patterns are extracted to
describe the texture structures of the patches. Finally, the local variance, the size prior about the exudate regions and the local
contrast prior are used to segment the exudate regions out from patches which are classified as exudate patches in the location stage.
We evaluate our method both at exudate-level and image-level. For exudate-level evaluation, we test our method on e-ophtha EX
dataset, which provides pixel level annotation from the specialists. The experimental results show that our method achieves 76%
in sensitivity and 75% in positive prediction value(PPV), which both outperform the state of the art methods significantly. For
image-level evaluation, we test our method on DiaRetDB1, and achieve competitive performance compared to the state of the art
methods.
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1. Introduction

Diabetic retinopathy is the main cause of blindness in work-
ing age population in the world [1]. The World Diabetes Foun-
dation estimates that over 438 million people will suffer from
diabetic retinopathy by 2030. As the window to a person’s
body, retinal fundus contains rich anatomical structures, such
as optic disk, vessels and macula, as Fig.1(a) shows. Specifi-
cally, it provides an important manifestation of the presence of
diabetic retinopathy. Traditional diagnosis process is to analyse
the retinal fundus images and quantify the exudates according
to the ophthalmologists’ experience. It is time consuming and
the quantification precision totally depends on the ophthalmol-
ogists’ experience. To reduce the ophthalmologists’ burden and
quantify the exudates precisely, automatic exudate segmenta-
tion in the retinal fundus images becomes emergent.

Exudate on the retinal fundus is an important manifestation
of the presence of diabetic retinopathy. Fig. 1 shows an ex-
ample for colour retinal fundus image with exudate regions and
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the pixel level annotation is provided by an ophthalmologist. In
retinal fundus images, they appear as white/yellow soft struc-
tures and have variable sizes. For example, in e-ophtha EX
dataset [2], the small one is only in a few pixels while the big
one is up to be in thousands of pixels. Their shapes and inten-
sities are diverse. Moreover, optic nerve fibbers and the bright
reflections within the vessels exhibit similar appearance and can
mislead the segmentation of exudate regions. In summary, pre-
cise and automatic exudate region segmentation faces a lot of
challenges.

Benefiting from the advanced retina fundus camera, the res-
olution of the retinal fundus images is up to 2544×1696. How-
ever, the size of the exudate regions is extremely small com-
pared to the whole image. Consequently, instead of detect-
ing the exudate regions from the whole image directly, existing
methods usually adopt a two-stage detection framework: can-
didate detection stage and refining stage. In candidate detection
stage, the structures and regions which are apparently not exu-
date regions are removed via mathematical morphology opera-
tors. In refining stage, there are two ways to further determine
whether the candidate is an exudate region or not. The first one
is to learn a classifier while the other is to threshold a feature
map directly. However, due to the high diversity of the size of
the exudate region, it is difficult to select satisfying parameters
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Figure 1: (a) color retinal image from the public exudates dataset e-ophtha EX, (b)zoom in to the exdudates region, (c) pixel level annotation (Best viewed in colour).

for mathematical morphology operators.
Due to the large variety of the exudates in size, intensity,

shape and contrast, directly segmenting the small proportion of
the exudate pixels from the whole retinal images leads to high
miss detection rate. Instead of directly segmenting exudates
or exudates candidate using unsupervised methods, we learn a
random forest classifier to locate the exudates, then segment
the exudates from the located regions. We call this strategy as
location-to-segmentation strategy. In detail, it involves three
stages, as seen in Fig. 2. The first stage is anatomic structures
removal, in which adverse affects from the main vessels and
optic disk with similar structure information to exudate regions
are eliminated. Particularly, a matched filters based segmen-
tation method is adopted to segment the main vessel. For the
optic disk, we compute the saliency map to locate it and seg-
ment it based on the saliency values. Following stage is exudate
location. Exudate regions exhibit brighter than their surround-
ing regions, so the local differences between the exudate pixels
and their surrounding neighbours from the background should
be positive. Additionally, the magnitudes are always large com-
pared to the difference between two background pixels since the
background regions are always smooth. Following those char-
acteristics, we take both the sign and the magnitude of the local
difference into consideration and compute the completed local
binary pattern(CLBP) [3] to describe such a local texture struc-
ture. For each patch, we first compute the histograms of CLBP.
Then we learn a random forest classifier to determine whether a
patch is an exudate patch or exudate free patch. The third stage
is exudate segmentation from the exudate patches. To further
remove the non-exudate pixels in patches, local variation for
each pixel in patches is computed. Size prior and regional con-
trast prior about the exudate regions are further used to obtain
the exudate regions. We test our method on the e-ophtha EX
dataset, and the experimental results show that our method out-
performs the state-of-the-art method.

The contribution of this paper is three-folds: firstly, we
present a location-to-segmentation strategy for exudate seg-
mentation, which includes three stage: anatomic structures re-
moval stage, exudate location stage and exudate segmentation

stage. Secondly, we propose to use the histogram of CLBP to
describe the local texture structures of the exudate regions, in
which both the local difference sign and magnitude between
the exudate pixel and neighbouring background pixels are con-
sidered. Thirdly, we propose an exudate region segmentation
method from the located patches. Because the patches include
both exudate regions and background regions and there exists
high contrast between them, we exploit the size prior and re-
gional contrast prior about the exudate regions for segmenta-
tion.

This paper is organised as follows. Section 2 reviews the ex-
isting exudates detection methods. Section 3 then illustrates the
proposed method in detail. Section 4 presents the experimental
results as well as the details of the experiments, including the
brief introduction of public dataset for exudate detection and
the quantitative evaluation. Section 5 gives the conclusion and
the future work for this paper.

2. Related Work

Retinal fundus image analysis currently attracts lots of atten-
tion from both computer science field and ophthalmology. Its
goal is to develop computational tools which will assist quan-
tification and visualisation of the anatomical structures and le-
sions. It includes vessels analysis, optic disk analysis, macular
analysis, micro-aneurysms detection and exudate detection. In
this section, we review the existing works on exudate detection
since our work mainly focus on it.

Existing detection methods can be classified to two classes:
mathematical morphology based exudate detection methods
and learning based exudate detection methods. Both of them
include two stages: candidate detection and exudate detection
from candidate.

As for mathematical morphology based exudate detection
methods, vessels and optic disc are removed first, then math-
ematical morphology operators are performed to obtain the ex-
udates. Akara Sopharak et al. [4] used a closing operator and
reconstruction operators together with thresholding to remove
the optic disk and main vessels, then discriminate the exudate
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pixels according to the local variation since the exudate pix-
els have high contrast to its surrounding pixels, their contour
is highlighted in the standard local deviation image. Similarly,
Walter et al. [5] used the grey level variation to find the exu-
date and determine their contours by means of morphological
reconstruction techniques. In [6], the lightness L of the per-
ceptually uniform Luv colour space is enhanced via a top-hat
by opening operator followed by the top-hat by closing oper-
ator. Since exudates are brighter than background region, a
reconstruction by dilation is performed on the regional mini-
mal image to estimate the background region. Then subtracting
the background regions from the enhanced image and perform-
ing the H-maximal transformation, the exudate candidates are
obtained by a thresholding operator. Finally, a reconstruction
operator is performed on the candidate regions to improve the
detection accuracy. However, they ignored the local structure
information of the exudate regions. The reflection from various
components of the retinal tissue are erroneously regarded as ex-
udate regions.

In learning based exudate detection methods, candidate re-
gions are first extracted, then a feature vector for each region
is extracted to learn a classifier to further determine whether
the candidate is an exudate or not. In [7], a six feature com-
bination including the pixel intensity, the standard deviation,
the pixel hue, the number of edge pixels in a window, the ra-
tio between the size of the pixels intensity cluster and the optic
disc, the response to a derivative of Gaussian filter are extracted
and a naive Bayes classifier is learned to detect the exudates. In
[8], candidate bright-lesion areas are segmented by an improved
fuzzy C-means, then a hierarchical support vector machine is
learned to classify the candidate areas. In [9], a multi-scale
morphological algorithm is used to obtain the candidates. Then
the size, brightness, area, shape, colour and contextual infor-
mation, the latter being the distance from the nearest macular
are extracted to learn a support vector machine. In [10], in-
stantaneous amplitude components are extracted from multiple
frequency scales, then the exudate candidates are obtained by
optically thresholding the instantaneous amplitude components.
For each candidate region, colour, shape and texture features are
extracted to learn a support vector machine for classification.
Sánchez et al. [11] proposed a mixture models based method
to dynamically threshold the images in order to separate exu-
dates from background. In [2], not only the dark structures such
as vessels and dark lesions are removed in the pre-processing
stage, but also the bright structures such as the reflections and
nerve fibbers are removed. Intensity feature, geometric fea-
tures, textural features, hybrid feature and contextual features
are extracted to learn a random forest classifier such that bright
structures which are not exudates are removed. However, on
one hand, there are several parameters to be determined in the
first stage since several mathematical morphology operators are
adopted to obtain the candidates. On the other hand, though tex-
ture features are considered in [2] [11], they are characterised
by the local variance in the refining stage. In this paper, the
texture features are characterised by the completed local binary
pattern and used to locate the exudate regions, which is totally
different from the existing works.

3. The Proposed Method

The proposed exudate segmentation method involves three
stages: 1) anatomic structures removal, in which the field of
view is extracted while the main vessels and the optic disk in the
field of view are removed; 2) exudate region location in which
the patches containing exudate regions are identified; 3) exu-
date region segmentation from the patches. Fig. 2 illustrates the
framework of the proposed method.

3.1. Anatomic structures removal

This stage consists of three main steps: field of view segmen-
tation, main vessel segmentation and optic disk segmentation.
Fig. 3 shows the results of each step.

Field of view segmentation
Since there is no information out of the field of view, we

first segment the field of view. The region out of the field of
view is almost black while the field of view looks bright. There
exists obvious high contrast between them. Hence, given an
retinal fundus image, we first compute the gradient image. We
then obtain the contour of the field of view via thresholding the
gradient image and obtain the field of view. Fig. 3(b) shows an
example of the field of view.

Main vessels segmentation
As the only part of blood circulation system that can be

observed directly and the clinical diagnose basis for diabetes,
arteriosclerosis etc, vessel detection in retinal fundus images
gains lots of researchers’ attention. In [12], many vessels
detection methods are reviewed. The contrasts between the
small vessels and their surrounding regions are too low thus
mislead the exudates location. Therefore, we mainly focus on
the segmentation of the main vessels.

The cross section of the retinal vessels is like the profile
of a Gaussian function [13] and the intensity on the vessel’s
centre line is lowest. Meanwhile, they have highest contrast
in green channel. Naturally, we use a Gaussian filter to match
the Gaussian-like vessels in the inverted green channel of the
retinal fundus image and obtain a response image, in which
the responses on the vessels are stronger than the background
regions. Since the original green image has contrast, we add
it to the response image. Then we threshold the response
image using the Otus’ methods [14]. Finally, we use the close
operator to remove the noise in the thresholded image and
obtain the main vessels in the retinal fundus image. Fig. 3(c)
shows an example of the field of view.

Optic disk segmentation
The optic disk location and segmentation is very important

in many computer aided diagnosis. Though classification based
optic detection methods are proposed in [15][16][17], they are
data dependent. In this section, we propose an unsupervised
optic disk location and segmentation method. The optic disk
is a bright region in the retinal fundus image and it has high
contrast to the rest image part. Hence, it attracts our humans
attention most than other regions. From the view of saliency
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Figure 2: The framework of the proposed method (Best viewed in colour). (a) the input colour retinal fundus image,where exudate regions are in green box. (b)
the field of view part in which the optic disc and the vessels are removed. (c) the detected exudate patches obtained by the proposed exudate location method. (d)
the final segmentation result, in which the white regions are the exudate regions. (e) zooming into the exudate regions in the original image. (f) zooming into the
regions detected as exudate regions.

(b) (e)(c) (d)(a)

Figure 3: (a) the input image. (b) the field of view detected from (a). (c) the main vessels detected from (a). (d) the optic disk detected from (a). (e) the field of view
in which the main vessels and the optic disk are removed (Best viewed in colour).

detection, it is more salient than other regions. Therefore, we
use the most salient pixels to location the optic disk and use the
saliency values to segment the optic disk.

First we generate a saliency map S for the retinal fundus
image I, as shown in Fig. 4(b). There are numerous methods
for saliency detection from natural scene images, for example
[18] [19] [20]. However, unlike the natural scene images,
centre-bias prior which is used in most of the saliency detection
methods is not valid in retinal fundus images. Meanwhile, the
contents in the retinal fundus images are fixed compared to the
complex natural scenes. Hence, simple global contrast based
saliency detection methods are enough to highlight the optic
disk uniformly with clear boundary. Therefore, we adopt the
frequency-tuned salient region detection method (FT) [21] to
generate the saliency maps for retinal fundus images.

Given an image I, we compute the saliency value S (x, y) for
each pixel in the field of view by:

S (x, y) = ||Iµ − Iwhc(x, y)|| (1)

where Iµ is the mean colour feature vector of pixels in the
filed of view. Same to FT [21], we use the Lab colour space.

Iwhc(x, y) is the corresponding image pixel vector value in the
Gaussian blurred version of the original image, || · || is the L2
norm.

To reduce the adverse affects from the bright regions such
as the exudate regions, instead of directly thresholding the
saliency map S , we locate the optic disk in the saliency map
first according to the most salient regions in S . Thereafter, we
segment the optic disk TOD from a small window by threshold-
ing. Finally, we fill in the holes in TOD and decide whether the
segment we obtain TOD is the optic disk or not according to the
area of the segmented region. If the area of the segment is too
large or too small, we classify it as a background region. Oth-
erwise, we consider it as the optic disk. Fig. 4 illustrates the
results of each step.

3.2. Exudate location

In this section, we propose a novel learning based exduate
location method. The exudates appear as bright structures and
have high contrast compared to the local background regions.
Obviously, the intensity of a pixel from an exudate region is
larger than its local neighbours from the background, and it ex-

4



(a)

(b) (d) (f)

(c) (e) (g)

(h)

Figure 4: Illustration for optic disk segmentation (Best viewed in colour). (a) input image. (b) saliency map. (c) optic disk location on the original image. (d)
optic disk location on the saliency map. (e-f) zooming into the optic disc region. (g) the detected contour of the optic disk. (h) segmentation of the optic disk via
thresholding (f).

hibits different texture structures to pixels from the background
region. To describe the characteristics of the exudate regions,
we first compute the histograms of CLBP for each patch P in
the image.

Given a pixel gc in the patch P and its N circularly and evenly
spaced neighbours gn, n ∈ [0, · · · ,N − 1], the original local bi-
nary pattern (LBP) [22] encodes the sign sn of its local differ-
ence to neighbours dn = gn − gc by:

LBPN,R =

N−1∑
n=0

sn · 2n (2)

where sn = sign(dn) and sign(·) is a sign function. sn = 1 if
dn ≥ 0, otherwise sn = 0. R is the radius of the neighbourhood.

In CLBP, the grey level gc, the sign of its local difference as
well as the magnitude are considered. Its local difference dp is
decomposed into two complementary components via a sign-
magnitude transform(LDSMT):

dn = sn ∗ mn and
{

sn = sign(dn)
mn = |dn|

(3)

where sn is the sign component, mn is the magnitude compo-
nent, sign(·) is a sign function. For the sign component, the
original LBP operator i.e. Eq. 2 is used to encode it, denoted
by CLBP S. For the magnitude component, the same encoding
strategy is adopted after binarizing the magnitude component:

CLBP M =

N−1∑
n=0

sign(mn − c) · 2n (4)

where sign(mn−c) = 1 if mn−c ≥ 0, otherwise sign(mn−c) = 0.
c is a threshold. We set it as the mean local difference mn of
the patch in our experiments. Similarly, CLBP S and CLBP M

are mapped to the uniform patterns with rotation invariant[22]
via a lookup table. Meanwhile, CLBP also takes the discrimi-
nant ability of the centre pixel into consideration, and encodes
the sign of its difference to the mean intensity of the patch by
CLBP Centre (CLBP C) operator.

As to the combination, the CLBP M and CLBP C are com-
bined by a 2D joint histogram first, and then converted to a
1D histogram CLBP M/C. Finally, CLBP S and CLBP M/C
are concatenated into a joint histogram CLBP S M/C. Since
the exudates appear as white or yellow soft structures, we take
both the red and green colour channels into consideration, and
obtain the feature vector [CLBP S M/Cr,CLBP S M/Cg] for
the patch P.

Given the feature vectors of the exudate patches and the fea-
ture vectors of the exudate-free patches, we learn a random for-
est classifier to determine whether a patch is an exudate patch
or an exudate-free patch. The number of trees is set to five and
the maximum depth is set to sixteen. Up to now, we obtain the
candidate exudate patches. Fig. 5 shows two examples. For
a better visualisation, the exudate regions are labelled as red,
and the patches really contains exudate regions are labelled by
green windows while the exudate free patches which are erro-
neously detected as exudate patches are labelled by the yellow
windows.

3.3. Exudate segmentation
To further segment the exudate regions from the exudate can-

didate patches and remove the exudate-free patches which are
erroneously detected as the exudate patches, we first compute
the local variation V for each pixel x ∈ pi to highlight the
closely distributed cluster of exudate pixels:

V(x) =
1

|pi| − 1
·
∑
j∈pi

(
pi( j) − µpi (x)

)2
(5)
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Figure 5: An example for exudate location (Best viewed in colour). (a) is the input image. (b) is the visualisation of the location result, in which the exudates are
labelled in red, the exudate patches are labelled by green windows, and the exudate free patches which are erroneously detected as exudates are labelled by the
yellow windows. (c) is the detail view of the red window in (a). (d) is the detail view of the red window in (b).

where |pi| is the pixel number of patch pi, pi( j) is the j-th pixel’s
intensity of the green colour channel and µpi (x) is the mean
intensity of a window centred on x. Then we threshold the local
variation V to obtain the exudates pixels mask VT :

VT = V � f (V;α) (6)

in which � is the dot product operator. f (V(x);α) is an indi-
cator function. If V(x) > α, then f (V(x);α) = 1, otherwise
f (V;α) = 0. α is a adaptively determined by Otsu’s method.
The exudate pixels have brighter intensity than the background
pixels. Hence, pixels with bright intensity should be exudate
pixels:

E(x) =

{
1 if VT (x) = 1 or I(x) > µVT

0 otherwise (7)

where I(·) is intensity of the green colour channel, µVT is the
mean intensity in green colour channel of the non-zero pixels
in VT .

To further determine whether the pixels in E are the exudate
pixels, two priors about the exudates are used. One is the size
prior, and the other is the local contrast prior. For the size prior,
we assume that the region should belong to background if it is
too large. So such patches should be removed:

Es =

{
E if

∑
j∈E E( j) < Tsize · |E|

0 otherwise (8)

where Tsize is a ratio threshold. For the local contrast prior, we
assume that the exudate regions have higher intensity than the
background regions:

Ec =

{
E if µE − µE > Tcontrast

0 otherwise (9)

where µE is the mean intensity in green colour channel of the
non-zero pixels in E4, and µE is the mean intensity in green
colour channel of the zero pixels in E, Tcontrast is a threshold for
the local contrast to the background pixels. Up to now, the final
exudate regions are obtained by E f inal = Es � Ec.

4. Experimental results

In this section, we evaluate our method at two levels:
exudate-level and image-level. Exudate-level evaluation mea-
sures the capability of segmentation methods to segment the
exudates from retinal images precisely. Image-level evaluation
measures the capability of methods to discriminate whether a
retinal image contains exudates. Accordingly, e-ophtha EX
dataset with precisely labelled ground truth is used for exudate-
level evaluation and DiaRetDB1 with roughly labelled ground
truth is used for image-level evaluation. E-ophtha EX dataset
is the only public available database to provide pixel level an-
notation for exudate segmentation. It contains 47 images with
exudate regions and 35 exudate-free images. Since we focus
on exudate segmentation, we only use 47 images in our exper-
iments. DiaRetDB1 [23] contains 89 images. Its test part in-
cludes 61 images in which 29 images contain exudates. Each
image is roughly labelled by four specialists. Regions labelled
by at least three specialists are regarded as exudate regions. Fig.
7 shows an example of retinal image from DiaRetDB1.

4.1. Evaluation on e-ophtha EX dataset
We use the number of True Positive pixels (TP), the num-

ber of False Positive pixels (FP), the number of False Nega-
tive pixels (FN), the Sensitivity (S) and the Positive Prediction

6



(a2)

(a1)

(d2)

(d1)

(b2)

(b1)

(c2)

(c1)

(e2)

(e1)

Figure 6: Example of pixel level validation (Best viewed in colour). (a1-e1) Original exudates region cropped from the retinal fundus images. (a2-e2) Results of
pixel level validation with σ = 0.2, Tsize = 0.4, Tcontrast = 6. The red pixels are the TP pixels, the green pixels are the FN pixels, the yellow pixels are the FP pixels
and the black pixels are the TN pixels.

(a) (b) (c)

Figure 7: Example of retinal images in DiaRetDB1 (Best viewed in colour). (a) Original retinal image. (b) Exudate regions labelled by four eye specialists. (c)
Exudate regions labelled by at least three eye specialists.

Value (PPV) to quantitatively evaluate the proposed method.
Given the segmented exudate connected component set

{D1,D2, · · · ,DN} and the ground truth exudate component set
{G1,G2, · · · ,GM}, following [2], if a pixel belongs to

{D ∩G} ∪ {Di |
|Di ∩G|
|Di|

> σ} ∪ {G j |
|G j ∩ D|
|G j|

> σ}

it is considered as a TP pixels, where D = D1 ∪ D2 ∪ · · · ∪ DN

is the mask of the detected exudates, G = G1 ∪G2 ∪ · · · ∪GM

is the mask of the ground truth exudates, and | · | is the cardinal
of a set. σ is a parameter ranging from 0 to 1. In [24], it is set
to 0, which means that a connected region is considered as TP
if it overlaps at least in part with the ground-truth. However, a
large segmentation mask touching an exudate will get excellent
results, which is actually inappropriate. Hence, following [2],
we set σ to 0.2. If a pixel belongs to

{Di | Di ∩G = ∅} ∪ {Di ∩G |
|Di ∩G|
|Di|

≤ σ}

it is considered as a FP pixel. And it will be considered as a FN
pixel if it belongs to the following set

{G j | G j ∩ D = ∅} ∪ {G j ∩ D |
|G j ∩G|
|G j|

≤ σ}

The rest pixels are considered as TN pixels.
Given the TP, FN and FP, the sensitivity S , indicating the

ratio of exudate pixels correctly marked as exudate pixels, is
defined by:

S =
T P

T P + FN
(10)

The PPV is defined by:

PPV =
T P

T P + FP
(11)

which indicates the ratio of detected exudate pixels annotated as
exudate pixels by specialists. Considering both the sensitivity
and PPV, their harmonic mean F − score is computed by:

F − score =
2 × S × PPV

S + PPV
(12)
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Figure 8: PPV-sensitivity curves of the proposed method and Zhang’s method
[2].

In the location stage, to obtain a segmentation result for each
image in the dataset, we divide it into three subsets with equal
size. When we test on one subset, we train the random forest
classifier on the other two subsets. The patch size is set to 41.
The positive samples consist of patches which are centred on
the exudates’ centres while the negative samples are randomly
sampled from the background regions which do not contain any
exudate pixel.

In the segmentation stage, there are two parameters : Tsize

and Tcontrast. We vary Tsize (Tsize = 0.2, 0.3, 0.4, 0.45) and
Tcontrast (Tcontrast = 0, 3, 6, 9, 12). The results are reported in Ta-
ble.1. As we can see from Table. 1, when we increase Tsize, the
sensitivity increases while the PPV decreases. On the contrast,
when we increase Tcontrast, the sensitivity decreases while the
PPV increases. Taking both the sensitivity and PPV into consid-
eration, we set Tsize = 0.4 and Tcontrast = 6. Under this setting,
our method achieves 76% in sensitivity and 75% in PPV. Fig. 6
shows some segmentation results. To visualise the results more
clearly, we only show the exudates parts cropped from the reti-
nal fundus images rather than the whole images. Fig. 6 (a1-e1)
are the exudates parts cropped from five retinal fundus images.
Fig. 6 (a2-e2) are the segmentation results, in which the red
pixels are the TP pixels, the green pixels are the FN pixels, the
yellow pixels are the FP pixels and the black pixels are the TN
pixels. As we can see that some small exudates are missed by
the proposed method because of their low contrasts, but most
of the large exudates can be segmented well. Furthermore, the
proposed method perform well when the retinal fundus contains
only a single exudate as Fig. 6 (c1-c2) shows.

First, we compare the PPV-Sensitivity curves between ours
and Zhang’s method [2] in Fig. 8. Zhang’s method [2] obtains
a probability map from a support vector machine, and different
segmentation can be generated when thresholding the proba-
bility map by different thresholds. The data for the curve of
Zhang’s method [2] are from their paper. As it shows, the pro-
posed method can achieve better PPV under the same sensitiv-
ity. Additionally, as a comparative study, we implement [5] and
[6] and try our best to achieve their best performances. In Table.

2, we report the performances of [2], [5], [6] and our method.
As it shows, the proposed method outperforms the state-of-the-
arts significantly.

4.2. Evaluation on DiaRetDB1

To demonstrate the capability of our method to discrimi-
nate whether a retinal image contains exudates, we validate our
method on DiaRetDB1 at image level. As we can see from Fig.
7, the ground truth in DiaRetDB1 is too rough to train our ex-
udate location model on DiaRetDB1. Thus we use the trained
model on e-ophtha EX to test the images from DiaRetDB1. We
use sensitivity, specificity and accuracy as image-level evalua-
tion metrics. We consider the segmentation result for an image
as a TP if the input image contains exudates according to both
our segmentation method and the ground truth. The segmen-
tation result for an image is considered as a TN if the input
image does not contain exudates according to both our segmen-
tation method and the ground truth. The segmentation result
is considered as FP when the image does not contain exudate
according to the ground truth while our segmentation method
segments exudates from the image. We had a FN case in the
reverse case. Based on such definitions, we use Eq. (10) to
compute the sensitivity to indicate the true positive rate and Eq.
(11) to compute the specificity to indicate the true negative rate.
As for the accuracy, we compute it by

Accuaracy =
T P + T N

T P + T N + FP + FN
(13)

Table 3. shows the comparative results between the pro-
posed method and other methods on DiaRetDB1 at image level.
Though [5] and [6] performs better in sensitivity than ours, our
method performs better when the images do not contain exu-
dates. Overall, our method achieves higher accuracy than [5]
and [6].

5. Conclusions and future work

In this paper, a location-to-segmentation strategy is presented
to segment the exudates in retinal fundus images. It involves
three stages. The first stage, i.e. pre-process stage, can provide
the visualisation for the main anatomic structures such as the
optic disk and the main vessels. In the second stage, the local
structure of the exudates is described via CLBP. A random
forest classifier is learned to locate the exudate candidates.
In third stage, the local variance, exudate size prior and local
contrast prior are used to segment the exudate regions from
each patch. The proposed method detects and quantifies the
exudate regions, and further facilitates for the ophthalmologists
in the diabetic retinopathy screening and diagnosis process.
The experimental results on the public exudate detection
data set show its superiority both at exudate-level evaluation
and image-level evaluation compared to the state-of-the-art
method.

For the feature work, on one hand, we plan to learn an
adaptive threshold for CLBP M operator to improve its
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Table 1: The results of the proposed methods when Tsize and Tcontrast take different values.

Tcontrast Tsize = 0.2 Tsize = 0.3 Tsize = 0.4 Tsize = 0.45
Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV

0 73% 77% 80% 73% 85% 66% 89% 57%
3 72% 77% 79% 74% 84% 68% 88% 58%
6 71% 79% 72% 80% 76% 75% 86% 61%
9 68% 81% 62% 89% 65% 86% 83% 65%
12 64% 82% 51% 93% 54% 92% 79% 67%

Table 2: Comparative results for exudate-level validation for the proposed
method on e-ophtha EX dataset.

Sensitivity PPV F-score
Zhang et al. [2] 74% 72% 73%
Walter et al. [5] 44% 65% 52%
Welfer et al. [6] 79% 55% 69%

Proposed method 76% 75% 76%

Table 3: Comparative results for image level validation for the proposed method
on the dataset DiaRetDB1.

Sensitivity Specificity Accuracy
Walter et al. [5] 86% 69% 77%
Welfer et al. [6] 100% 0 48%

Proposed method 83% 75% 79%

discriminative ability for exudate location. In this way, the
missing detection rate can be further reduced. On the other
hand, exudate segmentation is one task in a computer aided
diagnosis system or screening system. To build such a system,
we will focus on other retinal image processing tasks such
as vessels segmentation and quantification for vessel’s width,
curvature etc.
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