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Abstract 

The stability against piping and sliding, which is subject to numerous sources of uncertainty, is of 

great importance in the design of diversion dams. In this study, the performance of four cutoff wall 

configurations, including a single wall and two walls with half the length of the single wall, was 

evaluated stochastically using the random finite element method. The Cholesky decomposition 

technique in conjunction with three types of Auto-Correlation Function (ACF) was employed to 

generate numerous random fields. The results indicate that the probabilities of failure related to 

different cutoff wall configurations are similar, considering isotropic hydraulic conductivity. 

However, there are noticeable differences between the probabilities of failure of these 

configurations in anisotropic situations. Moreover, the use of a single cutoff wall on the upstream 

face of an impervious blanket provides the lowest probability of failure for piping. In addition, the 

exponential ACF ends up with greater exit hydraulic gradients than the second-order Markov and 

binary noise ACFs. In addition, the sliding stability of the ordinary and earthquake load 

combinations was examined stochastically using random field theory and Monte Carlo Simulation 

(MCS). The probability of failure appears to increase with an increase in the autocorrelation 

distance. 
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       Nomenclature 

 

xK  Hydraulic conductivity along x direction 

zK  Hydraulic conductivity along z direction 

h  Total head 

K  Mean of hydraulic conductivity 

K  Standard deviation of hydraulic conductivity 

ln K  Mean of logarithmic hydraulic conductivity 

ln K  Standard deviation of logarithmic hydraulic conductivity 

COV  Coefficient of variation of hydraulic conductivity 

ijx  Distance between the centroid of the ith and jth elements in the horizontal direction 

ijz  Distance between the centroid of the ith and jth elements in the vertical direction 

h  Horizontal autocorrelation distance of the hydraulic conductivity 

v  Vertical autocorrelation distance of the hydraulic conductivity 

ij ijx z( , )    Auto-correlation coefficient between the centroids of elements  

C  Auto-correlation matrix 

en  Number of random field elements 

L  Lower triangular matrix 

iG  Standard Gaussian random field  

iZ  An indicator of standard normal distribution 

ixK  Hydraulic conductivity assigned to the ith element in the x direction   

izK  Hydraulic conductivity assigned to the ith element in the z direction   

SF Safety factor 

g(s) Performance function 

E Expected value 
  Reliability index 

failureP  Probability of failure 

Φ  Standard normal cumulative distribution function 

pipingSF  Safety factor against piping 

cri  Critical hydraulic gradient 

exiti  Exit hydraulic gradient 
'  Submerged unit weight of soil particles 

w  Unit weight of water 

slidingSF  Safety factor against sliding 

ic  Unit shearing strength 

i  Angle of shearing resistance 

iA  Area of the plane of sliding 

iW  Weight of the dam 
'

s  Submerged unit weight of sediment 

s  Friction angle of sediment 

h  Horizontal seismic coefficient 
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v  Vertical seismic coefficient 

H  Dam height 

eC  Dimensionless hydrodynamic factor 
2R  Correlation coefficient 

  Indicator of skewness 

  Constant of skew normal distribution 

  Constant of skew normal distribution 

sk  Mean of skew normal distribution 

sk  Standard deviation of skew normal distribution 

S  Skewness 

  A constant 

 

 

 

1. Introduction 

Diversion dams are important hydraulic structures that are usually built on the cross-section of 

alluvial rivers to raise the level of water in the river [1]. These hydraulic structures are usually of 

low height and therefore have small reservoirs. The essential criteria governing the design of 

diversion dams are the concerns of stability against internal erosion and sliding [1-5]. 

Internal erosion in the soil foundation of dams may be initiated by backward erosion. As a 

result, a continuous tunnel, also called a pipe, is formed between the upstream and downstream 

sides of the dam, causing dam failure [6-10]. To decrease the risk of piping, an upstream 

impervious blanket and cutoff wall are usually designed to increase the creep length of seepage 

flow [11]. More importantly, sliding due to active forces, including the earthquake and hydraulic 

forces, is possibly the predominant reason for the failure of diversion dams [1,3]. The prevailing 

stability analysis of diversion dams is usually based on the deterministic methods, mainly reported 

in the United States Bureau of Reclamation (USBR) criteria and the other design books [1,3,12]. 

However, there is uncertainty associated with the soil properties [13,14], earthquake components, 

and active forces exerted on dams [5,15], leading to uncertainty in the safety factor. This leads to 
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a question of how safe the newly designed or existing diversion dam is. Therefore, the probabilistic 

analysis of the safety factor is essential to estimate the possibility of dam failure under different 

operating conditions. 

Recently, probabilistic analysis using the random field theory has been employed in different 

fields of engineering, including geotechnical, structural, and water engineering. Several types of 

stochastic slope stability analyses have been conducted by Griffiths et al. [16], Lo and Leung [17] 

and Ji et al. [18,19]. Do et al. [20] considered random field for the Young’s modulus and body 

force in the analysis of structures.  

Considering seepage analysis, Griffiths and Fenton [21] considered the effect of spatial 

variability of hydraulic conductivity to examine seepage flow underneath a retaining structure. The 

finite element method in conjunction with the random field theory was applied in their study. Cho 

[22] performed probabilistic seepage analyses beneath an embankment dam using the random 

finite element method. Two types of soil layer were assumed for the dam foundation in that study, 

in which the permeability followed lognormal distributions. More studies can be found in Tan et 

al. [23], Srivastava et al. [24], Ahmed [25,26], and Griffiths and Fenton [27-29]. In terms of dam 

sliding, the effect of uncertainty in the cohesive strength of the interface between a concrete dam 

and a rock foundation was examined by Krounis et al. [5].  

To the best of the author’s knowledge, no article has been found that is focused on the 

probabilistic stability analysis of diversion dams. In the deterministic design procedure, the 

provision of an adequate creep length of water beneath the dam is a key parameter for decreasing 

the exit hydraulic gradient. Therefore, there is no difference between the implication of a single 

cutoff wall or the construction of two cutoff walls at different locations, where the height of each 

wall is equal to half of the height of the single wall [1-4]. Although several articles have been 



5 
 

found concerning probabilistic seepage analysis, the probabilistic assessment of different cutoff 

wall configurations has not yet been investigated [21-26].  

Moreover, the anisotropy of soil hydraulic conductivity throughout history may stem from 

alluvial sedimentation. Little attention has been paid to the anisotropy of soil permeability in the 

literature [21,22,27-29]. In addition, few studies have explored the influence of several Auto-

Correlation Functions (ACFs) in the random field generation [30,31]. Regarding sliding stability, 

a small number of investigations have concentrated on the probabilistic analysis of the safety factor 

against sliding [5]. The probabilistic approach has not yet been completely applied to dam safety 

guidelines, which is crucial to decision makers. 

The main motivation of this study is to perform a probabilistic analysis of the stability of a 

diversion dam against piping and sliding. For this purpose, the random finite element method has 

been employed to perform probabilistic seepage analysis in two dimensions. The Cholesky 

decomposition technique is used to generate random hydraulic conductivity, considering 

exponential second-order Markov and binary noise two-dimensional auto-correlation functions. 

Moreover, four configurations of cutoff walls are considered in the probabilistic analyses. By the 

implementation of stochastic analysis on the exit hydraulic gradient, the best configuration of the 

cutoff wall has been determined. In addition, the stability of the dam against sliding is also 

examined stochastically using the MCS in combination with random field discretization. The 

ordinary and earthquake load combinations are considered in the stochastic analysis of sliding 

stability. Fig. 1 shows the flowchart of the procedure used in this study. 

 

2. Seepage analysis 
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The seepage flow beneath a diversion dam can be modeled using the mass balance relationship. 

Assuming Darcy’s law, the governing equation of seepage flow is written as follows: 

x z

h h
K K 0

x x z z

      
+ =   

      
 (1) 

 

where 
xK  and 

zK  stand for the hydraulic conductivity of the soil along the x and z directions, 

respectively, and h  is the water head [22]. This equation can be solved numerically using the 

Finite Element Method (FEM). The detailed formulation of relevant algebraic equations obtained 

by FEM can be followed in Reddy (1993) [32].  

 

3. Random field theory 

The properties of natural soil such as hydraulic conductivity have spatial variability because 

of the geological formation of the soil [31,34]. The spatial variability of hydraulic conductivity 

can be described by means of random field theory. Therefore, an appropriate Probability Density 

Function (PDF) and a correlation structure or ACF are required. The lognormal distribution is an 

appropriate tool to model the variability of soil properties, including the hydraulic conductivity 

[21,24]. The mean and standard deviation (
ln K and 

ln K ) of this distribution are stated as Eqs. 2 

and 3, respectively. 

( ) 2

ln K K ln K

1
ln

2
 =  −   (2) 

( )
2

2K
ln K 2

K

ln 1 ln 1 COV
 

 = + = + 
 

 (3) 

 

where 
K and 

K are the mean and standard deviation of hydraulic conductivity. There are 

numerous ACFs to describe the degree of correlation between two points irrespective of their 
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global coordinate [30,31]. The most applied ACF used to illustrate the spatial variability of soil 

characteristics is the Exponential Auto-Correlation Function (E-ACF) [35-37], which is given by: 

( ) ij ij

ij ij

x z i j i j

x z

h v h v

τ τ x x z z
ρ τ , τ exp exp

δ δ δ δ

 − − 
 = − − = − −    

   

 (4) 

 

where 
i j

ij
x xx = −  and 

i j
ij

z zz = −  are the absolute distances between two points in the horizontal 

and vertical directions, respectively. The parameters
h  and 

v  represent the horizontal and vertical 

autocorrelation distances of hydraulic conductivity, respectively.  

To investigate the influence of different ACFs, the Second-Order Markov and the Binary 

Noise Auto-Correlation Functions (SOM-ACF and BN-ACF) [31,32] were also employed, written 

by Eqs. 5 and 6, respectively. 

( )
ij ij

i j i j i j i j

x z

h v h v

x x z z 4 x x 4 z z
, exp 4 1 1

     − − − −
       = − + + +

            

 (5) 

 

( ) ij ij

ij ij

i j i j

x h z v

x z h v

x x z z
1 1          for  and 

,       

0                                                         otherwise

  − −
  − −      
     =    



 (6) 

 

Considering finite element mesh, the following auto-correlation matrix, C, is constructed for the 

whole domain: 

 

( ) ( )

( ) ( )

( )

12 12 1n 1ne e

21 21 2n 2ne e

n 1 n 1e e

x z x z

x z x z

x z

          1                 ,          ,

,                    1                ,
C

                                                               

,

     

     
=

   ( )
n 2 n 2e e

x z      ,                    1       

 
 
 
 
 
 
 

    

 (7) 
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where ( )
ij ijx z,    indicates the auto-correlation coefficient between the centroids of elements. The 

parameters
ijx  and 

ijz  indicate the distances between the centroid of the ith and the jth elements. 

In this study, the Cholesky decomposition method [24,30,36] was used to generate random values 

of hydraulic conductivity. Accordingly, the abovementioned matrix is decomposed into the 

product of a lower triangular matrix, L, and its transpose (Eq. 8). 

TLL C=  (8) 

 

Regarding matrix L, the standard Gaussian random field can be attained using Eq. 9: 

i

i ij j

j 1

G L Z   ,   i = 1,2,3, ... ,n
=

=  (9) 

 

In this equation, iG  means the standard Gaussian random field, and jZ  follows the standard 

normal distribution ( =0  and  =1). Finally, the values of the hydraulic conductivity along the 

x and y directions (
ixK , 

izK ) for each element are estimated as follows: 

 
i x xx ln K ln K iK exp G=  +  (10) 

 

 
i z zz ln K ln K iK exp G=  +  (11) 

 

A similar procedure was employed to generate stochastic shear strength parameters, c and  , 

at the sliding plane between the dam and its foundation. However, one-dimensional E-ACF (Eq. 

12) was applied instead of Eq. 4.  

( ) ij

ij

x i j

x

h h

τ x x
ρ τ exp exp

δ δ

 − 
 = − = −    

   

 (12) 
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4. Monte Carlo Simulation  

Monte Carlo Simulation is a robust universal method for determining the probability density of 

a performance function. This method consists of generating random numbers for independent 

parameters regarding their PDF, estimating the dependent function for each generated set, and 

finally repeating this process adequately until the probability distribution of the performance 

function is reached [38-41].  

The operating state of a diversion dam can be described by a performance function (g(s)). This 

function for sliding stability is stated as: 

g(s) SF(s) 1= −  (13) 

 

where SF(s) can be the safety factor against piping or sliding, and s represents the vector of random 

variables. If g(s)>o, the dam will be stable; otherwise, the dam will not be safe [42,43]. It is 

possible to obtain the probability distribution of g(s) using MCS, and then, the reliability index is 

estimated using Eq. 14. 

E[g(s)]

[g(s)]
 =


 (14) 

 

where E and   stand for the mean and standard deviation of the performance function. The above 

equation is accurate when the performance function is normally distributed. If the performance 

function not normally distributed, the equation gives an approximation [42,43]. Once the PDF is 

not specified, the probability of failure can be stated as a function of the reliability index: 

 ( ) ( )failureP 1= − = −   (15) 
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In this equation,   is the standard normal Cumulative Distribution Function (CDF) [44]. Eq. 15 

is accurate when the variables follow the normal distribution and the performance function is 

linear; otherwise, the equation is an approximation [45]. 

 

5. Example of diversion dam 

In this article, a diversion dam with a height of 6 m was assumed according to Fig. 2. Based on 

the deterministic stability criteria [1,3,12], the crest width and the base width of the diversion dam 

were estimated to be 0.5 m and 7 m, respectively. An 8-meter-long stilling basin with a thickness 

of 1 m was considered at the dam toe for the purpose of energy dissipation during a flood. 

Moreover, a combination of upstream blanket and cutoff wall is assumed to reduce the exit 

hydraulic gradient. Therefore, a blanket with a length of 10 m was assumed at the upstream face 

of the dam. Four cutoff wall configurations with equal creep length were considered. A 6-meter-

high cutoff wall was assumed for configurations 1 and 2 at different locations, whereas two walls 

of a height of 3 m were considered for configurations 3 and 4 (see Fig. 2). The finite element mesh 

with reference to configuration 1 is depicted in Fig. 3. 

Regarding mesh size, the random field can be discretized into finite control points, where the 

hydraulic conductivity is considered a random variable. The discretization size of the random field 

can be smaller than the finite element size. The hydraulic conductivity at other locations can be 

estimated using the method of interpolated autocorrelations [45,46]. Consequently, a smaller 

autocorrelation matrix is obtained, leading to a more efficient solution. However, this procedure 

may reduce the accuracy of the random finite element solution, particularly when several cutoff 

wall configurations are supposed to be compared. Therefore, the same mesh size is used for both 

finite element and random field in this study to maintain the precision.  
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5.1.  Safety factor against internal erosion and sliding 

Internal erosion in a diversion dam is a great concern that should be considered in the design 

stage. The safety factor against piping is defined by the ratio of the critical hydraulic gradient to 

the exit hydraulic gradient (Eq. 16). 

'

cr
piping

exit w exit

i
SF

i i


= =


 (16) 

 

where '  is the submerged unit weight of soil particles, 
w is the unit weight of water, and icr and 

iexit represent the critical hydraulic gradient and the output gradient at the toe of the stilling basin, 

respectively [2]. In this study, the deterministic safety factor against piping is set to one [47]. 

The dam stability against sliding is one of the most important criteria for the design of diversion 

dams. The sliding stability is a function of soil shear resistance parameters in addition to the active 

forces. In this study, two common patterns of loading, called ordinary and earthquake load 

combinations, were considered. The sediment and hydrostatic pressure as well as the uplift force 

were considered in the ordinary load pattern. Regarding earthquake load combinations, the 

earthquake inertia force and its corresponding hydrodynamic pressure were also added to the 

abovementioned active forces. The safety factor against sliding is expressed below [1,3]: 

 

( )( )i i i i v i i

sliding

2 ' 2 2s
w s h e h w

s

c A W W U tan
SF

1 sin1 1
H H W 0.726C H

2 2 1 sin

+ −  − 
=

 − 
 +  +  +   

+  


 

(17) 

 

In the above equation, H is the dam height, Wi stands for the weight of the ith slice of the dam, and 

s  and '

s  are the friction angle and submerged unit weight of the sediment, respectively. The 
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horizontal and vertical seismic coefficients are identified by 
h  and 

v , respectively. Ce is the 

dimensionless hydrodynamic factor that is equal to 0.73 [3]. Ci and 
i  are the shear resistance 

parameters of the ith slice of the sliding surface. The area of each segment of contact surface is 

represented by Ai. In line with Novak et al. (2007) [3], the safety factors against sliding under the 

ordinary and earthquake load combinations are three and one, respectively.  

The equations for the safety factor (Eqs. 16 and 17) mentioned above contain two groups of 

parameters. The first group is deterministic, including dam weight and its height. These parameters 

and their corresponding values are given in Table 1. The second parameters follow a probability 

distribution such as the lognormal, the truncated normal, and the exponential distributions due to 

their variability nature. The hydraulic conductivity of the soil particles complies with the 

lognormal distribution (Table 2). The soil mechanical properties such as friction angle and shear 

resistance are described by the truncated normal distribution, reported in Table 3.  

The exponential distribution was employed to specify the stochastic coefficients of the 

earthquake, given in Table 4. Both isotropic and anisotropic conditions were presumed for 

hydraulic conductivity with different values of COV and autocorrelation distance. Moreover, the 

mean of the earthquake coefficient, mentioned in Table 4, was attained based on the Iranian code 

of practice for seismic resistant design, also called standard 2800.  

 

6. Results and discussion 

 

6.1.  Stochastic flow net 

To assess the accuracy of the finite element program presented, the seepage results obtained for 

the cutoff wall configurations 1 to 4 (see Fig. 2) were compared to those of a commercial seepage 
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analysis software, SEEP/W. The values of seepage flow rates computed by the SEEP/W and the 

presented program are listed in Table 5. For all configurations, the estimations of the presented 

finite element program are identical to those of SEEP/W, indicating the high accuracy of the 

program. Figs. 4 and 5 show the spatial variability of hydraulic conductivity, which stems from 

the application of random field theory concerning the configuration 1. The coefficient of variation 

in these figures is 0.5. Nevertheless, their autocorrelation distances are different. The 

autocorrelation distance is 1 m in Fig. 4, whereas the autocorrelation distance is 10 m in Fig. 5. As 

shown, the higher the autocorrelation distance is, the more homogeneous the obtained soil 

realization will be. The stochastic equipotential lines of several random realizations regarding the 

four configurations are displayed in Fig. 6. The equipotential lines deviate in different directions, 

implying a variable exit hydraulic gradient in different locations. 

 

6.2.  Probabilistic analysis of different configurations of the cutoff wall. 

The effects of spatial variability in hydraulic conductivity on the reliability of piping for the 

abovementioned diversion dam with different cutoff wall configurations are illustrated in Figs. 7 

to 10. For every situation, accurate statistical results were obtained from the generation of 15000 

random field realizations. Four scenarios of soil variability were taken into consideration regarding 

isotropic and anisotropic random hydraulic conductivity along the x and z directions, i.e., Kx and 

Kz, respectively, as follows: 

• Scenario 1: Kx was generated using random field theory, while Kz =Kx was always maintained 

(see Fig. 7). Accordingly, slightly lower probabilities of failure are obtained for the 

configuration 1, where the cutoff wall is located on the upstream face of the impervious 
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blanket. However, the other configurations of the cutoff wall end up with close probabilities 

of failure in all values of COV.  

• Scenario 2: Both Kx and Kz were generated randomly, provided that (Kx)mean=(Kz)mean (Fig. 8). 

Similar to the first scenario, the diversion dam of configuration 1 has the lowest failure 

probabilities.  

• Scenario 3: Kx was produced stochastically whereas Kz = 0.2 Kx in all random realizations. In 

line with Fig. 9, there are noticeable differences between probabilities of failure of all 

configurations, indicating the effect of anisotropic conditions. Accordingly, the cutoff wall of 

configuration 1, followed by the cutoff wall of configuration 2, gives rise to the lowest 

probabilities of failure, indicating that the implementation of a cutoff wall with a longer length 

is more effective than the construction of two walls, where each one has the half length of the 

single wall. Configuration 4 leads to a smaller likelihood of failure than configuration 3, 

representing the influence of distance between cutoff walls. The probabilities of failure 

increased considerably in this scenario, signifying the influence of anisotropic hydraulic 

conductivity. 

• Scenario 4: Considering (Kz)mean= 0.2(Kx)mean, both Kx and Kz were generated stochastically 

in the domain (Fig. 10). The results were similar to the results explained in the former scenario.  

 

The above figures were obtained by employing the E-ACF with the autocorrelation distance of 

1 m for all configurations. The probability of failure increases with an increase in the values of the 

COV in all scenarios. In addition, Figs. 11 and 12 display the CDF of the safety factor against 

piping for different configurations. Fig. 11 arises from isotropic random hydraulic conductivity, 

i.e., Kx= Kz, while Fig. 12 is provided with regard to Kz=0.2 Kx. Here, COV was 0.5. Accordingly, 
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configuration 1 leads to the lowest probability of failure, confirming the good performance of the 

cutoff wall at the upstream face of the impervious blanket. Considering the safety factor of 1.5 for 

piping in anisotropic soil conditions, the probability of failure is 47% for configuration 1, while it 

is between 51% and 67% for the other configurations. 

 

6.3.  The influence of Auto-Correlation Function (ACF) 

The effect of different ACFs on the mean and standard deviation of exit hydraulic gradient for 

several COVs is illustrated in Fig. 13. Using E-ACF leads to a slightly greater mean and standard 

deviation for the exit gradient in comparison with the SOM-ACF and BN-ACF. Moreover, the 

mean and standard deviation of the exit hydraulic gradient for all ACFs increase with an increase 

in the COV. In addition, the results obtained by the application of the SOM-ACF and BN-ACF are 

nearly equal. Therefore, it is more conservative to use the E-ACF in the estimation of the exit 

hydraulic gradient for the design purposes. These results were acquired by assuming 
h 20m =  and 

v 4m = .  

In addition, the influence of ACFs on the mean and standard deviation of the exit hydraulic 

gradient, as related to different horizontal and vertical autocorrelation distances, was examined. 

The results confirm that the E-ACF leads to a greater mean and standard deviation of the exit 

hydraulic gradient. The effect of autocorrelation distance on the mean of the exit hydraulic gradient 

is shown in Fig. 14. 

Fig. 15 shows the influence of the ACFs mentioned above on the mean and standard deviation 

of the seepage flow rate. These parameters are slightly lower when they are estimated using the E-

ACF for all COVs. In addition, the maximum mean of the seepage flow rate is associated with the 
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SOM-ACF. The corresponding correlation surfaces of these three ACFs are depicted in Fig. 16. In 

this figure, the x-y plane represents the seepage surface beneath the dam. The correlation surfaces 

of E-ACF and BN-ACF reveal sharp angles at the origin, while the surface resulting from the 

SOM-ACF indicates a rounded edge at the origin because the BN-ACF and E-ACF are not 

differentiable at the origin, whereas the SOM-ACF is differentiable. In the following sections, the 

E-ACF was selected for the generation of a random field for the sake of brevity. 

 

6.4.  Stochastic analysis of exit hydraulic gradient 

For more probabilistic investigation of seepage flow beneath the diversion dam, configuration 

1 (see Fig. 2) was considered for further investigation. Fig. 17 illustrates the histogram of the exit 

hydraulic gradient for the case of isotropic hydraulic conductivity, assuming COV=0.5 and 

h v 1m =  = . The lognormal probability distribution agrees more with the histogram than normal 

distribution. The correlation coefficient ( 2R ) of 0.977 confirms this close agreement of lognormal 

distribution. In this case, the mean and standard deviation of the exit hydraulic gradient are 

computed as 0.4604 and 0.112, respectively, while the deterministic value is 0.4612. Therefore, 

the likelihood that the exit hydraulic gradient will be greater than the deterministic value can be 

estimated using the following relationship. 

( )
( )

( )exit

exit

det ln(i )

exit det

ln(i )

ln i
P i i 1 1 0.1273 1 0.55 0.45

 − 
 = − = − = − = 

  

 (18) 

 

where 
exitln(i )  and 

exitln(i )  are the mean and standard deviation of exitln(i ) , which are calculated to 

be -0.8044 and 0.2396, respectively (see Eqs. 2 and 3). Accordingly, there is a 45% probability 

that the design based on the deterministic value is non-conservative. 
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The variations in the mean and standard deviation of the exit hydraulic gradient are illustrated 

in Figs. 18 and 19, respectively. Several COVs, ranging from 0.125 to 1, in addition to different 

isotropic and anisotropic autocorrelation distances, were taken into consideration. Two types of 

behavior are observed in Fig. 18 regarding the increase or decrease in the mean value of iexit. The 

mean of the exit hydraulic gradient increases with an increase in COV for the autocorrelation 

distances of 2, 4, 8, and 20 m. However, for 
h v 1m =  = , there is a tendency towards the mean of 

the exit gradient following the deterministic value at the lower COV and falling behind this value 

for the greater COV. Similar results were also reported by Griffiths and Fenton [21], possibly due 

to more variability in the soil properties when the autocorrelation distance is small. Furthermore, 

the standard deviation of the exit hydraulic gradient increases with an increase in the values of 

COV with respect to different autocorrelation distances (Fig. 19).  

 

 

6.5.  Stochastic analysis of seepage flow rate 

Fig. 20 shows the relationship between the estimated means of the seepage flow rate and the 

COV, considering several autocorrelation distances. As shown, the mean of the seepage flow rate 

increases with an increase in the autocorrelation distance. However, there is a decrease in the 

seepage flow rate with an increase in the values of COV. In addition, an increase in both the 

autocorrelation distance and coefficient of variation leads to higher standard deviations (Fig. 21).  

 

6.6.  Stochastic analysis of the uplift force 



18 
 

The random generation of hydraulic conductivity produces a distribution for the uplift force 

underneath the dam. Fig. 22 displays the histogram of the uplift force in addition to the induced 

normal and lognormal distribution regarding isotropic hydraulic conductivity, while Fig. 23 has 

been drawn for anisotropic soil conditions. As shown, both normal and lognormal distributions fit 

the histograms well. The high values of correlation coefficients that are greater than 0.99 confirmed 

these close agreements. In these calculations, COV=0.5, and 
h v 1m =  = . Moreover, the means 

of the uplift force attained by assuming both isotropic and anisotropic hydraulic conductivity are 

423.1 kN and 392.6 kN, respectively, indicating higher uplift force in the isotropic conditions. 

 

6.7.  Stochastic analysis of sliding stability 

The PDF of the safety factor against sliding was estimated for both ordinary and earthquake 

load combinations, shown in Fig. 24. The probability distribution of uplift force was included in 

the computations. Two scenarios were considered for the shear strength parameters. First, these 

parameters were modeled as random variables. In the second case, the concept of random field 

was used to describe ci and i
. In both load combinations mentioned, the standard deviation of the 

safety factor increases with an increase in the autocorrelation distance, while the estimated mean 

remains nearly unchanged (Fig. 24).  

The mean and standard deviation of the safety factor associated with the ordinary and 

earthquake load cases, in addition to the corresponding reliability indices and probabilities of 

failure, are reported in Tables 6 and 7, respectively. Considering the ordinary load combination, 

the estimated mean of the safety factor against sliding is nearly 3.18 when the autocorrelation 

distance ranges from 1 to 10, while the standard deviation increases from 0.26 to 0.44. The 

probability of failure in this combination is very small since the limit state surface is considered to 
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be 1, whereas the diversion dam is designed based on the deterministic safety factor of 3. The 

reliability indices greater than 5 confirm the safety of the dam at this load case (Table 6). Regarding 

the earthquake load combination, the estimated mean of the safety factor is approximately 1.56 for 

all autocorrelation distances, and the related standard deviation varies from 0.336 to 0.380 (Table 

7). The probability of failure is estimated between 4.8 and 7.1%, insofar as the highest probability 

of failure is obtained for the autocorrelation distance of 10 m. In addition, the reliability indices 

are in the range of 1.466 to 1.656, indicating a considerable decrease in comparison with the 

reliability indices of the ordinary load combination. Regarding the autocorrelation distance of 5 

m, the PDF of the safety factor resulting from random field discretization agrees well with the PDF 

obtained from random variable assumption (see Fig. 24).  

The above computations are based on the truncated normal distribution of input parameters. 

Both truncated normal and lognormal distributions have been used in the literature [43,48-50] to 

explain non-negative soil mechanical properties. The effects of normal and lognormal distributions 

of shear strength parameters on the distributions of the safety factor are displayed in Fig. 25, 

considering both ordinary and earthquake load combinations. As shown, the distributions of shear 

strength parameters mentioned above end up in close agreement. Of note, these agreements are 

based on the assumed mean and standard deviations of the input parameters. 

Pursuing this topic a step further, the histogram of the safety factor using an autocorrelation 

distance of 5 m was selected. In terms of the ordinary load pattern, both normal and lognormal 

distributions fit the histogram of the safety factor satisfactorily (Fig. 26a). The R2 values greater 

than 0.99 confirm these high levels of agreement. However, according to Fig. 26b, the probability 

distribution of the safety factor with respect to the earthquake load combination is closer to the 

skew normal distribution. The correlation coefficient of the skew normal distribution is estimated 
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to be 0.963, while this coefficient is less than 0.92 for the normal and lognormal distributions. The 

skew normal distribution is defined by Eq. 19 [51-52]. 

( )
( ) ( )

2

2

x x1
f x exp 1 erf

22 2

  −   −  
 = − +          

 (19) 

 

In this equation,   is an indicator of skewness, and   and   are the model constants. The mean 

and standard deviation of this distribution in addition to the value of skewness are calculated using 

Eqs. 20 to 22.  
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In the above equations,   is defined by: 

21


 =

+ 
 (23) 

 

The estimated parameters of the distributions for the earthquake load combination mentioned 

above are listed in Table 8. The reason for the skewness of the PDF under the earthquake load 

pattern is that the seismic coefficients are described by the exponential distribution, resulting in 

the skewness of the PDF. 
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Regarding isotropic and anisotropic hydraulic conductivity, the CDFs of the safety factor under 

the ordinary and earthquake load combinations are plotted in Fig. 27. As shown, the CDF curves 

obtained from the anisotropic hydraulic conductivity are plotted at the right side of the curve 

attained from isotropic conductivity, implying that the probability of failure is reduced by 

assuming anisotropic random hydraulic conductivity. Considering the ordinary load combination 

for which the minimum deterministic safety factor is three, the probability of failure associated 

with isotropic and anisotropic situations is 34% and 27%, respectively (Fig. 27a). Moreover, the 

possibility of failure at the earthquake load combination with the safety factor of one is equal to 

6% and 5.5% under isotropic and anisotropic cases, respectively (Fig. 27b). Consequently, 

estimation of the safety factor against sliding under isotropic soil conditions for more conservative 

design is recommended.  

Different values of the safety factor are mentioned in the reference books [1,3,12]. The USBR 

has proposed minimum safety factors of 4 and 1.5 for the ordinary and earthquake load 

combinations, respectively [1]. Accordingly, for isotropic circumstances, the relevant probability 

of failure is 97% in terms of the ordinary load combination and is 44% for the earthquake load 

pattern. This discussion indicates that the probability of failure increases noticeably with the 

greater values of the safety factors, implying the necessity of the probabilistic considerations in 

the design of diversion dams. 

 

6.8.  Sensitivity analysis 

Sensitivity analysis was also performed to examine the prominence of each stochastic input 

parameter on the sliding stability. The mean of each individual stochastic parameter was increased 

by 20%, while the means of the other stochastic parameters were kept constant. The CDF curves 
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arisen from both ordinary and earthquake load patterns are illustrated in Figs. 28 and 29, 

respectively. In these figures, there are multiple curves on both sides of the primary CDF curve, 

indicating the positive and negative influence of different parameters. The CDF of the safety factor 

moves rightward with an increase in the shear resistance parameters of the sliding surface (c and 

 ) and the sediment friction angle ( s ). However, the influence of c and   on the CDF of the 

safety factor is much greater than the influence of s . In addition, the CDF curves shift leftward 

with a rise in the sediment unit weight as well as the horizontal and vertical coefficients of the 

earthquake. The horizontal coefficient of the earthquake has the most leftward variation in the 

CDF of the safety factor. Similar sensitivity outcomes were attained when a 10% increment was 

assumed for the mean values of the parameters. 

 

7. Conclusions 

In this article, the influence of uncertainty in the soil properties, earthquake coefficients, and 

sediment characteristics was investigated in the stability of a diversion dam against piping and 

sliding. In addition, the efficiency of four cutoff wall configurations, comprising a single wall and 

two walls with half the length of the single wall, was explored stochastically using a two-

dimensional random finite element method. The conditions of isotropic hydraulic conductivity 

lead to similar probabilities of failure for all cutoff wall configurations, while the assumption of 

anisotropic conditions provides different probabilities of failure for each configuration. Moreover, 

higher probabilities of failure stem from anisotropic hydraulic conductivity of the soil in 

comparison with the probabilities of failure obtained from isotropic circumstances. Among the 

introduced cutoff wall configurations, the use of a single cutoff wall upstream facing the 

impervious blanket (configuration 1) gives rise to the least likelihood of failure for all COV. In 
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addition, the mean of the exit hydraulic gradient is higher than the deterministic value for the 

autocorrelation distances greater than one, while it falls behind the deterministic value for the 

autocorrelation distance equal to one. In terms of the effect of different ACFs (E-ACF, SOM-ACF, 

and BN-ACF), the employment of E-ACF provides a slightly greater mean and standard deviation 

of the exit hydraulic gradient. However, the seepage flow rate is slightly greater when estimated 

using the SOM-ACF.  

Regarding the probabilistic analysis of sliding stability, the ordinary and earthquake load 

combinations were considered. The shear strength parameters of the sliding plane were described 

stochastically using random field discretization. The probability of failure increases when the 

autocorrelation distance varies from 1 to 10 m. The PDF of the safety factor follows both normal 

and lognormal distributions in the case of ordinary load combinations. Nonetheless, the skew 

normal distribution gives the best agreement with the PDF of the safety factor in the case of the 

earthquake load combination.  

The sensitivity results show that the probability of failure decreases considerably with an 

increase in the shear resistance parameters of the sliding surface of the dam and the soil. However, 

the probability of failure increases noticeably with an increase in the horizontal coefficient of the 

earthquake. 
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Fig. 1. The flow chart of the procedure. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Fig. 2. Geometry of the studied diversion dam. (a) configuration 1. (b) configuration 2. 

(c) configuration 3. (d) configuration 4.   
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Fig. 3. Finite element discretization of the soil beneath the diversion dam. All elements are 0.5 m 0.5 

m squares. 
 

 

 
 

 
Fig. 5. Spatial variability of hydraulic conductivity using E-ACF for COV=0.5 and 

 h v 10m =  = . 
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(a) (b) 

  
(c) (d) 

Fig. 6. Stochastic equipotential lines. (a) configuration 1. (b) configuration 2. (c) configuration 3. (d) 

configuration 4. 
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Fig. 7. Influence of COV on the probability of failure of all configurations (scenario 1). 

 

 

Fig. 8. Influence of COV on the probability of failure of all configurations (scenario 2). 
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Fig. 9. Influence of COV on the probability of failure of all configurations (scenario 3). 

 

 

 
Fig. 10. Influence of COV on the probability of failure of all configurations (scenario 4). 
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Fig. 11. CDFs related to the safety factor against piping associated with isotropic conditions 

(scenario 1). 

 

 
Fig. 12. CDFs related to the safety factor against piping associated with anisotropic conditions 

(scenario 3). 
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(a) 

 

 
(b) 

 

Fig. 13. Influence of different AFCs on the exit hydraulic gradient (iexit). (a) mean of iexit.  

(b) standard deviation of iexit. 
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(a) 

 

 
(b) 

 

Fig. 14. Influence of horizontal and vertical autocorrelation distance on the mean of iexit. (a) 

mean of iexit vs. horizontal autocorrelation distance. (b) mean of iexit vs. vertical 

autocorrelation distance. 
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(a) 

 

 
(b) 

 

Fig. 15. Influence of different ACFs on the seepage flow rate (Q). 

(a) mean of Q. (b) standard deviation of Q. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 16. Surfaces of ACFs. (a) SOM-ACF (b) BN-ACF (c) E-ACF 
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Fig. 17. Histogram of exit hydraulic gradient together with normal and lognormal fits corresponding 

to COV =0.5 and 1h v m = = . 

 

 

 
Fig. 18. Influence of COV and autocorrelation distance on the mean of the exit hydraulic gradient. 
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Fig. 19. Influence of COV and autocorrelation distance on the standard deviation of the exit 

hydraulic gradient. 

 

 

 
Fig. 20. Influence of COV and autocorrelation distance on the mean seepage flow rate. 
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Fig. 21. Influence of COV and autocorrelation distance on the standard deviation of the seepage flow 

rate. 

 

 

 
Fig. 22. Histogram of uplift force together with normal and lognormal fits for isotropic soil 

conditions. 
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Fig. 23. Histogram of uplift force together with normal and lognormal fits for anisotropic soil 

conditions. 
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(a) 

 
(b) 

Fig. 24. PDFs of safety factor against sliding obtained from random field and random variable. (a) 

ordinary load combination. (b) earthquake load combination. 
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(a) 

 
(b) 

 
Fig. 25. PDFs of safety factor against sliding obtained from both truncated normal and lognormal 

distribution of the input parameters. (a) ordinary load combination. (b) earthquake load combination. 
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(a) 

 

 
(b) 

 

Fig. 26. Histogram of safety factor against sliding together with distribution fits. (a) ordinary load 

combination and induced normal and lognormal distributions. (b) earthquake load combination and 

induced normal, lognormal, and skew normal distributions. 
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(a) 

 
(b) 

 

Fig. 27. CDFs of safety factor against sliding. (a) ordinary load combination. (b) earthquake 

load combination. 

 

 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

SF
sliding

C
D

F

 

 

Isotropic condition

Anisotropic condition

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

SF
sliding

C
D

F

 

 

Isotropic condition

Anisotropic condition



43 
 

 

Fig. 28. Sensitivity of CDFs regarding the ordinary load combination. 

 

 

 
Fig. 29. Sensitivity of CDFs regarding the earthquake load combination. 
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Table 1 
Deterministic parameters used for stability analysis. 
 

Parameters 3

w (kN/ m )  2A(m )  H(m)  W(kN)  eC  

Value 9.81 15 6 900 0.73 
 

 

 

Table 2 
Stochastic lognormal parameters used for seepage analysis. 
 

Parameters Mean 
Coefficient of Variation  

(COV) 

Autocorrelation Distance 

(m) 

xK (m/ s)  10-5 0.125, 0.25, 0.5, 1 1, 4, 8, 20,   

zK (m/ s)  2  10-6 0.125, 0.25, 0.5, 1 1, 2, 4, 8,   
 

 

 

Table 3 
Stochastic truncated normal* parameters used for stability analysis. 
 

Parameters Mean Standard Deviation 
Autocorrelation Distance 

(m) 

c(kPa)  30 4 1, 2, 5, 10 

' 3(kN/ m )  9.5 0.25 - 

(Degree)  30 5 1, 2, 5, 10 

' 3

s (kN/ m )  8.7 0.25 - 

s (Degree)  30 5 - 
 

* In the truncated distribution, the mean plus or minus four standard deviations was selected to cover 99.994 

 percent of data. 

 

 

Table 4 
Stochastic truncated exponential parameters used for stability analysis. 
 

Parameters Mean Standard Deviation Maximum Minimum 

h  0.2062 0.0798 0.1 0.4 

v  0.06873 0.0226 0.033 0.133 
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Table 5 
Comparison of seepage flow rate (Q) obtained for all cutoff wall configurations. 
 

Method Configuration 1 Configuration 2 Configuration 3 Configuration 4 

Presented program 2.1686  10-5 (m3/s) 2.3258  10-5 (m3/s) 2.3180  10-5 (m3/s) 2.3174  10-5 (m3/s) 

SEEP/W 2.1685  10-5 (m3/s) 2.3258  10-5 (m3/s) 2.3179  10-5 (m3/s) 2.3172  10-5 (m3/s) 
 

 

 

Table 6 

Comparison results of random field and random variable for sliding stability under ordinary load condition. 

Methods 
Autocorrelation 

Distance 
Mean of SF 

Standard Deviation of 

SF 
  

fP (%)  

 1 m 3.178 0.262 8.320 0  

Random field 2 m 3.178 0.310 7.019 1.1e-10 

 5 m 3.178 0.387 5.625 9.2e-07 

 10 m 3.179 0.442 4.936 3.9e-05 

Random variable - 3.175 0.390 5.565 1.3e-06 

 

 

Table 7 

Comparison results of random field and random variable for sliding stability under earthquake load condition. 

Methods 
Autocorrelation 

Distance 
Mean of SF 

Standard Deviation of 

SF 
  

fP (%)  

 1 m 1.557 0.336 1.656 4.890 

Random field 2 m 1.556 0.346 1.609 5.380 

 5 m 1.555 0.365 1.522 6.400 

 10 m 1.557 0.380 1.466 7.140 

Random variable - 1.556 0.365 1.523 6.390 

 

 

Table 8 
Constant of PDF for the safety factor against sliding under earthquake load combination. 
 

Distribution Mean Standard Deviation Skewness R2 

Normal 1.508 0.406 - 0.918 

Lognormal 1.588 0.442 - 0.906 

Skew normal 1.542 0.416 0.402 0.963 
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