
Computer Networks 113 (2017) 258–268

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Multi-Gbps HTTP traffic analysis in commodity hardware based on

local knowledge of TCP streams

Carlos Vega

∗, Paula Roquero, Javier Aracil

Departamento de Tecnología Electrónica y de las Comunicaciones, Escuela Politécnica Superior, Universidad Autónoma de Madrid, C/Francisco Tomás y

Valiente 11 (28049), Madrid

a r t i c l e i n f o

Article history:

Received 2 September 2016

Revised 9 December 2016

Accepted 1 January 2017

Available online 3 January 2017

Keywords:

HTTP

Traffic analysis

High speed analysis

a b s t r a c t

In this paper we propose and implement novel techniques for performance evaluation of web traffic (re-

sponse time, response code, etc.), with no reassembly of the underlying TCP connection, which severely

restricts the traffic analysis throughput. Furthermore, our proposed software for HTTP traffic analysis runs

in standard hardware, which is very cost-effective. Besides, we present sub-TCP connection load balanc-

ing techniques that significantly increase throughput at the expense of losing very few HTTP transactions.

Such techniques provide performance evaluation statistics which are indistinguishable from the single-

threaded alternative with full TCP connection reassembly.

© 2017 Elsevier B.V. All rights reserved.

t

v

O

d

i

t

m

t

o

n

n

t

t

s

h

h

a

u

h

t

p

s
1. Introduction

Large organizations such as banks, etc. make an increasing

share of their business through the Internet [1] . Typically, HTTP is

the protocol of choice to deliver services to the end-user, thanks

to the widespread deployment of web clients in all kinds of mo-

bile and desktop devices. Therefore, measuring the Quality of Ser-

vice (QoS) provided by web portals [2] becomes of strategic impor-

tance. The same applies to other application protocols (VoIP, SIP,

RTP, RTCP) [3] but we focus on HTTP due to its widespread usage.

Such QoS evaluation is normally based on response time statistics

(from HTTP query to reply) and also on the analysis of response

codes for the detection of anomalous behaviour in the monitored

web services. For example, an HTTP error 500 indicates an internal

server error, which must be taken care of.

The dissection and analysis of HTTP traffic can also be per-

formed for cybersecurity purposes. However, the latter analysis is

very fine-grain because security threats try to masquerade them-

selves among normal HTTP traffic. Therefore, losing a single HTTP

transaction matters for security and forensic analysis. In contrast,

the scope our research is network and service monitoring and not

security, whereby only aggregated statistics such as means, aver-

ages or probability distributions matter.

Indeed, for QoS evaluation, only aggregate statistics are re-

quired, namely overall response time or percentage of a certain
∗ Corresponding author.

E-mail addresses: carlosgonzalo.vega@predoc.uam.es ,

carlosgonzalo.vega@estudiante.uam.es (C. Vega), paula.roquero@uam.es (P. Roquero),

javier.aracil@uam.es (J. Aracil).

p

p

b

e

http://dx.doi.org/10.1016/j.comnet.2017.01.001

1389-1286/© 2017 Elsevier B.V. All rights reserved.
ype of error codes. Furthermore, such statistics should be pro-

ided in real-time in order to timely react to possible anomalies.

nce the overall statistics show performance degradation an in-

epth analysis applies, which is normally performed off-line by

nspecting the packets over a given time interval. In this light,

he HTTP traffic analysis tool must be agile enough to cope with

ulti-Gb/s traffic rates and provide aggregate statistics in real-

ime, rather than providing a very high precision at the expense

f a larger processing time.

In this paper, we propose: 1) To lighten the underlying TCP con-

ection reassembly and also to use a novel load balancing tech-

ique in order to sustain large offered traffic loads while keeping

he accuracy at a reasonable level. 2) With this, we provide real-

ime aggregate statistics of the processed HTTP traffic such as re-

ponse time and response codes, among others. Furthermore, we

ave also attained a sustained 20 Gbps (2 × 10 Gbps) in a single

ost with several instances running in parallel.

The proposed techniques have been implemented in the HTTP-

nalyzer tool, as proof of concept and testbed for performance eval-

ation. Two real-world traces from large web commercial portals

ave been used to evaluate the maximum offered input traffic and

he accuracy of the QoS statistics.

The rest of the paper is organized as follows. First, prior to

roceeding to the technical content of the paper we review the

tate of the art. Second, we describe the methodology and the

roposed techniques for web traffic analysis, which are based on

artial knowledge of the TCP connection, sub-TCP connection load-

alancing and packet sampling. Finally, we discuss the performance

valuation and accuracy results, followed by the conclusions.

http://dx.doi.org/10.1016/j.comnet.2017.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.01.001&domain=pdf
mailto:carlosgonzalo.vega@predoc.uam.es
mailto:carlosgonzalo.vega@estudiante.uam.es
mailto:paula.roquero@uam.es
mailto:javier.aracil@uam.es
http://dx.doi.org/10.1016/j.comnet.2017.01.001

C. Vega et al. / Computer Networks 113 (2017) 258–268 259

1

a

a

s

t

o

o

c

H

a

s

i

e

s

m

t

t

[

f

T

e

o

s

s

t

f

p

o

p

o

m

s

e

o

t

f

r

7

o

d

s

a

T

p

c

d

t

t

t

H

c

v

t

l

c

a

s

r

s

Table 1

Trace files.

Capture file Size Packets in file HTTP transactions

trace1.pcap 387GB 539 ,178,347 13 ,743,811

trace2.pcap 120GB 211 ,823,223 3 ,681,812

t

b

I

a

e

t

t

a

d

Q

p

b

t

t

o

H

2

T

p

m

i

t

p

g

n

a

p

s

fi

w

b

c

r

i

o

s

T

i

o

H

p

a

t

c

f

d

s

t

N

t

.1. State of the art

Most of the HTTP analysis tools available in the state of the

rt are more focused on reliability than on processing speed. Actu-

lly, some of them perform an offline analysis in which processing

peed (henceforward throughput) is not a priority at all. Therefore,

hey are well-suited for cyber-security analysis of QoS evaluation

ffline, but not to the on-line analysis of a multi-Gbps stream to

btain real-time QoS metrics. Such tools are usually based on TCP

onnection re-assembly and, in a subsequent step, correlation of

TTP queries and responses in order to obtain the response time

nd error statistics. While this procedure provides very good re-

ults in terms of accuracy it adds a processing burden which makes

t impossible to process data at very high speeds.

We note that the HTTP 1.1 protocol is persistent, namely sev-

ral HTTP requests and responses may be transmitted through the

ame TCP connection. Such requests and responses are then seg-

ented in chunks and encapsulated within TCP segments. Thanks

o the sequence numbers of each segment, the receiver can ac-

ually order the out-of-order segments and eliminate duplicates

4] . Then, TCP reassembles these segments into a data stream and

eeds the application layer accordingly. Hence, reassembly of the

CP connection is a first mandatory step to retrieve each and ev-

ry HTTP request and response at the receiver.

Due to this reassembly processing burden, such tools make use

f sophisticated many-core and multicore systems to achieve high

peeds. For example, Jing Xu et al. [5] propose a solution for dis-

ecting HTTP traffic using the Tilera manycore platform for real-

ime HTTP traffic analysis up to 2 Gbps, which performs IP de-

ragmentation and TCP reassembly. Even though the results are im-

ressive we note that it requires a specialized PCI-e board for CPU

ffloading, in this case a Tilera TILEPro64 with 64 cores. We pro-

ose to use cost-effective ad-hoc hardware instead, at the expense

f lesser accuracy, which still provides valuable statistics for the

ost network monitoring tasks either for online or offline analy-

is.

Another interesting example has been proposed by Kai Zhang

t al. [6] for a general purpose Intel multicore architecture, built

n a pipelined RTC model, which also reassembles TCP connec-

ions, that achieves nearly 20 Gbps when parsing traffic looking

or HTTP request and responses using 5 cores. According to their

esults, with a trace of 2,472,221 packets with an average length of

64 bytes the processing speed attains 3.3 Mpps. However, unlike

ur solution, requests and responses are not matched to obtain the

esired HTTP performance statistics, for example response time.

Other tools like Bro, Fiddler, FlowScan, which do not run in

pecialised hardware, also provide a very high precision statistics

t the expense of throughput, as they both reconstruct the whole

CP connection. Bro [7,8] is a network security monitor that ap-

lies scripts and policies to events induced from packet streams,

reating a series of logs and alerts about the network status. Fid-

ler [9] is a HTTP debugging proxy server for Windows platforms

hat helps in the maintenance of web systems analysing traffic be-

ween the server and the browser.

Furthermore, HTTPperf [10] is also a debugging tool that ac-

ively measures the performance of web services by generating

TTP traffic in order to test pre-production environments. FlowS-

an is a software package that analyzes NetFlow [11] data and pro-

ides graphical representations of different metrics. However, this

ool may be overrun with the high number of flows of the ana-

yzed traffic and “might not be able to scale beyond monitoring a

ouple fully-utilized OC3 (155 Mb/s) links.” [12] (p.314). Connection

wareness requires a more complex processing and hence slower,

ince maintaining the status of thousands of different connections

equires a large processing power. This is the general approach

een in different analysis tools from the state of the art.
For pure TCP reassembly tools, which can be used to extract

he HTTP queries afterwards, Libnids , by Rafal Wojtczuk [13] , is a li-

rary, now discontinued, that provides TCP stream re-assembly and

P de-fragmentation, as well as TCP port scan detection in order to

llow a deep analysis of TCP payloads like HTTP traffic among oth-

rs.

In conclusion, the state of the art shows that high-precision and

hroughput can only be obtained through specialized hardware. In

his paper we provide a solution that trades-off high-precision and

ccuracy in ad-hoc hardware, which is inexpensive and easier to

eploy and maintain, both for offline traces and online streams

oS analysis.

More specifically, the novelty of the paper is twofold. First, we

ropose a new HTTP analysis tool with a remarkable throughput

y disregarding TCP flow reassembly. Second, we present a novel

echnique to distribute the HTTP traffic on a per transaction basis

hrough multiple consumers, which increases throughput. Overall,

ur proposed techniques allow real-time analysis of high speed live

TTP traffic.

. Methodology

The traffic samples used for the experiments are described in

able 1 which consist of PCAP files made up of HTTP traffic from

roduction proxies in two different large corporate networks with

illions of HTTP transactions. We chose two different com panies

n order to have a larger and more diverse sample of this kind of

raffic. Such files were used for assessing the accuracy and also for

erformance evaluation of our HTTPanalyzer tool.

As for accuracy evaluation, Tshark [14,15] was used as the

round truth reference, which is the de-facto traffic analysis tool

owadays. Such tool reassembles the TCP stack and uses multiple

nd complex packet dissectors for the different protocols available,

roviding detailed information of the traffic traces at the cost of

low processing speed. We note that Tshark is unable to process

les of our traffic samples’ size, due to its memory requirements,

hich are proportional to the file size. Consequently, we split up

oth samples in chunks of 20 million packets, which yields 27

hunks for trace1.pcap and 11 chunks for trace2.pcap with a size

anging from 13 to 15 GB. Since some transactions might be lost

n the file boundaries, we also used the same files in chunks for

ur tool, for the sake of fairness.

Regarding performance evaluation, we considered two different

cenarios, for the assessment of accuracy and speed, respectively.

he first one (offline, see Fig. 1 a) consisted of an offline process-

ng of a trace file using a single instance of our tool, with the aim

f comparing the accuracy of the results given by Tshark and our

TTPanalyzer. In the second scenario (online, see Fig. 1 b), we em-

loyed several instances of HTTPanalyzer with a novel load bal-

ncing technique at the HTTP transactions level, instead of tradi-

ional TCP flow balancing, which is targeted for high speed pro-

essing at 20 Gbps. To this end, we used a balancer called packet

eeder which receives the packets from the network interface and

istributes them evenly to the HTTPanalyzer consumers through

hared memory, while preserving the HTTP transaction consistency

hanks to the hash functions that will be explained in Section 2.1.4 .

amely, HTTP responses and their associated requests are sent to

he same processing consumer.

260 C. Vega et al. / Computer Networks 113 (2017) 258–268

Fig. 1. Different scenarios for both offline and online performance evaluation.

2

m

i

t

t

t

fi

n

w

s

d

e

l

l

t

s

i

i

a

h

t

w

o

s

a

s

p

J

t

t

n

Z

H

2

t

c

a

w

t

a

e

g
In Section 3 we further discuss the trade-off between accuracy

and speed of HTTPanalyzer versus Tshark.

2.1. System modules

The tool is structured internally in several modules, namely:

a hash table for the HTTP requests and responses; two different

pools of data structures for both the HTTP messages and the ta-

ble cells, as well as a HTTP parsing module, among others. In the

following sections we describe the proposed techniques for traffic

dissection and analysis.

2.1.1. Matching up HTTP requests and responses

Offline traces are read using libpcap which supports packet fil-

tering through Berkeley Packet Filter [16] with a default filter that

passes through just the HTTP requests and responses. More specif-

ically, the filter checks if the TCP payload begins with any HTTP

method for the requests or the literal ”HTTP” for the responses.

This filter do not ensure the packet to be HTTP and it can be over-

ridden by the user for its needs, hence, our tool checks the packet

format during the packet dissection for further analysis.

Our HTTPanalyzer tool produces HTTP transaction records which

are amenable to obtain valuable QoS statistics such as response

time and response codes, among others. An example of a HTTP

transaction record is showed next:

123.111.50.23|2311|214.223.22.6|80|1393978285.7773750 0 0

|1393978285.8815050 0 0|0.104130 0 0 0|OK|20 0|

GET|Mozilla/4.0| service.host.com | http://service.host.com/icon.gif

With the following format:

client IP; client port; server IP; server port; request times-

tamp;

response timestamp; response time; response message; re-

sponse code; method; agent; host; URI

Interestingly, a key point of our dissection method is that our

tool does not reassembly the TCP connection , and, furthermore,

only the first packet of the HTTP request is considered for match-

ing with the corresponding HTTP response. Thus, only the first

packet of the HTTP response is considered to obtain the HTTP

transaction record. Therefore, we obtain the response time of the

HTTP server as the time elapsed from the HTTP request to the

HTTP response packets.

This way, we achieve notable speeds of 1.5 Mpps with a single

instance of HTTPanalyzer . After the aforementioned filtering step,

the HTTP request and response are extracted and passed to a cor-

relation table. Thanks to a hash function, requests and responses

are stored in their appropriate cell on a per transaction basis. Then,

they are kept awaiting for their corresponding request or response

to arrive and, should this happen, the transaction record is finally

produced, in real-time.
.1.2. Hashing mechanism

In what follows, we provide further insight into the hashing

echanism, which is the cornerstone for both high-speed process-

ng and load balancing. The hash design is intrincate as it affects

he hash table collision for the HTTP message processing as well as

he load balancing of the traffic when using multiple consumers.

When storing HTTP requests and responses in the HTTPanalyzer

ool, it becomes necessary to avoid collisions and to make an ef-

cient use of the hash table. To do so, a uniform hash function is

eeded, also taking into account the speed restrictions we work

ith. Hash functions are also used to split the incoming packet

tream evenly between consumers, and hence uniformity and ran-

omness are key factors for the selection of a hash function.

As for uniformity , we aim to achieve the same probability for

very hash value in the output range, thus reducing potential col-

isions. On the other hand, randomness [17] serves to distribute

oad between consumers, before the modulus operation is applied

o determine where to send the packet. Actually, if packets are

hared between two consumers, only the hash value least signif-

cant bit matters, i. e. whether it’s equal to 0 or 1 with a probabil-

ty close to 50%. If not, the resulting packet streams will be unbal-

nced.

Generally speaking, only the 4-Tuple (see Eq. (1)) is used as a

ash key to balance TCP flows, which ensures that packets from

he same flow will end up in the same consumer. The problem

ith this approach is that some flows may carry more packets than

thers, leading to uneven packet distribution, and producing colli-

ions when storing values in hash tables.

Even though the latter hash function provides uniformity, as it

ssigns an output value for each combination of input with the

ame probability, the real input values such as IP addresses and

orts are not uniformly distributed on real datasets. For example,

.L. García-Dorado et al. conclude [18] that they follow a Zipf dis-

ribution. Furthermore, as W. Shi et al. demonstrate [19] , owing to

he Zipf-like distribution of the TCP flows, “a hash-based scheme is

ot able to achieve load balancing in parallel when the data follows a

ipf-like distribution”.

ash Value = Src . IP � Src . Port � Dst . IP � Dst . Port (1)

.1.3. Reducing collisions on the hash table

In order to match HTTP requests and responses we do not need

o ensure that all packets from the same flow end up in the same

onsumer. It is sufficient to ensure that at least both the request

nd its corresponding response reach the same consumer. Neither

e need to store HTTP transactions on a per flow basis in our hash

able, but rather per transaction.

Hence, our novel technique to circumvent this issue consist of

 similar hash function but making use of either the acknowl-

dgement or sequence number. Such a hash function (see Eq. (2))

uarantees that HTTP messages from the same transaction will be

http://service.host.com
http://service.host.com/icon.gif

C. Vega et al. / Computer Networks 113 (2017) 258–268 261

Fig. 2. Diagram of the processing of a HTTP message.

s

2

w

t

t

g

b

o

f

w

t

a

c

t

h

d

d

t

t

s

u

h

2

h

I

t

n

t

t

t

r

I

s

a

t

t

s

i

t

t

1

P

n

t

l

S

b

2

c

m

k

t

t

t

t

m

s

tored on the same cell and will be distributed uniformly.

H. Value

=

{
Requ est : Src . IP � Src . Port � Dst . IP � Dst . Port � Ack

Resp onse : Src . IP � Src . Port � Dst . IP � Dst . Port � Seq

(2)

.1.4. Sub-TCP connection load balancing

For the parallel execution of multiple HTTPanalyzer consumers

e use a load balancer tool (hereafter packet feeder) that dis-

ributes the packets between the HTTPanalyzer instances, reading

he packets from the NIC’s driver buffer and sharing a memory re-

ion with the consumers. For each incoming packet, a hash num-

er is calculated using the packet headers and, then, the modulus

peration is applied in order to choose the destination consumer

or the packet. Using the generic 4-Tuple hash function (Eq. (1))

ould ensure that packets from the same connection end up in

he same consumer HTTPanalyzer . However, as noted before, such

pproach could lead to an unbalanced behaviour whenever some

onnections have a lot more packets and transactions than others.

Consequently, we use a similar function as Eq. (2) , but in order

o achieve a better randomization of the least significant bits of the

ash value, we also XOR up byte a byte this seq/ack number in ad-

ition to the previous operations. Then, we take the remainder of

ividing this value by the number of consumers (n), which yields

he destination consumer. As a result, we obtain the hash func-

ion seen in Eq. (3) which ensures that both consumers receive the

ame packet workload and that both requests and responses end

p in the same consumer.

Consumer

=

⎧ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎩

Requ est : Src . IP � Src . Port � Dst . IP � Dst . Port

� Ack � (Ac k 1 � Ac k 2 � Ac k 3 � Ac k 4)

Resp onse : Src . IP � Src . Port � Dst . IP � Dst . Port

� Seq � (Se q 1 � Se q 2 � Se q 3 � Se q 4)

mod . n

(3)

In Section 3 we discuss in detail the results of the proposed

ash function and how well it distributes the hash values.
.1.5. Packet processing

As the Fig. 2 shows once the HTTP request or response arrives, a

ash value is calculated by using the 4-Tuple formed by the source

P, source port, the destination IP and its corresponding destina-

ion port, as well as the acknowledgement number or sequence

umber depending on whether it is a request or response respec-

ively (Eq. (1)). Such hash value is used to find the proper cell in

he table by dividing it between the size of the table and taking

he reminder. The main condition to pair an HTTP request with its

esponse is that they both must match on their 4-Tuple (source

P, source port, destination IP, destination port) and the HTTP re-

ponse must have a sequence number equal to the HTTP request

cknowledge number .

Afterwards, different possibilities arise depending on whether

he cell may be either empty without a willing counterpart or

aken by its suitor, which is awaiting. Nevertheless, there is a third

cenario (showed in red in Fig. 2) in which a duplicate message

s already stored, being this message either a request or response

hat has arrived before. Mostly these cases mean candidate re-

ransmissions or duplicates but an special case happens for the

00 Continue HTTP responses which usually happen during long

OST HTTP requests. Such long requests normally end with a fi-

al response code (200 OK on a successful event) at the end of

he transaction. We store such duplicates on the table as collisions

ooking forward to find its retransmitted/duplicated counterpart.

hould the latter not arrive, they are cleaned from the hash table

y the garbage collector.

.2. Limitations due to partial knowledge of the TCP connection

We also note that the aforementioned procedure is not as pre-

ise as the complete reassembly of the TCP flows due to packet

isordering and retransmissions. Namely, we are using partial

nowledge of the TCP connection at the vicinity of each HTTP

ransaction, and not global knowledge of the entire TCP connec-

ion. While this is advantageous for speed, there are indeed limi-

ations for accurately extracting HTTP requests and responses from

he TCP connection. However, we have used several heuristics to

itigate such inaccuracies as much as possible, which are pre-

ented next.

262 C. Vega et al. / Computer Networks 113 (2017) 258–268

Request 1

Request 2

Response to Req 2

Response to Req 1

Server Client

Fig. 3. Messages may arrive unordered.

2

b

n

s

f

s

t

p

o

t

i

p

t

3

o

w

m

i

s

v

3

d

3

U

a

T

m

U

c

c

U

U

u

T

n

m

b

b

r

t

c

a

3

r

W

D

d

t

r

a

r

2.2.1. Unordered HTTP messages

First, the HTTP messages may arrive unordered, implying that

a response corresponding to an older request can actually arrive

later than a response to a more recent request (within the same

TCP connection) as shown in Fig. 3 . Namely, HTTP transactions may

be printed out of order. This is because the TCP connection is not

reassembled, and thus, TCP segments may arrive in arbitrary order

depending on the IP packet dynamics along the route from client

to server. To partially circumvent this issue we do store the HTTP

message whether it is a request or response and keep it waiting to

the counterpart, hence, pairing can happen in both orders.

2.2.2. Retransmissions

Retransmissions are more frequent than unordered packets, re-

sulting in duplicate transactions records. In the event of retrans-

mitted messages, they are stored on their corresponding cell as

well, in the collision list, resulting in duplicate transactions records.

Such duplicate records must be filtered out afterwards by the an-

alyst, by looking for HTTP transactions with the same 4-tuple and

ack/seq number.

2.2.3. Accuracy

We are well aware that full accuracy in detecting HTTP requests

and responses is not possible with our approximate method. How-

ever, the aim of our research is to extract aggregate statistics that

are amenable to use in a Network Operations Center (NOC), thus

sacrificing accuracy for speed.

For example, as explained before, only the first packet of the

request and response is considered in the evaluation of response

time and response codes. Thus, the URL might be truncated if the

packet is longer than the MTU (1518 bytes). The RFC 2616 (Hy-

pertext Transfer Protocol HTTP/1.1) section 3.2.1 [20] says that “The

HTTP protocol does not place any a priori limit on the length of a URI.

Servers MUST be able to handle the URI of any resource they serve”

but the truth is that most browsers [21] support 80,0 0 0 characters

in average and the Apache Server has a limit of 8192.

Some browsers like Internet Explorer have a limit of 2048 char-

acters. Furthermore, large URLs are not good if web services in-

tend to be indexed by search engines because the sitemaps proto-

col [22] has a limit of 2048 characters for the URL and SEO systems

give less credit to these URLs.

In the results section we will show that the aggregate statis-

tics obtained through our proposed technique are almost the same

from those obtained with full TCP connection reassembly, and with

a very high throughput.
.2.4. Garbage collector

Chances are that some of the requests and responses will never

e removed from the hash table if the corresponding counterpart is

ot present in the trace, which entails wasting resources and pos-

ibly gives rise to collisions in the hash table. The same happens

or very delayed responses, whose associated request occupies re-

ources for too long. Both effects jeopardise throughput because

he larger the hash table the larger the search time to find the ap-

ropriate cell.

To mitigate these effects, a garbage collector checks the state

f the HTTP records’ table and goes through all the active cells in

he hash table removing transactions that shown no changes dur-

ng the last 60 s of capture. Such unmatched HTTP messages are

rinted out together with the rest of HTTP transactions because

hey are valuable information for the HTTP analysis as well.

. Performance evaluation

In this section we present the results and compare them with

ther existing solutions. Our main requirement is throughput,

hile keeping a reasonable level of accuracy for the HTTP perfor-

ance statistics. We discuss accuracy issues first, namely data loss

n the requested URL due to fragmentation in several packets, re-

ponse times, response codes and HTTP operations. Finally, we pro-

ide the throughput results.

.1. Accuracy tests

The next subsections discuss the accuracy of the tool for the

ifferent metrics of the HTTP traffic statistics.

.1.1. Potential loss of data in the request URL

For both our traffic samples, we studied (see Table 1) how many

RLs were truncated by our tool, and the maximum URL that was

ble to extract, and then compared it with the results given by

shark. On Fig. 4 we show that our tool (green circles) clearly

atches Tshark results (showed in orange triangles), except for

RLs over 1455 characters, which is the maximum length our tool

an manage. Such URLs are drawn in the chart as the points en-

losed in the selected red area and represent only a 0.04% of all

RLs, considering both traces.

Depending on the analysis performed, query parameters in the

RL might be considered meaningful information or just query val-

es that may be discarded. We also drawn (in blue asterisks) the

shark results disregarding URL query parameters and found that

one of them exceeded our 1455 character limit, showing that

ost of the URL length is composed of these query parameters. We

elieve that the most meaningful part of the URL is actually at the

eginning, that shows the invoked resource, rather than the pa-

ameters afterwards. In any case, the HTTP transaction record con-

ains enough parameters (4-tuple, time) to easily filter the packets

orresponding to ”long URLs” and, eventually, proceed to manual

nalysis.

.1.2. Response time

The response time is one of the most interesting HTTP QoS met-

ics, which serves to detect sudden degradation of Web services.

e have compared the response time Complementary Cumulative

istribution Function (CCDF) using HTTP transaction response time

ata from Tshark and our tool.

Our tool measures this response time as the difference between

he timestamp of the first packet of the HTTP request and the ar-

ival time of the first packet of the response. However, Tshark usu-

lly measures HTTP response time as the time between the first

equest packet and the last packet of the response.

C. Vega et al. / Computer Networks 113 (2017) 258–268 263

Fig. 4. URL size comparison. URLs in the area selected in red are longer than what our tool is able to manage, and represent a 0.04% of the total URLs analyzed. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Accuracy comparison between response time CCDFs.

t

j

p

o

s

3

p

F

w

h

t

i

t

f

T

r

3

a

t

v

e

l

o

t

c

3

f

F

t

1

s

l
Notwithstanding, Tshark is also able to measure the response

ime in a different fashion when TCP reassembly is disabled using

ust the first packets as we do. Hence, in order to make a fair com-

arison, we present in Fig. 5 the results of both measure modes

f Tshark together with our tool results, showing that there is no

ignificant difference for this metric.

.1.3. Response codes

The evaluation of the response codes is of fundamental im-

ortance to find errors. For example, a large number of 404 (Not

ound) status codes implies that dead links may be found in the

ebsite or that an specific resource has disappeared. On the other

and, 5xx error codes are also of interest, such as the 500 code (In-

ernal error), which may be delivered frequently by dynamic webs

n case of failure in the dynamic objects invoked.

As Fig. 6 shows, the response code count is almost identical to

he Tshark results, and the average count difference with Tshark

or some specific response codes is 2.6% with a median of 1.3%.

his difference is due to some loss in HTTPanalyzer when multiple

equests are sent pipelined in the flow.
.1.4. HTTP Methods

A similar comparison can be done with the other HTTP trans-

ctions’ statistics like the histogram of request methods in Fig. 7 ,

hat shows that our tool provides nearly the same number of HTTP

erbs as Tshark in the processed capture file. Some slight differ-

nces like the Tshark counting of the PUT method are due to the

ost transactions in the file boundaries between chunks. As it turns

ut, we had to split our trace files into smaller chunks for Tshark

o process them. Otherwise, the file size was too big and Tshark

ould not complete execution.

.2. Throughput tests

In this section, the throughput experiments have also been per-

ormed with both files from Table 1 , in two different scenarios.

irst we have conducted offline tests in order to test the ability

o process the sample files using high speed storage systems at

0 Gbps with a single instance of the HTTPanalyzer . Then, we as-

essed the performance of our tool when processing 20 Gbps of

ive traffic sent with a traffic player from one host and receiving

264 C. Vega et al. / Computer Networks 113 (2017) 258–268

Fig. 6. HTTP response code counting.

Fig. 7. HTTP method counting.

i

n

X

o

f

n

k

h

t

S

t
it on another, which in turn incorporates our packetFeeder soft-

ware load balancer in order to split the incoming traffic between

instances of our tool, making use of a uniform hash function.

However, in order to better understand the results, let us pro-

vide some more insight into the hash function used to distribute

the packets both on the HTTPanalyzer hash table and between con-

sumers.

3.2.1. Hash function tests

The hash value histogram is the figure of merit for hash se-

lection, as it summarizes, in a single graph, if the hash value is

uniform for an even packet load balancing. In this light, Fig. 8

shows the hash value histogram for the Eqs. (1) and (2) explained
n Section 2 . We have divided this distribution in two sides with

egative and positive values, meaning that the negative side of the

 axis corresponds to one consumer and the positive part to the

ther consumer. Each point represents the number of occurrences

or an specific hash value.

Interestingly, we note that 32 bit numbers (sequence and ACK

umbers length in TCP), adding up the sequence (seq) or ac-

nowledge (ack) number accordingly, randomizes the resulting

ash value reducing collisions and without affecting the pairing

ask. This refers to the previously explained hash function seen in

ection 2 on Eq. (2) .

As the Fig. 8 shows, collisions are largely reduced when using

he seq and ack numbers because these 32 bit numbers randomize

C. Vega et al. / Computer Networks 113 (2017) 258–268 265

Fig. 8. Comparison of the distribution of the packets using different hash functions.

Table 2

HTTPanalyzer speed benchmarks.

Storage system Speed (Gbps) Speed (Mpps)

RAID 0 10 .6 ± 0.58 1 .8 ± 0.15

RAM 13 .8 ± 1.4 2 .1 ± 0.26

t

w

w

u

b

t

a

p

s

n

3

s

s

@

a

t

i

1

t

t

i

3

i

1

t

i

w

h

i

n

R

t

T

F

k

s

i

o

s

o

c

m

p

l

t

o

t

t

u

H

3

c

T

i

r

I

T

i

F

w

p

i

t

H

m
he entire hash, and they are initialized randomly by the TCP stack

hen flows are created. This distribution (shown in light brown

ith circles) is the same for both Eqs. (2) and (3) . However, we

sed Eq. (3) for the multi-consumer experiments while Eq. (2) will

e used in the HTTPanalyzer hash table. We note that in the hash

able there is no need for the least significant bits to be random

nd, consequently, we reduce the processing requirements to com-

ute the hash.

In the light of the above discussion, we proceed with the pre-

entation of the throughput results of the offline and online sce-

arios (see Fig. 1).

.2.2. Single consumer tests

This first test aims to prove that HTTPanalyzer is able to dis-

ect PCAP files at 10 Gbps using high speed storage. Fig. 1 a repre-

ents this scenario. For this test we used an Intel Xeon E3-1230 v3

 3.30 Ghz with 32GB of RAM and a storage system formed by

 RAID 0 with 8 Samsung 840 SSD drives with read speeds higher

han 10 Gbps.

Tests were performed using the sample traffic files described

n Table 1 . We also conducted an in-memory benchmark using a

5GB chunk of one of the original files stored in a RAM filesys-

em in order to measure the maximum speed of our tool. These

ests gave successful results, (see Table 2), showing that a single

nstance of our tool is able to process more than 10 Gbps of traffic.

.2.3. Multi-consumer experiments

This subsection discusses the results of the tests conducted us-

ng multiple HTTPanalyzer consumers for processing 20 Gbps (two

0 Gbps streams) of online traffic on a single host. Our aim is

o prove that many different instances of HTTPanalyzer can work

n parallel with a similar load thanks to our hash implementation,

ith the benefit of achieving multi-Gbps throughput in a single

ost. To perform the experiment, two hosts were used as shown

n Fig. 1 b. Host A is the same server used for the previous sce-

ario, but this time, the traffic samples stored on the high speed
AID system were sent using a NetFPGA traffic player [23] across

wo 10GbE optic links, sending the same data through each cable.

his 10G Trace Tester [24] is a testbed part of the european project

ed4Fire able to send traffic at 10 Gbps per link.

Right after, host B receives the traffic using HPCAP [25] , a

ernel-level driver designed for Intel NICs aiming to process a fully

aturated 10GbE link. Since the driver reads the packets from each

nterface separately two instances of the packet feeder were used,

ne for each 10GbE line; and for each of these packet feeder in-

tances, two HTTPanalyzer consumers were set. This makes a total

f four HTTPanalyzer instance running in parallel on four different

ores. Each packet feeder shared out the packets using the afore-

entioned hash function, which ensures a uniform distribution of

ackets and HTTP transactions per consumer.

Interestingly, all the four instances received roughly the same

oad, as Table 3 shows. The results indicate that our proposed hash

echnique is very effective in load balancing.

Tests with 40GbE links could not be performed as this technol-

gy is yet minority and expensive, also owing to the limit of the

raffic player that prevents us from testing higher speeds. However,

hese results show promise that our tool can handle higher rates

sing this very same approach of load sharing between multiple

TTPanalyzer instances.

.2.4. Throughput comparison against tshark

To complete our throughput assessment, we compared the pro-

essing speed (or analysis throughput) of HTTPanalyzer versus

shark. Even though Tshark provides highly detailed HTTP metrics,

t turns out that it cannot cope with traffic sent at high speed for

eal-time analysis.

Fig. 9 a shows the processing speed of HTTPanalyzer and Tshark.

t can be observed that HTTPanalyzer is 43 times faster than

shark. The measurement experiment was performed offline, read-

ng traces from a RAM filesystem as we did in 3.2.2 . Furthermore,

ig. 9 b represents the packet loss that Tshark suffered when traffic

as injected at 10 Gbps speed during an online measurement ex-

eriment similar to those in Section 3.2.3 . Clearly, the packet loss

s very significant, which deems Tshark not adequate for on-line

raffic analysis purposes in multi-Gbps scenarios.

Actually, there is a trade-off between Tshark accuracy and

TTPanalyzer speed. However, the HTTPanalyzer accuracy is re-

arkable (as shown in 3.1), which, together with the throughput

266 C. Vega et al. / Computer Networks 113 (2017) 258–268

Table 3

HTTPanalyzer consumers distribution results.

Cons umer A-1 Consumer A-2 Consumer B-1 Consumer B-2

Received packets 49 .86% 50 .02% 49 .94% 50 .02%

HTTP transactions 50 .01% 49 .98% 50 .01% 49 .98%

Fig. 9. Performance charts of Tshark.

limitations of Tshark presented in this section, makes HTTPAna-

lyzer the tool of choice for real-time analysis of high speed traffic.

4. Conclusions

In this paper, we present a high-performance HTTP traffic an-

alyzer that achieves 10 Gbps throughput with a single instance

of the tool. A remarkable throughput of 20 Gbps online with live

traffic can be achieved using multiple instances of the tool, thanks

to our proposed hash function. All these results have been ob-

tained in commodity hardware, with no need of ad-hoc high-speed

network processors or massively parallel devices.

Finally, our tool provides real-time statistics of different aggre-

gate metrics to measure the QoS of web traffic in large organiza-

tions. Such metrics are of strategic importance because of its close

relation with the Quality of Experience of the final user, allowing

to detect changes in the web services behaviour on-the-fly.

Acknowledgements

The authors used the testbed 10G Trace Tester [24] , which is

part of the european project Fed4Fire under the aegis of the Eu-

ropean Union’s Seventh Framework Programme (FP7) under Grant

FP7-ICT-318389.

References

[1] P. na López, Ismael, and others OECD internet economy outlook 2012, (2012),
Chapter 4, http://dx.doi.org/10.1787/9789264086463-en .

[2] S. Khirman, P. Henriksen, Relationship between Quality-of-service and Quality-
of-experience for Public Internet Service, in: Proc. of the 3rd Workshop on Pas-

sive and Active Measurement, 2002 . http://www-v1.icir.org/2002/Relationship _

Between _ QoS _ and _ QoE.pdf
[3] García-Dorado, J. Luis, S. del Río, M. Pedro, J. Ramos, D. Muelas, V. Moreno,

L. de Vergara, J.E.a. Aracil, Javier: low-cost and high-performance: voIP moni-
toring and full-data retention at multi-Gb/s rates using commodity hardware,

Int. J. Netw. Manage. 24 (3) (2014) 181–199, doi: 10.1002/nem.1858 .
[4] J. Postel, RFC 793: Transmission Control Protocol, September 1981, Status:
Standard, vol. 88, 2003 https://tools.ietf.org/html/rfc793#section-1.5 (Last ac-

cessed: 3 Dec. 2016) .
[5] J. Xu, H. Wang, W. Liu, X. Hei, Towards high-speed real-time HTTP traffic analy-

sis on the tilera many-core platform, IEEE HPCC_EUC (2013), doi: 10.1109/HPCC.

and.EUC.2013.252 .
[6] K. Zhang, J. Wang, B. Hua, X. Tang, Building high-performance application pro-

tocol parsers on multi-core architectures, IEEE 17th ICPADS (2011), doi: 10.1109/
ICPADS.2011.37 .

[7] Bro.org: The Bro Network Security Monitor., 2013, http://www.bro.org (Last ac-
cessed: 3 Dec. 2016).

[8] V. Paxson, Bro: a system for detecting network intruders in real-time, Int. J.

Comput.Telecommun. Netw. (1998), doi: 10.1016/S1389-1286(99)00112-7 .
[9] Eric Lawrence: Debugging with Fiddler (2012) https://fiddlerbook.com/book/

(Last accessed: 3 Dec. 2016).
[10] D. Mosberger, T. Jin, Httperf? a tool for measuring web server performance,

ACM SIGMETRICS Performance Evaluation Review 26(3) (1998) 31–37, doi: 10.
1145/306225.306235 .

[11] Netflow, cisco IOS, white paper, 2006, Introduction to Cisco IOS NetFlow-

A Technical Overview http://www.cisco.com/c/en/us/products/collateral/
ios- nx- os- software/ios- netflow/prod _ white _ paper0900aecd80406232.html .

[12] D. Plonka, Lisa, in: FlowScan: A Network Traffic Flow Reporting and Visualiza-
tion Tool, 20 0 0, pp. 305–317 . https://www.usenix.org/legacy/events/lisa20 0 0/

full _ papers/plonka/plonka.pdf .
[13] R. Wojtczuk, Libnids, an implementation of an E-component of Network Intru-

sion Detection System. (2010) http://libnids.sourceforge.net/ (Last accessed: 3

Dec. 2016).
[14] A. Orebaugh , G. Ramirez , J. Beale , Wireshark and Ethereal network protocol

analyzer toolkit, Syngress, 2006 .
[15] G. Combs, 2007, Wireshark. http://www.wireshark.org/ (Last accessed: 3 Dec.

2016).
[16] S. McCanne, V. Jacobson, The BSD packet filter: A new architecture for user-

level packet capture, USENIX winter (Vol. 46), 1993 . http://dl.acm.org/citation.

cfm?id=1267305 .
[17] H.F. Korth, A. Silberschatz, Database system concepts 6th Edition. Chapter 11,

page 510. (2010).
[18] J.L. García-Dorado, J.A. Hernández, J. Aracil, J.E.L. de Vergara, F.J. Monserrat,

E. Robles, T.P. de Miguel, On the duration and spatial characteristics of internet
traffic measurement experiments, IEEE Commun. Mag. 46 (11) (2008) 148–155,

doi: 10.1109/MCOM.2008.4689258 .
[19] W. Shi, M.H. MacGregor, P. Gburzynski, An adaptive load balancer for

multiprocessor routers, Simulation 82 (3) (2006) 173–192, doi: 10.1177/

0037549706067079 .

http://dx.doi.org/10.1787/9789264086463-en
http://www-v1.icir.org/2002/Relationship_Between_QoS_and_QoE.pdf
http://dx.doi.org/10.1002/nem.1858
https://tools.ietf.org/html/rfc793#section-1.5
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.252
http://dx.doi.org/10.1109/ICPADS.2011.37
http://www.bro.org
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
https://fiddlerbook.com/book/
http://dx.doi.org/10.1145/306225.306235
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.usenix.org/legacy/events/lisa2000/full_papers/plonka/plonka.pdf
http://libnids.sourceforge.net/
http://refhub.elsevier.com/S1389-1286(17)30001-4/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30001-4/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30001-4/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30001-4/sbref0009
http://www.wireshark.org/
http://dl.acm.org/citation.cfm?id=1267305
http://dx.doi.org/10.1109/MCOM.2008.4689258
http://dx.doi.org/10.1177/0037549706067079

C. Vega et al. / Computer Networks 113 (2017) 258–268 267

[

[

[

[

[

20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
RFC 2616 Hypertext Transfer Protocol - HTTP/1.1 Hypertext Transfer Protocol.

1999, http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2.1 .
[21] Boutell.com: What is the maximum length of a URL?. (2006) http://www.

boutell.com/newfaq/misc/urllength.html (Last accessed: 3 Dec. 2016).
22] http://Sitemaps.orgSitemaps.org: Sitemaps XML format. (2008) http://www.

sitemaps.org/protocol.html (Last accessed: 3 Dec. 2016).
23] J.F. Zazo, M. Forconesi, S. Lopez-Buedo, G. Sutter, J. Aracil, TNT10G: a high-

accuracy 10 gbe traffic player and recorder for multi-terabyte traces, ReCon-

Fig14 (2014), doi: 10.1109/ReConFig.2014.7032561 .
24] J.L. García-Dorado, J.F. Zazo, HPCN-UAM: 10Gbps Trace Reproduction testbed
for testing software-defined networks (10GTRACE-TESTER). (2015) http://www.

fed4fire.eu/10g- trace- tester/ (Last accessed: 3 Dec. 2016).
25] V. Moreno, P.M.S. del Río, J. Ramos, D. Muelas, J.L. García-Dorado, F.J. Gomez-

Arribas, J. Aracil, Multi-granular, multi-purpose and multi-gb/s monitoring on
off-the-shelf systems, Int. J. Netw. Manage. (2014), doi: 10.1002/nem.1861 .

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2.1
http://www.boutell.com/newfaq/misc/urllength.html
http://Sitemaps.orgSitemaps.org:
http://www.sitemaps.org/protocol.html
http://dx.doi.org/10.1109/ReConFig.2014.7032561
http://www.fed4fire.eu/10g-trace-tester/
http://dx.doi.org/10.1002/nem.1861

268 C. Vega et al. / Computer Networks 113 (2017) 258–268

received his M.Sc and B.Sc. degree in Computer Science from Universidad Autónoma de
 Computing and Networking Research Group at the same university as a researcher in

laborated on European research projects. His current research topics as a Ph.D candidate

uter Science from Universidad Autónoma de Madrid, Spain in 2016. She then joined the

Group at the same university. Her current research topics as a Ph.D candidate include

rs) from Technical University of Madrid in 1993 and 1995, both in Telecommunications

olarship and was appointed as a Postdoctoral Researcher of the Department of Electrical
ia, Berkeley. In 1998 he was a research scholar at the Center for Advanced Telecommu-

as at Dallas. He has been an associate professor for University of Cantabria and Public
r at Universidad Autónoma de Madrid, Madrid, Spain. His research interest are in opti-

ion networks. He has authored more than 100 papers in international conferences and
Carlos Vega Moreno (carlosgonzalo.vega@predoc.uam.es)
Madrid, Spain, in 2014. He joined the High Performance

the Network of Excellence InterNet Science, where he col
include log collection and network traffic analysis.

Paula Roquero Fuentes received a M.Sc. degree in Comp

High Performance Computing and Networking Research

distributed systems and network traffic analysis.

Javier Aracil received the M.Sc. and Ph.D. degrees (Hono

Engineering. In 1995 he was awarded with a Fulbright sch
Engineering and Computer Sciences, University of Californ

nications, Systems and Services of The University of Tex
University of Navarra and he is currently a full professo

cal networks and performance evaluation of communicat
journals.

http://carlosgonzalo.vega@predoc.uam.es

	Multi-Gbps HTTP traffic analysis in commodity hardware based on local knowledge of TCP streams
	1 Introduction
	1.1 State of the art

	2 Methodology
	2.1 System modules
	2.1.1 Matching up HTTP requests and responses
	2.1.2 Hashing mechanism
	2.1.3 Reducing collisions on the hash table
	2.1.4 Sub-TCP connection load balancing
	2.1.5 Packet processing

	2.2 Limitations due to partial knowledge of the TCP connection
	2.2.1 Unordered HTTP messages
	2.2.2 Retransmissions
	2.2.3 Accuracy
	2.2.4 Garbage collector

	3 Performance evaluation
	3.1 Accuracy tests
	3.1.1 Potential loss of data in the request URL
	3.1.2 Response time
	3.1.3 Response codes
	3.1.4 HTTP Methods

	3.2 Throughput tests
	3.2.1 Hash function tests
	3.2.2 Single consumer tests
	3.2.3 Multi-consumer experiments
	3.2.4 Throughput comparison against tshark

	4 Conclusions
	 Acknowledgements
	 References

