Computer Networks 113 (2017) 258-268

journal homepage: www.elsevier.com/locate/comnet

Contents lists available at ScienceDirect

Computer Networks (&

%mp ter
qfw rks
“';! J

Multi-Gbps HTTP traffic analysis in commodity hardware based on

local knowledge of TCP streams

Carlos Vega*, Paula Roquero, Javier Aracil

@ CrossMark

Departamento de Tecnologia Electrénica y de las Comunicaciones, Escuela Politécnica Superior, Universidad Auténoma de Madrid, C/Francisco Tomds y

Valiente 11 (28049), Madrid

ARTICLE INFO ABSTRACT

Article history:

Received 2 September 2016
Revised 9 December 2016
Accepted 1 January 2017
Available online 3 January 2017

Keywords:

In this paper we propose and implement novel techniques for performance evaluation of web traffic (re-
sponse time, response code, etc.), with no reassembly of the underlying TCP connection, which severely
restricts the traffic analysis throughput. Furthermore, our proposed software for HTTP traffic analysis runs
in standard hardware, which is very cost-effective. Besides, we present sub-TCP connection load balanc-
ing techniques that significantly increase throughput at the expense of losing very few HTTP transactions.
Such techniques provide performance evaluation statistics which are indistinguishable from the single-

HTTP threaded alternative with full TCP connection reassembly.

Traffic analysis
High speed analysis

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Large organizations such as banks, etc. make an increasing
share of their business through the Internet [1]. Typically, HTTP is
the protocol of choice to deliver services to the end-user, thanks
to the widespread deployment of web clients in all kinds of mo-
bile and desktop devices. Therefore, measuring the Quality of Ser-
vice (QoS) provided by web portals [2] becomes of strategic impor-
tance. The same applies to other application protocols (VoIP, SIP,
RTP, RTCP) [3] but we focus on HTTP due to its widespread usage.
Such QoS evaluation is normally based on response time statistics
(from HTTP query to reply) and also on the analysis of response
codes for the detection of anomalous behaviour in the monitored
web services. For example, an HTTP error 500 indicates an internal
server error, which must be taken care of.

The dissection and analysis of HTTP traffic can also be per-
formed for cybersecurity purposes. However, the latter analysis is
very fine-grain because security threats try to masquerade them-
selves among normal HTTP traffic. Therefore, losing a single HTTP
transaction matters for security and forensic analysis. In contrast,
the scope our research is network and service monitoring and not
security, whereby only aggregated statistics such as means, aver-
ages or probability distributions matter.

Indeed, for QoS evaluation, only aggregate statistics are re-
quired, namely overall response time or percentage of a certain

* Corresponding author.
E-mail addresses: carlosgonzalo.vega@predoc.uam.es,
carlosgonzalo.vega@estudiante.uam.es (C. Vega), paula.roquero@uam.es (P. Roquero),
javier.aracil@uam.es (J. Aracil).

http://dx.doi.org/10.1016/j.comnet.2017.01.001
1389-1286/© 2017 Elsevier B.V. All rights reserved.

type of error codes. Furthermore, such statistics should be pro-
vided in real-time in order to timely react to possible anomalies.
Once the overall statistics show performance degradation an in-
depth analysis applies, which is normally performed off-line by
inspecting the packets over a given time interval. In this light,
the HTTP traffic analysis tool must be agile enough to cope with
multi-Gb/s traffic rates and provide aggregate statistics in real-
time, rather than providing a very high precision at the expense
of a larger processing time.

In this paper, we propose: 1) To lighten the underlying TCP con-
nection reassembly and also to use a novel load balancing tech-
nique in order to sustain large offered traffic loads while keeping
the accuracy at a reasonable level. 2) With this, we provide real-
time aggregate statistics of the processed HTTP traffic such as re-
sponse time and response codes, among others. Furthermore, we
have also attained a sustained 20 Gbps (2 x 10 Gbps) in a single
host with several instances running in parallel.

The proposed techniques have been implemented in the HTTP-
analyzer tool, as proof of concept and testbed for performance eval-
uation. Two real-world traces from large web commercial portals
have been used to evaluate the maximum offered input traffic and
the accuracy of the QoS statistics.

The rest of the paper is organized as follows. First, prior to
proceeding to the technical content of the paper we review the
state of the art. Second, we describe the methodology and the
proposed techniques for web traffic analysis, which are based on
partial knowledge of the TCP connection, sub-TCP connection load-
balancing and packet sampling. Finally, we discuss the performance
evaluation and accuracy results, followed by the conclusions.

http://dx.doi.org/10.1016/j.comnet.2017.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.01.001&domain=pdf
mailto:carlosgonzalo.vega@predoc.uam.es
mailto:carlosgonzalo.vega@estudiante.uam.es
mailto:paula.roquero@uam.es
mailto:javier.aracil@uam.es
http://dx.doi.org/10.1016/j.comnet.2017.01.001

C. Vega et al./ Computer Networks 113 (2017) 258-268 259

1.1. State of the art

Most of the HTTP analysis tools available in the state of the
art are more focused on reliability than on processing speed. Actu-
ally, some of them perform an offline analysis in which processing
speed (henceforward throughput) is not a priority at all. Therefore,
they are well-suited for cyber-security analysis of QoS evaluation
offline, but not to the on-line analysis of a multi-Gbps stream to
obtain real-time QoS metrics. Such tools are usually based on TCP
connection re-assembly and, in a subsequent step, correlation of
HTTP queries and responses in order to obtain the response time
and error statistics. While this procedure provides very good re-
sults in terms of accuracy it adds a processing burden which makes
it impossible to process data at very high speeds.

We note that the HTTP 1.1 protocol is persistent, namely sev-
eral HTTP requests and responses may be transmitted through the
same TCP connection. Such requests and responses are then seg-
mented in chunks and encapsulated within TCP segments. Thanks
to the sequence numbers of each segment, the receiver can ac-
tually order the out-of-order segments and eliminate duplicates
[4]. Then, TCP reassembles these segments into a data stream and
feeds the application layer accordingly. Hence, reassembly of the
TCP connection is a first mandatory step to retrieve each and ev-
ery HTTP request and response at the receiver.

Due to this reassembly processing burden, such tools make use
of sophisticated many-core and multicore systems to achieve high
speeds. For example, Jing Xu et al. [5] propose a solution for dis-
secting HTTP traffic using the Tilera manycore platform for real-
time HTTP traffic analysis up to 2 Gbps, which performs IP de-
fragmentation and TCP reassembly. Even though the results are im-
pressive we note that it requires a specialized PCI-e board for CPU
offloading, in this case a Tilera TILEPro64 with 64 cores. We pro-
pose to use cost-effective ad-hoc hardware instead, at the expense
of lesser accuracy, which still provides valuable statistics for the
most network monitoring tasks either for online or offline analy-
sis.

Another interesting example has been proposed by Kai Zhang
et al. [6] for a general purpose Intel multicore architecture, built
on a pipelined RTC model, which also reassembles TCP connec-
tions, that achieves nearly 20 Gbps when parsing traffic looking
for HTTP request and responses using 5 cores. According to their
results, with a trace of 2,472,221 packets with an average length of
764 bytes the processing speed attains 3.3 Mpps. However, unlike
our solution, requests and responses are not matched to obtain the
desired HTTP performance statistics, for example response time.

Other tools like Bro, Fiddler, FlowScan, which do not run in
specialised hardware, also provide a very high precision statistics
at the expense of throughput, as they both reconstruct the whole
TCP connection. Bro [7,8] is a network security monitor that ap-
plies scripts and policies to events induced from packet streams,
creating a series of logs and alerts about the network status. Fid-
dler [9] is a HTTP debugging proxy server for Windows platforms
that helps in the maintenance of web systems analysing traffic be-
tween the server and the browser.

Furthermore, HTTPperf [10] is also a debugging tool that ac-
tively measures the performance of web services by generating
HTTP traffic in order to test pre-production environments. FlowS-
can is a software package that analyzes NetFlow [11] data and pro-
vides graphical representations of different metrics. However, this
tool may be overrun with the high number of flows of the ana-
lyzed traffic and “might not be able to scale beyond monitoring a
couple fully-utilized OC3 (155 Mb/s) links.” [12] (p.314). Connection
awareness requires a more complex processing and hence slower,
since maintaining the status of thousands of different connections
requires a large processing power. This is the general approach
seen in different analysis tools from the state of the art.

Table 1
Trace files.

Capture file Size Packets in file ~ HTTP transactions

387GB
120GB

tracel.pcap
trace2.pcap

539,178,347
211,823,223

13,743,811
3,681,812

For pure TCP reassembly tools, which can be used to extract
the HTTP queries afterwards, Libnids, by Rafal Wojtczuk [13], is a li-
brary, now discontinued, that provides TCP stream re-assembly and
IP de-fragmentation, as well as TCP port scan detection in order to
allow a deep analysis of TCP payloads like HTTP traffic among oth-
ers.

In conclusion, the state of the art shows that high-precision and
throughput can only be obtained through specialized hardware. In
this paper we provide a solution that trades-off high-precision and
accuracy in ad-hoc hardware, which is inexpensive and easier to
deploy and maintain, both for offline traces and online streams
QoS analysis.

More specifically, the novelty of the paper is twofold. First, we
propose a new HTTP analysis tool with a remarkable throughput
by disregarding TCP flow reassembly. Second, we present a novel
technique to distribute the HTTP traffic on a per transaction basis
through multiple consumers, which increases throughput. Overall,
our proposed techniques allow real-time analysis of high speed live
HTTP traffic.

2. Methodology

The traffic samples used for the experiments are described in
Table 1 which consist of PCAP files made up of HTTP traffic from
production proxies in two different large corporate networks with
millions of HTTP transactions. We chose two different companies
in order to have a larger and more diverse sample of this kind of
traffic. Such files were used for assessing the accuracy and also for
performance evaluation of our HTTPanalyzer tool.

As for accuracy evaluation, Tshark [14,15] was used as the
ground truth reference, which is the de-facto traffic analysis tool
nowadays. Such tool reassembles the TCP stack and uses multiple
and complex packet dissectors for the different protocols available,
providing detailed information of the traffic traces at the cost of
slow processing speed. We note that Tshark is unable to process
files of our traffic samples’ size, due to its memory requirements,
which are proportional to the file size. Consequently, we split up
both samples in chunks of 20 million packets, which yields 27
chunks for tracel.pcap and 11 chunks for trace2.pcap with a size
ranging from 13 to 15 GB. Since some transactions might be lost
in the file boundaries, we also used the same files in chunks for
our tool, for the sake of fairness.

Regarding performance evaluation, we considered two different
scenarios, for the assessment of accuracy and speed, respectively.
The first one (offline, see Fig. 1a) consisted of an offline process-
ing of a trace file using a single instance of our tool, with the aim
of comparing the accuracy of the results given by Tshark and our
HTTPanalyzer. In the second scenario (online, see Fig. 1b), we em-
ployed several instances of HTTPanalyzer with a novel load bal-
ancing technique at the HTTP transactions level, instead of tradi-
tional TCP flow balancing, which is targeted for high speed pro-
cessing at 20 Gbps. To this end, we used a balancer called packet
feeder which receives the packets from the network interface and
distributes them evenly to the HTTPanalyzer consumers through
shared memory, while preserving the HTTP transaction consistency
thanks to the hash functions that will be explained in Section 2.1.4.
Namely, HTTP responses and their associated requests are sent to
the same processing consumer.

260

g}

Intel Xeon E3-1230 v3 @ 3.30GHz
Supermicro X10SL7-F
32GB DDR3 RAM @ 1600MHz
RAID 0 with 8 Samsung SSD 840 drives

Vega et al./Computer Networks 113 (2017) 258-268

Intel Xeon E3-1230 v3 @ 3.30GHz
Supermicro X10SL7-F
32GB DDR3 RAM @ 1600MHz
RAID 0 with 8 Samsung SSD 840 drives

2X Intel Xeon E5-2630 @ 2.30GHz
Supermicro XgDR3-F
128GB DDR3 RAM @ 1333MHz

> >

NetFPGA

NetFPGA

Intel chip 82599 Packet

10Gbps

> Feeders

S &
>

E -

10Gbps storage system
10Ghps network player

10Ghps
10GbE NIC

10Gbps Enc P K-

HTTPanalyzer
Consumers

Machine A

(a) Scenario A: Offline
test with a single con-
sumer

Machine A

Machine B

(b) Scenario B: Online test with multiple consumers

Fig. 1. Different scenarios for both offline and online performance evaluation.

In Section 3 we further discuss the trade-off between accuracy
and speed of HTTPanalyzer versus Tshark.

2.1. System modules

The tool is structured internally in several modules, namely:
a hash table for the HTTP requests and responses; two different
pools of data structures for both the HTTP messages and the ta-
ble cells, as well as a HTTP parsing module, among others. In the
following sections we describe the proposed techniques for traffic
dissection and analysis.

2.1.1. Matching up HTTP requests and responses

Offline traces are read using libpcap which supports packet fil-
tering through Berkeley Packet Filter [16] with a default filter that
passes through just the HTTP requests and responses. More specif-
ically, the filter checks if the TCP payload begins with any HTTP
method for the requests or the literal "HTTP” for the responses.
This filter do not ensure the packet to be HTTP and it can be over-
ridden by the user for its needs, hence, our tool checks the packet
format during the packet dissection for further analysis.

Our HTTPanalyzer tool produces HTTP transaction records which
are amenable to obtain valuable QoS statistics such as response
time and response codes, among others. An example of a HTTP
transaction record is showed next:

123.111.50.23|2311/|214.223.22.6|80|1393978285.777375000
[1393978285.881505000/0.104130000]|0K|200|
GET|Mozilla/4.0|service.host.com|http://service.host.com/icon.gif

With the following format:

client IP; client port; server IP; server port; request times-
tamp;

response timestamp; response time; response message; re-
sponse code; method; agent; host; URI

Interestingly, a key point of our dissection method is that our
tool does not reassembly the TCP connection, and, furthermore,
only the first packet of the HTTP request is considered for match-
ing with the corresponding HTTP response. Thus, only the first
packet of the HTTP response is considered to obtain the HTTP
transaction record. Therefore, we obtain the response time of the
HTTP server as the time elapsed from the HTTP request to the
HTTP response packets.

This way, we achieve notable speeds of 1.5 Mpps with a single
instance of HTTPanalyzer. After the aforementioned filtering step,
the HTTP request and response are extracted and passed to a cor-
relation table. Thanks to a hash function, requests and responses
are stored in their appropriate cell on a per transaction basis. Then,
they are kept awaiting for their corresponding request or response
to arrive and, should this happen, the transaction record is finally
produced, in real-time.

2.1.2. Hashing mechanism

In what follows, we provide further insight into the hashing
mechanism, which is the cornerstone for both high-speed process-
ing and load balancing. The hash design is intrincate as it affects
the hash table collision for the HTTP message processing as well as
the load balancing of the traffic when using multiple consumers.

When storing HTTP requests and responses in the HTTPanalyzer
tool, it becomes necessary to avoid collisions and to make an ef-
ficient use of the hash table. To do so, a uniform hash function is
needed, also taking into account the speed restrictions we work
with. Hash functions are also used to split the incoming packet
stream evenly between consumers, and hence uniformity and ran-
domness are key factors for the selection of a hash function.

As for uniformity, we aim to achieve the same probability for
every hash value in the output range, thus reducing potential col-
lisions. On the other hand, randomness [17] serves to distribute
load between consumers, before the modulus operation is applied
to determine where to send the packet. Actually, if packets are
shared between two consumers, only the hash value least signif-
icant bit matters, i. e. whether it’s equal to 0 or 1 with a probabil-
ity close to 50%. If not, the resulting packet streams will be unbal-
anced.

Generally speaking, only the 4-Tuple (see Eq. (1)) is used as a
hash key to balance TCP flows, which ensures that packets from
the same flow will end up in the same consumer. The problem
with this approach is that some flows may carry more packets than
others, leading to uneven packet distribution, and producing colli-
sions when storing values in hash tables.

Even though the latter hash function provides uniformity, as it
assigns an output value for each combination of input with the
same probability, the real input values such as IP addresses and
ports are not uniformly distributed on real datasets. For example,
J.L. Garcia-Dorado et al. conclude [18] that they follow a Zipf dis-
tribution. Furthermore, as W. Shi et al. demonstrate [19], owing to
the Zipf-like distribution of the TCP flows, “a hash-based scheme is
not able to achieve load balancing in parallel when the data follows a
Zipf-like distribution”.

Hash Value = Src. IP @ Src. Port @ Dst. IP @ Dst. Port (1)

2.1.3. Reducing collisions on the hash table

In order to match HTTP requests and responses we do not need
to ensure that all packets from the same flow end up in the same
consumer. It is sufficient to ensure that at least both the request
and its corresponding response reach the same consumer. Neither
we need to store HTTP transactions on a per flow basis in our hash
table, but rather per transaction.

Hence, our novel technique to circumvent this issue consist of
a similar hash function but making use of either the acknowl-
edgement or sequence number. Such a hash function (see Eq. (2))
guarantees that HTTP messages from the same transaction will be

http://service.host.com
http://service.host.com/icon.gif

C. Vega et al./ Computer Networks 113 (2017) 258-268 261

HTTP event

ﬁ‘ HTTP Parse —\

Response Get Event From Table Request
Waiting Empty Wamng Waiting Empty Waiting
Request Response Request Response
Get new Duplicate Waiting Transaction Print Transaction Waiting Duplicate Get new
event Response Request Complete Complete Response Request bevem
Waiting Waiting
Empt
i Response

Update Status

Fig. 2. Diagram of the processing of a HTTP message.

stored on the same cell and will be distributed uniformly.
H.Value
{Request :

Response :

Src. IP @ Src. Port @ Dst. IP @ Dst. Port @ Ack
Src. IP @ Src. Port & Dst. IP & Dst. Port & Seq
(2)

2.1.4. Sub-TCP connection load balancing

For the parallel execution of multiple HTTPanalyzer consumers
we use a load balancer tool (hereafter packet feeder) that dis-
tributes the packets between the HTTPanalyzer instances, reading
the packets from the NIC’s driver buffer and sharing a memory re-
gion with the consumers. For each incoming packet, a hash num-
ber is calculated using the packet headers and, then, the modulus
operation is applied in order to choose the destination consumer
for the packet. Using the generic 4-Tuple hash function (Eq. (1))
would ensure that packets from the same connection end up in
the same consumer HTTPanalyzer. However, as noted before, such
approach could lead to an unbalanced behaviour whenever some
connections have a lot more packets and transactions than others.

Consequently, we use a similar function as Eq. (2), but in order
to achieve a better randomization of the least significant bits of the
hash value, we also XOR up byte a byte this seq/ack number in ad-
dition to the previous operations. Then, we take the remainder of
dividing this value by the number of consumers (n), which yields
the destination consumer. As a result, we obtain the hash func-
tion seen in Eq. (3) which ensures that both consumers receive the
same packet workload and that both requests and responses end
up in the same consumer.

Consumer
Request : Src.IP @ Src.Port @ Dst.IP @ Dst.Port
_ ® Ack® (Ack, @ Ack, @ Acks @ Acky) mod.
Response : Src.IP & Src.Port @ Dst.IP @ Dst.Port
@ Seq @ (Seqi @ Seq, @ Seqs @ Seqs)
3)

In Section 3 we discuss in detail the results of the proposed
hash function and how well it distributes the hash values.

2.1.5. Packet processing

As the Fig. 2 shows once the HTTP request or response arrives, a
hash value is calculated by using the 4-Tuple formed by the source
IP, source port, the destination IP and its corresponding destina-
tion port, as well as the acknowledgement number or sequence
number depending on whether it is a request or response respec-
tively (Eq. (1)). Such hash value is used to find the proper cell in
the table by dividing it between the size of the table and taking
the reminder. The main condition to pair an HTTP request with its
response is that they both must match on their 4-Tuple (source
IP, source port, destination IP, destination port) and the HTTP re-
sponse must have a sequence number equal to the HTTP request
acknowledge number.

Afterwards, different possibilities arise depending on whether
the cell may be either empty without a willing counterpart or
taken by its suitor, which is awaiting. Nevertheless, there is a third
scenario (showed in red in Fig. 2) in which a duplicate message
is already stored, being this message either a request or response
that has arrived before. Mostly these cases mean candidate re-
transmissions or duplicates but an special case happens for the
100 Continue HTTP responses which usually happen during long
POST HTTP requests. Such long requests normally end with a fi-
nal response code (200 OK on a successful event) at the end of
the transaction. We store such duplicates on the table as collisions
looking forward to find its retransmitted/duplicated counterpart.
Should the latter not arrive, they are cleaned from the hash table
by the garbage collector.

2.2. Limitations due to partial knowledge of the TCP connection

We also note that the aforementioned procedure is not as pre-
cise as the complete reassembly of the TCP flows due to packet
misordering and retransmissions. Namely, we are using partial
knowledge of the TCP connection at the vicinity of each HTTP
transaction, and not global knowledge of the entire TCP connec-
tion. While this is advantageous for speed, there are indeed limi-
tations for accurately extracting HTTP requests and responses from
the TCP connection. However, we have used several heuristics to
mitigate such inaccuracies as much as possible, which are pre-
sented next.

262 C. Vega et al./Computer Networks 113 (2017) 258-268

Client

Fig. 3. Messages may arrive unordered.

2.2.1. Unordered HTTP messages

First, the HTTP messages may arrive unordered, implying that
a response corresponding to an older request can actually arrive
later than a response to a more recent request (within the same
TCP connection) as shown in Fig. 3. Namely, HTTP transactions may
be printed out of order. This is because the TCP connection is not
reassembled, and thus, TCP segments may arrive in arbitrary order
depending on the IP packet dynamics along the route from client
to server. To partially circumvent this issue we do store the HTTP
message whether it is a request or response and keep it waiting to
the counterpart, hence, pairing can happen in both orders.

2.2.2. Retransmissions

Retransmissions are more frequent than unordered packets, re-
sulting in duplicate transactions records. In the event of retrans-
mitted messages, they are stored on their corresponding cell as
well, in the collision list, resulting in duplicate transactions records.
Such duplicate records must be filtered out afterwards by the an-
alyst, by looking for HTTP transactions with the same 4-tuple and
ack/seq number.

2.2.3. Accuracy

We are well aware that full accuracy in detecting HTTP requests
and responses is not possible with our approximate method. How-
ever, the aim of our research is to extract aggregate statistics that
are amenable to use in a Network Operations Center (NOC), thus
sacrificing accuracy for speed.

For example, as explained before, only the first packet of the
request and response is considered in the evaluation of response
time and response codes. Thus, the URL might be truncated if the
packet is longer than the MTU (1518 bytes). The RFC 2616 (Hy-
pertext Transfer Protocol HTTP/1.1) section 3.2.1 [20] says that “The
HTTP protocol does not place any a priori limit on the length of a URI.
Servers MUST be able to handle the URI of any resource they serve”
but the truth is that most browsers [21] support 80,000 characters
in average and the Apache Server has a limit of 8192.

Some browsers like Internet Explorer have a limit of 2048 char-
acters. Furthermore, large URLs are not good if web services in-
tend to be indexed by search engines because the sitemaps proto-
col [22] has a limit of 2048 characters for the URL and SEO systems
give less credit to these URLs.

In the results section we will show that the aggregate statis-
tics obtained through our proposed technique are almost the same
from those obtained with full TCP connection reassembly, and with
a very high throughput.

2.2.4. Garbage collector

Chances are that some of the requests and responses will never
be removed from the hash table if the corresponding counterpart is
not present in the trace, which entails wasting resources and pos-
sibly gives rise to collisions in the hash table. The same happens
for very delayed responses, whose associated request occupies re-
sources for too long. Both effects jeopardise throughput because
the larger the hash table the larger the search time to find the ap-
propriate cell.

To mitigate these effects, a garbage collector checks the state
of the HTTP records’ table and goes through all the active cells in
the hash table removing transactions that shown no changes dur-
ing the last 60 s of capture. Such unmatched HTTP messages are
printed out together with the rest of HTTP transactions because
they are valuable information for the HTTP analysis as well.

3. Performance evaluation

In this section we present the results and compare them with
other existing solutions. Our main requirement is throughput,
while keeping a reasonable level of accuracy for the HTTP perfor-
mance statistics. We discuss accuracy issues first, namely data loss
in the requested URL due to fragmentation in several packets, re-
sponse times, response codes and HTTP operations. Finally, we pro-
vide the throughput results.

3.1. Accuracy tests

The next subsections discuss the accuracy of the tool for the
different metrics of the HTTP traffic statistics.

3.1.1. Potential loss of data in the request URL

For both our traffic samples, we studied (see Table 1) how many
URLs were truncated by our tool, and the maximum URL that was
able to extract, and then compared it with the results given by
Tshark. On Fig. 4 we show that our tool (green circles) clearly
matches Tshark results (showed in orange triangles), except for
URLs over 1455 characters, which is the maximum length our tool
can manage. Such URLs are drawn in the chart as the points en-
closed in the selected red area and represent only a 0.04% of all
URLs, considering both traces.

Depending on the analysis performed, query parameters in the
URL might be considered meaningful information or just query val-
ues that may be discarded. We also drawn (in blue asterisks) the
Tshark results disregarding URL query parameters and found that
none of them exceeded our 1455 character limit, showing that
most of the URL length is composed of these query parameters. We
believe that the most meaningful part of the URL is actually at the
beginning, that shows the invoked resource, rather than the pa-
rameters afterwards. In any case, the HTTP transaction record con-
tains enough parameters (4-tuple, time) to easily filter the packets
corresponding to "long URLs” and, eventually, proceed to manual
analysis.

3.1.2. Response time

The response time is one of the most interesting HTTP QoS met-
rics, which serves to detect sudden degradation of Web services.
We have compared the response time Complementary Cumulative
Distribution Function (CCDF) using HTTP transaction response time
data from Tshark and our tool.

Our tool measures this response time as the difference between
the timestamp of the first packet of the HTTP request and the ar-
rival time of the first packet of the response. However, Tshark usu-
ally measures HTTP response time as the time between the first
request packet and the last packet of the response.

C. Vega et al./ Computer Networks 113 (2017) 258-268 263

URL length comparison
6 " T - T
10 . Tshark without query — *]
= HTTPanalyzer e
. Tshark =
10° s
Rl
1 x ¥
*
F ®

10*
&
=}
g 3]
g 10 % X ®
= L] ®
- ®

100

*
¥ A L[]
° [
10
MERERNA A D A A
1 — 4
1 10 100 1000 10000
URL length

Fig. 4. URL size comparison. URLs in the area selected in red are longer than what our tool is able to manage, and represent a 0.04% of the total URLs analyzed. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Response Time Complementary Cumulative Distribution Function

1 :
-\ HTTPanalyzer (h) ———
Tshark reassembly (t1) =
o.1 Tshark no reassembly (t2) —~
0.01 ==
=
;; 0.001 —\
= \
107 L'.t
pas—i
h
107° 6
1 10 100 1000 10000 100000 10

Response time (ms)

Fig. 5. Accuracy comparison between response time CCDFs.

Notwithstanding, Tshark is also able to measure the response
time in a different fashion when TCP reassembly is disabled using
just the first packets as we do. Hence, in order to make a fair com-
parison, we present in Fig. 5 the results of both measure modes
of Tshark together with our tool results, showing that there is no
significant difference for this metric.

3.1.3. Response codes

The evaluation of the response codes is of fundamental im-
portance to find errors. For example, a large number of 404 (Not
Found) status codes implies that dead links may be found in the
website or that an specific resource has disappeared. On the other
hand, 5xx error codes are also of interest, such as the 500 code (In-
ternal error), which may be delivered frequently by dynamic webs
in case of failure in the dynamic objects invoked.

As Fig. 6 shows, the response code count is almost identical to
the Tshark results, and the average count difference with Tshark
for some specific response codes is 2.6% with a median of 1.3%.
This difference is due to some loss in HTTPanalyzer when multiple
requests are sent pipelined in the flow.

3.1.4. HTTP Methods

A similar comparison can be done with the other HTTP trans-
actions’ statistics like the histogram of request methods in Fig. 7,
that shows that our tool provides nearly the same number of HTTP
verbs as Tshark in the processed capture file. Some slight differ-
ences like the Tshark counting of the PUT method are due to the
lost transactions in the file boundaries between chunks. As it turns
out, we had to split our trace files into smaller chunks for Tshark
to process them. Otherwise, the file size was too big and Tshark
could not complete execution.

3.2. Throughput tests

In this section, the throughput experiments have also been per-
formed with both files from Table 1, in two different scenarios.
First we have conducted offline tests in order to test the ability
to process the sample files using high speed storage systems at
10 Gbps with a single instance of the HTTPanalyzer. Then, we as-
sessed the performance of our tool when processing 20 Gbps of
live traffic sent with a traffic player from one host and receiving

264

C. Vega et al./ Computer Networks 113 (2017) 258-268

HTTP Response Code comparison

107 HTTPanalyzer mmmmmm _
Tshark w7z 3
10°
| —
12}
E 1l
2 10° —— =
5 == —
p -]
g -
= 104k = S (S ==
E g5 E
E —_—] M
S
S 10% S5 = == 5 3 B 5 F111
g E —— HEE HAAH = I
,g - W N (| —]
= [] 1l o/l 1100
Z 100 = (= H = IS (= = = (= = = = A1
N E — YU i n .
10 = EEEEE EEEEEEEIEEEIEEEEIEIEE EEE=ElEIEEEEEEEIEIE
1 | /.] | | /i 1.]
OHOHANTORNO N ANTRNNO X NFOORND PO N DTN = AN DO = AT O
=} SE-Ee) © o200 S xo Q0 [eRg=] A0 O00 000
SRR EaEnRRReRTTTESEIISITTIFITTILGSRARRRRRR
HTTP Response Code
Fig. 6. HTTP response code counting.
HTTP Methods comparison
10®
HTTPanalyzer
. Tshark vzzzzz
10
2
o 6
*3 10
<
g
g 10°
~
H
&
= 10%
T
S
S 10°
=~
2
g
£ 100
Z
10
1
CONNECT GET HEAD OPTIONS POST PUT
HTTP Method

Fig. 7. HTTP method counting.

it on another, which in turn incorporates our packetFeeder soft-
ware load balancer in order to split the incoming traffic between
instances of our tool, making use of a uniform hash function.

However, in order to better understand the results, let us pro-
vide some more insight into the hash function used to distribute
the packets both on the HTTPanalyzer hash table and between con-
sumers.

3.2.1. Hash function tests

The hash value histogram is the figure of merit for hash se-
lection, as it summarizes, in a single graph, if the hash value is
uniform for an even packet load balancing. In this light, Fig. 8
shows the hash value histogram for the Eqs. (1) and (2) explained

in Section 2. We have divided this distribution in two sides with
negative and positive values, meaning that the negative side of the
X axis corresponds to one consumer and the positive part to the
other consumer. Each point represents the number of occurrences
for an specific hash value.

Interestingly, we note that 32 bit numbers (sequence and ACK
numbers length in TCP), adding up the sequence (seq) or ac-
knowledge (ack) number accordingly, randomizes the resulting
hash value reducing collisions and without affecting the pairing
task. This refers to the previously explained hash function seen in
Section 2 on Eq. (2).

As the Fig. 8 shows, collisions are largely reduced when using
the seq and ack numbers because these 32 bit numbers randomize

C. Vega et al./ Computer Networks 113 (2017) 258-268 265

Distribution of the hash values comparison

105 T T
4T + ack/seq Hash
4T Hash IN
104
wn
g 10° i
5
(&)
@) A A
< 100
© A A
T : a A A A A
10 %A 5 A q 22 7gr
o A YN " A N A & A &
bt @iatoun S Moo 8
mmﬁm AT AT TN AT AT AT AT AT AT
1 L, \ ‘ | N
-232 -3x109 -2x10° -1x10° 0 1x109 2x10% 3x10° 232
Hash value

Fig. 8. Comparison of the distribution of the packets using different hash functions.

Table 2

HTTPanalyzer speed benchmarks.
Storage system Speed (Gbps) Speed (Mpps)
RAID 0 10.6 + 0.58 1.8 £ 0.15
RAM 138 + 14 21 £ 026

the entire hash, and they are initialized randomly by the TCP stack
when flows are created. This distribution (shown in light brown
with circles) is the same for both Egs. (2) and (3). However, we
used Eq. (3) for the multi-consumer experiments while Eq. (2) will
be used in the HTTPanalyzer hash table. We note that in the hash
table there is no need for the least significant bits to be random
and, consequently, we reduce the processing requirements to com-
pute the hash.

In the light of the above discussion, we proceed with the pre-
sentation of the throughput results of the offline and online sce-
narios (see Fig. 1).

3.2.2. Single consumer tests

This first test aims to prove that HTTPanalyzer is able to dis-
sect PCAP files at 10 Gbps using high speed storage. Fig. 1a repre-
sents this scenario. For this test we used an Intel Xeon E3-1230 v3
@ 3.30 Ghz with 32GB of RAM and a storage system formed by
a RAID 0 with 8 Samsung 840 SSD drives with read speeds higher
than 10 Gbps.

Tests were performed using the sample traffic files described
in Table 1. We also conducted an in-memory benchmark using a
15GB chunk of one of the original files stored in a RAM filesys-
tem in order to measure the maximum speed of our tool. These
tests gave successful results, (see Table 2), showing that a single
instance of our tool is able to process more than 10 Gbps of traffic.

3.2.3. Multi-consumer experiments

This subsection discusses the results of the tests conducted us-
ing multiple HTTPanalyzer consumers for processing 20 Gbps (two
10 Gbps streams) of online traffic on a single host. Our aim is
to prove that many different instances of HTTPanalyzer can work
in parallel with a similar load thanks to our hash implementation,
with the benefit of achieving multi-Gbps throughput in a single
host. To perform the experiment, two hosts were used as shown
in Fig. 1b. Host A is the same server used for the previous sce-
nario, but this time, the traffic samples stored on the high speed

RAID system were sent using a NetFPGA traffic player [23] across
two 10GbE optic links, sending the same data through each cable.
This 10G Trace Tester [24] is a testbed part of the european project
Fed4Fire able to send traffic at 10 Gbps per link.

Right after, host B receives the traffic using HPCAP [25], a
kernel-level driver designed for Intel NICs aiming to process a fully
saturated 10GbE link. Since the driver reads the packets from each
interface separately two instances of the packet feeder were used,
one for each 10GbE line; and for each of these packet feeder in-
stances, two HTTPanalyzer consumers were set. This makes a total
of four HTTPanalyzer instance running in parallel on four different
cores. Each packet feeder shared out the packets using the afore-
mentioned hash function, which ensures a uniform distribution of
packets and HTTP transactions per consumer.

Interestingly, all the four instances received roughly the same
load, as Table 3 shows. The results indicate that our proposed hash
technique is very effective in load balancing.

Tests with 40GbE links could not be performed as this technol-
ogy is yet minority and expensive, also owing to the limit of the
traffic player that prevents us from testing higher speeds. However,
these results show promise that our tool can handle higher rates
using this very same approach of load sharing between multiple
HTTPanalyzer instances.

3.2.4. Throughput comparison against tshark

To complete our throughput assessment, we compared the pro-
cessing speed (or analysis throughput) of HTTPanalyzer versus
Tshark. Even though Tshark provides highly detailed HTTP metrics,
it turns out that it cannot cope with traffic sent at high speed for
real-time analysis.

Fig. 9a shows the processing speed of HTTPanalyzer and Tshark.
It can be observed that HTTPanalyzer is 43 times faster than
Tshark. The measurement experiment was performed offline, read-
ing traces from a RAM filesystem as we did in 3.2.2. Furthermore,
Fig. 9b represents the packet loss that Tshark suffered when traffic
was injected at 10 Gbps speed during an online measurement ex-
periment similar to those in Section 3.2.3. Clearly, the packet loss
is very significant, which deems Tshark not adequate for on-line
traffic analysis purposes in multi-Gbps scenarios.

Actually, there is a trade-off between Tshark accuracy and
HTTPanalyzer speed. However, the HTTPanalyzer accuracy is re-
markable (as shown in 3.1), which, together with the throughput

266 C. Vega et al./ Computer Networks 113 (2017) 258-268

Table 3

HTTPanalyzer consumers distribution results.

Consumer A-1

Consumer A-2

Consumer B-1 Consumer B-2

49.86%
50.01%

Received packets
HTTP transactions

50.02%
49.98%

49.94%
50.01%

50.02%
49.98%

Processing speed comparison

12
11.21 Gbps =

11

Processing Speed in Gpbs
(=}

0.26 0.18
o
HTTP Analyzer Tshark Tshark
without
reassembly

Tool used for the analysis

(a) Processing speed comparison
between HTTPanalyzer and Tshark

Tests sending traces at 10Gbps
and captured by Tshark

80

=N
[}

EN
=)

Percentage of Packets

20

trace1l trace2
Trace File

Dropped packets a1
Packets captured by Tshark

(b) Percentage of packet loss of
Tshark receiving online traffic from
different traces

Fig. 9. Performance charts of Tshark.

limitations of Tshark presented in this section, makes HTTPAna-
lyzer the tool of choice for real-time analysis of high speed traffic.

4. Conclusions

In this paper, we present a high-performance HTTP traffic an-
alyzer that achieves 10 Gbps throughput with a single instance
of the tool. A remarkable throughput of 20 Gbps online with live
traffic can be achieved using multiple instances of the tool, thanks
to our proposed hash function. All these results have been ob-
tained in commodity hardware, with no need of ad-hoc high-speed
network processors or massively parallel devices.

Finally, our tool provides real-time statistics of different aggre-
gate metrics to measure the QoS of web traffic in large organiza-
tions. Such metrics are of strategic importance because of its close
relation with the Quality of Experience of the final user, allowing
to detect changes in the web services behaviour on-the-fly.

Acknowledgements

The authors used the testbed 10G Trace Tester [24], which is
part of the european project Fed4Fire under the aegis of the Eu-
ropean Union’s Seventh Framework Programme (FP7) under Grant
FP7-ICT-3183809.

References

[1] P. na Lépez, Ismael, and others OECD internet economy outlook 2012, (2012),
Chapter 4, http://dx.doi.org/10.1787/9789264086463-en.

[2] S. Khirman, P. Henriksen, Relationship between Quality-of-service and Quality-
of-experience for Public Internet Service, in: Proc. of the 3rd Workshop on Pas-
sive and Active Measurement, 2002. http://www-vl.icir.org/2002/Relationship_
Between_QoS_and_QoE.pdf

[3] Garcia-Dorado, J. Luis, S. del Rio, M. Pedro, J. Ramos, D. Muelas, V. Moreno,
L. de Vergara, J.E.a. Aracil, Javier: low-cost and high-performance: voIP moni-
toring and full-data retention at multi-Gb/s rates using commodity hardware,
Int. J. Netw. Manage. 24 (3) (2014) 181-199, doi:10.1002/nem.1858.

[4]]J. Postel, RFC 793: Transmission Control Protocol, September 1981, Status:
Standard, vol. 88, 2003 https://tools.ietf.org/html/rfc7934#section-1.5 (Last ac-
cessed: 3 Dec. 2016).

[5] J. Xu, H. Wang, W. Liu, X. Hei, Towards high-speed real-time HTTP traffic analy-
sis on the tilera many-core platform, IEEE HPCC_EUC (2013), doi:10.1109/HPCC.
and.EUC.2013.252.

[6] K. Zhang,]. Wang, B. Hua, X. Tang, Building high-performance application pro-
tocol parsers on multi-core architectures, IEEE 17th ICPADS (2011), doi:10.1109/
ICPADS.2011.37.

[7] Bro.org: The Bro Network Security Monitor., 2013, http://www.bro.org (Last ac-
cessed: 3 Dec. 2016).

[8] V. Paxson, Bro: a system for detecting network intruders in real-time, Int.]J.
Comput.Telecommun. Netw. (1998), doi:10.1016/S1389-1286(99)00112-7.

[9] Eric Lawrence: Debugging with Fiddler (2012) https://fiddlerbook.com/book/
(Last accessed: 3 Dec. 2016).

[10] D. Mosberger, T. Jin, Httperf? a tool for measuring web server performance,
ACM SIGMETRICS Performance Evaluation Review 26(3) (1998) 31-37, doi:10.
1145/306225.306235.

[11] Netflow, cisco IOS, white paper, 2006, Introduction to Cisco I0S NetFlow-
A Technical Overview http://www.cisco.com/c/en/us/products/collateral/
ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html.

[12] D. Plonka, Lisa, in: FlowScan: A Network Traffic Flow Reporting and Visualiza-
tion Tool, 2000, pp. 305-317. https://www.usenix.org/legacy/events/lisa2000/
full_papers/plonka/plonka.pdf.

[13] R. Wojtczuk, Libnids, an implementation of an E-component of Network Intru-
sion Detection System. (2010) http://libnids.sourceforge.net/ (Last accessed: 3
Dec. 2016).

[14] A. Orebaugh, G. Ramirez,]. Beale, Wireshark and Ethereal network protocol
analyzer toolkit, Syngress, 2006.

[15] G. Combs, 2007, Wireshark. http://www.wireshark.org/ (Last accessed: 3 Dec.
2016).

[16] S. McCanne, V. Jacobson, The BSD packet filter: A new architecture for user-
level packet capture, USENIX winter (Vol. 46), 1993. http://dl.acm.org/citation.
cfm?id=1267305.

[17] H.F. Korth, A. Silberschatz, Database system concepts 6th Edition. Chapter 11,
page 510. (2010).

[18] J.L. Garcia-Dorado, J.A. Hernandez,]. Aracil, J.E.L. de Vergara, FJ. Monserrat,
E. Robles, T.P. de Miguel, On the duration and spatial characteristics of internet
traffic measurement experiments, IEEE Commun. Mag. 46 (11) (2008) 148-155,
doi:10.1109/MCOM.2008.4689258.

[19] W. Shi, M.H. MacGregor, P. Gburzynski, An adaptive load balancer for
multiprocessor routers, Simulation 82 (3) (2006) 173-192, doi:10.1177/
0037549706067079.

http://dx.doi.org/10.1787/9789264086463-en
http://www-v1.icir.org/2002/Relationship_Between_QoS_and_QoE.pdf
http://dx.doi.org/10.1002/nem.1858
https://tools.ietf.org/html/rfc793#section-1.5
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.252
http://dx.doi.org/10.1109/ICPADS.2011.37
http://www.bro.org
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
https://fiddlerbook.com/book/
http://dx.doi.org/10.1145/306225.306235
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.usenix.org/legacy/events/lisa2000/full_papers/plonka/plonka.pdf
http://libnids.sourceforge.net/
http://refhub.elsevier.com/S1389-1286(17)30001-4/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30001-4/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30001-4/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30001-4/sbref0009
http://www.wireshark.org/
http://dl.acm.org/citation.cfm?id=1267305
http://dx.doi.org/10.1109/MCOM.2008.4689258
http://dx.doi.org/10.1177/0037549706067079

C. Vega et al./ Computer Networks 113 (2017) 258-268 267

[20] R. Fielding,]. Gettys,]J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, [24]].L. Garcia-Dorado, J.F. Zazo, HPCN-UAM: 10Gbps Trace Reproduction testbed
RFC 2616 Hypertext Transfer Protocol - HTTP/1.1 Hypertext Transfer Protocol. for testing software-defined networks (10GTRACE-TESTER). (2015) http://www.
1999, http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2.1. fed4fire.eu/10g-trace-tester/ (Last accessed: 3 Dec. 2016).

[21] Boutell.com: What is the maximum length of a URL?. (2006) http://www. [25] V. Moreno, PM.S. del Rio, J. Ramos, D. Muelas, J.L. Garcia-Dorado, F.J. Gomez-
boutell.com/newfaq/misc/urllength.html (Last accessed: 3 Dec. 2016). Arribas, J. Aracil, Multi-granular, multi-purpose and multi-gb/s monitoring on

[22] http://Sitemaps.orgSitemaps.org: Sitemaps XML format. (2008) http://www. off-the-shelf systems, Int. J. Netw. Manage. (2014), doi:10.1002/nem.1861.

sitemaps.org/protocol.html (Last accessed: 3 Dec. 2016).

[23] J.E. Zazo, M. Forconesi, S. Lopez-Buedo, G. Sutter,]. Aracil, TNT10G: a high-
accuracy 10 gbe traffic player and recorder for multi-terabyte traces, ReCon-
Fig14 (2014), doi:10.1109/ReConFig.2014.7032561.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2.1
http://www.boutell.com/newfaq/misc/urllength.html
http://Sitemaps.orgSitemaps.org:
http://www.sitemaps.org/protocol.html
http://dx.doi.org/10.1109/ReConFig.2014.7032561
http://www.fed4fire.eu/10g-trace-tester/
http://dx.doi.org/10.1002/nem.1861

C. Vega et al./ Computer Networks 113 (2017) 258-268

Carlos Vega Moreno (carlosgonzalo.vega@predoc.uam.es) received his M.Sc and B.Sc. degree in Computer Science from Universidad Auténoma de
Madrid, Spain, in 2014. He joined the High Performance Computing and Networking Research Group at the same university as a researcher in

the Network of Excellence InterNet Science, where he collaborated on European research projects. His current research topics as a Ph.D candidate
include log collection and network traffic analysis.

Paula Roquero Fuentes received a M.Sc. degree in Computer Science from Universidad Auténoma de Madrid, Spain in 2016. She then joined the

High Performance Computing and Networking Research Group at the same university. Her current research topics as a Ph.D candidate include
distributed systems and network traffic analysis.

Javier Aracil received the M.Sc. and Ph.D. degrees (Honors) from Technical University of Madrid in 1993 and 1995, both in Telecommunications
Engineering. In 1995 he was awarded with a Fulbright scholarship and was appointed as a Postdoctoral Researcher of the Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley. In 1998 he was a research scholar at the Center for Advanced Telecommu-
nications, Systems and Services of The University of Texas at Dallas. He has been an associate professor for University of Cantabria and Public
University of Navarra and he is currently a full professor at Universidad Auténoma de Madrid, Madrid, Spain. His research interest are in opti-

cal networks and performance evaluation of communication networks. He has authored more than 100 papers in international conferences and
journals.

http://carlosgonzalo.vega@predoc.uam.es

	Multi-Gbps HTTP traffic analysis in commodity hardware based on local knowledge of TCP streams
	1 Introduction
	1.1 State of the art

	2 Methodology
	2.1 System modules
	2.1.1 Matching up HTTP requests and responses
	2.1.2 Hashing mechanism
	2.1.3 Reducing collisions on the hash table
	2.1.4 Sub-TCP connection load balancing
	2.1.5 Packet processing

	2.2 Limitations due to partial knowledge of the TCP connection
	2.2.1 Unordered HTTP messages
	2.2.2 Retransmissions
	2.2.3 Accuracy
	2.2.4 Garbage collector

	3 Performance evaluation
	3.1 Accuracy tests
	3.1.1 Potential loss of data in the request URL
	3.1.2 Response time
	3.1.3 Response codes
	3.1.4 HTTP Methods

	3.2 Throughput tests
	3.2.1 Hash function tests
	3.2.2 Single consumer tests
	3.2.3 Multi-consumer experiments
	3.2.4 Throughput comparison against tshark

	4 Conclusions
	 Acknowledgements
	 References

