
Service Modeling for Opportunistic
Edge Computing Systems with Feature Engineering

Teemu Leppänena,∗, Claudio Savagliob, Giancarlo Fortinob

aCenter for Ubiquitous Computing, University of Oulu, Finland
bDepartment of Informatics, Modeling, Electronics and Systems,

University of Calabria, Italy

Abstract

The opportunistic context in which edge computing systems operate poses dif-
ferent challenges, particularly in the light of user mobility, such as resource
management and system orchestration, real-time responsiveness and perfor-
mance quality requirements. Starting from this consideration, we propose a
novel development process for modeling opportunistic edge computing services,
which relies on (i) the ETSI MEC reference architecture and Opportunistic
IoT modeling for the early stage of system analysis and design, i.e., domain
model and service metamodel; and on (ii) feature engineering for selecting those
important, opportunistic aspects, leading to distributed, effective and efficient
MEC services. We exemplify the proposed development process by presenting
a microservice-based mobility management service for online analysis in MEC
system. To analyze the properties of user mobility, i.e. resulting handovers
between access points, we automatically construct Opportunistic Feature Vec-
tors for Edge, with a subset of the opportunistic features preliminary identified,
in a real-world data set with domain expertise, at the analysis phase. Further
applications of data analysis and machine learning techniques on these vectors
are straightforward and allow tackling the opportunism (and, hence, the unpre-
dictability and complexity) featuring the development of such a use case service
and, in general, of edge computing systems.

Keywords: Multi-access Edge Computing, Opportunistic Computing, Service
Modeling, User Mobility, Feature Engineering

1. Introduction

5G networks, as an enabler for future wireless communication infrastruc-
tures, are being commercially deployed across the world. For the Internet of
Things (IoT) systems, 5G technologies are able to provide network features

∗Corresponding author: teemu.leppanen@oulu.fi
P.O.Box 4500, FI-90014 University of Oulu, Finland

Preprint submitted to Computer Communications

such as low latency, high bandwidth and reliability. However, due to the physi-5

cal distances between the data collection at the network edges and computation
at the cloud, relying on the massive-scale upstream IoT data transfer, cloud-
based centralized IoT systems are not able to fulfill the requirements of real-time
computation- or data-intensive applications. Edge computing [1] has emerged
as a next generation distributed computing solution to address these issues, by10

leveraging cloud resources to the network edges, i.e. the infrastructure compo-
nents, in close proximity of the user equipment (UE, such as smartphones, note-
books or other networking-enabled end user device). Here, European Telecom-
munications Standards Institute (ETSI) is leading a standardization efforts to-
wards a reference edge computing system architecture, called Multi-access Edge15

Computing (MEC) [2, 3]. As exemplified by MEC, cellular network base stations
are reused as content processing, sharing and storage platforms for virtualized
applications, while real-time radio network information is provided for the op-
timization of the platform resource usage.

Besides the potential, 5G and edge computing technologies pose also signifi-20

cant challenges related to the complexities of massive-scale distributed comput-
ing atop 5G connectivity. Opportunistic elements resulting from the user mo-
bility and operational environment, dynamic data traffic and limited resources
for applications, all in real-time in close proximity of UEs in massive-scale, call
for artificial intelligence and machine learning (ML) solutions for service pro-25

visioning, and orchestration and management of the edge resources [3, 4, 5].
Considered the overall complexity of the scenario, the modeling activity is key
to specify and to visualize both the structure and behavior of edge computing
systems (as they are or as we want they to be). Indeed, models can repre-
sent guidelines for supporting different stakeholders in the whole development30

process with a tunable high level of abstraction and detail.
On these premises, in this paper we provide a development process, based

on both graphical representations (i.e., metamodels) and statistics method (i.e.,
feature vectors), for modeling edge computing services by simultaneously ad-
dressing the opportunistic nature of edge computing systems. In particular,35

we apply the Opportunistic IoT Service modeling [6] approach to the ETSI
MEC reference architecture for providing a novel service profile and model
for MEC. The exploitation of feature engineering helps in tackling the oppor-
tunism (and, hence, the unpredictability and complexity) introduced by edge
computing-related elements by identifying the more relevant factors impacting40

on the system (e.g., system properties or configuration parameters). To the best
of our knowledge, such approach for edge computing system development has
not been proposed so far. To validate it, we model an example MEC service,
i.e., Mobility Analysis service, in which a set of opportunistic service features
about user movements (identified during the modeling phase with the help of45

a domain expert and organized into an Opportunistic Feature Vectors for Edge
a.k.a. OFVE) is further automatically refined by means of Pearson correlation.
Finally, we show how the gained knowledge is beneficial to ease the design and
implementation of such an opportunistic mobility service and, in general, of
edge computing systems.50

2

MEC

Specification

(2.2)

Mobility Analysis

Service

(4)

MEC System

Domain

Metamodel (3.1)

MEC Service

Metamodel

(3.2)

Opportunistic

Service Modeling

(2.3)

Feature

Engineering

(2.4)

Figure 1: Graphical outline of main contributions provided in the paper (related sections
indicated in brackets).

The rest of the paper is organized as follows. In Section 2, we discuss and
identify the several elements leading to opportunistic complexities in edge com-
puting systems and how to address them at analysis (Opportunistic IoT meta-
modeling) and design (MEC specification and Feature Engineering) phases. In
Section 3, we present our approach for MEC system modeling, from the full-55

fledged domain model to the specific service model, and provide the Mobility
Analysis service as use case in Section 4. Finally, we draw the conclusions and
outline our future work in Section 5. A graphical outline of main provided
contents of this paper is reported in Figure 1.

2. Background60

In this Section, we provide the main background elements for our proposal,
namely an overview about the general challenges in edge computing systems and
their opportunistic elements (2.1), the ETSI MEC reference architecture (2.2),
the IoT system and service modeling (2.3), and finally the feature engineering
process (2.4).65

2.1. Edge Computing challenges and opportunistic elements

Edge computing [1] shifts the cloud-centric IoT computing resources to-
wards a large-scale geographically distributed architecture. At the edge, servers
and data centers are deployed in the proximity of mobile users, exploiting the
network infrastructure such as cellular base stations and access points (AP).70

Primary edge computing architecture consists of powerful servers, co-located
with the mobile network infrastructure, but additional edge resources can be
deployed on existing location-based hardware, providing a further intermediate
layers as in Fog computing [7]. Commonly, clustering algorithms, as in [8], are
then utilized to optimized the edge server deployment with regard to place-75

ment of limited numbers of servers among the APs. Typically edge servers are
considered powerful, thus capable of serving a number of APS, but as in Fog

3

computing, each AP can be equipped with one or several small-scale computing
platforms in location.

On these bases, edge computing paradigm promises significant improvements80

over the cloud-centric IoT systems, for users, 3rd party application developers,
service providers and network operators. First, users are provided with ded-
icated resources to offload their data-intensive applications to a nearby edge
platform. Second, users benefit from higher bandwidth and low latency in in-
teracting with edge applications and services. Third, on the core network the85

data transmission load and latency are reduced, as data is already processed
at one-hop distance at the edge platform. Fourth, system orchestration and
resource management are distributed across the deployment architecture, re-
sulting in a higher adaptivity, reactivity, context-awareness and responsiveness
against the inherent dynamism IoT systems and networks. Therefore, the IoT90

applications that benefit most from the edge paradigm are (i) those with high
computational and storage demands, (ii) those that generate a lot of network
traffic, as well as (iii) applications requiring low latency and real-time interac-
tions.

As for the benefits of edge computing, its opportunistic properties and their95

root causes are well acknowledged. These challenges at the edge are, broadly
speaking, due to artefacts and elements related to the physical underlying net-
works, resource availability for large-scale distributed computing, application
requirements and the side-products of system design and implementation. Here-
after, we report the key findings regarding the root causes for opportunistic100

properties in edge computing systems, as discussed in [3, 6, 8, 9, 10, 11, 12, 13,
14, 15, 16].

Users and devices. The justification for edge computing comes from the
limitations of UEs, constantly demanding more processing power and data for
meeting the Quality of Experience (QoE), for a wide variety of application types,105

such as real-time video streaming. Moreover, unpredictable user movements and
interactions complicate maintaining network connectivity for UEs, which rely
on different communication technologies.

Applications. Edge applications are either offloaded from a UE or deployed
by pull request into the edge platform either as virtual machines or as contain-110

ers. Virtual machines encapsulate the application as self-contained package,
which may be large sized. This may result in poor flexibility for large-scale
applications due to internal complexities in the software. Also, instantiation,
deployment and relocation of such components is resource-consuming, limiting
their scalability. On the other hand, a container encapsulates a microservice,115

which in turn implements a single function. A collective of microservices then
implements the required application/service logic. A benefit is that scalability
is addressed with an increased variety of deployment options, as for each mi-
croservice an extensive set of edge components is available. However, online
composition and orchestration, inherent communication latencies and handling120

of possible faults of such distributed application is challenging.
Systems and platforms. To fulfill the edge computing promises notwith-

standing the opportunistic elements, application-specific edge resources need to

4

be constantly provisioned ”at the right place at the right time”, to guarantee
sufficient QoE across the edge deployment, also during the peak times with con-125

sequent high data traffic. In such direction, the edge platforms play a key role:
they are fundamental large-scale open distributed systems which act as a (i)
middleware, for directing data traffic and interconnecting application-specific
components, and (ii) application execution platforms, for providing system ser-
vices in real-time to both the system components and the applications. Edge130

platform deployments are limited by operator budgets and deployed on top of
existing core networks, which topology dictates to where the edge system com-
ponents are placed. In particular, edge platforms handle both horizontal and
vertical application-specific network traffic. The former is generated by the
collaboration of the system components, with the network topology and link135

capacities dictating the maximum data transfer limits. The latter is generated
by the applications that rely on all the system layers for application execution,
requiring information exchanges between UEs, edge components and the cloud.

Orchestration and Management. The Orchestration and management
of an edge platform in a centralized fashion introduces inevitable latencies in its140

operation, where the information about system performance is scattered across
the system and rapidly updating. Therefore, aiming at optimized performance
and QoE, edge platform components need to be reactive and adaptive in han-
dling of the opportunistic properties. In response to user mobility, application
components and services need to relocate in the system in runtime, which re-145

quires collaboration and decision-making of multiple system components. Here,
automated decision-making, service composition, enforcing system policies, load
balancing and conflict resolution needs to incorporate context-aware informa-
tion, while placed at the cloud due to high demand on computational power for
large-scale operational data, providing a view over the whole system in real-time.150

The address adaptivty and reactivity, MEC platform components are designed
partially autonomous in their decision-making, but are expected to provide feed-
back on their operation to the system management. Here, automatic solutions
offer limited help, such as machine learning (ML) algorithms that process large-
scale data beyond human comprehension and provide for example predictions155

for the operators.

2.2. MEC System Reference Architecture

Hereafter, we briefly present the ETSI MEC reference architecture for edge
computing systems, that is addressed in the next Sections in edge service mod-
eling. Detailed information of the MEC reference architecture, system compo-160

nents, their functionality and interactions are presented in the ETSI documen-
tation1.

The aim of the MEC standardization is to provide an open multi-vendor
edge computing platform with different stakeholders in mind, such as mobile
network operators, vendors, service providers and 3rd party developers. The165

1https://www.etsi.org/technologies/multi-access-edge-computing

5

standards give guidelines on how to realize MEC systems, atop the reference
architecture, and how to implement the system services to ensure uniform oper-
ation across edge deployments and application domains. The standards specify
a set of Application Programming Interfaces (API) that provide detailed in-
teraction patterns and interoperability between the system components. The170

APIs address system management and authorization; application enablement,
deployment and lifecycle; mobility management and monitoring the system per-
formance. In addition, the standards define proof-of-concept applications and
sets of functional and non-functional Key Performance Indicators (KPI) for
evaluating the edge system performance.175

ETSI MEC system architecture extends the role of network infrastructure
components from forwarding network traffic to caching and sharing content and
running services and applications. The MEC system reference architecture [17]
is illustrated in Figure 2. MEC applications are initiated either by mobile user
requests or by 3rd party developers and/or service providers that launch ser-180

vices on-demand, by creating applications context description(s) and specifying
usage policies and billing information, etc., for the services. MEC system op-
erations are divided into system level and host level. A set of system services
support, at both levels, distributed management of the system resources and ap-
plication enablement, deployment and lifecycle management in MEC platforms185

atop the edge Virtualization Infrastructure. The system services provide, and
rely on, real-time information about the system state, resource usage and local
network conditions. For MEC application development, ETSI models the MEC
applications as a set of autonomous and loosely-coupled microservices [18].

At the system level, the centralized Orchestrator has visibility and authority190

over the system services and platform management. MEC application instanti-
ation and execution is managed by the Orchestrator, based on the application
contexts created from the user requests. The requests are validated and the con-
texts are adjusted, if needed, to comply with the resource availability in hosts,
with regard to application load, available services and latencies. The virtual-195

ized application packages, and required services, are instantiated on the selected
Hosts, based on the hardware requirements and network resources. Here, the
Orchestrator has knowledge of the service attributes, configurations and depen-
dencies, usage policies and billing. Based on a user request, or its own decision,
the Orchestrator triggers relocation and termination of the applications. The200

application relocation process is described in detail in [19], executed by the
Application Mobility Service.

At the Host management level, a MEC Platform manages a set of MEC
Hosts. The Platform Manager controls the application lifecycle and resolves
resource conflicts, with regard to data traffic and use of services, in the platform.205

The manager also collectes real-time information about its own performance.
In parallel, the platform Virtualization Manager allocates the virtualization
resources for the applications and services.

The MEC Hosts provide computational, networking and data storage re-
sources for the hosted applications and services, atop its own virtualization210

infrastructure. Hosts support multi-access technologies to connect to the local

6

Figure 2: ETSI MEC Reference System Architecture

network and are capable of handling requests and data traffic of multiple UEs.
Such a multi-tenancy requires sharing of platform resources, services and appli-
cation instances. MEC host provides a service registry to discover, access, offer
and advertise its services across the platform.215

2.3. Modeling of IoT Systems and Services

As discussed in [14, 20, 21], the development of IoT applications imposes
specific requirements, which are mostly orthogonal to traditional software en-
gineering, including interoperability across heterogeneous system components,
scalability of large-scale distributed deployments, security and privacy solutions,220

and software and hardware evolvability.
However, consolidated methodologies, spanning from analysis to design phase

and including programming abstractions and software constructs for the imple-
mentation of such applications, are yet to emerge. In particular, the analysis
activity helps in reducing the software development burden and time as well225

as increasing the software quality. By operational modeling the application
requirements, system components, their functionality, intra- and interrelation-
ships, organization and constraints, sets of software architecture models can
be effectively represented. Simultaneously, non-functional requirements, such
as quality attributes, system policies, maintenance guidelines and system evo-230

lution, can be expressed both informally and formally for further verification,
validation and simulation before moving to the implementation phase.

7

Steps in this direction have already been taken, often adopting the principles
of Model-Driven Engineering (MDE) for IoT system and application software
development illustrated in [22, 23, 24, 25]. A first group of works focused on a235

conceptual, high-level modeling of IoT systems. For example, a unified modeling
solution with different modeling approaches in different layers of IoT systems
is presented in [26]. IoT-specific metamodels are presented in [27, 28, 29, 30],
aiming to provide conceptual representations with standardized workflows and
ontologies. Such works, although considering a holistic view over the IoT system240

elements, provide a modeling approaches focused on static environments with
established interactions and layered system architectures, largely neglecting the
opportunistic characteristics [14, 15]. A second group of works, still dealing
with the modeling activity for IoT, focused on approaches specifically tailored
for edge computing systems and services. For example, Cai et al. [31] focus on245

mobile application modeling in IoT dynamic environments, leading to service
component definition to configure such services online. In [6] a full-fledged ap-
proach for the engineering from analysis to simulation of complex opportunistic
and collective services at the IoT edge has been proposed, leveraging on the ben-
efits of Aggregate Computing. Modeling and design of cognitive IoT systems250

has been addressed in [32, 33], with focus on reactive, proactive and cognitive
behavior and online adaptation of the system, through refinement of the design
models. Modeling of non-functional and QoS properties of IoT systems have
been addressed in [34, 35, 36, 37].

The key findings of this short literature review on IoT systems and services255

modeling are the following. A model-driven engineering approach is particularly
effective to support the whole development of complex systems such as the edge
computing ones. The modeling activity, indeed, is widely acknowledged as a
cornerstone for simplifying the further development steps. The technical knowl-
edge and domain expertise, already at the analysis and design stages, increases260

awareness of development challenges and helps to produce better solutions in
later stages of the implementation, deployment and maintenance stages. Exem-
plified in [8], domain knowledge about edge technologies, systems and mobile
networks provides useful insights about expected performance, network topol-
ogy and deployment options, reliability and privacy concerns, that are otherwise265

difficult to capture. Therefore, to systematically face the inherent opportunistic
nature of the IoT environment, the most suitable way consists in a systematic
and comprehensive approach relying on MDE and both technical and domain
expertise.

2.4. Feature engineering for opportunistic modeling270

Applied ML provides a set of powerful tools for analysing, learning and pre-
dicting about edge computing systems’ properties, operations and performance.
To realize the benefits of ML, the data analyst(s) shall bear the key and deli-
cate process of tools setting for the target problem, by identifying the relevant
variables and data to consider, the most fitting model with respect to the main275

system properties, and finally the correct learning algorithm to use. Then,

8

model evaluation and tuning follows before the decision on how to present the
results.

These preparatory steps, before the ML modeling, are commonly referred
as feature engineering [38, 39], i.e. the ”act of extracting features from raw280

data and transforming them into formats that are suitable for the ML model”.
Thus, the aim of feature engineering is to drop the difficulty in ML modeling, by
preparing the input data to be meaningful for the identified problem and design-
ing the right set of features that effectively represent the underlying problem.
This way, the ML model capability of completing its task and/or its accuracy285

can be increased. In practise, feature engineering is difficult to generalize and
is often described ambiguously as ”bag of tricks” [38].

Nevertheless, in general, feature engineering process consist of the following
steps. The first step is the problem definition, including describing the tar-
get(s) and finding the relevant data, which is typically collaboration between290

domain expert(s) and data analyst(s). The second step is the data preparation
to preprocess and transform the data into format(s) that are easy for the math-
ematical ML tools to ingest, e.g. numeric and categorical variables presented in
problem-specific feature vectors. The third step is the design of a feature set,
i.e. feature extraction, aiming to properly represent the underlying problem295

and describe the inherent structures in the data. At this stage, automatic ML
tools provide ways to extract large sets of simple statistical features from the
data, but with the risk of obtaining high dimensional feature space. Another
approach is to utilize domain expertise to extract and construct additional set
of features that can for example incorporate contextual knowledge. Therefore,300

the fourth step is to utilize feature selection techniques, as presented in [39],
for example, to reduce the dimensionality of the feature space. Generally, this
step improves the data quality and results in a simpler model, easier dataset in-
terpretation and maintenance, and increased algorithmic efficiency, traceability
and effectiveness. However, feature selection is often experimental and iterative305

as well as highly context-aware, being the features meaningful just with respect
to the data, the model and the task at hand [38].

In this paper, we utilize the outlined feature engineering process in Section
4, tailored for presenting and analyzing the opportunistic properties related to
user mobility in MEC systems.310

3. Opportunistic Service Modeling for MEC

Aiming to fill the gap between the high-level service modeling for oppor-
tunistic edge systems and the evaluation of those opportunistic aspects with
data analysis, we propose a comprehensive IoT service modeling approach for
MEC that follows the ETSI specifications. The service development process pre-315

sented hereafter follows the MDE principles, by focusing on conceptual models
to be refined in turn in the analysis (technology agnostic Opportunistic IoT
Service Model), design (MEC specifications as the architecture for the edge sys-
tem), and implementation (MEC specifications as a standard to realizing the

9

Opportunistic
IoT models

MEC Paradigm,
Feature

Engineering

MEC standards,
REST API

Figure 3: Phases of the proposed development process for edge computing services

service) phases. Such a process is depicted in Figure 3. In this section, we focus320

on the analysis and design parts of the development process.

3.1. Domain model for MEC

Following the Opportunistic IoT Service modeling [6], we identify the main
elements of a generic IoT system to be modeled: (i) IoT Entities, that are clas-
sified as IoT devices, users and proxies, which interact with the environment by325

producing and consuming services, (ii) Services, that implement the function-
ality in the system by enabling atomic or composed configurations and applica-
tions, (iii) Context, that is needed for incorporating the domain- and system-
specific information derived in the applications, (iv) Environment, namely the
dynamic and complex physical IoT system environment which sets constraints330

on how the entities and services can operate, with available resources, in the
resulting logical and physical application and service compositions, (v) Quality
attributes, such as functional and non-functional QoS and QoE, including avail-
ability and flexibility, reliability, efficiency, maintainability, security and privacy,
that compromise the system performance if omitted.335

Such generic building elements have been mapped into the MEC reference
architecture in order to define the high-level domain model for describing the
main entities involved in MEC application or service creation, instantiation,
provisioning, relocation and termination in the MEC systems (please note that,
since the ETSI specifications do not differentiate between applications and 3rd340

party services, from the development and deployment perspectives they are
both modeled through microservice as the basic building blocks for their func-
tionalities). The resulting domain model for MEC systems according to the
aforementioned Opportunistic IoT Service modeling categories (i.e., IoT Entity,
IoT Environment and IoT Service) is illustrated in the Figure 4. Focusing on345

the MEC service perspective, we make the following observations:

10

MEC SERVICE
Service execution logic
Configuration
...

MEC SERVICE
Service execution logic
Configuration
Data
Service API
External API

Legend
IoT ServiceIoT EnvironmentIoT Entity

Microservice
Package
Data
Service API

Microservice
Package
Data
Service API

MEC
APPLICATION

Application logic
Data
Service API
External API

USER
EQUIPMENT

Data
Component
Task API

MEC PLATFORM
Platform management, operations, resource/traffic/service conflict resolution
Application lifecycle management, requirements, rules
Virtualization infrastructure manager (virtualized resources)

OPERATIONS SUPPORT SYSTEM & ORCHESTRATOR
System management (state, resources)
Network operator policies, network services, host site locations
Application list (packages, requirements, services, resources)
Services (configuration, usage policies, billing, ..)

MEC HOST
Service Registry discover, access, offer, advertize
Virtualization infrastructure (application images)
Data traffic rules and routing

Context

«Access»

«Upload»
«Control»

1..n

«Invoke»
«Access»

«Invoke»
«Access»

1..n

«Operate» «Operate»

«Manage»

«Manage»

«Request:
Application
Context»

1..n

0..n0..n

1..n

Figure 4: Domain model for MEC System

IoT Entities. We consider the MEC applications, other MEC system or
3rd party services and UEs to represent the IoT Entities that provide or con-
sume the service in question. The UEs both produce data that the services
consume, e.g. sensor data, but also the services may access or control the ap-350

plication components in the UEs. In turn, the service content is consumed by
the applications or other services, to provide feedback for orchestration as an
example.

IoT Service. The service provided, where the opportunistic elements are
reported first in the Service Profile, i.e., its high-level description, and then355

in the Service Model, including its inputs, outputs and collective functionality.
We address these aspects in the next Section in detail. Since the MEC speci-
fications do not differentiate between applications and 3rd party services, from
the development and deployment perspectives they are both modeled through
microservice as the basic building blocks for their functionalities.360

IoT Environment. Firstly, the IoT Environment consists of the physical

11

Service Profile

Service Model

Radio Network
 / Location

Microservice

Virtualization
Infrastructure

User
Equipment

System Service

MEC Host

MEC Application

MEC Platform

MEC
Service

Legend

IoT Service

IoT Entity

IoT Environment

Monitors

Manages

Manages Manages

MonitorsManages

MonitorsManages

Consumes Exploits

Uses

Initiates

Figure 5: Opportunistic MEC Service Metamodel.

and virtual MEC system environment, including MEC Platforms and Host(s),
where the Entities and MEC system elements are co-located. This includes MEC
Platform and Hosts, where the system Orchestrator imposes system policies
and environmental constrains into the service execution. But also the physical365

environment where the service operates, including local networks, is taken into
account at the Platform level.

Context. Describes the dependencies between IoT Entities, Environment
and Services in the model. MEC services are instantiated on request, either
standalone or as a part of a MEC application, where the dependencies are370

described in its service configuration. This includes data from UEs and the
utilized content from other services, which may system services or 3rd party
services but also external, e.g. a weather service. Also the MEC system services
utilize information provided by the service, or created from its operation on the
system, for orchestration and management. However, additional dependencies375

are created through the utilization of services in forthcoming application and
service contexts that are not yet known. Here the microservices paradigm is
useful, as it facilitates straightforward reuse of existing service components.
In such cases, these dynamic dependencies include service configurations and
aggregates, their usage policies and billing information, which the Orchestrator380

resolves.

3.2. Metamodel for Opportunistic MEC Service

Based on Opportunistic IoT Service modeling [6, 14] procedure, the next step
is to provide a metamodel for an opportunistic edge service, based on the MEC

12

Table 1: Mapping between IoT Service Profile and MEC Application and Service contextand
configurations.

Opportunistic
IoT Service
Model

MEC Specification

IoT Service
Profile

Application Context, Application
List

Application
Mobility

Service Info

Service Name Name, Address Name
Service De-
scription

Application Description, Provider Description

Service Cate-
gory

Continuity Scope, State,
Continuity

Category

Service Param-
eters

Latency, Bandwidth, Memory, Stor-
age, Data Traffic Rules, Service De-
pendencies

Service Out-
puts

Notifications, (Service) Interface,
Transport Depencencies

Mobility Type

Service & Con-
text Precondi-
tions

Application Packages, Host Fea-
tures, Service Dependencies, Hard-
ware Descriptor, Storage Descrip-
tor, Transport Protocol

Mobility Type State

Service & Con-
text Effect

Interface, Notifications Mobility Type State

Service Pro-
vision Con-
straints

Continuity Mobility Type State

specifications. Such a metamodel captures the elements of both approaches385

(Opportunistic IoT Service Model and MEC specifications) for conceptual and
functional mapping. The resulting mapping is depicted in Table 1. For clarity,
the set of parameters is not exhaustive and identifiers have been omitted, to
focus on the service instantiation, provisioning, interoperability and lifecycle
management aspects.390

• Service Name. Identifier for the service, available in Application Context
or ServiceInfo, including the network Address parameter.

• Service Description. Human- and machine-readable description of the ser-
vice, based on standardized ontologies, that is published as a part of the
MEC system Descriptors, and on the users requests (Application Con-395

texts) and service provisioning configurations. Includes also the descrip-
tive Provider information, billing and usage policies.

• Service Category. Edge platform services are categorized into (i) system
services, (ii) 3rd party services, and (iii) external services that are hosted
in remote systems. System services provide the functionality needed in the400

core platform architecture, exemplified by Application Package Manage-
ment and Radio Network Information (RNIS). The 3rd party services are
location-, context- and application-specific services that are instantiated

13

on-demand. Additional complexity is added with external services, de-
ployed outside the system control, but needed in the realization of service405

logic, e.g. weather data. Service Category is an entry of a service ontol-
ogy/taxonomy, available in MEC in ServiceInfo. The service Scope defines
the service as either dedicated (for particular UE) or shared service.

• Service Parameters. Functional and non-functional QoS and QoE param-
eters of the service, such as maximum allowed access latency and reliabil-410

ity, and their related KPIs. Includes common core execution capabilities
derived from the MEC specifications, such as Data Traffic Rules and Op-
erator Policies.

• Service Inputs. Information required for the service execution through the
system and 3rd party service APIs, and external data sources, including415

remote systems and UEs. MEC standards provide Service configurations
with Dependencies that link to the inputs as a part of collective or aggre-
gate.

• Service Outputs. The content and output(s) produced by the service that
is published through its API. In MEC system, includes Application Con-420

text, Exported Interface and Notification(s) to other system components.
In addition, in system management, the ServiceInfo and Mobility param-
eters are needed in service relocation and performance monitoring, for
example.

• Service & Context Preconditions. The functional conditions required for425

the service instantiation, execution and relocation, such as Application
Packages and Service Dependencies. The MEC Orchestrator assigns the
application execution to a MEC Platform that can fulfill the Service Pa-
rameters in its Hosts. In MEC specifications these parameters include
the logical service collections and aggregations, as described in the config-430

uration, and Required Feature(s), Hardware Requirements, Storage Re-
sources, Transport Protocol and Data Traffic Rule(s).

• Service & Context Effect. The events resulting from service execution,
which are published as the MEC Notifications. The collective or aggre-
gate service logic can be built on these effects, advancing the execution435

state between microservices. Feedback of the service execution, based
on the effects, is provided by the Host to the Platform and the system
Orchestrator.

• Service Provision Constraints. Constraints arising from the relevant sys-
tem components. From MEC specifications, includes Continuity, Co-440

location and Mobility aspects. These constraints are described in the
Service configuration, that is validated by the Orchestrator and then im-
posed through the Platform Manager to the Host(s) and the Virtualization
Infrastructure.

14

To follow the Opportunistic Service Modeling procedure, we create an op-445

erational service model for presenting the main elements of a MEC System, as
described in the previous Section, but also for identifying its opportunistic ele-
ments. Such parameters are difficult to handle through a static metamodel as in
[14], therefore an additional and complementary model is needed. The resulting
metamodel, based on the domain model and Service Profile, is illustrated in Fig-450

ure 5 and it defines the Context for the modeled Service. Starting from the IoT
Entities, we identify the service content consumers, as System Services, Applica-
tions and UEs, where only the system services are static. As discussed, service
relocation may be launched based on UE movement or system orchestration.
Similarly, the IoT Environment consists of the MEC system components, where455

the Host can be considered static as during instantiation the requirements are
guaranteed. However, the opportunistic physical environment is represented by
the system services RNIS and MEC Location. The microservices as IoT Service
components are instantiated on the service request a a part of the configuration,
but their location varies according to the Orchestrator decision-making and is460

dynamic in response to system orchestration.
Moreover, the metamodel describes the interactions between these oppor-

tunistic elements, e.g. ”initiates”, ”exploits”, ”uses”, ”manages” and ”moni-
tors”, that depend on the Service configuration as Provision Constraints, Inputs
and Outputs, Context Preconditions and Effects. Given such Service Profile and465

metamodel, the inherent opportunistic elements of the MEC system and of the
modeled service can be identified, and addressed further in the further steps of
the software development process.

4. Use Case: Mobility Analysis Service

In this Section, we instantiate the proposed development process for op-470

portunistic MEC services on a simple yet effective Mobility Analysis Service
(MECMMS), that was initially proposed in our earlier work in [40, 41, 42].
Indeed, a crucial component in mobile edge computing system is the mobil-
ity management system service(s) that collect data of user movement while
connected to the system [3]. The aim is to optimize application relocation,475

for example, by detecting movement traces and patterns of users and mak-
ing predictions of such events. Particularly challenging, with respect to edge
computing, is a handover triggered by user movement between APs that are
associated with different edge hosts, as such a handover requires application
relocation, instantiation, etc., across the core network, administrated by the480

system orchestrator. In general such system service(s) in large-scale requires
holistic view over the system state and cloud-scale computing capacity, where
real-time responsiveness is challenging. Steps towards cognitive approaches to
handle mobility in online, tailored for edge and depending on ML methods, and
that also incorporate contextual information, have been suggested in [9, 43, 44].485

We address the complexity and the opportunism of such a MECMMS by
following the proposed development process. First, a service is modeled with
the MEC Service metamodel and the Service Profile, resulting a Service Model.

15

IoT Service

IoT Environment

IoT Entity

Legend

MEC RNIS API
Category:
System
Input:
Radio Network
Information
Output:
UE Handover Data
(device_id,source,
destination,time)

MEC Host
Category:
System
Input:
Instantiation Request
(application / service
configuration
Output:
Status & Performance
Information

MEC Location API
Category:
System
Input:
UE Connection Data
Output:
Locations(device_id,
AP)

Map Service
Category:
External
Input:
Location
Data
Output:
Map Content
(html)

Visualization
Category:
MECMMS
Parameter:
Latency
Input:
AP Information
Map Content
Output:
Map(html)
Precondition:
Data ready
Constraint:
Hardware
Storage

Optimization
Category:
MECMMS
Parameter:
Latency
Input:
Handover Data
Traces
Output:
AP(<feature vector>)
Precondition:
Data ready
Constraint:
Hardware
StorageTrace Generator

Category:
MECMMS
Parameter:
Latency
Input:
Query Parameters
UE Location Data
Output:
Traces(device_id,<AP>)
Precondition:
Query
Constraint:
Hardware
Storage

Web User Interface
Category:
MECMMS
Parameter:
Latency
Output:
Query(coords, timeframe)
Precondition:
Request Parameters
Constraint:
Hardware
Storage

Traces

Handover
Data

Initiation

 Annotated Map

UE Location
Data

Map
Content

AP Information

Query

Figure 6: Service Model for MEC Mobility Analysis Service

Then, an example service implementation is described that addresses a opti-
mization of MEC system operation. Lastly, a QoS attribute in MEC is ana-490

lyzed with a real-world data set, exemplifying how the service can address the
opportunistic properties of MEC systems.

4.1. MEC Mobility Analysis Service

The Service Model of MECMMS presented hereafter is based on the MEC
Service metamodel. In particular, we focus on the MEC Host level and omit the495

modeling of the system level orchestration and management components, as an
extensive set of components and their interactions need be taken into account
without adding to the contribution of this paper.

MECMMS is considered a system service on the MEC system, a part of the
MEC Mobility Management set of services. When an relocation request is re-500

ceived by the Application Mobility Service [19], it collaborates with MECMMS
to analyze and plan the relocation across the platform. An instance is launched
in each MEC Platform (IoT Environment) upon instantiation. MECMMS is
designed as a set of microservices, that rely on the outputs of other system
services and external services, to implement the service functionality. The pre-505

conditions and constrains for MECMMS are that an instance is placed on each
platform and that the microservice collective is deployed into the same platform
for real-time content delivery in the close proximity of users. As described in
[41], a set of MECMMS instances can be deployed as a hierarchy in the Sys-
tem, according to the capacity of Hosts, where additional preconditions are the510

16

microservice container size and adequate processing power. The service pa-
rameter, i.e. quality measure, is latency with regard to the content delivery,
which is crucial for the system level orchestration of application relocation, in
response to user mobility while maintaining QoE as in continuity. The inputs
for MECMMS are UE location information and a geographical map. In the515

Context of MECMMS, the opportunistic property are the users (IoT Entities),
that move across the system in runtime, represented by the two standardized
MEC services (Location and RNIS API). The Output of MECMMS is a dataset
containing user mobility analysis results and an annotated map, as described
later in this Section. The dataset provides information on user mobility across520

the system for orchestration and management of application relocations.
The resulting MECMMS Service Model is illustrated in Figure 6. MECMMS

operation is based on four microservices (IoT Service), namely Web User In-
terface (UI), Trace Generator (TG), Optimization function and Visualization.
The service uses two standardized MEC System services, i.e. the Location API525

and the RNIS API, and an external Map Service. The front-end for MECMMS
is UI, that provides parameters of the Region-of-Interest (ROI), i.e. geograph-
ical area and a timeframe, for the movement data analysis. The ROI is sent
to the TG microservice, that retrieves UE location data, i.e. connections to
APs within the ROI during the timeframe, through the MEC Location API.530

TG calculates the Traces of the UE movements across the MEC system, that
is the UE Location as connections to an AP. The Traces, with UE handover
data from RNIS, are then analysed further in the Optimization services that
publishes AP Information data, that includes a set of mathematical features
generated from the data. Lastly, an annotated map of the set of APs is created535

by the Visualization in response to the initial request by the Web UI.
With respect to the Service Profile, the MEC specifications address mobility

management services and related application relocation in [45]. User movement,
resulting a handover, or an on-demand system orchestration request, e.g. for
performance optimization, load balancing and enforcing policies, initiates an540

application relocation request. As a Precondition, the optimal time window for
the relocation and the target Host(s) needs to identified. Here, to address QoE
concerns, a set of nearby Hosts can be assigned as a relocation group, on the
premise that the application can be run in any of them. Another solution, is
to introduce an optimization function as a part of the MEC Platform Manager545

functionality [45].

4.2. Analysis of the Edge Opportunistic Properties

In this subsection, we first present the output dataset of the MECMMS ser-
vice. Then, with a real-world data set, an data analysis is performed in order to
identity a feature set that describes the opportunistic properties of user move-550

ment in our data set, targeting optimization for MEC application relocation. In
the analysis, we follow the principles of feature engineering introduced in Sec-
tion 2.4 aiming to identify and exploit those opportunistic features that impact
on the MECMMS service provision.

17

4.2.1. Setting up the problem555

As a starting point for the problem definition, a domain expert has identified
the application relocation, as the opportunistic property of MEC systems, to
be addressed in data analysis by feature engineering. In the MEC specifications
[45], Continuity is a performance metric for a MEC system, describing the
requirement for the application to continue its operation during a UE session560

transition, e.g. a handover. Particularly, application relocation between MEC
Hosts results in an interruption. Continuity is defined with different categories:
No Continuity, Low Continuity, Soft Continuity and High Continuity. Each
category has different time limits for tolerable interruptions.

The MECMMS service, as illustrated in Figure 6, provides a data set per565

AP that describes the above-mentioned set of features and data analysis results.
However, since the MEC system nor the MECMSS Service real-world implemen-
tations are available, to replace the dsata sources, i.e. the MEC system APIs,
we utilize an existing real-world data set in [46]. This data set contains UE
connection data in one second accuracy, collected between the years 2007-15,570

in 1300 WiFi APs deployed in an open WiFi network across the City of Oulu,
Finland. The size of the whole data set is about 275M data points. However,
for demonstrative purposes, we utilize a subset of the data containing about
half a million data points collected in 410 WiFi APs during February 2015.

As the result of data analysis, a set of APs are identified being considered575

the most opportunistic ones across the deployment, regarding the different at-
tributes of Continuity.

4.2.2. Data preparation

Based on our previous work [8, 40], the data set has already been prepared:
(i) removal of the handovers between wireless network APs, which last less580

than 5 seconds (the last handover was removed as an outlier) to mitigate the
effect of rapid user movements, (ii) detection of a set of APs with very strong
transmitters, to which almost all UEs in an area were connected at some point
of time, even from a long distance (these handovers where removed from the
data set as outlier), (iii) removal of those APs with less than 100 connections585

per day, aiming to focus on high workload APs and to provide sufficient samples
for further analysis. As a result of this data preparation process, the initial set
of 410 APs has been reduced to 56 APs with 502600 data points in total.

Aiming to study Continuity, we preliminary prepare the data, which origi-
nally only provides the following data attributes for a handover event: Times-590

tamp, Device ID, Origin AP, Destination AP and Distance between APs. The
Device ID is dropped, since we are interested about the handovers without con-
sidering individual UE movement patterns. The variables in the data set are
defined as numeric variable (Distance), categorical variables (Origin and Desti-
nation APs) and date and time (Timestamp).595

Since the timestamp only reports when a user connected to an particular
AP, the time for the session and user movement can’t be directly estimated.
Typically, wireless network connections are intermittent, where the actual user
disconnection time from the origin AP is not given in the data. Likewise, the

18

data does not show how fast the user moved between the APs, i.e. by rapidly600

in a vehicle or slowly by walking. Therefore, we utilize the geospatial distance
between APs, i.e. GPS coordinates that are available in a separate file, as an
approximation for the maximum allowed relocation delay. In the literature,
different distance measures, such as geospatial coordinates or hop counts, have
been commonly utilized to estimate communication latencies. However, in our605

data set, the underlying network topology is not available. Moreover, typi-
cally connections from longer distances are considered to suffer from low QoE,
proportional to the distance.

As a result of the above data preparation step, we decided to focus on geospa-
tial distance as the attribute representing different aspects of user mobility to610

study Continuity. Assuming user mobility patterns can be predicted between
APs, we can consider distance of an expected handover to be proportional to
the time the MEC system has for selecting the relocation group and complet-
ing the application relocation process, while maintaining the QoE. Moreover,
when the distance matrix of APs in a deployment can be constructed, vari-615

ety of mathematical methods are available to further analyze the data in ML
applications.

Finally, in this step, since we are interested about the opportunistic proper-
ties of handovers, the data divided into a table per each AP, containing all the
handover events, where the AP in question was the Destination AP. Such a data620

transformation enables an easy way to calculate common statisctical measures
of handovers for each AP.

4.2.3. Design of Opportunistic Feature Set

Next, we design the feature set to be used in mathematical modeling of
Continuity.625

Since the distance data in our dataset is numeric, we can straightforwardly
construct feature vectors that represent the different measures and attributes of
the distance data for each AP. We call those vectors as Opportunistic Feature
Vectors for Edge (OFVE), to highlight that the vectors describe the salient and
opportunistic - dynamic, diverse, sporadic and scattered - aspects of the edge630

computing. Having described such a initial feature vector, the relevant set of
features to the problem at hand can be selected.

With respect to the considered use case, based on common statistics, the
following feature set is initially considered representing the opportunistic prop-
erties of the handover distance(s):635

MAX The longest distance of a handover to an AP; the longer the distance,
the more users can connect to this AP and the worse the QoE becomes,
leading to opportunistic connectivity.

MEAN The arithmetic mean of the handover distances to an AP, reflecting the
tendency towards longer handover distances.640

MODE The distance that appears most of them for an AP, reflecting the tendency
towards longer handover distances.

19

Table 2: Correlation matrix of the selected features.
Max Mean Skew Unique

Max 1.00
Mean 0.33 1.00
Skew 0.09 -0.52 1.00

Unique 0.40 0.45 -0.34 1.00

RANGE The range of handover distances to an AP, reflecting the difference in
handover distances.

SD The standard deviation of the handover distances to an AP; large SD645

means large variation in distances, leading to opportunistic connectivity.

SKEW The measure of asymmetry (extremes) in the handover distance distribu-
tion of an AP; significantly skewed distribution reflects towards abnormal
handover distances.

Whereas the above features are the standard statistical measures, in addi-650

tion, a domain expert can propose a set of ”handcrafted” features, that can be
computationally more complex, but are assumed to be more expressive. In the
use case, we consider the following additional features:

CV The coefficient of variation for comparison between APs, useful since the
extend of variability between MEAN and SD is observed large in the data655

set.

UNIQ The number of unique source APs from where handovers to an AP were
observed; the more individual UEs connect to the AP, the more diverse
and dynamic its workload becomes.

ENT The entropy as a measure of uncertainty (and diversity) of the handover660

distances in an AP.

4.2.4. Feature selection

To reduce the dimensionality of an OFVE feature space (potentially very
wide, with many features based on the MEC standards and domain expertise,
for example), a plethora of feature selection techniques are available, as surveyed665

for example in [39].
For the sake of simplicity, we utilize Pearson correlation to reduce the feature

space resulting from feature extraction described in the previous Section 4.2.3.
We set the correlation coefficient to 0.5 for the OFVEs and remove the features
that have higher correlation, while keeping the features with negative correlation670

to gain diversity for mathematical modeling.
Therefore, the dimension of distance OFVE, with initial nine features, is

reduced to a set of four features that are MAX, MEAN, SKEW and UNIQUE, as
illustrated in Table 2. The handcrafted feature UNIQUE is thus automatically
determined to be more expressive of distance variation than some other standard675

statistical measures, demonstrating the need of domain expertise in modeling.

20

Table 3: Top opportunistic APs ranked with each feature.

Max Mean Skew Unique
ID Value ID Value ID Value ID Value
823 111.75 834 12.40 581 26.74 848 202
197 108.02 930 11.88 762 9.44 920 185
936 104.89 931 9.61 767 8.28 823 175

4.2.5. Analysis

For visual analysis and interpretation by a domain expert, the APs identified
in the Table 3, and in more detail in Table 4, are reported on a map in Figure
7. From the Figure, it clearly emerges that the opportunistic APs are placed680

along the major routes from north, west and south to the centre of the city
of Oulu. As an example, the AP 930, placed next to highway crossings, has
high mean distance of handovers. APs 823, 848 and 920, on the southern and
northern end of the city centre, have the unique source APs. Interestingly, the
AP 834, next to a long range bus station, has significantly high mean handover685

distances with low skewness, possibly explained by the patterns of connections
of arriving passengers. Three exceptions to the initial assumption are shown:
the two APs right at the city commercial centre (762,767) and one AP next (581)
to a sports arena. The low maximum of handover distances in AP 762 can be
explained by its very central location. The AP 581 has the lowest maximum and690

mean of distances and lowest number of unique source APs, with the highest
skewness, possibly confirming that users arrive to the sports arena only from
certain directions and slowly, e.g. by walking.

With respect to Continuity in the presented network topology, the appli-
cations in the categories No Continuity and Low Continuity (tolerable to in-695

terruptions of several minutes [45]), there is no observable downsides, except
provisioning enough resources during sporadic events in populated areas, such
as the sports arena (AP 581). Deploying Soft (tolerable to short interruptions)
and High Continuity (with strict latency limits) applications, low handover dis-
tances escalated by the movement speed are challenging, due to small time700

window to orchestrate and deploy application components across the Host(s),
as in AP 581 and central AP 762. Therefore, defining relocation groups, in
the proximity of those APs, is an important architectural deployment decision.
When the number of unique source APs is high (e.g. APs 823,848 and 920), and
possibly distances low, a large relocation group or with careful design of server705

deployment [8], costly inter-host handovers could be avoided. With high mean
(and standard deviation) and skewness (APs 581, 834 and 930), orchestration
becomes problematic, clearly requiring system services for automatic planning,
scheduling and load balancing.

21

Table 4: Top opportunistic APs.

ID Max Mean Skew Unique
197 108.02 4.04 7.09 72
581 65.53 0.67 26.73 36
762 73.26 3.74 9.43 144
767 99.89 4.74 8.28 127
823 111.75 6.58 4.90 175
834 88.13 12.40 0.89 153
848 92.63 6.83 4.91 202
920 90.84 6.97 3.44 185
930 102.56 11.88 2.93 156
931 102.56 9.61 3.32 124
936 104.88 6.77 4.02 157

5. Conclusion710

Multiple heterogeneous factors from different sources introduce opportunistic
behaviors in edge computing systems (large scale deployments, user mobility,
ephemeral interactions, etc). Whereas the knowledge of the dynamics of the
operational environment are often based on domain expertise, more systematic
methods can actually help in addressing these issues throughout the whole edge715

application and/or service lifecycle. Such methods result particularly effective,
if applied from the beginning with service modeling, including initial analysis
and design steps aiming to identify and later address the opportunistic elements
and their properties. Service modeling is an activity already investigated in the
IoT context, but often overlooking the distinct requirements, properties and720

features of edge computing systems.
In this paper, we presented a novel service modeling approach, applied over

the ETSI MEC reference architecture, that particularly addresses the oppor-
tunistic properties in edge computing. Moreover, we have formalized the iden-
tification and management of the opportunistic properties, based on domain725

expertise, through feature engineering methods for capturing and selecting sets
of meaningful aspects for further analysis and ML modeling. To exemplify our
proposal, we modeled a microservice-based User Mobility Analysis service for
MEC and built opportunistic vecture fectors for mathematical analysis of user
mobility activities in a real-world data set. Such refined information enables730

obtaining insights about user behavior in large scale, mobile, edge computing
scenario to fulfill the edge promise of application resources ”at the right place
at the right time”. Lastly, as illustrated by the modeling and analysis results
based on the proposed approach, a set of edge infrastructure components were
identified, where opportunistic properties can be observed and addressed by the735

network operator.
Our future work will focus on further developments for edge modeling method-

ologies and studying feature engineering methods in real-world use cases, atop

22

Figure 7: The identified set of opportunistic APs (red dots depict the other APs).

a 5G testbed [47] as a part of edge computing infrastructure.

Acknowledgment740

The authors would like to thank Mr. Tommi Järvenpää and Mr. Lauri
Lovén for providing the initial user mobility data set used to built MECMMS
service prototype and the illustrations. This work is supported by the Academy
of Finland 6Genesis Flagship (grant 318927) research program and the Future
Makers program of the Jane and Aatos Erkko Foundation and the Technology745

Industries of Finland Centennial Foundation.

References

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and
challenges, IEEE internet of things journal 3 (5) (2016) 637–646.

[2] ETSI, Mobile edge computing a key technology towards 5g, White Paper750

11.

[3] Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief, Mobile edge computing:
Survey and research outlook, arXiv preprint arXiv:1701.01090.

23

[4] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, H. Zhang, Intelli-
gent 5g: When cellular networks meet artificial intelligence, IEEE Wireless755

communications 24 (5) (2017) 175–183.

[5] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, L. Hanzo, Machine
learning paradigms for next-generation wireless networks, IEEE Wireless
Communications 24 (2) (2016) 98–105.

[6] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, M. Viroli, A760

development approach for collective opportunistic edge-of-things services,
Information Sciences 498 (2019) 154–169.

[7] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role
in the internet of things, in: Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, ACM, 2012, pp. 13–16.765

[8] T. Lähderanta, T. Leppänen, L. Ruha, L. Lovén, E. Harjula, M. Ylianttila,
J. Riekki, M. J. Sillanpää, Edge server placement with capacitated location
allocation, arXiv preprint arXiv:1907.07349.

[9] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, I. Humar, A dynamic service
migration mechanism in edge cognitive computing, ACM Transactions on770

Internet Technology (TOIT) 19 (2) (2019) 1–15.

[10] M. Chen, Y. Hao, C.-F. Lai, D. Wu, Y. Li, K. Hwang, Opportunistic task
scheduling over co-located clouds in mobile environment, IEEE Transac-
tions on Services Computing 11 (3) (2016) 549–561.

[11] W. Li, X. You, Y. Jiang, J. Yang, L. Hu, Opportunistic computing of-775

floading in edge clouds, Journal of Parallel and Distributed Computing 123
(2019) 69–76.

[12] T. Leppänen, J. Riekki, Energy efficient opportunistic edge computing for
the internet of things, in: Web Intelligence, Vol. 17, IOS Press, 2019, pp.
209–227.780

[13] R. Olaniyan, O. Fadahunsi, M. Maheswaran, M. F. Zhani, Opportunistic
edge computing: concepts, opportunities and research challenges, Future
Generation Computer Systems 89 (2018) 633–645.

[14] G. Fortino, W. Russo, C. Savaglio, M. Viroli, M. Zhou, Opportunistic
cyberphysical services: A novel paradigm for the future internet of things,785

in: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), IEEE,
2018, pp. 488–492.

[15] G. Fortino, C. Savaglio, M. Zhou, Toward opportunistic services for the
industrial internet of things, in: 13th IEEE Conference on Automation
Science and Engineering, 2017, pp. 825–830.790

24

[16] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and
computation offloading, IEEE Communications Surveys & Tutorials 19 (3)
(2017) 1628–1656.

[17] ETSI, Multi-access Edge Computing (MEC); Framework and Reference
Architecture, ETSI GS MEC 003.795

[18] A. Reznik, R. Arora, M. Cannon, L. Cominardi, W. Featherstone,
R. Frazao, F. Giust, S. Kekki, A. Li, D. Sabella, et al., Developing software
for multi-access edge computing, ETSI, Sophia Antipolis, France, White
Paper 20.

[19] ETSI, Multi-access Edge Computing (MEC); Application Mobility Service800

API, ETSI GS MEC 021.

[20] P. Asghari, A. M. Rahmani, H. H. S. Javadi, Service composition ap-
proaches in iot: A systematic review, Journal of Network and Computer
Applications 120 (2018) 61–77.

[21] T. Usländer, T. Batz, Agile service engineering in the industrial internet of805

things, Future Internet 10 (10) (2018) 100.

[22] B. Morin, N. Harrand, F. Fleurey, Model-based software engineering to
tame the iot jungle, IEEE Software 34 (1) (2017) 30–36.

[23] K. Jahed, J. Dingel, Enabling model-driven software development tools for
the internet of things, in: IEEE/ACM 11th International Workshop on810

Modelling in Software Engineering, 2019, pp. 93–99.

[24] C. M. Sosa-Reyna, E. Tello-Leal, D. Lara-Alabazares, An approach based
on model-driven development for iot applications, in: IEEE International
Congress on Internet of Things, 2018, pp. 134–139.

[25] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pelliccione,815

R. Spalazzese, Model-driven engineering for mission-critical iot systems,
IEEE software 34 (1) (2017) 46–53.

[26] K. M. Abbasi, T. A. Khan, I. U. Haq, Hierarchical modeling of complex
internet of things systems using conceptual modeling approaches, IEEE
Access 7 (2019) 102772–102791.820

[27] S. Meissner, D. Dobre, M. Thoma, G. Martin, Internet of things architec-
ture iot-a project deliverable d2. 1–resource description specification, URL
http://www. meet-iot. eu/deliverables-IOTA/D2 1. pdf [last accessed: Jan
2017].

[28] M. Thoma, S. Meyer, K. Sperner, S. Meissner, T. Braun, On iot-services:825

Survey, classification and enterprise integration, in: 2012 IEEE Interna-
tional Conference on Green Computing and Communications, IEEE, 2012,
pp. 257–260.

25

[29] S. De, P. Barnaghi, M. Bauer, S. Meissner, Service modelling for the in-
ternet of things, in: 2011 Federated Conference on Computer Science and830

Information Systems (FedCSIS), IEEE, 2011, pp. 949–955.

[30] W. Tan, Y. Fan, M. Zhou, Z. Tian, Data-driven service composition in
enterprise soa solutions: A petri net approach, IEEE Transactions on Au-
tomation Science and Engineering 7 (3) (2009) 686–694.

[31] H. Cai, Y. Gu, A. V. Vasilakos, B. Xu, J. Zhou, Model-driven development835

patterns for mobile services in cloud of things, IEEE Transactions on Cloud
Computing 6 (3) (2016) 771–784.

[32] F. Cicirelli, A. Guerrieri, A. Mercuri, G. Spezzano, A. Vinci, Itema: A
methodological approach for cognitive edge computing iot ecosystems, Fu-
ture Generation Computer Systems 92 (2019) 189–197.840

[33] E. Mezghani, E. Exposito, K. Drira, A model-driven methodology for the
design of autonomic and cognitive iot-based systems: Application to health-
care, IEEE Transactions on Emerging Topics in Computational Intelligence
1 (3) (2017) 224–234.

[34] L. Santos, J. Pereira, E. Silva, T. Batista, E. Cavalcante, L. J, Identifying845

requirements for architectural modeling in internet of things applications,
IEEE, 2019.

[35] M. P. Alves, F. C. Delicato, P. F. Pires, Iota-md: a model-driven approach
for applying qos attributes in the development of the iot systems, in: Pro-
ceedings of the Symposium on Applied Computing, 2017, pp. 1773–1780.850

[36] X. T. Nguyen, H. T. Tran, H. Baraki, K. Geihs, Optimization of non-
functional properties in internet of things applications, Journal of Network
and Computer Applications 89 (2017) 120–129.

[37] B. Costa, P. F. Pires, F. C. Delicato, W. Li, A. Y. Zomaya, Design and
analysis of iot applications: a model-driven approach, in: 14th Intl Conf855

on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Per-
vasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress, IEEE, 2016,
pp. 392–399.

[38] A. Zheng, A. Casari, Feature engineering for machine learning: principles860

and techniques for data scientists, O’Reilly, 2018.

[39] S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection and feature
extraction techniques in machine learning, in: Science and Information
Conference, IEEE, 2014, pp. 372–378.

[40] T. Leppänen, C. Savaglio, L. Loven, T. Jrvenp, R. Ehsani, E. Peltonen,865

G. Fortino, J. Riekki, Edge-based microservices architecture for internet
of things: Mobility analysis case study, in: IEEE Global Communications
Conference (GLOBECOM), 2019, [Accepted].

26

[41] T. Leppänen, Distributed artificial intelligence with multi-agent systems for
mec, in: 2019 28th International Conference on Computer Communication870

and Networks (ICCCN), 2019, pp. 1–8.

[42] T. Leppänen, C. Savaglio, L. Lovén, W. Russo, G. Di Fatta, J. Riekki,
G. Fortino, Developing agent-based smart objects for iot edge computing:
Mobile crowdsensing use case, in: International Conference on Internet and
Distributed Computing Systems, Springer, 2018, pp. 235–247.875

[43] M. Chen, Y. Hao, Label-less learning for emotion cognition, IEEE trans-
actions on neural networks and learning systems.

[44] M. Chen, Y. Hao, K. Lin, Z. Yuan, L. Hu, Label-less learning for traffic
control in an edge network, IEEE Network 32 (6) (2018) 8–14.

[45] ETSI, Mobile Edge Computing (MEC); End to End Mobility Aspects, ETSI880

GS MEC 018.

[46] V. Kostakos, T. Ojala, T. Juntunen, Traffic in the smart city: Exploring
city-wide sensing for traffic control center augmentation, IEEE Internet
Computing 17 (6) (2013) 22–29.

[47] J. Haavisto, M. Arif, L. Lovén, T. Leppänen, J. Riekki, Open-source rans885

in practice: an over-the-air deployment for 5g mec, in: 2019 European
Conference on Networks and Communications, IEEE, 2019, pp. 495–500.

27

	Introduction
	Background
	Edge Computing challenges and opportunistic elements
	MEC System Reference Architecture
	Modeling of IoT Systems and Services
	Feature engineering for opportunistic modeling

	Opportunistic Service Modeling for MEC
	Domain model for MEC
	Metamodel for Opportunistic MEC Service

	Use Case: Mobility Analysis Service
	MEC Mobility Analysis Service
	Analysis of the Edge Opportunistic Properties
	Setting up the problem
	Data preparation
	Design of Opportunistic Feature Set
	Feature selection
	Analysis

	Conclusion

