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Abstract

We introduce a new discretization scheme for Maxwell equations in two space di-
mension. Inspired by the new paradigm of Isogeometric analysis introduced in [16], we
propose an algorithm based on the use of bivariate B-splines spaces suitably adapted
to electromagnetics. We construct B-splines spaces of variable interelement regular-
ity on the parametric domain. These spaces (and their push-forwards on the physical
domain) form a De Rham diagram and we use them to solve the Maxwell source and
eigen problem. Our scheme has the following features: (i) is adapted to treat complex
geometries, (ii) is spectral correct, (iii) provides regular (e.g., globally C0) discrete
solutions of Maxwell equations.

1 Introduction
Isogeometric Analysis was introduced in [16] and aim at improving the connection between
numerical simulation and Computer Aided Design (CAD). Then, its potential has been
shown in the recent engineering literature (e.g., [3, 5, 14]). The main idea of the IGA
methodology is to use directly the geometry provided by CAD in terms of non-uniform
rational B-splines (NURBS) (see e.g., [20]) and to approximate the unknown solutions of
differential operators by the same type of functions. Isogeometric Analysis offers several
advantages when compared to the finite elements method. First of all, complicated geome-
tries are represented more accurately, and some common geometries as circles or ellipses are
described exactly. Moreover, the description of the geometry is given at the coarsest mesh
level, and comes directly from the CAD system. In fact, this eliminates the necessity of
further communication with the CAD, when mesh refinement is carried out. This is carried
out without changing the geometry. Another advantage is that, apart from the standard
h- and p-refinements, in [16] the authors introduced the possibility of k-refinement, which
yields good convergence rates with less degrees of freedom. Finally, Isogeometric Analysis
provides smoother functions than finite element methods. This grants improved accuracy
(see [11, 13]), and has been proved to be particularly interesting in the approximation of the
entire spectrum of the Laplace and Bilaplace operators (in [17]).

Our aim is to adapt Isogeometric Analysis to the numerical solution of Maxwell’s equa-
tions, and in particular to the approximation of the space H(curl; Ω) . In this work, Ω will be
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a two dimensional, bounded, Lispschitz, simply connected domain and the function spaces
are defined in Section 2.

We will focus on the following eigenvalue problem:
Find ω ∈ R and u ∈ H0(curl; Ω) , u 6= 0, satisfying

( curl u , curl v ) = ω2( u , v ) ∀v ∈ H0(curl; Ω) . (1)

An equivalent formulation of (1) is obtained by imposing a divergence free condition in the
space, i.e., seeking the solution in the space H0(curl; Ω) ∩ H(div0; Ω) .

Since [6] it is known that nodal finite elements fail in approximating the space H0(curl; Ω) .
The theoretical understanding goes back to Costabel [8], who proved that the space H 1(Ω)∩
H0(curl; Ω) is closed in H0(curl; Ω) ∩H(div; Ω) when Ω is a non-convex polygon or polyhe-
dron. On numerical schemes this result means the following: if the variational formulation in
use involves the topology of the space H0(curl; Ω) ∩H(div; Ω) then no continuous finite ele-
ments (indeed, belonging to H 1(Ω)∩H0(curl; Ω) ) can be used. In fact, there are solutions of
Maxwell’s equations for which no continuous approximant exists in H0(curl; Ω) ∩H(div; Ω) ,
for instance, the singular fields in the L-shaped domain (see [10], or Section 5.3 of the present
paper).

Numerical schemes based on standard finite elements naturally need some stabilization
on the divergence part, due to the lack of coercivity of the bilinear form

∫
Ω

curl (·) curl (·).
If this stabilization involves the L2-norm of the divergence, the numerical scheme is then
not converging for non-convex domains. A remedy to this was proposed by Costabel and
Dauge [9] where the control is on a suitable weighted L2-norm of the divergence. The
scheme proposed in that paper has two branches of eigenvalues: one is the Maxwell one, and
the other one is related to the divergence, and is discarded with suitable post-processing.
An alternative procedure is to suitably enrich the space of Lagrangian finite elements with
singular solutions. For a detailed description of this method we refer to [2, 15] and references
therein.

Instead, the solution of problem (1) with edge finite elements, introduced by Nédélec
[19], is known to be convergent and free of spurious modes [6, 7]. The main feature of
edge elements is to solve (1) without requiring any control on the divergence. This is made
possible by the validity of the De Rham commuting diagram [1, 18]. As it is well known,
edge elements provide, in general, discontinuous approximations of electromagnetic fields,
and no control on the divergence of the discrete solutions can be set.

In this work we introduce a new numerical method for the solution of problem (1) in the
spirit of [16]. We restrict, for the sake of simplicity, to classical B-splines approximations of
the geometry and of the unknown field. To some extend, this method can be understood as
a generalization of edge elements to B-splines-based Isogeometric Analysis. In fact, the key
point of the method is the choice of adequate spaces of B-splines such that they satisfy the
De Rham diagram. With this choice, it is possible to approximate the space H0(curl; Ω)
without any control on the divergence, analogously to what edge elements do. The numerical
analysis of this method is not well developed yet, due to the lack of a commuting projector,
and we prove here only suboptimal convergence results for regular solutions. However,
we have performed several numerical tests which show the optimal behavior of the method.
Indeed, in all cases the solution is free of spurious modes, and the method has proved capable
to approximate singular solutions with good convergence rate. Moreover, the numerical
results also show that for regular solutions the divergence converges to zero as the mesh is
refined.

The outline of the paper is as follows. In Section 2 we introduce some notation and
recall the continuous problems we want to solve, namely a spectral problem and a given
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source problem derived from Maxwell’s equations. In Section 3 we present a brief review
on B-splines basis functions and introduce the new discretization scheme, based on B-spline
spaces. The approximation analysis of this scheme is carried out in Section 4 following the
results of [4]. Finally, in Section 5 we present several numerical tests which confirm the good
performance of our method.

2 The continuous problem
Let D ⊂ R2 be a bounded Lipschitz domain. We denote by Lp(D) the classical Lebesgue
spaces endowed with the norm ‖ · ‖Lp(D), and by Lp(D) their vectorial counterparts. The
Hilbert spaces Hk(D) denote the functions in L2(D) such that their k− th order derivatives
also belong to L2(D), and by H k(D) we denote their vectorial counterparts. For k = 0,
H 0(D) = L2(D). The space H(curl;D) is the space of fields belonging to L2(D) such that
their curl belongs to L2(D), and it is endowed with the norm ‖v ‖H ( curl ;D) := (‖v ‖2L2 +
‖ curl v ‖2L2)1/2. Analogously, the space H(div;D) is the space of functions in L2(D) such
that their divergence belongs to L2(D), and it is endowed with the norm ‖v ‖H ( div ;D) :=
(‖v ‖2L2 + ‖ div v ‖2L2)1/2. Its subspace H(div0;D) is formed by all functions in H(div;D)
with divergence equal to zero.

Let Ω be our computational domain, which for the sake of simplicity we assume to
be simply connected. We assume that the boundary of Ω is split into two disjoint parts,
∂Ω = ΓD ∪ ΓN , with ΓD 6= ∅. We denote by H0,ΓD ( curl ; Ω) the space of functions in
H(curl; Ω) with vanishing tangential trace in ΓD. In particular, we denote H0(curl; Ω) :=
H0,∂Ω( curl ; Ω)

We are interested in solving two different kind of problems, both of them arising from
Maxwell’s equations with constant physical properties. The first one is the eigenvalue prob-
lem (see, for instance, [6]):

Find ω ∈ R and u ∈ H0(curl; Ω) , u 6= 0, satisfying

( curl u , curl v ) = ω2( u , v ) ∀v ∈ H0(curl; Ω) . (2)

It is well known that ω = 0 is the essential spectrum, with associated infinite dimen-
sion eigenspace, and that all other eigenvalues form a sequence diverging to infinity with
associated eigenspaces belonging to H0(curl; Ω) ∩ H(div0; Ω) .

The second problem we deal with is deduced from Maxwell’s equations with a given
current density f , and imposing mixed homogeneous boundary conditions. The equations
of the problem in its strong form are the following:

Given f ∈ L2(Ω), find u satisfying curl curl u + u = f in Ω ,
u × n = 0 on ΓD ,
curl u = 0 on ΓN .

(3)

And in weak form the problem reads:
Given f ∈ L2(Ω), find u ∈ H 0,ΓD ( curl ; Ω) such that∫

Ω

curl u curl v +
∫

Ω

u · v =
∫

Ω

f · v ∀v ∈ H 0,ΓD ( curl ; Ω) . (4)

The analysis of this problem is already well known, and existence and uniqueness of
solution can be proved (see, for instance, [18, Ch. 4]).
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3 Discretization of the problem using B-splines
In this section we introduce a discretization scheme based on B-splines for problems (2)
and (4), and which satisfies the De Rham diagram. In order to do so, we first present an
introduction of B-spline spaces and their basis functions. The aim of this presentation is to
establish the notation and recall some properties of B-splines. For a more complete review
on this subject we refer the reader to [16]. Further analysis of B-splines functions and spaces
can be found in [12] and [21].

3.1 An overview of B-splines
Given two positive integers p and n, we introduce the (ordered) knot vector

Ξ := {0 = ξ1, ξ2, . . . , ξn+p+1 = 1} , (5)

where we allow repetition of knots, that is, we only assume ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1. We also
introduce the vector {ζ1, . . . , ζm} of knots without repetitions, and the vector {r1, . . . , rm}
of their corresponding multiplicities, such that

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
r1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
r2 times

, . . . , ζm, . . . , ζm︸ ︷︷ ︸
rm times

},

with
∑m
i=1 ri = n+ p+ 1. The maximum multiplicity we allow is p+ 1. In the following we

will only work with open knot vectors, which means that r1 = rm = p+ 1, that is, the first
p + 1 knots in Ξ are equal to 0, and the last p + 1 are equal to 1. Notice that this implies
n ≥ p+ 1.

Through the iterative procedure detailed in [16] we construct p-degree (that is, (p+ 1)-
order) B-spline basis functions, denoted by Bi, for i = 1, . . . , n. These basis functions
are piecewise polynomials of degree p on the subdivision {ζ1, . . . , ζm}. At ζi they have
αi := p− ri continuous derivative. Therefore, −1 ≤ αi ≤ p− 1: the maximum multiplicity
allowed, ri = p + 1, gives αi = −1, which stands for a discontinuity at ζi. The vector
α = {α1, . . . , αm} collects the regularity of the basis functions at the internal knots, with
α1 = αm = −1 for the boundary knots, because of the open knot vector structure. Each
basis function Bi is non-negative and supported in the interval [ξi, ξi+p+1]. Moreover, these
B-spline functions constitute a partition of unity, that is

n∑
i=1

Bi(x) = 1 ∀x ∈ (0, 1). (6)

The space of B-splines spanned by the basis functions Bi will be denoted by

Spα := span{Bi}ni=1. (7)

An example of quadratic B-splines constructed from the open knot vector

Ξ = {0, 0, 0, 1/5, 2/5, 3/5, 3/5, 4/5, 1, 1, 1}

is presented in Figure 1. In this case α = {−1, 1, 1, 0, 1,−1}. Notice that, since the knot
ξ6 = ξ7 = ζ4 = 3/5 has multiplicity r4 = 2, the fourth, fifth and sixth functions are only
continuous (α4 = 0) at that point.

When αi ≥ 0, for all 2 ≤ i ≤ m−1, the derivatives of functions in Spα are splines as well.
We have indeed {

d

dx
v : v ∈ Spα

}
= Spα−1, (8)
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where, here and in what follows, we adopt the notation α − 1 = {−1, α2 − 1, . . . , αm−1 −
1,−1}, when α = {α1 = −1, α2, . . . , αm−1, αm = −1}
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Figure 1: Quadratic B-splines basis functions constructed from the open knot vector Ξ =
{0, 0, 0, 1/5, 2/5, 3/5, 3/5, 4/5, 1, 1, 1}.

The space of piecewise smooth functions on {ζ1, . . . , ζm}, such that restricted to each
subinterval (ζi, ζi+1) admit a C∞ extension to the close interval [ζi, ζi+1], and have αi
continuous derivative at ζi, for all i = 2, . . . ,m− 1, is denoted by C∞α .

The previous definition of the B-splines space is extended to the two-dimensional frame-
work in the following way. Let us consider the square Ω̂ = (0, 1)2 ⊂ R2, which will
be referred to as a patch. Given integers pd and nd, with d = 1, 2, we introduce the
knot vectors Ξd = {ξ1,d, ξ2,d, . . . , ξnd+pd+1,d} and the associated vectors {ζ1,d, . . . , ζmd,d},
{r1,d, . . . , rmd,d} and {α1,d, . . . , αmd,d}, as in the one-dimensional case. Associated with
these knot vectors there is a mesh Qh of the patch, that is, a partition of (0, 1)2 into rectan-
gles:

Qh = {Q = ⊗d=1,2(ζid,d, ζid+1,d), 1 ≤ id ≤ md − 1}. (9)

Given an element Q ∈ Qh, we set by hQ = diam(Q), while h = max{hQ, Q ∈ Qh} represents
the global mesh size.

We associate to the two given knot vectors Ξd, d = 1, 2 the pd-degree univariate B-splines
basis functions Bi,d, with i = 1, . . . , nd. Then, on the associated mesh Qh, we define the
tensor-product B-spline basis functions as

Bij := Bi,1 ⊗Bj,2, i = 1, . . . , n1, j = 1, . . . , n2 . (10)

Then, the tensor product B-spline space is defined as the space spanned by these basis
functions, namely

Sp1,p2α1,α2
≡ Sp1,p2α1,α2

(Qh) := Sp1α1
⊗ Sp2α2

= span{Bij}n1,n2
i=1,j=1 . (11)

Notice that the space Sp1,p2α1,α2
(Qh) is fully characterized by the mesh Qh, by p1, p2, α1 and

α2, as our notation reflects. The minimum regularity of the space is α := min{αi,d : i =
2, . . . ,md − 1, d = 1, 2}. This viewpoint is more natural in our context.

In a similar way, we define on Qh the space of piecewise smooth functions with interele-
ment regularity assigned by the vectors α1 and α2, on the vertical and horizontal mesh
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edges, respectively. This is denoted by

C∞α1,α2
= C∞α1,α2

(Qh) = C∞α1
⊗ C∞α2

.

Precisely, a function in C∞α1,α2
admits a C∞ extension in the closure of each element Q ∈ Qh,

has αi,1 continuous derivatives on the edges {(x1, x2) : x1 = ζi,1, ζj,2 < x2 < ζj+1,2}, for
j = 1, . . . ,m1 − 1, and αi,2 continuous derivatives on the edges {(x1, x2) : ζj,1 < x1 <
ζj+1,1, x2 = ζi,2, }, for j = 1, . . . ,m1 − 1. From the definitions, Sp1,p2α1,α2

⊂ C∞α1,α2
.

Moreover, let Hk = Hk(Qh) be the broken k-order Sobolev space, that is, the space of
functions in L2(Ω̂) whose restriction to Q belongs to Hk(Q), for all Q ∈ Qh. The space Hk

is endowed with seminorms and norm

| · |Hl :=

 ∑
Q∈Qh

| · |2Hl(Q)

1/2

, l = 0, 1, . . . , k,

‖ · ‖Hk :=

 ∑
Q∈Qh

‖ · ‖2Hk(Q)

1/2

,

Finally, the closure of C∞α1,α2
in Hk is denoted by Hk

α1,α2
= Hk

α1,α2
(Qh). The last space was

introduced in [4] and named bent Sobolev space. Notice that the functions in Hk
α1,α2

have
derivatives up to order min{k − 1, αi,d} that match, in the sense of traces, at the internal
vertical (d = 1) or horizontal (d = 2) mesh edges lying on the line given by the equation
xd = ζi,d, i = 2, . . . ,md − 1.

From an initial coarse mesh Qh0 , refinements are constructed by knot insertion (with
possible repetition, see [12]). Therefore, we end up considering a family of meshes {Qh}h≤h0

and associated spaces, with the global mesh size h playing the role of family index, as usual
in finite element literature.

We assume that our computational domain Ω ⊂ R2 can be exactly parametrized by a
geometrical mapping F : Ω̂ −→ Ω which belongs to (C∞γ1,γ2

(Qh))2, with piecewise smooth
inverse, and is independent of the mesh family index h. The global regularity of F is
γ := min{γi,d : i = 2, . . . ,md − 1, d = 1, 2}. In our examples and numerical tests, F is

taken in
(
Sq,qγ0,1,γ0,2

(Qh0)
)2

, that is, F is a q-degree spline defined on the coarsest mesh Qh0 :
to each of the B-spline basis functions Bij( x ) ∈ Sq,qγ0,1,γ0,2

(Qh0) is associated a control point
C ij ∈ R2, such that

x 7−→ F ( x ) :=
∑
ij

Bij( x ) C ij . (12)

3.2 The De Rham diagram
For any function w ∈ H1(Ω) it holds that curl gradw = 0, thus it is clear that gradw ∈
H(curl; Ω) . Moreover, since the domain Ω is simply connected, we also know that the range
of the gradient operator is equal to the kernel of the curl operator, namely Im( grad ) =
ker( curl ). This is summarized in the De Rham diagram:

R −−−−→ H1(Ω)
grad−−−−→ H(curl; Ω) curl−−−−→ L2(Ω) −−−−→ 0 . (13)

In order to discretize the continuous problems of Section 2 it is necessary to construct
finite dimensional spaces Uh ⊂ H1(Ω), Vh ⊂ H(curl; Ω) and Wh ⊂ L2(Ω), maintaining the
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same relationships of the continuous spaces given in (13). This is in fact what one does
when using edge finite elements to approximate H(curl; Ω) , and standard Lagrange finite
elements of suitable degree to discretize H1(Ω) and L2(Ω) (see [18]). The first step is to
construct suitable discretizations of the spaces in the patch Ω̂. With the notation of Section
3.1, let Qh be a mesh and Sp1,p2α1,α2

(Qh) the associated space of splines of order p1 in the x
direction, p2 in the y direction, and smoothness given by the vectors α1, α2. We assume,
from now on, that α = min{αi,d : i = 2, . . . ,md − 1, d = 1, 2} is nonnegative.

Recalling (8), the gradients of Sp1,p2α1,α2
(Qh) belong to Sp1−1,p2

α1−1,α2
(Qh)× Sp1,p2−1

α1,α2−1(Qh), and
the curl of fields belonging to this last space is in Sp1−1,p2−1

α1−1,α2−1(Qh). Notice that these spaces
are built from different knot vectors, though the difference is only in the multiplicity of the
boundary knots.1 The following proposition states that the previous discrete spaces form a
De Rham diagram on the patch Ω̂.

Proposition 3.1. With the notation and assumptions above, the following diagram holds

R→ Sp1,p2α1,α2
(Qh)

grad−−−−→ Sp1−1,p2
α1−1,α2

(Qh)× Sp1,p2−1
α1,α2−1(Qh) curl−−−−→ Sp1−1,p2−1

α1−1,α2−1(Qh)→ 0.
(14)

Proof. We already observed that, from the definition of the gradient and the curl operators,
for any functions w ∈ Sp1,p2α1,α2

(Qh) and u ∈ Sp1−1,p2
α1−1,α2

(Qh)×Sp1,p2−1
α1,α2−1(Qh) we have gradw ∈

Sp1−1,p2
α1−1,α2

(Qh)× Sp1,p2−1
α1,α2−1(Qh) and curl u ∈ Sp1−1,p2−1

α1−1,α2−1(Qh). Moreover, it is also clear that
curl ( gradw) = 0, which means that

grad (Sp1,p2α1,α2
(Qh)) ⊂ ker( curl ) ∩ {Sp1−1,p2

α1−1,α2
(Qh)× Sp1,p2−1

α1,α2−1(Qh)} (15)

Therefore, it is sufficient to prove that both spaces have the same dimension. The dimension
of Sp1,p2α1,α2

(Qh) is equal to n1n2, with the notation above, and, since dim(ker( grad )) = 1,
we infer that dim( grad (Sp1,p2α1,α2

(Qh))) = n1n2 − 1. For the kernel of the curl operator we
know that

dim(ker( curl )) + dim(Im( curl )) = dim(Sp1−1,p2
α1−1,α2

(Qh)× Sp1,p2−1
α1,α2−1(Qh))

= (n1 − 1)n2 + n1(n2 − 1)
= 2n1n2 − n1 − n2 ,

(16)

where the last equality holds from the definition of the space. Thus, the result will be proved
if we can show that dim(Im( curl )) = (n1−1)(n2−1) = n1n2−n1−n2 +1. Since this is the
dimension of the space Sp1−1,p2−1

α1−1,α2−1(Qh), we have to prove that the curl operator is surjective.
This is easily seen from the properties of the derivative. We recall (8), that is, in one space

1If Sp1,p2
α1,α2 (Qh) is associated to the open knot vectors

{0 = ξ1,1, ξ2,1, . . . , ξn1+p1,1, ξn1+p1+1,1 = 1} × {0 = ξ1,2, ξ2,2, . . . , ξn2+p2,2, ξn2+p2+1,2 = 1},

then Sp1−1,p2
α1−1,α2

(Qh) is associated to

{0 = ξ2,1, . . . , ξn1+p1,1 = 1} × {0 = ξ1,2, ξ2,2, . . . , ξn2+p2,2, ξn2+p2+1,2 = 1},

Sp1,p2−1
α1,α2−1(Qh) is associated to

{0 = ξ1,1, ξ2,1, . . . , ξn1+p1,1, ξn1+p1+1,1 = 1} × {0 = ξ2,2, . . . , ξn2+p2,2 = 1},

and finally Sp1−1,p2−1
α1−1,α2−1(Qh) is associated to

{0 = ξ2,1, . . . , ξn1+p1,1 = 1} × {0 = ξ2,2, . . . , ξn2+p2,2 = 1}.
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dimension the derivative operator maps the n1-dimensional space Sp1α1
into the (n1 − 1)-

dimensional space Sp1−1
α1−1, and since its kernel has dimension equal to one, the derivative

operator is surjective. Analogously, the first partial derivative is a surjective operator from
Sp1,p2−1

α1,α2−1(Qh) into Sp1−1,p2−1
α1−1,α2−1(Qh), and as an immediate consequence of its definition, the

curl operator is also surjective from Sp1−1,p2
α1−1,α2

(Qh)×Sp1,p2−1
α1,α2−1(Qh) into Sp1−1,p2−1

α1−1,α2−1(Qh).

Once we have defined the finite dimensional spaces in the patch Ω̂, the next step is to
construct the corresponding spaces in our physical domain Ω. The finite dimensional spaces
for the scalar functions are defined via the geometrical parametrization F : Ω̂ −→ Ω as
follows:

Uh = {φ : φ ◦ F = φ̂, φ̂ ∈ Sp1,p2α1,α2
(Qh)} , (17)

Wh = {w : w ◦ F =
1

det(DF )
ŵ, ŵ ∈ Sp1−1,p2−1

α1−1,α2−1(Qh)} . (18)

where DF is the Jacobian matrix of the parametrization F . In order to conserve the curl
properties, vector functions in the patch are mapped into the physical domain via a covariant
transformation, hence the corresponding finite dimensional space is defined as:

Vh = {u : u ◦ F = (DF )−> û , û ∈ Sp1−1,p2
α1−1,α2

(Qh)× Sp1,p2−1
α1,α2−1(Qh)} , (19)

The following proposition states that the De Rham diagram also holds in the finite dimen-
sional spaces defined in the physical domain Ω.

Proposition 3.2. Let the spaces Uh, Vh and Wh be defined as in (17)-(19). Then the
following diagram holds

R→ Uh
grad−−−−→ Vh

curl−−−−→ Wh → 0 (20)

Proof. The result is a direct consequence of Proposition 3.1, and the fact that the space Vh
is defined via a curl conserving transformation, as it is explained in [18, Sect. 3.9].

Remark 3.1. We notice that, leaving the parametrization aside, that is, working on the
patch Ω̂, and assuming that p1 = p2 = p, our discretization scheme with α1 = {−1, 0, . . . , 0,−1}
and α2 = {−1, 0, . . . , 0,−1} is equivalent to Nédélec’s finite elements of the first kind. As
it is known, in this case the normal component of the approximation is not necessarily con-
tinuous. One of the advantages of our method is that the regularity of the solution can be
increased with respect to edge finite elements. Indeed, our method provides an approximated
solution with up to p− 2 continuous derivatives. In particular, by using quadratic elements
it is possible to find a globally continuous numerical solution, with well defined divergence
in the space L2(Ω).

3.3 The discrete problem
Now that we have constructed the finite dimensional spaces in the physical domain Ω, we
can introduce the discrete version of our problem. In order to do so, we must define some
spaces satisfying certain boundary conditions. As it is explained in [16], natural boundary
conditions are imposed as in standard finite element analysis. To impose Dirichlet boundary
conditions on the boundary ΓD ⊆ ∂Ω, let us introduce the notation γD = F−1(ΓD). First
we define the constrained space in the patch Ω̂

Vh,γD := (Sp1−1,p2
α1−1,α2

(Qh)× Sp1,p2−1
α1,α2−1(Qh)) ∩ H 0;γD ( curl ; Ω̂). (21)
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Analogously, we can define the constrained space in the physical domain Ω

Vh;ΓD := Vh ∩ H 0;ΓD ( curl ; Ω) = {u : u ◦ F = (DF )−> û , û ∈ Vh,γD} , (22)

and in the particular case of ΓD = ∂Ω, we denote it by Vh;0 ≡ Vh;∂Ω := Vh ∩ H0(curl; Ω) .
Once we have introduced the constrained spaces it is possible to write the discrete version

of our problems. The discrete eigenvalue problem reads:
Find ω ∈ R and u h ∈ Vh;0, u h 6= 0, satisfying

( curl u h, curl v h) = ω2( u h, v h) ∀v h ∈ Vh;0 . (23)

And the discrete version of the source problem (4) is the following:
Given f ∈ L2(Ω), find u h ∈ Vh;ΓD such that∫

Ω

curl u h curl v h +
∫

Ω

u h · v h =
∫

Ω

f · v h ∀v h ∈ Vh;ΓD . (24)

Remark 3.2. It is also possible to define constrained spaces in Uh and Wh in order to
obtain the De Rham diagram in the constrained spaces. For example, we can define Uh;0 :=
Uh ∩H1

0 (Ω), which following the notation of Proposition 3.1 has dimension equal to (n1 −
2)(n2 − 2). Then it can be seen that ker( curl ) ∩ Vh;0 = grad (Uh;0) and the dimension of
this space is also equal to (n1 − 2)(n2 − 2).

4 Approximation analysis
In this section we present an error analysis which is sub-optimal and valid only for regular
solutions of the problem (24). Indeed, this should be considered as the starting point for a
more general analysis able to cover also the case of non-regular solutions and the eigenvalue
problem (23). The reason why we cannot perform a general analysis is that we do not have
suitable commuting projectors at our disposal. On the other hand, we treat in optimal way
the presence and the regularity of the mapping F.

The present analysis follows [4] and use results in [21]. Since the problem (24) is coercive,
the analysis of the error of the numerical method is reduced to the analysis of the best
approximation error in the norm H ( curl ,Ω).

In order to present our analysis, we recall and specify some notation. We assume, for
the sake of simplicity, that the same degree of approximation p = p1 = p2 is adopted in
both Cartesian directions. Given the mesh Qh, which is assumed to be shape regular (that
is, the element length ratios are assumed to be bounded uniformly with respect to h) and
the vectors α1, α2, the discrete spaces are constructed as detailed in previous sections.
We recall that α := min{αi,d : i = 2, . . . ,md − 1, d = 1, 2}. The geometrical mapping
F : Ω̂ −→ Ω belongs to (C∞γ1,γ2

(Qh))2, for some given vectors γ1 and γ2, with the scalar
γ = min{γi,d : i = 2, . . . ,md − 1, d = 1, 2} denoting its global regularity, which we assume
nonnegative. Furthermore, F has a piecewise smooth inverse, and, since it is defined on the
coarsest level of the mesh, is independent of the mesh family index h.

The following approximation result on the parametric space Ω̂ follows from [4, Lemma
3.3].

Lemma 4.1. There exists a projector ΠS : L2(Ω̂) → Sp−1,p
α1−1,α2

(Qh) × Sp,p−1
α1,α2−1(Qh), such

that, for all û ∈ Hl
α1−1,α2

(Qh)×Hl
α1,α2−1(Qh) it holds:∑

Q∈Qh

| û −ΠS û |2H k(Q) ≤ C
∑
Q∈Qh

h
2(l−k)
Q | û |2H l(Q). (25)
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for any 0 ≤ k ≤ l ≤ p, and with C only dependent on p.

From Lemma 4.1, we derive the approximation error estimates on the physical domain.
We define the projector onto Vh by push-forward :

(ΠVh u ) ◦ F = DF−TΠS( û ), û = DF T ( u ◦ F ). (26)

The projector ΠVh verifies the following approximation properties.

Proposition 4.1. With the previous notation and assumptions, let α ≥ 0, 1 ≤ l ≤ p.
If γd ≥ αd (that is, γi,d ≥ αi,d, ∀i), for d = 1, 2. Then, there exists a constant C = C( F , p)
such that

‖u −ΠVh u ‖L2(Ω) + h‖ curl ( u −ΠVh u )‖L2(Ω) ≤ Chl‖u ‖H l(Ω), ∀u ∈ H l(Ω). (27)

Otherwise, for any 1 ≤ η < γ + 1/2 there exists a constant C = C( F , γ, p) such that

‖u −ΠVh u ‖L2(Ω) + h‖ curl ( u −ΠVh u )‖L2(Ω) ≤ Chη‖u ‖H η(Ω), ∀u ∈ H η(Ω). (28)

Proof. Let K = F (Q), for a generic Q ∈ Qh. We can compute:∫
K

|u −ΠVh u |2 =
∫
Q

|detDF | |u ◦ F − (ΠVh u ) ◦ F |2

≤ ‖detDF ‖L∞(Q)|‖DF−T ‖L∞(K)

∫
Q

| û −ΠS û |2.

Then
‖u −ΠVh u ‖L2(Ω) ≤ C( F )‖ û −ΠS û ‖L2(bΩ). (29)

Consider the first component of û , which we denote û1; from the definition (26)

û1(x1, x2) =
∂ F
∂x1

(x1, x2) · ( u ◦ F )(x1, x2). (30)

From the assumptions on u and F , one has ∂ F
∂x1

∈ (C∞γ1−1,γ2
(Qh))2, and u ◦ F ∈

Hl
γ1,γ2

(Qh). Therefore, we obtain û1 ∈ Hl
γ1−1,γ2

(Qh) ⊆ Hl
α1−1,α2

(Qh), using γd ≥ αd.
In an analogous way, for the second component of û , denoted û2, we can prove û2 ∈
Hl

α1,α2−1(Qh). Therefore û ∈ Hl
α1−1,α2

(Qh) × Hl
α1,α2−1(Qh). We also have, for the

smoothness of F within each element, by change of variable∑
Q∈Qh

| û |2H l(Q) ≤ C( F )‖u ‖2H l(Ω). (31)

We can then use (25), with (29) and (31), and obtain

‖u −ΠVh u ‖L2(Ω) ≤ C( F )hl‖u ‖H l(Ω). (32)

For the estimate of the term ‖ curl u − curl ΠVh u ‖L2(Ω) we recall that

( curl u ) ◦ F =
1

detDF
curl û .

( curl ΠVh u ) ◦ F =
1

detDF
curl ΠS û .
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Therefore, by change of variable,∫
K

| curl u − curl ΠVh u |2 ≤ ||detDF ‖−1
L∞(Q)

∫
Q

| curl û − curl ΠS û |2

≤ ||detDF ‖−1
L∞(Q)| û −ΠS û |2H 1(Q).

(33)

Reasoning as before, one obtains

‖ curl u − curl ΠVh u ‖L2(Ω) ≤ C( F )hl−1‖u ‖H l(Ω). (34)

If the assumption γi,d ≥ αi,d does not hold true for all i, and d = 1, 2, then, in general, the
vector field û 6∈ Hl

α1−1,α2
(Qh)×Hl

α1,α2−1(Qh) and Lemma 4.1 cannot be applied. Instead,
by standard Sobolev embedding theorem, we know that û ∈ H η(Ω) for all η < γ + 1/2
and we can apply a standard Bramble-Hilbert Lemma. Since ΠS reproduces polynomials
up to degree p− 1, and 1 ≤ η ≤ p, by usual scaling argument we obtain

‖u −ΠVh u ‖L2(Ω) + h|u −ΠVh u |2H 1(Ω). ≤ C( F )hη‖u ‖H η(Ω),

eventually giving (28).

Remark 4.1. The Proposition 4.1 says that, in order to have an optimal best approximation
error on regular vector fields, the parametrization F for the physical domain must be point-
wise at least as regular as the basis functions we then use to construct test and trial vector
fields. This fact is clearly demonstrated by our numerical results.

5 Numerical tests
In this section we present the results given by our discretization technique when applied
to three different benchmark problems. The first one is the computation of Maxwell’s
eigenvalues in a square. In the second test we solve the same problem in a non-convex
L-shaped domain. Finally, the third one is a source problem posed in the same L-shaped
domain, and the solution is known to have an unbounded singularity in the non-convex
corner. The numerical method has been implemented in Matlab, using the algorithms
given in [20] for the evaluation of B-splines and their derivatives.

5.1 Maxwell’s eigenvalues in the square
In this first test we numerically solve problem (2) in the square (0, π)2 ⊂ R2. The eigenvalues
are given by ω2 = i2 + j2, with i, j = 0, 1, . . . , and their corresponding eigenfunctions are
u = (−j cos(ix) sin(jy), i sin(ix) cos(jy)).

The geometry is described using four parameterizations, which differ in their degrees
and continuities. The coarsest mesh is built from the open knot vectors Ξ1 = Ξ2 =
{0, . . . 0, 1

4 ,
2
4 ,

3
4 , 1, . . . , 1}. Then we construct the spaces of B-splines Sq,qγ1,γ2

(Qh0), with
q = 1, . . . , 4, and γ1 = γ2 = {−1, γ, γ, γ,−1}, with γ = q − 1. The parametrization is then
defined with a uniform distribution of the control points C ij ∈ [0, π]2, for i, j = 1, . . . , q+4.
This choice of the control points yields a C∞ parametrization for q = 1 (in fact, the product
of π by the identity), and Cγ parameterizations for q = 2, 3, 4.

To construct the spaces of trial and test functions we consider the previous knot vec-
tors with different multiplicities of the internal knots { 1

4 ,
2
4 ,

3
4}. In particular, we consider

B-splines of degree p = 2, 3, 4, and global regularity α < p. That is, we require for the

11



internal knots a multiplicity p− α, to construct the spaces Sp−1,p
α1−1,α2

(Qh0)× Sp,p−1
α1,α2−1(Qh0),

α1 = α2 = {−1, α, α, α,−1}. To each space in the parametric domain we apply the covari-
ant transformation described in Section 3.2, with the four parametrizations described above.
This means that we have several discretization spaces Vh;0 ≡ Vh;0(p, α, F ) depending on the
degree and the continuity of the B-splines basis functions, but also on the parametrization of
the physical domain. The problem is then solved in five successively refined meshes, where
we refine using knot insertion (see [16]) of knots with multiplicity 1, and maintaining the
previous p− α multiplicity of the initial internal knots 1

4 ,
2
4 ,

3
4 . This is named k-refinement

in [16].
In the figures we present the convergence rate of the approximation to the eigenfunction

corresponding to the pair (i, j) = (3, 3) in several cases. In Figure 2 the C∞ and C3

parameterizations are considered, and the convergence rate is seen to be always equal to
p. In Figure 3 we show the convergence results for p = 4 and different values of α, when
considering the C1 and C2 parametrizations. As was pointed in Remark 4.1, the optimal
convergence rate is only achieved when the regularity of the test functions is lower or equal
than the regularity of the parametrization.
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Figure 2: Errors on the (3, 3) eigenfunction, in the energy norm on the square. Linear and
piecewise quartic parameterizations.

In Table 1 we show the first non-null eigenvalues computed in the five meshes when
considering p = 2, α = 1 and the linear C∞ parametrization. As can be seen our results are
free of spurious modes. Moreover, following the notation of Proposition 3.1, the dimension
of the space Vh;0, that is, the number of degrees of freedom, is equal to 2(n− 1)(n− 2), and
the number of computed zeros is equal to (n− 2)2. This last value is exactly the dimension
of the kernel of the curl operator, as already explained in Remark 3.2.

As we noticed in Remark 3.1, for α ≥ 1 the solution of the problem is approximated with
continuous piecewise polynomials. As a consequence the divergence of our numerical solution
is well defined and can be numerically computed. To show this we have considered the
approximation of the eigenfunction corresponding to the pair (m,n) = (3, 3) and computed
its divergence in several cases. In the left side of Figure 4 we plot the convergence of the L2-
norm of this divergence, computed for different degrees and continuities of the discretization
space and using the linear C∞ parametrization to describe the physical domain. In the right
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Figure 3: Errors on the (3, 3) eigenfunction, in the energy norm on the square. Piecewise
quadratic and piecewise cubic parameterizations.

Mode Exact Computed
(1,0) 1.00000 1.00060 1.00003 1.00000 1.00000 1.00000
(0,1) 1.00000 1.00060 1.00003 1.00000 1.00000 1.00000
(1,1) 2.00000 2.00120 2.00007 2.00000 2.00000 2.00000
(2,0) 4.00000 4.05285 4.00240 4.00014 4.00001 4.00000
(0,2) 4.00000 4.05285 4.00240 4.00014 4.00001 4.00000
(2,1) 5.00000 5.05345 5.00243 5.00014 5.00001 5.00000
(1,2) 5.00000 5.05345 5.00243 5.00014 5.00001 5.00000
(2,2) 8.00000 8.10569 8.00480 8.00027 8.00002 8.00000
(3,0) 9.00000 9.79260 9.03157 9.00162 9.00010 9.00001
(0,3) 9.00000 9.79260 9.03157 9.00162 9.00010 9.00001
(3,1) 10.00000 10.79320 10.03160 10.00162 10.00010 10.00001
(1,3) 10.00000 10.79320 10.03160 10.00162 10.00010 10.00001
(3,2) 13.00000 13.84545 13.03397 13.00175 13.00010 13.00001
(2,3) 13.00000 13.84545 13.03397 13.00175 13.00010 13.00001
(4,0) 16.00000 16.21139 16.21139 16.00960 16.00055 16.00003
(0,4) 16.00000 16.21139 16.21139 16.00960 16.00055 16.00003
(4,1) 17.00000 17.21199 17.21142 17.00960 17.00055 17.00003
(1,4) 17.00000 17.21199 17.21142 17.00960 17.00055 17.00003
(3,3) 18.00000 19.58520 18.06314 18.00324 18.00019 18.00001
(4,2) 20.00000 20.26424 20.21379 20.00974 20.00055 20.00003
(2,4) 20.00000 20.26424 20.21379 20.00974 20.00055 20.00003

d.o.f. 40 144 544 2112 8320
number of zeros 16 64 256 1024 4096

Table 1: First non-null eigenvalues computed in the square.

side of Figure 4 we represent the divergence in the particular case of p = 3 and α = 2. As
can be seen by these results, our method yields an oscillating divergence field, which tends
to zero as the mesh is refined.

5.2 Maxwell’s eigenvalues in an L-shaped domain
For our second test the physical domain is the L-shaped domain Ω = (−1, 1)2 \ (−1, 0)2.
We describe the geometry by a piecewise quadratic parametrization which is continuously
differentiable in the interior of the domain. In order to do so, we introduce the knot vec-
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Figure 4: Divergence for the eigenfunction (m,n) = (3, 3). Left: convergence of its L2-norm.
Right: a plot in the case p = 3, α = 2.

tors Ξ1 = {0, 0, 0, 0.5, 1, 1, 1} and Ξ2 = {0, 0, 0, 1, 1, 1}, and construct the parametrization
by repeating the control points in the corners (0, 0) and (1, 1) (see Figure 5). With this
construction, the inverse of the parametrization is unbounded in the two corners (0, 0) and
(1, 1), which is actually a case not covered by the analysis of Section 4.

Figure 5: Left: control net for geometry description of the L-shaped domain. Center: mesh
generated by the previous control net. Right: coarsest mesh used for computation.

Again, we solve problem (23) in several spaces differing in their degrees and regularity.
At the coarsest level of discretization, we consider the spaces Vh;0 ≡ Vh;0(p, α), with p =
1, . . . , 4, and internal (global) regularity α = 0 in the case p = 1, and α = 1 in the other
three cases. This regularity is achieved by repeating the knot 0.5 in the knot vector Ξ1, and
it is chosen in order to obtain the optimal convergence, as discussed in Remark 4.1.

The problem is solved in five successively k-refined meshes. In Figures 6 and 7 we
present the convergence results for the first four non-null eigenvalues. According to [10],
the first and second non-null eigenvalues are associated to eigenfunctions which belong to
H 2/3−ε(Ω) and H 4/3−ε(Ω), respectively, for any ε > 0. The convergence rate in energy
norm for these functions is expected to be 2/3 and 4/3, respectively, and at least 4/3 and
8/3 for their corresponding eigenvalues. The third and fourth eigenfunctions are analytic,
and the convergence of their associated eigenvalues is equal to p2 in the four cases.
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Figure 6: L-shaped domain. Eigenvalues convergence with p = 1, α = 0 (left) and p = 2,
α = 1 (right).
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Figure 7: L-shaped domain. Eigenvalues convergence with p = 3, α = 1 (left) and p = 4,
α = 1 (right)..

In this case it is not possible to know if spurious modes appear in our solution, since the
entire spectrum is not known. However, we have compared our results to the ones obtained
with other methods (see [6] and [10]) and we can confirm that no spurious solutions appear
between our first non-null eigenvalues.

We also present in Table 2 the L2-norm of the divergence for the first four eigenfunctions,
computed with the choice p = 4 and α = 1. It is seen that the norm of divergence for the
first eigenfunction increases as we refine the mesh. The same behavior is observed for the
divergence of the second eigenfunction, but in this case it is less abrupt. The divergence
of the third and fourth eigenfunctions behaves as in the square domain, because these two
eigenfunctions are analytic.
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L2-norm of the divergence
Eigf. 1 3.09E+00 5.60E+00 9.87E+00 1.76E+01 3.14E+01
Eigf. 2 4.48E-01 3.75E-01 3.00E-01 4.14E-01 5.34E-01
Eigf. 3 7.76E-02 1.61E-01 1.64E-03 7.25E-05 7.10E-06
Eigf. 4 6.05E-02 4.59E-02 3.78E-03 7.40E-05 7.04E-06
d.o.f. 110 262 758 2518 9110

Table 2: L2-norm of the divergence for the first eigenfunctions in the L-shaped domain.

5.3 Source problem in an L-shaped domain
For this third test case we consider the L-shaped domain of the previous section, and denote
ΓD := (−1, 0) × {0} ∪ {0} × (−1, 0), and ΓN = ∂Ω \ ΓD. We want to solve the problem
with mixed boundary conditions given in (24). Denoting by (r, θ) a system of local polar
coordinates, and taking f = grad

(
r2/3 sin 2θ

3

)
yields that the unique solution to the problem

is given by u = f . Thus the solution belongs to H 2/3−ε(Ω), for any ε > 0, and the expected
convergence rate in the energy norm is then 2/3.

For our computations the geometry is described with the same parametrization given in
Section 5.2, and the problem is solved using the same meshes and spaces already described
in that section. In Figure 8 we present the convergence rate for the four cases and we see
that the convergence rate is always close to 2/3.
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Figure 8: Errors in energy norm for the source problem in the L-shaped domain.

6 Conclusion
In this paper, we have proposed a B-spline-based Isogeometric discretization of model elec-
tromagnetic problems. To that purpose, we have obtained a De Rham diagram for suitable
B-spline spaces, yielding a discretization of H(curl; Ω) which produces optimal discrete so-
lutions of source and eigenvalue Maxwell’s equations. The analysis of the proposed method
is not fully developed yet, due to the lack of commuting projectors, which are needed in the
so-called De Rham commuting diagram for B-spline spaces. However we have obtained sub-
optimal convergence results that give a first theoretical assessment of the method. Moreover,
we have shown numerical tests that give evidence of an optimal behavior of our approach in
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significant benchmark problems. One interesting feature of our discrete spaces, compared
to more classical edge finite elements of Nédélec type, is that they are globally smooth. We
can select any order of continuity, with the only constraint that the parametrization of the
geometrical domain has to be as smooth as the discrete space used for approximation.

We clearly showed the great potential of the Isogeometric approach in this context, which
deserves further theoretical investigation.
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