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Abstract  30 

We examine a hybrid multivariate regression technique to account for the spatial 31 

dependency in spectroscopic data due to adjacent measurement locations in the same 32 

joint by combining dimension reduction methods and linear mixed effects (LME) 33 

modeling. Spatial correlation is a common limitation (assumption of independence) 34 

faced in diagnostic applications involving adjacent measurement locations, such as 35 

mapping of tissue properties, and can impede tissue evaluations. Near-infrared 36 

spectra were collected from equine joints (n=5) and corresponding biomechanical 37 

(n=202), compositional (n=530), and structural (n=530) properties of cartilage tissue 38 

were measured. Subsequently, hybrid regression models for estimating tissue 39 

properties from the spectral data were developed in combination with principal 40 

component analysis (PCA-LME) scores and least absolute shrinkage and selection 41 

operator (LASSO-LME). Performance comparison of PCA-LME and principal 42 

component regression, and LASSO-LME and LASSO regression was conducted to 43 

evaluate the effects of spatial dependency. A systematic improvement in calibration 44 

models’ correlation coefficients and a decrease in cross validation errors were 45 

observed when accounting for spatial dependency. Our results indicate that 46 

accounting for spatial dependency using a LME-based approach leads to more 47 

accurate prediction models. 48 

 49 

Keywords: Linear mixed effects; articular cartilage; near infrared (NIR) spectroscopy; 50 

spectroscopic mapping; principal components; LASSO. 51 

 52 



  Prakash et al. 
 

3 
 

1. Introduction 53 

Articular cartilage, a connective tissue covering the ends of bones in a joint, is 54 

susceptible to post-traumatic osteoarthritis (PTOA) due to focal injuries caused by 55 

sudden excessive impact loading. The injury, although initially localized, often spreads 56 

over time, resulting in altered functional performance of the whole joint. Arthroscopic 57 

evaluation of tissue properties around the injury site and assessing the spread of the 58 

injury could enable optimal surgical intervention, thereby minimizing the risk of PTOA. 59 

Currently, in clinical arthroscopies[1], cartilage is assessed visually through an 60 

endoscope and by palpating the tissue surface with a metal hook[2]. This method is 61 

qualitative, unreliable, and poorly reproducible[3,4], thus necessitating development 62 

of novel, quantitative, robust, and reliable methods.  63 

 64 

Non-destructive diagnostic tools, such as near-infrared (NIR) spectroscopy, have 65 

shown potential for arthroscopic characterization of articular cartilage integrity[5]. NIR 66 

spectroscopy is a vibrational spectroscopic technique that has been utilized for spatial 67 

assessment of cartilage biomechanical, compositional, and structural properties[6–8]. 68 

In these studies, multivariate regression was utilized to relate cartilage NIR spectra 69 

with its tissue properties. However, conventional multivariate regression methods, 70 

such as partial least squares (PLS), are based on the underlying assumption of 71 

independent observations[9], whereas biomedical characterization of tissue integrity, 72 

for example in arthroscopy, often involves multiple measurement locations within close 73 

proximity in the same joint. This grouping effect of samples introduces spatial 74 

dependency and is likely to cause unreliable correlations if unaccounted for in 75 

regression modeling[10,11]. 76 
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 77 

Linear mixed effects (LME) regression and its input parameters, namely fixed effects 78 

and random effects, can be designed for specific datasets to account for grouping 79 

effects. Since only a limited number of regressors (input variables) can be utilized in 80 

model creation using LME, adaptation for a large set of variables, such as NIR spectra, 81 

requires dimension reduction and/or variable selection methods. Hence, the input 82 

variables need to be methodically selected by retaining only the most important ones. 83 

 84 

Application of dimension reduction methods, such as principal component analysis 85 

(PCA)[12] via PCA score, and variable selection and regularization methods like 86 

LASSO (least absolute shrinkage and selection operator) or L1-penalization[13], are 87 

effective approaches for reducing the high dimensionality of the data, such as NIR 88 

spectra. PCA finds a set of projections that maximizes the variance in the original 89 

dataset; hence, the data structure in the sample space is captured even in the low 90 

dimensional subspaces. LASSO[14] is a regularization method ideal for creating 91 

sparse models with high statistical accuracy in predictions.  92 

 93 

In this study, we propose a hybrid technique, which combines dimension reduction 94 

methods and LME regression, to account for spatial dependency in analysis of 95 

multivariate dataset. This is based on the hypothesis that the hybrid regression 96 

technique can effectively model the relationship between cartilage NIR spectra and its 97 

properties while accounting for dependencies within the data. 98 

 99 
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2. Materials and Methods 100 

To account for spatial dependency in the dataset, the contributing levels of 101 

dependency must first be identified. The levels of dependency are defined by the 102 

experimental design and the scope of the application. In our application on NIR-based 103 

characterization of cartilage, joint level (measurement locations grouped in one 104 

complete joint) and bone level (measurement locations grouped on one bone of a 105 

particular joint) were identified (Figure 1) as the two significant levels of 106 

dependency[15]. (Other application specific dependency levels can be accommodated 107 

in the design matrix) 108 

 109 

[Proposed position for Fig. 1] 110 

 111 

Subsequently, models were developed for relating the predictors (𝑿) to the response 112 

variables (𝒚) while accounting for the identified dependency levels (grouping effects). 113 

The adaptation of LME can be written in the equation form: 114 

 𝒚𝒊 = 𝑿𝜷 + 𝒁𝒖𝟏 +𝑴𝒖𝟐 + ɛ,  (1) 115 

where 𝒚𝒊is an N(number of observations)-by-1 response vector of reference values for 116 

the ith tissue property, 𝑿 is an N-by-P (dimension reduced NIR spectra) matrix of fixed 117 

effect regressors, 𝜷 is a P-by-1 vector of fixed effects coefficients, 𝒁 is an N-by-Q 118 

(grouping count) random effects design matrix, 𝑴 is an N-by-1 vector of additional 119 

random effects vector, 𝒖𝟏 and 𝒖𝟐 are the mixed effects coefficients of sizes Q-by-1 120 

and 1-by-1 respectively, and ɛ is an N-by-1 vector representing the observation error. 121 

Restricted maximum likelihood method was employed for estimating LME[16].  122 
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 123 

2.1 Equine cartilage dataset  124 

In this study, we utilized NIR spectral data from equine cartilage measured in earlier 125 

studies[17,18]. In summary, metacarpophalangeal joints (n=5) were acquired from a 126 

slaughterhouse, and specific areas of interest (AI, n=44) with cartilage lesions of 127 

varying severity were selected by a veterinary surgeon. Subsequently, a 15 x 15 mm 128 

grid consisting of 25 measurement locations was marked on each AI with a felt-tip pen 129 

(Figure 1). The measurement locations were equally spaced (interdistance = 2.5 mm), 130 

and locations with highly eroded cartilage were excluded, yielding a total of 869 131 

measurement points. NIR spectral measurements and thickness values were acquired 132 

on each of the 869 measurements; however, biomechanical measurements were 133 

performed only on 202 locations and compositional analysis on 530 locations due to 134 

limitations set by sample preservation and geometry, respectively. NIR spectra was 135 

matched with corresponding tissue property based on location during regression 136 

analysis. 137 

 138 

2.2 NIR spectral measurements 139 

The NIR spectroscopy instrumentation consisted of a halogen light source 140 

(wavelength range: 360–2500 nm, power 5 W, optical power: 239 μW in a dfiber = 600 141 

μm, Avantes BW, Apeldoorn, Netherlands), and a spectrometer (wavelength range: 142 

200–1160 nm, Avantes BW, Apeldoorn, Netherlands). A customized fiber optic probe 143 

(d=5 mm) consisting of seven fibers (dfiber=600 μm) within the central window (d=2 144 

mm), the six outer fibers for transmitting, and the central one for collecting the 145 

reflectance spectrum, was utilized. Prior to sample measurements, dark and reference 146 
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spectra were acquired. Dark spectrum was acquired with the spectrometer light source 147 

switched off in order to collect background noise. With the light source switched on, 148 

reference spectrum was acquired from a reflectance standard (Spectralon, SRS-99, 149 

Labsphere Inc., North Sutton, USA). The absorbance values of each sample spectra 150 

were scaled as per Beer-Lambert’s law using the dark and reference spectra. In 151 

addition, signal acquisition time was optimized to maximize the signal to noise ratio. 152 

The average of three spectral measurements that each consisted of eight co-added 153 

spectral scans (teight scans=720 ms) was calculated. To preprocess the spectra (700-154 

1050nm), Savitzky-Golay estimates of the second derivative using 41 points (or 25 155 

nm) and a third-order polynomial for the smoothing were computed. This 156 

preprocessing not only removes baseline offset and dominant linear terms but also 157 

enhances subtle absorption peaks. 158 

 159 

2.3 Cartilage thickness and biomechanical measurements 160 

Cartilage thickness at all NIRS measurement locations was determined using optical 161 

coherence tomography (OCT) via the Ilumien PCI Optimization System, (St. Jude 162 

Medical, St. Paul, MN, USA) at an operating wavelength of 1305±55 nm, axial 163 

resolution <20 μm, and lateral resolution 25–60 μm. The samples were fully immersed 164 

in phosphate-buffered saline (PBS) during the measurements. 165 

 166 

Biomechanical indentation measurements were performed at 202 locations using a 167 

customized material testing device consisting of a load cell (Sensotec, Columbus, OH, 168 

USA) with force resolution of 5 mN, an actuator (PM1A1798-1 A, Newport, Irvine, CA, 169 

USA) with displacement resolution of 0.1 μm (PM500-1 A, Newport, Irvine, CA, USA), 170 
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and a plane-ended cylindrical indenter (d=0.53 mm). Equilibrium modulus (Eeq) and 171 

dynamic modulus (Edyn) were calculated using an indentation protocol detailed in 172 

Korhonen et al[19] and Sarin et al[17]. 173 

 174 

2.4 Reference measurements of cartilage composition and structure 175 

The osteochondral samples were first decalcified in a solution containing formalin and 176 

ethylenediaminetetraacetic acid (EDTA), then fixed in paraffin blocks from which thin 177 

sections (n=4, thickness=5 μm) were cut using a microtome along the measurement 178 

line. The sections were then subjected to histological imaging, i.e., Fourier transform 179 

infrared (FTIR) microspectroscopy (n=1) and polarized light microscopy (PLM, n=3). 180 

 181 

2.5 Collagen and proteoglycan distribution 182 

Spatial collagen and proteoglycan (PG) distributions were measured by FTIR 183 

microspectroscopy using a Thermo iN10 MX FT-IR microscope (Thermo Nicolet 184 

Corporation, Madison, WI, USA). The microscope was operated in transmission mode 185 

at a spectral resolution of 4 cm-1 and a pixel size of 25 × 25 μm2. 500-μm-wide regions 186 

including full cartilage thickness were mapped from each sample in the mid infrared 187 

region. The average of four scans per pixel were obtained. The collagen content for 188 

530 sample locations was estimated from the amide I peak (1584-1720 cm-1), and PG 189 

contents for these samples was obtained from the carbohydrate region (984-1140 cm-190 

1). 191 

 192 
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2.6 Collagen orientation 193 

Collagen orientation was measured using an Abrio PLM system (CRi, Inc., Woburn, 194 

MA, USA) on top of a conventional light microscope (Nikon Diaphot TMD, Nikon, Inc., 195 

Shinagawa, Tokyo, Japan). This system consists of a green bandpass filter, a circular 196 

polarizer, and a computer-controlled analyzer comprising of two liquid crystal 197 

polarizers and a charged couple device (CCD) camera. The specimens (n=530) were 198 

imaged at identical orientation using a 4.0x objective, which resulted in a pixel size of 199 

2.53 × 2.53 μm2. The collagen fiber orientation in the resulting images show 0 degrees 200 

for collagen aligned parallel to cartilage surface and 90 degrees for collagen aligned 201 

perpendicular to cartilage surface. 202 

 203 

Table 1 summarizes the dataset used in this study. 204 

 205 

[Proposed position for Table. 1] 206 

 207 

2.7 Hybrid regression analysis approach 208 

2.7.1 PCA-LME regression technique  209 

With the hybrid PCA-LME regression technique, the equation is: 210 

Tissue property ~ PCA scores + (1 | Joints 1-5) + (1| Bones Upper-Lower).  (2) 211 

Hence, PCA scores are used as fixed effects, and measurement grouping information 212 

from joint level (Z matrix) and bone level (M matrix) are used as mixed effects (1 | 213 

dependency levels) to predict the tissue property (Figure 1 and Equation 2). 214 
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 215 

The data was split into calibration and test datasets (Figure 2) at the AI level. Hence, 216 

the calibration and test datasets had no spectra from same AIs. With a 10:1 data split, 217 

40 AIs were utilized in calibration of the PCA-LME model and 4 AIs to test the model. 218 

This split was repeated 11 times with each AI included in the test set only once. 219 

 220 

During modelling, calibration dataset was subjected to a 10-fold cross-validation. In 221 

cross-validation, the number of PCA scores to build the PCA-LME model was varied 222 

from 1 to 15 and the model with the smallest RMSECV was retained. The retained 223 

model was used to predict the tissue property from the test dataset and the root mean 224 

square error of prediction (RMSEP) was calculated to assess model performance. 225 

 226 

The PCA scores of the test dataset were calculated by adjusting the test spectra 227 

according to the mean of the calibration spectra (µcalibration). This was performed by first 228 

calculating µcalibration and principal components coefficients (Coeff) of the calibration 229 

spectra. Subsequently, µcalibration was subtracted from the test spectra, and then 230 

multiplied by Coeff (Figure 2).  231 

 232 

[Proposed position for Fig. 2] 233 

 234 
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2.7.2 LASSO-LME regression technique  235 

Similar to the PCA-LME regression approach, dimension reduction was performed 236 

with LASSO. LASSO adds a penalty equivalent to the sum of absolute values of the 237 

magnitude of the coefficients to each wavelength and a nonnegative regularization 238 

parameter λ. Next, utilizing 10-fold cross-validation, the sum of squared errors (SSE) 239 

of the LASSO fit is calculated and plotted for varying λ values. Wavelengths 240 

corresponding to the minimum SSE were retained. The dimension-reduced NIR 241 

spectra, based on the selected wavelengths, were used as input to LME regression 242 

(according to equation 1). 243 

 244 

The performance of models was evaluated as an average of 11 iterations. Spearman’s 245 

rank correlation (ρ), a distribution free and non-parametric statistic, was employed to 246 

assess the regression models due to assumptions on normality of the dataset. The 247 

commonly used coefficient of determination (R2) was not used as its definition for 248 

mixed model is unclear[20]. All spectral and regression analysis were done using 249 

custom-made programs designed on MATLAB R2017b (Mathworks Inc, Natick, MA). 250 

 251 

3. Results 252 

The results (average of 11 iterations) of the hybrid regression models in comparison 253 

to corresponding standard regression models (Table 2) showed consistently higher 254 

correlation coefficient and lower RMSECV. Hence, the inclusion of spatial dependency 255 

information in the models resulted in better performance. The changes in ρ relative to 256 

RMSEP in test sets (Table 2 and Figure 4) were inconsistent for PG content, Eeq and 257 

collagen content. 258 
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 259 

[Proposed position for Table. 2] 260 

 261 

 [Proposed position for Fig. 3] 262 

 263 

[Proposed position for Fig. 4] 264 

 265 

The optimal number of principal components were 7-9. The performance of LASSO-266 

based variable selection varied depending on the predicted parameter. Prediction of 267 

cartilage thickness required the highest number of variables (Figure 3), while Eeq 268 

required the least.  269 

 270 

4. Discussion 271 

In this study, we propose a hybrid regression technique to account for the effect of 272 

spatial dependency commonly encountered in spectroscopic characterization of 273 

biological tissues. We first identified the dependency levels based on known groupings 274 

of the measurement locations. We then introduced hybrid techniques that combine 275 

variable reduction methods (based on PCA and LASSO) and LME regression, allowing 276 

incorporation of the identified dependency levels into the predictive models. The 277 

performance of PCA-LME and LASSO-LME were then compared with that of PCR and 278 

LASSO regression, respectively. The results highlighted the importance and benefits 279 

of accounting for spatial dependency. 280 
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 281 

Assumptions of sample independence can lead to unreliable correlations as elucidated 282 

by Ranstam et al[21]. Conforti et al suggested a viable approach for considering spatial 283 

variations in soil organic matter content[22], where dimension reduction was 284 

performed by combining PLS scores with LME modeling, thereby accounting for the 285 

dependency structure in the measured data. However, this approach is unsuitable 286 

when the reference parameters or independent parameters are blinded or unknown, 287 

such as in independent testing or real-time applications. As predictors and responses 288 

are required to obtain the scores, PLS cannot be performed only on the spectral data. 289 

However, this practical limitation during independent testing could be easily 290 

circumvented by employing PCA reduction of the spectra. We also examined the 291 

potential of regularization by LASSO as it effectively shrinks the input spectra[23]. 292 

Since a significant number of spectral variables are penalized with zero (or absolute) 293 

coefficients, the resulting models are sparse and hence provide feature selection. 294 

Although the resulting models based on LASSO-LME are efficient, the penalization 295 

process in itself is computationally time consuming in comparison to other regression 296 

methods[24], such as the adopted PCA-LME approach. 297 

 298 

In our application, the main dependency levels for cartilage dataset were joint level 299 

and articulating bones (n=2 per joint). The levels, however, could be tailored to suit 300 

the experimental design in specific biomedical applications. The results of the 301 

comparison (Table 2) show that standard versions of the regression models (PCR and 302 

LASSO) have slightly lower correlations in comparison to the LME-based regression 303 

models. This can be attributed to spatial dependency within the dataset, consistent 304 
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with Singer et al[9] and Ranstam et al[10,21]. Furthermore, the correlation between 305 

NIR spectra and biomechanical properties were better than with cartilage composition 306 

or structure. The thickness of cartilage and its NIR spectrum are highly correlated, as 307 

the cartilage thickness is representative of the path length, which affects the 308 

absorption. The biomechanical parameters of cartilage are highly influenced by the 309 

superficial cartilage[25]. On the other hand, the matrix composition and structure are 310 

an average of superficial, middle and deeper layers of cartilage, thus providing 311 

information on the entire tissue cross-section.  312 

 313 

The present results indicate that the hybrid regression technique can effectively 314 

account for dependency in NIRS data. Identifying and including relevant dependent 315 

levels in the experimental design could be a limiting factor in this study; hence, careful 316 

selection of the levels is important. In some iterations, the test set includes values 317 

outside the calibration model range, thus making the model perform poorly. This is 318 

especially observed in predictions of small datasets, such as equilibrium modulus (n 319 

= 202). In addition, the relatively lower number of observations in the test set has a 320 

drastic effect on RMSEP value but not so much on correlation (Figure 4B). The 321 

performance of PCA-LME can potentially be further improved with variable selection 322 

methods, such as genetic algorithm[26]. Other alternatives to account for dependency 323 

in data structures include (but are not limited to) multilevel modeling[27] for hierarchical 324 

or clustered dataset and kringing[28], commonly utilized in genetic studies and 325 

geostatistics, respectively.  326 

 327 
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The present results support our hypothesis and thus advocate the application of LME-328 

based regression technique for NIR spectroscopic characterization of cartilage. 329 

Importantly, this method can be easily extended to other spectroscopic applications.  330 

 331 
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 448 

Figure 1: Areas of interest (AI) marked (black squares) on the articulating surfaces of 449 

equine metacarpophalangeal joint. In this study, grouping information is on two 450 

dependency levels, i.e. joint level and bone level, which is held in Z (sample count×5) 451 

and M (sample count×1) design matrices. Each AI (15mm × 15mm) has 25 equidistant 452 

measurement locations. 453 

 454 

  455 



  Prakash et al. 
 

22 
 

 456 

Figure 2: Schematic chart of PCA-LME regression technique, which combines 457 

principal component analysis (PCA) and linear mixed effects (LME) regression 458 

technique. Preprocessed near infrared (NIR) spectra (X), tissue property (y), and 459 

design matrices Z and M are the inputs. Design matrices Z and M are the mixed effects 460 

in LME modeling. Model performance was evaluated using the root mean square 461 

errors of cross validation (RMSECV) and prediction (RMSEP). 462 

 463 

  464 
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Table 1: Summary of datasets 465 

 466 

Measurements N Additional details 

Equine cartilage dataset  5 joints, 44 AIs Surgical extraction 

NIR spectral 

measurements 869 

Absorbance spectroscopy 

(700-1050 nm) 

Thickness (mm) 869 Optical coherence tomography 

Equilibrium Modulus (MPa) 202 Indentation testing 

Dynamic modulus (MPa) 202 Indentation testing 

PG content (AU) 530 FTIR microspectroscopy 

Collagen content (AU) 530 FTIR microspectroscopy 

Collagen orientation (⁰) 530 Polarized light microscopy 

467 
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Table 2: The mean and range of different cartilage properties. A comparison of the assessment statistics of standard regression 468 

techniques and introduced hybrid regression technique. The white rows represent PCR and PCA-LME, whereas grey rows represent 469 

LASSO and LASSO-LME. ρ (Spearman’s rank correlation), root mean square errors of cross validation (RMSECV) and prediction 470 

(RMSEP) are shown for all predicted parameters. 471 

Property 

Mean Standard regression Hybrid regression 

(Range) Calibration Test Calibration Test 
 ρ RMSECV % ρ RMSEP % ρ RMSECV % ρ RMSEP % 

Thickness 0.89 0.78 13.94 0.67 18.54 0.85 12.02 0.74 16.40 

(mm) (0.32 – 1.81) 0.86 11.20 0.57 20.17 0.87 11.22 0.65 18.36 

Dynamic 9.43 
0.49 28.07 0.46 37.80 0.69 22.75 0.56 34.71 

Modulus (0.24 – 23.3) 

(MPa)  0.61 24.34 0.29 42.73 0.67 23.29 0.27 39.58 

PG 6.31 
0.45 18.17 0.34 22.42 0.52 17.50 0.42 22.54 

content (0.60 – 14.71) 

(AU)  0.51 17.10 0.34 22.26 0.53 17.52 0.37 21.89 

Equilibrium 2.00 
0.44 28.91 0.32 37.50 0.63 24.28 0.48 35.02 

Modulus (0.03 – 5.38) 

(MPa)  0.59 24.58 0.38 33.90 0.65 24.72 0.46 34.84 

Collagen 33.35 
0.41 19.79 0.35 23.34 0.43 19.21 0.27 24.90 

Content (12.16 – 64.39) 

(AU)  0.40 19.67 0.29 22.90 0.41 20.09 0.32 23.14 

Collagen 71.12 
0.31 22.45 0.27 25.01 0.37 21.79 0.23 25.35 

Orientation (37.13 – 83.75) 

angle (⁰)  0.41 21.39 0.25 23.54 0.41 21.91 0.27 24.29 

472 
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Figure 3 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

Figure 3: Representative NIR spectra (700 to 1050 nm) for samples with different 482 

cartilage (a) thickness (mm), (b) equilibrium modulus (MPa), (c) dynamic modulus 483 

(MPa), (d) collagen content (AU), (e) proteoglycan content (AU), and (f) collagen 484 

orientation angle (⁰). The top inset shows second derivative Savitzky-Golay 485 

preprocessed spectra in 940 to 975 nm. Bottom inset shows the least absolute 486 

shrinkage and selection operator (LASSO) based feature selection of the spectra.487 
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 488 

Figure 4: Predicted (x axis) vs. reference (y axis) values of cartilage thickness [mm, A] and equilibrium modulus [MPa, B]. 489 

Performance on calibration (blue, unfilled) and test set (red, filled) as predicted by PCR [A,(i)], PCA-LME[A,(ii)], LASSO[A,(iii)] and 490 

LASSO-LME[A,(iv)] regression models. Effect of outliers on LASSO-LME [B] model performance when the test set range is within 491 

[(i),(ii)] and outside [(iii),(iv)] the calibration range. 492 


