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INTRODUCTION
Anxiety disorders are the most common group of childhood psychiatric disorders, with
almost one in three children having suffered from an anxiety disorder at some point during
childhood or adolescence.1 Most anxiety disorders begin early in development, with a
median age at onset of 12 years.1 Although significant advances have been made in
identifying the best treatments for anxious children,2 little is known about the neural
underpinnings of anxiety disorders. Identifying the neural basis of childhood anxiety
disorders can guide development of prevention programs, a critical step in reducing these
early-onset and highly prevalent disorders. This article reviews the available literature to
provide a current understanding of the neural basis of childhood anxiety disorders. It
reviews the development of normative fear and the development of the brain regions that
subserve fear and anxiety. It further provides a comprehensive summary of relevant
functional and structural neuroimaging studies, including studies examining children with
anxiety disorders and children at-risk for developing anxiety disorders.

NORMATIVE DEVELOPMENT OF FEAR
Development of Fear

Fear is a normal and adaptive response to potential threat. Key components of the fear
system mature early in development,3 and multiple periods of child development are marked
by normative fears4 (see Ref.3 for a review). For example, most infants experience a period
of stranger anxiety around 8 to 12 months of age, marked by wariness or distress around
new people.5–8 Stranger anxiety is often followed by separation anxiety, typically evident
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around 10 to 18 months, and characterized by distress about being separated from the
mother or father.6 Stranger and separation fears are thought to be protective, preventing the
child from encountering harm during developmental periods marked by the onset of walking
and increased exploration away from caregivers. For most children, these normative fears
vanish by 2 to 3 years of age; however, for some, childhood is marked by the persistence of
these fears and the development of new fears. Increases in the prevalence of anxiety
disorders parallel decreases in normal fear, such that separation anxiety disorder typically
arises relatively early in life, shortly after the age-typical diminution in normal separation
anxiety. Similarly, social phobia typically arises in adolescence, around the time of age-
typical decreases in normal social anxieties.

These normative fears are observed in most children and manifest across cultures,3

suggesting that fundamental aspects of human brain development sculpt developmental
changes in fear. The universality of the development of early fears raises questions about the
nature of relationships between brain development and fear. Although we expect that
developmental changes in brain function relate to developmental changes in both normal
and abnormal fears, the nature of these relationships largely remains unknown.

Fear Neurocircuitry
Research on rodents and nonhuman primates has identified the key components of fear
circuitry.9–14 Using fear conditioning tasks in rodents, researchers have identified that the
amygdala—a small subcortical collection of nuclei in the medial temporal lobe—is critical
for the production of fear behaviors.9 In nonhuman primates, amygdala lesions result in
significantly reduced fear behaviors,11,15 providing further support for the amygdala's role in
the production of fear behaviors. However, some debate persists concerning the precise role
of the amygdala in fear. Findings appear most consistent for stimulus-reinforcement
learning, as it relates to fear in classical conditioning, in which the amygdala is necessary for
such forms of learning. But the amygdala also supports stimulus-reinforcement learning as it
relates to positive stimuli.16–18 Moreover, animals that suffer amygdala lesions still are
capable of manifesting fear. In fact, under some circumstances, amygdala lesions actually
can lead to increases in fear.19 Thus, the amygdala's role in fear may represent one
prototypical function of a broader role in emotional processing.

The amygdala has received substantial attention as a core component of fear circuitry;
however, other brain regions are also involved in fear and anxiety. For example, the bed
nucleus of the stria terminalas (BNST)—a part of the “extended amygdala”—is involved in
sustained fear reactions (in contrast to short-term or phasic fear responses) in rodents.10

These sustained reactions, which are elicited by less specific and less predictable threats, are
maintained over time and are considered akin to anxiety in humans.20

Another major component of the fear circuit is the prefrontal cortex (PFC), a brain region
involved in both the automatic and effortful regulation of emotion. Within the prefrontal
cortex, multiple regions are engaged during emotion processing and emotion regulation;
however, as with research on the amygdala, debate persists about the nature of specific PFC
contributions. Most current theories divide the primate PFC using two axes, one separating
the medial from lateral PFC and another separating the dorsal from ventral PFC (Fig. 1).

Of the multiple PFC brain regions, the ventromedial PFC (vmPFC) is most strongly
implicated in anxiety. The vmPFC plays a critical role in the inhibition of conditioned fear
expression14,21 and extinction of conditioned fear,22–24 which can be viewed as two
instances of emotion regulation.23,25 Evidence also exists showing that vmPFC activity in
some specific locales correlates positively with negative emotions,26,27 suggesting that at
least some particular portions of the vmPFC may drive negative emotions. These multiple
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roles may reflect different functions of subregions of the vmPFC. For example, some
research suggests that in rodents the prelimbic component of vmPFC supports fear-related
behaviors whereas the infralimbic component of vmPFC suppresses fear-related behaviors.
However, because the majority of this research has examined rodents, issues of cross-
species differences in PFC function preclude firm conclusions in humans.

In humans, other research focuses on lateral and dorsal regions of the PFC. The ventrolateral
PFC (vlPFC) has been implicated in emotion regulation,28,29 which may reflect the role of
this region in attention control. The dorsomedial PFC (dmPFC) is engaged during the
intentional control of emotional reactions,23,30–33 which may reflect the broader role of the
dmPFC in monitoring. Finally, the dorsolateral PFC (dlPFC) is implicated in intentional
emotion regulation,33–35 which may relate to the dlPFC's role in cognitive control and
executive function.

Neuronal tracer studies in nonhuman primates provide evidence of anatomic connections
between the amygdala and multiple regions of the PFC (for reviews see Ref.35–37). The
amygdala has strong, bidirectional connections to medial prefrontal regions along the
anterior cingulate cortex surrounding the corpus callosum, extending from ventral regions
(subgenual cingulate cortex) to rostral (pregenual cingulate) and dorsal (supragenual
cingulate) regions (Fig. 2). The amygdala also has dense projections to the vlPFC,38 – 40 but
these connections are more unilateral and are mostly ascending from vlPFC to the
amygdala.38 – 42 In contrast, the amygdala appears to have relatively few connections to
frontal regions of the PFC (frontal pole) or dlPFC regions.38,40–42 Ongoing research
continues to refine understandings of these connections, both from anatomic and functional
perspectives. Given that the majority of this research has focused on mature organisms and
that connections continue to change across development, understandings of these
connections remain even less precisely specified in immature organisms. For example,
although it is clear that children and adolescents are capable of utilizing all portions of the
PFC to perform at least some of the functions for which adults utilize the PFC, the precise
timing when specific PFC functions and associated connections mature in humans remains
unclear.

PFC connections to the amygdala synapse in multiple regions. However, interest focuses
primarily on γ-aminobutyric acid-ergic (GABAergic) neurons, emphasizing an inhibitory
role for the PFC over amygdala function.41,43,44 At least in some contexts, neuroimaging
studies in humans show an inverse relationship between the amygdala and multiple PFC
regions including vmPFC,45,46 vlPFC,32,47,48 dmPFC,23,34,49–54 and dlPFC.25,34

Particularly for the vlPFC and vmPFC, in which PFC–amygdala connections have been
mapped, these findings suggest inhibitory input; however, such findings remain indirect.

In summary, the amygdala and PFC are key components of human fear neurocircuitry. The
amygdala and PFC are interconnected with the PFC modulating amygdala responses. To
date, the majority of our knowledge about the neural bases of anxiety comes from functional
neuroimaging studies in adults (for a meta-analysis see Ref.55). Results from these studies
suggest that adult anxiety disorders may be characterized by brain dysfunction resulting in
“too much gas and not enough brakes”; that is, the fear production system is too strong and
the fear regulation system is too weak.

Development of Fear Circuitry
The developmental trajectories of both the amygdala and PFC are consistent with this idea
of an imbalance between the fear production and fear regulation systems. The amygdala is
functional early in development,56 shortly after birth in humans.57 Studies of amygdala
lesions occurring early versus late in development provide critical information about the
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development of amygdala function. In rhesus monkeys, early lesions (2 weeks) result in a
decreased fear to threatening objects during multiple stages of development,19,58,59

demonstrating that early damage to the amygdala has an early and sustained impact on
nonsocial fear processing. In contrast, amygdala lesions in neonatal rhesus monkeys result in
increased fear during nonthreatening social interactions at both 6 to 8 months of age19 and
12 months of age,60 suggesting a different early role for the amgydala in social processing.
In adult rhesus monkeys, amygdala lesions produce decreased fear to threatening objects11

and decreased fear during both nonthreatening and threatening social interactions.11,15 Thus,
the amygdala's role in nonsocial fear is consistent across development, with both early and
late amygdala lesions similarly decreasing fear to threatening objects. However, the role of
the amygdala in the development of social fear is more complex, pointing to possible
developmental differences in the contribution of the amygdala to social behaviors.

Evidence from human studies of amygdala lesions also indicates developmental effects; for
example, individuals with early amygdala lesions fail to show the normal emotional
enhancement of memory and understanding of others’ emotional states.61,62 Developmental
functional magnetic resonance imaging (fMRI) studies of amygdala responses to human
expressions of fear (“fear faces”) may provide clues about amygdala development (see
Ref.63 for a review). When viewing fear faces, adult humans show an increase in amygdala
activation relative to amygdala activation during a baseline condition, such as viewing a
fixation cross or blank screen.16–18 Increased amygdala activation likely represents the
salience of the stimulus64 – 66 because the amygdala responds robustly to negative and
positive stimuli,16 as well as novel67 stimuli. Preliminary studies in children and adolescents
suggest that amygdala activation to fear faces in children is similar to adults, but intriguingly
is heightened in adolescents45,68,69 (although not all studies find this developmental
effect70). This heightened fear response in adolescence is consistent with heightened
emotion recognition accuracy during this period.70 Together, findings from lesion and
neuroimaging studies demonstrate that the amygdala is critical for the normal development
of the fear system.

Both the ventral and dorsal regions of the PFC are among the last brain regions to mature,
undergoing significant structural and functional changes during development.71–76 fMRI
studies comparing different age groups provide evidence of differences across between
children, adolescents, and adults in activation in the vlPFC,69,77 vmPFC,78,79

dmPFC,70,79–81 and dlPFC.72,79,82,83 These findings are consistent with behavioral data
showing increasing skill with age for both emotional tasks45,84 and cognitive tasks.84 – 87

PFC development is relatively linear with age, and the development of the PFC provides a
mechanism for dampening amygdala hyper-responsivity through increased emotion
regulation abilities. Casey and colleagues88,89 provide an integrative developmental theory
that postulates that the increased emotionality common during adolescence results from the
imbalance between patterns of amygdala and PFC development (Fig. 3). According to this
model, during adolescence amygdala function is enhanced relative to PFC function,
resulting in an overcontribution of the amygdala to adolescent emotions and behavior. As
PFC development catches up during early adulthood, emotions and behavior are stabilized.
This amygdala–PFC imbalance may contribute to the increased prevalence of anxiety
disorders during early adolescence.

Attentional Modulation of the Amygdala
Attention contributes to fear processing and the amygdala's response to stimuli is modulated
by attention. Multiple studies have demonstrated that amygdala activity varies as a function
of task demands.34,68,90–93 Neuroimaging studies using a passive viewing task—in which
attention is not specifically constrained by the task—show greater amygdala activation than

Blackford and Pine Page 4

Child Adolesc Psychiatr Clin N Am. Author manuscript; available in PMC 2012 November 05.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



studies that use a specific task, such as gender discrimination or emotion rating.16,17

Reduced amygdala activation during tasks likely reflects the effects of emotion regulation
brain regions that are engaged during the tasks.34,90–93 However, it should also be noted that
attention is not required in all circumstances for amygdala response to emotional stimuli—
for example, amygdala activation to fearful faces can occur in the absence of attention,
potentially when the fearful faces are masked and not consciously detected94—although
debate remains surrounding this point.95

The modulating role of attention is especially important for understanding anxiety disorders,
given that attentional processes are altered in children and adults with anxiety disorders.96,97

In anxiety disorders, a commonly studied attentional process is attentional bias. Attentional
bias is often measured using the “dot probe task.” In that task, individuals fixate on a central
point on the screen and are then shown a threatening and a neutral image on opposite sides
of the screen. After the brief stimulus presentation, a dot is presented on one side of the
screen and individuals must press a button as soon as they detect the dot. A shorter latency
to detect the dot that appears in the same position as the threatening stimulus is evidence of
attentional vigilance to threat. Anxious individuals are more likely to show attentional bias
to threat, such as aversive images, fear faces, or angry faces (see Refs.96,98 for reviews).

In fMRI studies of anxiety, a limitation of passive viewing studies (studies that do not
require the subject to perform a task) is that observed amygdala differences may be a
consequence of differences in attention. Controlling for attentional differences using a task
can help to dissect differences in amygdala activation caused by anxiety from those caused
by attention. Thus, neuroimaging findings need to be considered within the context of the
attention requirements of various study designs.

NEUROIMAGING STUDIES OF FEAR-BASED ANXIETY DISORDERS: GENERALIZED
ANXIETY DISORDER, SOCIAL PHOBIA, SEPARATION ANXIETY DISORDER

Although we assume that differences in brain function underlie childhood anxiety, little
research has focused on identifying the underlying neural causes. Studies of adult anxiety
have provided critical information about possible brain dysfunction in childhood anxiety
disorders; however, we do not know whether the differences found in adults reflect the
underlying causes of anxiety or are the consequence of anxiety. Thus, studies in children
with anxiety or at high-risk for developing anxiety are critical for uncovering the neural
causes of anxiety.

Findings from fMRI studies of adults with anxiety disorders55 provide the initial candidate
brain regions for studies of childhood anxiety—the amygdala and PFC. Most neuroimaging
studies of child anxiety have used the same experimental tasks previously used to study
anxious adults. However, several groups are developing new tasks that are especially valid
for studying children and adolescents, such as the “chat room” task (see section on Social
Phobia). While this is an exciting time in the evolution of our understanding of the neural
bases of childhood anxiety disorders, we still have much to discover.

Studies of children with anxiety disorders provide a direct approach to identifying the neural
bases of anxiety disorders. An equally important approach is to study traits that are
associated with high-risk for developing anxiety.99 Advances in neuroscience methods, such
as neuroimaging and genetics, provide new opportunities to link neurobiological measures
to dimensional traits in individuals with and without anxiety disorders. Among various high-
risk traits, a commonly studied trait is behavioral inhibition— or inhibited temperament—a
trait characterized by wary or avoidant responses to novel people, places, or things.100

Behavioral inhibition emerges in infancy,101,102 is heritable,103 and is associated with a
distinct physiologic profile.104–107 Inhibited children have a four-fold increase in risk for
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developing any anxiety disorder, with specific risk for social phobia.108–110 Studies of
young adults who were inhibited as children provide evidence for amygdala
dysfunction111–114 which is best characterized as a failure of the amygdala to habituate
normally to repeated presentations of faces,114,115 resulting in a sustained amygdala
response.112 Recent studies provide initial evidence for both structural116 and functional
differences in the PFC.117 Thus, studying traits associated with anxiety provide a promising
approach to identifying the structural and functional correlates of anxiety.

This section reviews and integrates functional and structural neuroimaging findings in
generalized anxiety disorder, social phobia, and separation anxiety disorder, as well as the
associated high-risk traits.

Generalized Anxiety Disorder
Functional MRI—Childhood generalized anxiety disorder (GAD) is characterized by
excessive anxiety and worry about a variety of events and situations, difficulty controlling
the anxiety, and presence of one or more physical symptoms.118 To date, the majority of
studies in GAD have focused on the amygdala. The most consistent finding in childhood
GAD is increased amygdala activation during viewing of negative emotional expressions.
Increased amygdala activation has been reported across multiple study designs including
passive viewing of fear faces,119 subjective ratings of fear,120,121 viewing masked angry
faces during a dot-probe task,122 and viewing both subsequently remembered and forgotten
faces during a face memory task.123 In one of the studies, amygdala activation to fear faces
also correlated with anxiety severity,119 suggesting a direct link between amygdala response
and anxiety. It should be noted that one study failed to find differences in amygdala
activation when viewing masked angry faces during the dot-probe task.124

Multiple studies also report differences in PFC activation to negative emotions in GAD. For
example, anxious children had increased activation during subjective ratings of fear, relative
to healthy controls, in the vlPFC120,121 and dmPFC.120 In another study, adolescents with
GAD showed increased activation in the vlPFC relative to healthy controls when viewing
masked angry faces in a dot-probe task; but, within the GAD adolescents, degree of vlPFC
activation correlated negatively with anxiety severity, suggesting a regulatory role.124

However, not all studies report PFC differences.122

Children with GAD also show differences in functional connectivity between the amygdala
and other brain regions. For example, when making subjective ratings of fear faces, anxious
children showed increased functional connectivity between the amygdala and insula, relative
to healthy controls,120 and the degree of connectivity correlated positively with anxiety
symptoms. In another study, healthy controls showed an inverse functional connectivity
between the amygdala and vlPFC that was diminished in the children with GAD.122

Several studies have examined the neural correlates of treatment effects in childhood GAD.
A preliminary study examined the association between pretreatment differences in brain
function with symptom improvement following treatment with medication or cognitive
behavior therapy in adolescents with GAD.125 Pretreatment amygdala activation was
associated with less clinical improvement after treatment. A second study examined the
neural correlates of treatment response in adolescents with GAD.126 Successful treatment
with either cognitive behavioral therapy (CBT) or fluoxetine was associated with increased
activation to angry faces in the right vlPFC, a region associated with emotion regulation.

In summary, children with GAD consistently show increased amygdala activation across a
variety of tasks. Although several studies reported PFC differences, the direction of the
effect was not consistent. It is important to note that task differences likely impact the
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direction of the PFC effect (increase vs decrease) when comparing individuals with anxiety
relative to healthy controls. For example, because healthy controls do not typically show an
attentional bias, it is unlikely that they will engage attentional or regulatory regions. In this
case, PFC activation should be higher in the anxious group because they have an attentional
bias, but increased activation should not be interpreted as “better” function. To understand
how PFC dysfunction relates to anxiety, it is critical to examine the association between
PFC activation and anxiety severity or symptom improvement. Relatively lower vlPFC
activation was associated with higher anxiety severity and lower symptom improvement
with treatment, suggesting dysfunction in vlPFC regulation of the amygdala contributes to
GAD anxiety symptoms.

Structural MRI—Findings of structural differences in the amygdala are less consistent. A
study of adolescents with GAD showed larger right amygdala volume relative to controls127;
however, another study of adolescents with anxiety disorders (predominantly GAD) found
smaller left amygdala volume.128 Sample sizes in both studies were relatively small;
moreover, methods in the two studies also were quite different. Therefore, larger samples
studied comprehensively will be useful in resolving the conflicting amygdala results. To
date, only one study has examined PFC volume and found no differences in adolescents with
GAD compared to controls in PFC gray matter volume or white matter volume.129 Thus,
support for structural differences in childhood GAD remains weak.

At-risk children—Trait anxiety reflects a temperamental trait characterized by persistent
anxiety and worry and is therefore very similar to GAD. Generally, higher trait anxiety is
associated with increased risk for GAD; however, a child can have high trait anxiety but not
meet diagnostic criteria for GAD. Telzer and colleagues130 demonstrated that trait anxiety in
healthy children and adolescents corresponded to both a behavioral attentional bias toward
angry faces and increased activation in the right dlPFC. When viewing all faces (regardless
of emotion), higher trait anxiety was associated with increased vlPFC activation.

Krain and colleagues131 examined intolerance of uncertainty—the tendency to react
negatively to situations that are uncertain—a major symptom of GAD.132,133 In healthy
adolescents and anxious adolescents (GAD, social phobia, or both), higher intolerance of
uncertainty was associated with increased activation in the amygdala, vmPFC and dmPFC
during decision making in the context of absolute uncertainty (50/50 chance of being right).
Within only the anxious adolescents, there was substantial variability in both intolerance of
uncertainty and brain function. Anxious adolescents with high intolerance of uncertainty had
increased amygdala and orbitofrontal cortex activation, whereas anxious adolescents with
low intolerance of uncertainty had decreased activation in these same brain regions. These
findings point to the importance of examining specific traits or symptoms of anxiety even
within individuals with an anxiety diagnosis.

Social Phobia
Functional MRI—Among the anxiety disorders, social phobia (SP) is very common,
second in prevalence only to specific phobias.1 Blair and colleagues134 explored brain
function differences in adolescents with SP relative to healthy controls during an emotional
face processing task. Adolescents with SP had increased activation in the amygdala and
vmPFC when viewing fear faces. In addition, social anxiety severity correlated with vmPFC
activation to both angry and fearful faces in the anxious group. The findings in adolescents
were similar to results in adults with SP compared to controls, suggesting that the neural
substrates of adult SP are already present in adolescence.
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The emotion processing tasks commonly used to study brain function in anxiety disorders
use both human faces and negative emotional expressions—both of which are particularly
salient for SP—however, emotion processing tasks may not tap into other key factors that
elicit SP, such as social-evaluative processes. Recently, several groups have begun to
develop ecologically valid experimental tasks. Guyer and colleagues135 have developed a
“chat room” task to engage concerns about peer evaluation. In this task, adolescents rate
pictures of other adolescents based on their desire to chat with them in a future encounter.
During a second visit, adolescents rate how much they think the other adolescents want to
chat with them. Anxious adolescents showed increased activation in the amygdala and
vmPFC when rating how much the other adolescents would want to chat with them;
interestingly, activation was increased only when viewing the adolescents that the subjects
had previously rated as low desirability. Anxious adolescents, but not healthy controls,
showed functional connectivity between the amygdala and vlPFC, with higher anxiety
associated with stronger functional connectivity.

At-risk children—Several studies in children and adolescents have examined traits
relevant to SP, such as behavioral inhibition. Inhibited children and adolescents are typically
shy, cautious, and reserved and are at significantly increased risk for developing social
phobia.108,110,136 Behavioral inhibition is observable across development and can be
measured using a variety of methods including direct observation, parent report, current self-
report, and retrospective self-report. The most commonly used method for identifying
behavioral inhibition in children is direct observation of behavior and using measured with
laboratory assessments consisting of unfamiliar objects, unfamiliar peers, and unfamiliar
adults.100,101,106,137 Laboratory assessments are considered by many to be the gold standard
because they provide objective assessments of behavior; but, behavioral assessments are
time-consuming, expensive, and may not reflect real-world behaviors. Parent-report and
self-report questionnaires provide efficient and economical assessments of behavior across a
wide variety of situations; but, questionnaires are subject to a variety of reporter biases,
including over-reporting and under-reporting. Although there is evidence for moderate
convergence across the two methods,138 it is important to consider methodologic issues
when interpreting study results.

Studies of young adults who were inhibited as children demonstrate that behavioral
inhibition is associated with amygdala hyperactivity111–114,117 and dmPFC hypoactivity117;
however, only a handful of studies have examined brain function in inhibited children and
adolescents. Perez-Edgar and colleagues139 compared neural responses during emotion
processing in adolescents who were either characterized as inhibited or noninhibited as
young children. The emotion processing task included a passive viewing (no task) condition
and several attention conditions in which subjects subjectively rated emotional or
nonemotional characteristics of the faces. In the inhibited adolescents, amygdala activation
to fear faces was increased, relative to the noninhibited adolescents, when attention was
focused on rating the emotion but decreased when the fear faces were passively viewed.
These results suggest that inhibited adolescents have different neural responses to emotional
faces and that the neural responses are modulated by attention and emotional state.

An important contribution of high-risk trait studies is the discovery that behaviorally
inhibited adolescents are not only sensitive to threatening stimuli, but are also sensitive to
reward. In an initial behavioral study, shy (inhibited) adolescents had faster reaction times
during reward conditions in the Monetary Incentive Delay (MID) task, suggesting increased
reward sensitivity.140 Using fMRI, Guyer and colleagues141 compared neural responses in
the striatum (including the nucleus accumbens, caudate, and putamen) during the MID task
in inhibited, relative to noninhibited, adolescents. Inhibited adolescents showed significantly
greater striatal activation to increasing amounts of incentives (gain or loss) relative to the
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noninhibited adolescents. In a subsequent fMRI study, Bar-Haim and colleagues142 tested
the effects of reward while controlling for possible effects due to performance evaluation by
including a noncontingent motor task. Inhibited adolescents showed increased activation in
the nucleus accumbens when reward outcome was contingent on their response but did not
show differences in the noncontingent condition. These studies demonstrate that
behaviorally inhibited adolescents have increased sensitivity during performance-dependent
rewarding tasks, in addition to increased sensitivity to threat. This pattern of increased
sensitivity to both threatening and rewarding stimuli is remarkably similar to increases seen
normally during adolescence, consistent with an imbalance between development of the
amygdala and PFC.

In summary, studies of children with SP or children at-risk for developing SP demonstrate
increased amygdala activation to anxiogenic stimuli and demonstrate increased striatal
activation to rewarding stimuli, suggesting a general heightened reactivity. In the PFC,
childhood SP was associated with increased vmPFC activation. Although more studies of
PFC function are needed, increased the observed vmPFC activation may result from specific
regions of the vmPFC that drive amygdala activation and negative emotions.

Separation Anxiety Disorder
Separation anxiety disorder (SAD) is characterized by anxiety caused by separation from the
child's home or caretakers that causes impairment because it leads to avoidance of
separation. School refusal and difficulty sleeping alone are common symptoms of SAD.
Although no study to date has used neuroimaging methods to probe brain structure or
function in SAD, one study included a continuous measure of separation anxiety. In that
study, amygdala activation to fear faces was examined in healthy children.143 Continuous
measures of anxiety symptoms were assessed using the Multidimensional Anxiety Scale for
Children (MASC144). Higher separation anxiety symptoms were associated with increased
amygdala activation to fear faces, providing preliminary evidence for the amygdala as one
neural basis of separation anxiety disorder.

Summary
In summary, children and adolescents with GAD, SP, SAD, or high-risk traits show
dysfunction in the amygdala and multiple PFC brain regions during experimental tasks
probing fear neurocircuitry (Fig. 4). These findings are consistent with the results of a recent
meta-analysis that reports that childhood anxiety (GAD, OCD, PTSD) is associated with
alterations in the amygdala, vlPFC, and dmPFC.145 Across the studies, amygdala activation
was increased in anxious children and adolescents, consistent with findings in anxious
adults. Increased amygdala activation was also demonstrated in high-risk individuals,
suggesting that amygdala hyper-reactivity is a heritable trait that confers risk for developing
anxiety. In the PFC, the most common finding was increased activation, not a lack of PFC
activation as predicted by developmental evidence for increasing emotion regulation and
PFC activation with age. These preliminary findings are intriguing and suggest several
possibilities. Group differences in PFC activation may reflect differential effects of the tasks
on the two groups; examination of the relationship between anxiety severity and PFC
function is important for understanding the role of the PFC. Also, increased PFC activation
in anxious children may reflect differences in the duration of amygdala–PFC processing.
Whereas both anxious and nonanxious children may initially engage the PFC during
emotional tasks, the PFC may effectively inhibit amygdala activation quickly in nonanxious
children, but not in the anxious children. Thus, anxious children may continue to engage the
PFC in an attempt to inhibit amygdala response, with the effect of greater activation over the
task. Alternatively, increased PFC activation could be driving increased amygdala
activation, as suggested by some findings of coactivation of these regions in adults.26
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Functional differences may be caused by underlying structural differences, but to date there
are too few structural studies to draw any conclusions. Thus, although the foundation has
been laid, much research is needed to understand the precise nature of the brain dysfunction
that gives raise to childhood anxiety.

NEUROIMAGING STUDIES OF OBSESSIVE–COMPULSIVE DISORDER
Childhood-onset obsessive– compulsive disorder (OCD) can be considered to be distinct
from the other childhood anxiety disorders.146 Instead of having fear at its core, childhood
OCD is defined by recurrent obsessions and compulsions that are time consuming or cause
marked distress or significant impairments in daily function.118 Childhood-onset OCD,
relative to adult-onset OCD, is characterized more by motor and vocal tics and the presence
of comorbid diagnoses such as Tourette syndrome and attention-deficit/hyperactivity
disorder.147,148 In addition, the prevalence of OCD is substantially lower than for the other
anxiety disorders (see the article by Franklin and colleagues elsewhere in this issue for
further exploration of this topic).149

Although fear is not a defining feature of OCD, some early theories about the neural
substrates of OCD posited amygdala deficits150,151 with the amygdala having a role in
maintaining compulsive behaviors. Like the other anxiety disorders, OCD has been
conceptualized as an imbalance between a subcortical hyper-responsivity and cortical
hyporesponsivity. In the case of OCD, the hyper-responsivity has been hypothesized to arise
from the basal ganglia, with hyporesponsivity in multiple PFC regions, including the
orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC). Deficits in these regions
support the notion of OCD as a disorder of overmonitoring and difficulty inhibiting
responses. Neuroimaging findings to date suggest that dysfunction in cortico–striato–
thalamic circuit may underlie OCD.152,153

Relative to the other childhood anxiety disorders, OCD has received significantly more
neuroimaging research attention. A relatively large and growing number of neuroimaging
studies have examined both functional and structural correlates of childhood OCD. In light
of this volume and the broad focus of the current review, only general conclusions can be
provided. Despite the many challenges of studying childhood OCD—including small sample
sizes, different experimental tasks, and medication status—some common trends are
emerging (for extensive review please see Refs.154–158).

Functional MRI
Early neuroimaging research in childhood OCD has not shown evidence of increased
amygdala activation in response to either contamination or symmetry provocations.159 A
common probe of amygdala function used to study other anxiety disorders is the
presentation of pictures of human emotional expressions. As reviewed earlier, anxious
children often show increased amygdala activation when viewing fear faces; however, in
children with OCD, amygdala activation is decreased, relative to healthy controls.160 This
result is in contrast to other studies in the other childhood anxiety disorders, providing
further evidence for a distinction between OCD and the other disorders.

To examine cortico–striato–thalamic dysfunction Woolley and colleagues161 tested response
inhibition. During successful response inhibition, OCD was associated with decreased
activation in the OFC, thalamus, and basal ganglia (caudate head, putamen, globus pallidus).
During unsuccessful response inhibition OCD was associated with decreased medial PFC
activation. To isolate the contributions of cognitive flexibility deficits to OCD, Britton and
colleagues162 tested cognitive inflexibility while controlling for motor behavior. Children
with OCD, relative to controls, had decreased OFC activation during set shifting, but there
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were no differences in the striatum, dmPFC, or dlPFC. Caudate activation was positively
correlated with a behavioral measure cognitive flexibility in healthy controls, but negatively
correlated in OCD. Findings from these studies are consistent with a meta-analysis of
functional brain differences found that childhood OCD was associated with functional
differences in the frontal and parietal cortices, striatum, and thalamus.145 Together, these
fMRI studies provide preliminary evidence that children with OCD have dysfunction in the
OFC, thalamus, and basal ganglia.

The first neuroimaging studies to examine the effect of treatment on brain function in
children with OCD used regional cerebral blood flow (rCBF) measures. Diler and
colleagues163 compared rCBF at baseline and after 12 weeks of treatment with paroxetine.
At baseline, children with OCD had increased blood flow in the caudate, dlPFC, and ACC;
blood flow in these regions was reduced following treatment. A subsequent study failed to
find changes in rCBF using clomipramine.164 Using fMRI, Lazaro and colleagues165

examined the effect of treatment on brain activation during a serial reaction time task in
treatment-naïve children with OCD. At baseline, the serial reaction time task produced
increased activation in the caudate, middle frontal gyrus, and inferior parietal lobe; total
OCD scores correlated with activation in the nucleus accumbens and superior parietal lobe
and obsession scores correlated with activation in the ACC. After 6 months of fluoxetine
treatment and significant clinical improvement, activation in the insula and putamen were
decreased during performance of the serial reaction time task.

Structural MRI
Investigations of differences in amygdala volume have been inconsistent. An initial study
found no amygdala volume differences in medication-naïve children with OCD152;
however, a later study reported an initial amygdala asymmetry in OCD (left larger than
right) relative to controls.151

Several structural studies have found evidence that children with OCD have larger volumes
in the putamen166–168; however, two studies reported either smaller volumes or no
differences in the putamen169,170 and another study reported smaller volume in the globus
pallidus.170 Other structural differences include larger volume in the thalamus,171

caudate,168 and cerebellum.172 In the PFC, the most consistent structural finding to date is
that childhood OCD is associated with larger gray-matter volume in the ACC, a finding that
has been replicated in multiple samples using both manual tracing152,166,170 and voxel-based
morphometry162 methods. However, one study reported areas of smaller gray matter volume
in the ACC.167 Larger gray-matter volume has also been reported in the OFC162,166 and
larger gray matter volume correlated with higher symptom severity.166 Other PFC areas that
show differences in OCD include the medial frontal gyrus162,167 and inferior frontal
gyrus.162

Several studies have examined treatment effects on brain structure. For the amygdala, one
study reported that an initial amygdala asymmetry was normalized with selective serotonin
reuptake inhibitor (SSRI) treatment.151 In another study, thalamic volume normalized with
treatment and decreased volume with treatment was associated with reduced OCD symptom
severity.171 However, in another study no changes in thalamic volume were seen with CBT,
even though symptom severity reduced with treatment.173

IMPLICATIONS FOR RESEARCH AND CLINICAL PRACTICE
Using functional and structural neuroimaging methods to isolate the neural underpinnings of
childhood anxiety disorders is still in its infancy, with the first childhood anxiety fMRI study
conducted a little over a decade ago. Given this relatively short period of time, significant
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progress has been made in identifying possible sources of brain dysfunction contributing to
childhood anxiety. In the fear-based anxiety disorders (GAD, SP, SAD), neuroimaging
studies have reported brain dysfunction in both the amygdala and multiple regions of the
PFC. In OCD, the basal ganglia, orbitofrontal cortex, and anterior cingulate cortex are
emerging as key regions of structural and functional deficits.

Studies of children and adolescents at high-risk for developing an anxiety disorder have
contributed substantially to our current knowledge of possible neural substrates of anxiety
disorders. Given the National Institute of Mental Health's new emphasis on dimensional
traits—the Research Domain Criteria (RDoC)—we expect that more neuroimaging studies
will begin to study high-risk traits, such as behavioral inhibition. The use of dimensional
approaches may be especially useful for childhood anxiety disorders given that many
children have subsyndromal symptoms or symptoms across multiple anxiety disorders.174

Although progress has been made, many important questions remain. Some important future
areas for research include:

1. Measure individual differences in developmental brain trajectories to identify the
neural underpinnings of trajectories that result in childhood anxiety.

2. Study the developmental brain trajectories of children with anxiety disorders,
because not all anxious children become anxious adults. Identifying the brain and
behavioral trajectories associated with reduction in anxiety may inform novel
targets for treatment.

3. Increase focus on isolating the neural bases of dimensional traits associated with
risk for developing anxiety, such as behavioral inhibition, trait anxiety, and
intolerance of uncertainty.

4. Collect measures of behavior and arousal, in addition to functional neuroimaging
measures, to provide greater clarity about the meaning of differences in brain
activation in anxious children.

5. Develop new functional tasks to examine the relative contributions of the amygdala
and the PFC to anxiety and to identify the sequelae of individual differences in the
amygdala–PFC imbalance.

6. Test the effects of pharmacologic and nonpharmacologic treatments on the
developing brain. Research is greatly needed to identify whether treatment success
is associated with changes in brain function and/or development.

The current findings from the functional and structural neuroimaging studies reviewed in
this article suggest that anxious children and adolescents have dysfunction in amygdala–PFC
neurocircuitry. While it is likely that common treatments for childhood anxiety—such as
CBT and selective serotonin reuptake inhibitors (SSRIs)—act on this circuit, empirical
evidence is still needed. Importantly, identification of dysfunction in the amygdala–PFC
neurocircuitry may suggest new avenues for the development of novel therapies. For
example, evidence of dysfunction in PFC-dependent attentional processes has led to the
development and testing of attention retraining therapies.97,175 In addition, new
pharmacotherapies or behavioral therapies can capitalize on neuroscience findings by
targeting emotion regulation abilities in anxious children.
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KEY POINTS

• Development of fear is a normative process; normal development of the fear
system goes awry in children who develop anxiety disorders and dysfunction in
the amygdala-prefrontal cortex fear circuitry is likely.

• In the fear-based anxiety disorders, neuroimaging studies have reported brain
dysfunction in both the amygdala and multiple regions of the PFC.

• In OCD, neuroimaging studies have reported functional and/or structural
anomalies in the basal ganglia, orbitofrontal cortex and anterior cingulate cortex.

• Functional and structural neuroimaging studies have contributed to the
significant progress made in identifying possible neural substrates of childhood
anxiety disorders.
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Fig. 1.
Illustration of the amygdala and the major divisions of the PFC. The planes (in blue) show
the major dorsal/ventral and anterior/posterior divisions of the brain. The lateral PFC is
shown on the left and the medial PFC and amygdala are shown on the right. Brain images
and surface constructions were created using Mango (Research Imaging Center, UTHSCSA;
http://ric.uthscsa.edu/mango/mango.html) and a Montreal Neurological Institute standard
brain.
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Fig. 2.
Degree of labeling intensity in PFC neurons for both inputs to the amygdala (left column)
and outputs from the amygdala (right column). Rows show different surface views: medial
surface (top), lateral surface (middle), and ventral surface (bottom). (Adapted from
Ghashghaei H, Hilgetag CC, Barbas H. Sequence of information processing for emotions
based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage
2007;34:905–23; with permission.)
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Fig. 3.
Model illustrating the imbalance between the early maturation of subcortical regions, such
as the amygdala, and late maturation of PFC regions during adolescence. The shaded areas
indicate degree of amygdala–PFC imbalance. (From Somerville LH, Jones RM, Casey B. A
time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and
aversive environmental cues. Brain Cogn 2010;72:124–33; with permission.)
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Fig. 4.
Peak activations from studies of children and adolescents with GAD, SP, or SAD (relative to
healthy controls). Seventeen peaks from nine studies are illustrated on a 3-D transparent
brain. Four perspectives are shown: (A) left lateral view, (B) right lateral view, (C) top view,
and (D) side view. Dot colors represent different brain regions: red = amygdala (n = 11);
dark blue = vmPFC (n = 2); light blue = vlPFC (n = 3); green = dmPFC (n = 1). Images
were created using the plot_points_on_suface Matlab script included in the Multilevel
Kernel Density Analysis toolbox (Tor Wager; http://wagerlab.colorado.edu/tools/).
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