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(1) A novel microwave leaching method is proposed for manganese selective recovery. 

(2) Microwave heating is proved to be more effective compared to conventional heating. 

(3) The passivation layer detected during normal leaching was suppressed by MW heating. 
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Abstract 

The recovery mechanism of manganese from low-grade pyrolusite was studied through 

microwave and conventional leaching, respectively, and pyrite was used as the reducing agent. 

An improvement on the manganese leaching rate with microwave heating was noticed which 

may be caused by the suppressing of the formation of sulfur passivation layer by the unique 

dipole rotation heating mechanism of microwave energy. To confirm this hypothesis, the 

leaching time, the amount of reducing agent, and the concentration of sulfuric acid were 

studied, and the surface compositions of the leaching residues were analyzed. The results 

evidenced that the sulfur content on the surface of residue produced by microwave leaching 

was significantly reduced compared to the results produced by conventional heating, which 

proved the rationality of the hypothesis. The recovery of leaching assisted with microwave 

heating was improved compared to that assisted with conventional heating under the same 

experimental conditions (liquid-solid ratio: 10:1, leaching temperature: 90 ℃, 

M(pyrite)/M(pyrolusite): 0.2, sulfuric acid concentration: 1.2 mol/L, stirring speed: 400 rpm). The 

corresponding peak value of the leaching rate was 95.07% and 75.08%. Additionally, 

microwave leaching is very environmentally friendly since it significantly reduces the amount 

of reducing agent and sulfuric acid as well as reaction time. 

Keywords: microwave heating; pyrolusite; enhanced leaching; dipole rotation; 

environmentally friendly 

 

 



1. Introduction 

Manganese(Mn) is a national strategic resource and is widely used in various industrial 

applications, wherein 90% of the Mn is applied in the iron and steel manufacturing process, 

and the rest is used in the production of fertilizers, non-ferrous metals, chemistry, glass and 

diet [1-3]. With the gradual exhaustion of high-quality manganese ore resources and the 

increasing demand for manganese resources in the world, a highly effective recycling approach 

for low grade manganese oxide ores is in urgent demand, which accounts about 60% of the 

world's manganese reserves, such as pyrolusite, the manganese source in which is MnO2 [4-5]. 

At present, the main methods for the recovery of manganese are hydrometallurgical 

method (namely acid/alkaline leaching), and pyrometallurgy method (namely calcination) [6]. 

Compared with pyrometallurgical process, hydrometallurgical method is known to be 

environmentally friendly and endows the advantages including low energy consumption, 

however, has a disadvantage of time consuming; therefore, a new process for reducing reaction 

time is required [7]. In addition, it is noticed that manganese dioxide (MnO2) in pyrolusite has 

strong stability in the absence of reducing agent during the leaching process, and hardly to be 

reduced to divalent manganese ion. Therefore, it is necessary to select suitable reducing agent 

in the process of hydrometallurgy for the recovery of MnO2, such as pyrite (FeS2) [8], scrap 

iron [9], SO2 [10], potassium-oxalate [11] and so on. Pyrite (FeS2) as one of the most abundant 

sulfides on the earth's surface, it has the advantages of low price and convenient access. Pyrite 

can be decomposed into Fe2+ and S2
2-, which present strong reducibility in acidic solution [12]. 

Therefore, a new process is needed, which can reduce the formation of sulfur passivation layer 

in solution [15-17], and recover manganese from pyrolusite efficiently and environmentally 



friendly. 

The pyrolusite (MnO2) and pyrite (FeS2) are polar molecules with good microwave 

absorption properties, resulting to a good ability to convert microwave energy into thermal 

energy [18, 45]. The heating characteristic of MnO2 was 214.5 °C/min at 2450 MHz, and the 

heating characteristic of FeS2 was 20 °C/s. Additionally, the heating characteristic of a common 

mineral of pyrolusite and pyrite, namely SiO2, was 2-5 °C/s. Clearly, the application of 

microwave energy will enhance the heating pattern of pyrolusite and pyrite because of the 

corresponding enhanced heating characteristic of minerals[46-47]. 

According to Maxwell's electromagnetic radiation theory, the microwave field is mainly 

composed of changing electric field and magnetic field [19], and the change of electric field 

and magnetic field will affect the charge distribution in the molecule. Thus, polar molecules 

(ions) and polar molecular groups (ion groups) move directionally in the solution under the 

combined action of microwave electric field and magnetic field, while the collision of charged 

materials with neighboring molecules or atoms produces resistance and heats the sample. 

Under the action of high frequency electric field (2450 MHz), the dipole molecule oscillates 4.9 

× 109 times per second with dipole rotation [20-22]. It is reported that the directional motion 

and dipole rotation of polar molecules in solution increase the friction heating between 

molecules, which leads to the heating of solution [23-24]. Considering the rotational motion of 

the dipole during microwave heating, the usage of microwave energy may be used to prevent 

the attachment of molecule S on the MnO2 surface, thereby reducing the formation of sulfur 

passivation layer [16]. Thus, microwave-assisted leaching process could be a possible solution 

for highly efficient pyrolusite recovery. 



Recently, microwave-assisted leaching process has many successful applications 

including the recovery of copper [25], nickel ores [26], and chalcopyrite [27]. Different from 

the traditional heating method, microwave energy directly acts in the object [28], so it endows 

the advantages including rapid and selective heating, and low energy consumption [29-31]. 

Besides, in order to prevent the interference between electromagnetic signals in the same 

frequency band, the available frequency of microwave heating is adjusted to 2450 MHz and 

915 MHz with corresponding wavelengths of 335 mm and 122 mm, respectively. At present, 

the heating frequency commonly used in laboratory is 2450 MHz, which was selected in this 

experiment with a wavelength of 335 mm [32].  

In this paper, considering the strong coupling effect of pyrolusite and pyrite under 

microwave energy, microwave heating was introduced as a new assisted process during the 

leaching process of pyrolusite to improve the recovery of manganese from low-grade 

pyrolusite, and save energy consumed. In addition, the mechanism of microwave-assisted 

leaching was discussed, and the possible heating principle of microwave in inorganic 

chemistry and the positive effect of microwave on sulphide ores were introduced in details. 

Moreover, the application prospect of microwave heating in the field of hydrometallurgy was 

also introduced. 

 

2. Experimental 

2.1. Materials 

Pyrolusite samples were provided by Guangxi Chongzuo CITIC Dameng Mining Co., 

Ltd. (China). The pyrite used in the experiments was supplied by Yunnan Wenshan Dounan 



Manganese Industry Co., Ltd. (China). Sulfuric acid (98% of purity) was purchased from 

Chongqing Chuandong Chemical (Group) Co., Ltd. (China). Table 1 indicated the chemical 

composition of pyrolusite samples. The total manganese content of pyrolusite was 26.39%, 

which belongs to low grade pyrolusite (below 30%). Since the Mn/Fe was less than 3, the ore 

sample had a high iron content. Table 2 presented the chemical composition of pyrite samples. 

The total mass ratio of iron and sulfur was 41.58% and 38.20%, respectively, indicating that 

the iron sulfide in pyrite was in high content. The different concentrations of sulfuric acid 

used in the experiment were diluted by adding distilled water. All the chemicals were directly 

used without further purification. 

Fig. 1 displayed X-ray diffraction patterns of pyrolusite and pyrite samples, and the 

results were compared with PDF cards provided by MDI Jade 6.5 software. Fig. 1(a) 

indicated that the main form of manganese in pyrolusite was MnO2 phase, accompanied with 

a small amount of manganese ferrite. Fig. 1(b) signified that iron content in pyrite mainly 

existed in the form of FeS2, and the minor amount of sulfur existed as zinc sulfide. 

2.2. Instrument characterization 

Powder X-ray diffractometer (rotating anode, Panaco) equipped with CuK Radiation 

(=1.540598 Å) was used to analyze pyrolusite and pyrite samples. The working current and 

voltage of the instrument were 40 mA and 40 kV, respectively. The sample was scanned at a 

scanning speed of 1.6 °/min, and the XRD pattern of the sample was recorded in the 2-Thera 

range of 5 °-90 °. Scanning electron microscopy (SEM, Phenom prox, Netherlands) was used 

to observe the surface morphology of the leached sample under the working voltage of 10 kV. 

The elemental compositions of the leached samples under different heating methods were 



determined by energy dispersive scanning spectrometer (EDS, Phenom-world, Netherlands) 

matched with scanning electron microscope (SEM) with working voltage 15 kV. A 

Mastersizer 2000 laser diffraction particle size analyzer (Malvin, UK) was used to measure 

the particle size of pyrolusite and pyrite, and water was used as dispersant, with the refractive 

index of the dispersion medium, the refractive index of the sample and the imaginary 

refractive index of the sample set according to the recommended values of the system. 

2.3. Experimental procedures 

The experimental process was illustrated in Fig. 2. In order to select the optimum 

experiment conditions, single factor experimental conditions were carried out. Based on these 

single factor experiments, the optimum conditions were determined. Firstly, before the 

leaching experiments, pyrolusite and pyrite were dried in a constant temperature blast drying 

box at 105 ℃ for 2 h to remove moisture from the mineral surface, and then 20.00 g of 

pyrolusite and different quality of pyrite were weighed by analytical balance. Different 

volumetric concentrations of sulfuric acid were added to the mixed sample according to the 

liquid-solid ratio of 10:1. Then the sample was placed into the reaction container and poured 

it into sulfuric acid for reaction. In the heating stage, the heating time was automatically 

recorded, and the heating rate of microwave heating was synchronously controlled with the 

conventional heating till 90 ℃ (±0.2 ℃), resulting from the adjusting on the microwave output 

power.  

After 2.5 h of reaction, the leaching residue and leaching solution were obtained by 

filtering the reaction products in the glass container. The leaching residue was washed with 

deionized water for 2-3 times to remove the possible residual manganese ions on the surface 



and dried in the constant temperature blast drying box at 50 ℃. According to the national 

standard (GB/T1506-2016), the content of Mn in the leaching solution was determined with 

0.04 mol/L solution of (NH4)2 Fe (SO4)2. The leaching rate of manganese ore in leaching 

solution was calculated by Eq. 1. The specific calculation formula of the manganese leaching 

rate was expressed as follows: 

100%
m

M W
  


  

(1) 

where   means the leaching rate of manganese, m represents the mass of manganese in 

lixivium, M indicates the mass of manganese ore, W expresses the content of manganese in 

pyrolusite. 

 The experimental process was mainly composed of two identical mechanical agitators 

(DSX-120, Hangzhou instrument and Electrical Appliance Co., Ltd.). The constant 

temperature blast drying box used in the experiment was purchased in Shanghai Yiheng 

Scientific instrument Co., Ltd. The temperature measurement was consisted of two digital 

K-type thermocouples with accuracy of ±0.1 °C and fast response. A glass container made of 

quartz was used, which was a non-absorbing material to microwave energy [34]. The only 

difference between the two setups was the heating method. Microwave heating was dependent 

on microwave radiation, while conventional heating was mainly heated by water bath. 

 

3. Results and discussion 

3.1. Reaction principle 

 The reduction of manganese in the pyrolusite using pyrite in sulfuric acid medium 

mainly follows the following reaction equations (Eq.2-5) [8, 35,36]  



2FeS2(s)+ 15MnO2(s)+ 14H2SO4(aq)= 15MnSO4(aq)+ Fe2(SO4)3(aq) +14H2O(l)
 (2) 

FeS2(s) + H2SO4(aq) = FeSO4(aq) + H2S(g) + S(s) (3) 

2FeS2(s)+9MnO2(s)+10H2SO4(aq) = 9MnSO4(aq)+Fe2(SO4)3(aq)+10H2O(l)+ 2S(s) (4) 

FeS2(s) + Fe2(SO4)3(aq) = 3FeSO4(aq) + 2S(s) (5) 

Under acidic conditions, Fe2+ and S2
2- are used as reductants to reduce Mn (IV) to Mn 

(Ⅱ). In the reaction process, attributed to the oxidation of S2
2-, elemental sulfur (S) may be 

formed. Therefore, thermodynamic analysis is needed to analyze the possibility for the 

formation of sulfur in the solution. The calculation of the thermodynamic parameters involved 

in the reaction depends on the calculation of Factsage® for Microsoft Windows, ver. 7.3, 

wherein the thermodynamic database is Thermfact/CRCT (Canada) and GTT-Technologies 

(Germany). The results of thermodynamic calculation were shown in Fig. 3(a) and the 

schematic diagram of the reaction process was presented in Fig. 3(b), respectively. 

In Fig. 3(a), thermodynamic analysis denoted that the formation of sulfur elemental (△

G<0) during the reduction of pyrolusite by pyrite is very possible with the increase of 

temperature (273.15K-373.15K). The mechanism of the reaction process of ions in the 

solution is illustrated in Fig. 3(b). In addition, the formation of elemental sulfur was also 

reported in the leaching of similar sulfide ore [36]. It is attributed to the existence of free 

sulfur elements, which adsorbed on the mineral surface, resulting in the formation of a 

hydrophobic sulfur passivation layer, further inhibiting the reaction and reducing the leaching 

rate [13, 14]. Therefore, it is hoped that the dipole rotation mechanism of microwave heating 

on ionic solution can be used to reduce the formation of this passivation layer.  



3.2. Effect of leaching time on Mn (Ⅱ) leaching 

The effect of leaching time (0 h-2.5 h) on the extraction efficiency of manganese was 

observed in Fig. 4, wherein the leaching temperature was 90 ℃, an initial sulfuric acid 

concentration was 1.2 mol/L with 240 mL sulfuric acid, the m(pyrite)/m(pyrolusite) = 0.2, 

liquid/solid (L/S) was 10:1, and the stirring speed was 400 rpm. It is demonstrated from Fig. 4 

that the leaching rate of manganese has a positive relation with the reaction time, and the 

difference between the leaching rates responding to the different heating approach was 

enhanced with the increase of reaction time. When the manganese was leached under 

microwave heating for 2 h, the leaching rate of manganese was obtained at 80.04%.  

The leaching rate obtained with microwave heating for 2 h was higher than leaching rate 

obtained with conventional heating for 2.5 h (75.08%), indicating that microwave heating 

enhanced the reaction process, shorten the reaction time and improved the leaching rate. Yuan 

et al. found that the low leaching rate of manganese under conventional heating conditions 

was mainly attributed to the dissolution of pyrite to produce elemental sulfur (Eq.2-5) [35,36]. 

The sulfur element produced during the reaction will accumulate and adsorb on the ore 

surface to form a passivation layer, and the reduction reaction (Eq.1) will be interrupted due 

to the hydrophobicity of the sulfur passivation layer [37-38]. However, microwave heating 

promotes the rotation of polar molecules (H2O) in the solution with the changing 

electromagnetic field, which reduces the accumulation of sulfur elements in the solution and 

slows down the appearance of sulfur passivation layer on the ore surface.  

Additionally, in order to verify this hypothesis, we carried out XRD characterization and 

elemental analysis of the leaching residue under conventional heating and microwave heating. 



The XRD pattern and the elemental analysis of the leaching residue under the condition of 

conventional heating and microwave heating shows that there were few elemental sulfur in 

the leaching residue heated by microwave, but elemental sulfur was existed in the 

conventional leaching residue, and the experiment results are demonstrated in Fig. 5 and Fig. 

6, respectively. 

Both analysis techniques (XRD, SEM-EDS) indicated that the elemental sulfur appeared 

in the conventional leaching residue (as shown in Fig. 5 and Fig. 6). The sulfur was absented 

in the leaching residue of microwave heating. The results confirmed that the formation of 

elemental sulfur during leaching with conventional heating conditions [13-14, 38-39]. Fig. 7 

indicated the schematic diagram of the formation of sulfur passivation layer during 

microwave radiation leaching and conventional leaching. During the conventional heating 

leaching process, free elemental sulfur was generated in the solution due to the presence of 

side reactions, the sulfur element was gradually accumulated and adsorbed on the surface of 

pyrolusite, resulting in the formation of hydrophobic passivation layer. Due to the existence of 

this passivation layer, pyrolusite was failed to contact with the reducing agent and was 

ineffectively reduced to bivalent manganese ions dissolved in the solution [36]. However, the 

unique dipole rotation in the process of microwave heating has led to the agitation of polarity. 

It inhibited the adsorption of free elemental sulfur as well as the formation of passivation 

layer, and the friction between polar molecules has led to serious ore corrosion, and the 

contact area was increased as a result of the formation of porous structure (as shown in Fig. 6) 

which further promoting the reaction speed. Finally, a high leaching rate was obtained. 



3.3. Effect of the mass ratio of pyrite and pyrolusite on Mn (Ⅱ) leaching 

Fig. 8 illustrated the effect of different reductants quantity on the leaching efficiency of 

manganese, recovered with a leaching temperature of 90 ℃, a sulfuric acid volume of 240 mL 

with an initial concentration sulfuric acid of 1.2 mol/L, a liquid/solid (L/S) of 10:1, a stirring 

speed of 400 rpm, and a leaching time of 2.5 h. As shown in Fig. 8, the concentration of 

manganese ion in the solution increased gradually with the rise of reaction time. The leaching 

rate of manganese under microwave-assisted heating(95.07%) was optimized compared to 

that under conventional heating (75.08%). For the same manganese leaching rate (75%), the 

amount of reducing agent required for microwave-assisted leaching (10:1.5) is about 25% 

lower than that for conventional heating leaching (10:2). The low consumption of reducing 

agent is of great significance for saving resources and protecting the environment, and also 

provides a new direction for reduction reaction. Since the migration of ions in the solution 

was induced by microwave electromagnetic field, the convection in the solution was 

enhanced, resulting in an improved leaching rate[40]. Under the same conditions, the 

improved convection of H+ will accelerate the dissolution of pyrite, and the released ions act 

in directional movement affected by electric field.  Therefore, the leaching process was 

encouraged, and the leaching rate of microwave-assisted heating was higher than that of 

conventional heating. 

Fig. 9 displayed the SEM images of the samples extracted by different heating approach, 

respectively. SEM images show that there are obvious cracks and irregular pore structure on 

the surface of the microwave leaching residue after 2.5 h of leaching, whilst the surface of the 

mineral is relatively smooth under conventional heating. The reason is that the absorption 



coefficient of microwave energy of different components (MnO2, SiO2, FeS2, etc.) in the 

mineral is different, which leads to different heating rates and thus creating temperature 

gradient inside the mineral [33]. The existence of temperature gradient leads to cracks in the 

ore from the inside to the outside. Additionally, the unique heating mechanism caused by 

electromagnetic field in microwave field accelerates the effective collision of H+, Fe2+ , and 

S2
2- with MnO2 in pyrolusite, and thus accelerates the chemical reaction, which leads to the 

formation of porous structure on the mineral surface. As a result, the detected porous structure 

of the mineral surface further increases the contact area between the mineral and the solution, 

which promotes the occurrence of the reaction. 

3.4. Effect of sulfuric acid on Mn (Ⅱ) leaching 

The leaching degree of Mn at different sulfuric acid concentrations (0.6 mol/L to 1.2 

mol/L) was depicted shown in Fig. 10. By keeping the other experimental factors at constant 

(leaching time of 2.5 h, 9 leaching temperature of 0 °C, m(pyrolusite)/m(pyrite) of 10:2, the 

ratio of liquid/solid was 10:1 and the corresponding stirring speed of 400 rpm). Fig. 10 

indicated that the leaching rate of manganese has a positive relation with the sulfuric acid 

concentration. However, Fig.10 shows that the concentration of manganese ion in the leaching 

solution under the condition of microwave-assisted heating is higher than that under the 

condition of conventional heating. The reason for this phenomenon may be that microwave 

heating can promote the ionization of hydrogen ions in sulfuric acid (H2SO4), which was 

supported by Eq. 1. The dissolution of hydrogen ions will increase the impact and contact to 

metal minerals [41, 42], thus accelerating the leaching of manganese ions. The peak value for 

microwave-assisted leaching rate (95.07%) was much higher than that of conventional heating 



leaching (75.08%) under the same experimental condition. Moreover, it can be seen in Fig. 10 

that under the condition of microwave-assisted heating, the leaching rate of manganese 

obtained through using 0.8 m concentration of sulfuric acid (79.58%) was slightly higher than 

that obtained through using 1.2 mol concentration of sulfuric acid under conventional heating 

conditions (75.08%). Therefore, microwave-assisted heating can significantly reduce the 

amount of required sulfuric acid [43,44]. These results also provide a novel idea for the 

experiment similar to those carried out under acidic conditions. 

 

4. Conclusions and Outlook 

In order to improve the leaching rate of manganese in pyrolusite, this study proposed a 

new process based on microwave-assisted method which was compared with conventional 

heating under the condition of single factor experiment, considering that pyrolusite has decent 

microwave absorbing ability. Moreover, the mechanism of microwave efficient leaching of 

manganese from low-grade pyrolusite was described. The following conclusions are drawn. 

(1) With the optimized experimental conditions (L/S=10:1, 1.2 mol/L of sulfuric acid 

concentration, M(pyrolusite): M(pyrite)=0.2, 2.5 h of leaching time), the leaching rate of Mn was 

95.07% under microwave-assisted heating, while that was 75.08% under conventional heating. 

Advantaged from microwave heating, the leaching rate of manganese was improved, and the 

leaching period was effectively reduced. 

(2) The mechanism of microwave dipole rotary heating has explained the advantage of 

microwave heating, which reduced the formation of passivation layer on the mineral surface, 

and thus guaranteed the efficient reaction rate. 



(3) Additionally, the unique coupling mechanism of the microwave created cracks on the 

mineral surface and increased the reaction area during leaching, which accelerated the 

reaction rate. 

Thus, microwave heating, as a new heating process, has great potential and advantages in 

the process of mineral extraction, such as reducing the reaction duration, reducing the 

addition cost of reducing agents, saving resources, improving extraction efficiency, and so on. 
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Table 1 Chemical compositions of pyrolusite. 

Compositions Mn Si Fe Al Ca 

Mass % 26.39 16.18 9.88 2.04 0.91 

 

Table 2 Chemical compositions of pyrite. 

Compositions Fe S Zn Si Ca 

Mass % 41.58 38.20 1.43 0.93 0.70 
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Fig. 1 The XRD patterns of pyrolusite (a) and pyrite (b). 

  



 

Fig. 2 Schematic diagram of the experimental sequence. 

  



 

 

Fig. 3 Schematic diagram of reaction thermodynamics simulation (a) and schematic diagram 

of reaction process in solution (b). 
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Fig. 4 Effect of leaching time on leaching of Mn. 
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Fig. 5 The XRD pattern of leaching residue: conventional heating (a), microwave heating (b). 

  



 

 

Fig. 6 SEM-EDS of leaching residue under microwave heating and conventional heating 

methods. 

 



 

Fig. 7 Schematic diagram of the formation of the sulfur passivation layer under 

microwave heating and conventional heating methods. 

  



10:1 10:1.5 10:2 10:2.5

40

60

80

100

I
I

I

I

II

I

I

M
n

 l
ea

ch
in

g
 e

ff
ic

ie
n

tc
y

 (
%

)

M(Pyrolusite):M(Pyrite)

 Microwave heating

 Conventional heating

95.07

74.75 75.08

 

Fig. 8 Effect of the mass ratio of pyrite and pyrolusite on leaching of Mn. 

 

  



 

Fig. 9 Scanning diagram of surface morphology of leaching residue at 10000 times. 
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Fig. 10 Effect of sulfuric acid on leaching of Mn. 
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