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Abstract 18 

Machine learning models have attracted much research attention for groundwater potential mapping. 19 

However, the accuracy of models for groundwater potential mapping is significantly influenced by 20 

sample size and this is still a challenge. This study evaluates the influence of sample size on the accuracy 21 

of different individual and hybrid models, adaptive neuro-fuzzy inference system (ANFIS), ANFIS-22 

imperial competitive algorithm (ANFIS-ICA), alternating decision tree (ADT), and random forest (RF) 23 

to model groundwater potential, considering the number of springs from 177 to 714. A well-documented 24 

inventory of springs, as a natural representative of groundwater potential, was used to designate four 25 

sample data sets: 100% (D1), 75% (D2), 50% (D3), and 25% (D4) of the entire springs inventory. Each 26 

data set was randomly split into two groups of 30% (for training) and 70% (for validation). Fifteen diverse 27 

geo-environmental factors were employed as independent variables. The area under the operating 28 
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receiver characteristic curve (AUROC) and the true skill statistic (TSS) as two cutoff-independent and 29 

cutoff-dependent performance metrics were used to assess the performance of models. Results showed 30 

that the sample size influenced the performance of four machine learning algorithms, but RF had a lower 31 

sensitivity to the reduction of sample size. In addition, validation results revealed that RF 32 

(AUROC=90.74–96.32%, TSS=0.79–0.85) had the best performance based on all four sample data sets, 33 

followed by ANFIS-ICA (AUROC=81.23–91.55%, TSS=0.74–0.81), ADT (AUROC=79.29–88.46%, 34 

TSS=0.59–0.74), and ANFIS (AUROC=73.11–88.43%, TSS=0.59–0.74). Further, the relative slope 35 

position, lithology, and distance from faults were the main spring-affecting factors contributing to 36 

groundwater potential modelling. This study can provide useful guidelines and valuable reference for 37 

selecting machine learning models when a complete spring inventory in a watershed is unavailable. 38 

Keywords: Groundwater management; Geo-environmental factors; Sample size; Spatial modelling; 39 

Random Forest 40 

 41 

1. Introduction 42 

Long-lasting droughts and increasing rates consumption are threatening water, energy, and food security 43 

and they do not bode well for the future of arid and semi-arid environments. In many parts of the world, 44 

groundwater resources have been relatively inexpensive and often an abundant source of usable fresh 45 

water (Jackson et al., 2001; Chenini and Mammou, 2010; Parisi et al., 2018). Groundwater resources are 46 

less vulnerable to contamination than surface water sources in areas where adequate groundwater 47 

protection measures are implemented and, therefore, would be highly beneficial for public water supplies 48 

as well as for irrigation and industrial and domestic uses (Mukherjee et al., 2012; Choubin and Malekian, 49 

2017; Shenga et al., 2018a). The Sustainable Development Goals (SDGs) of the United Nations stress 50 



3 
 

this issue (Rasul, 2016; Velis et al., 2017). However, uncontrolled groundwater withdrawal has caused 51 

depletion of groundwater resources in many regions, especially in Iran (Motagh et al., 2008; Ravilious 52 

2018). Overexploitation and severe droughts in recent years have caused increasing rates of groundwater 53 

withdrawals, because groundwater resources are viewed as dependable, especially where sustainable 54 

groundwater exploitation and protection measures have been implemented. Fundamental to achieving 55 

these measures is effective modeling of groundwater potential. 56 

Fractured bedrock aquifers (also termed “mountain bedrock aquifers”) are important sources of water in 57 

some parts of the world. These zones play a critical role in the hydrologic cycle as they serve as long-58 

term stores of water and they initiate transport of water from the surface to local and regional aquifers 59 

(Viviroli et al., 2007). However, flow and transport processes in such aquifers are intrinsically complex, 60 

more than granular, porous-media aquifers (i.e., generally located in plains) due to the nature of their 61 

depths. They are discrete, exhibit anisotropy, have small pathways, and are less common (Coleman et 62 

al., 2015). The occurrence and movement of groundwater in fractured bedrock aquifers in a given area 63 

is very complicated and governed by many factors, such as lithology, landforms, topography, secondary 64 

porosity, geological structures, fracture density, aperture and connectivity, drainage pattern, groundwater 65 

recharge, groundwater table distribution, slope, land cover, climatic conditions, and their 66 

interrelationships (Levison et al., 2012; Rathay et al., 2018). In general, there is insufficient data 67 

regarding groundwater in fractured bedrock aquifers in mountainous environments worldwide due to a 68 

lack of piezometric wells in these high-elevation settings (Voeckler and Allen, 2012). Consequently, 69 

pumping tests are often not feasible. Therefore, water table data have not been gathered and a clear 70 

understanding of the hydrodynamic components of these areas have not been acquired. 71 

Because of these challenges, numerical models cannot be created in mountainous areas to understand 72 

how groundwater moves in bedrock (Shenga et al., 2018b). Various types of machine-learning and data-73 
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mining models have been employed for groundwater potential modelling, however, and they include 74 

binary logistic regression (Ozdemir, 2011b), weights of evidence (Ozdemir, 2011a; Pourtaghi and 75 

Pourghasemi, 2014; Chen et al., 2018), frequency ratio (Oh et al., 2011; Manap et al., 2014), artificial 76 

neural networks (Lee et al., 2012, 2018), random forest (Naghibi et al., 2016; Rahmati et al., 2016; Zabihi 77 

et al., 2016; Naghibi et al., 2017b; Golkarian et al., 2018), support vector machine (Naghibi et al., 2017b), 78 

boosted regression trees (Mousavi et al., 2017; Kordestani et al., 2019), generalized linear and additive 79 

models (Falah et al., 2017), classification and regression trees (Naghibi et al., 2016; Choubin et al., 2019), 80 

multivariate adaptive regression spline (Zabihi et al., 2016; Golkarian et al., 2018), evidential belief 81 

function (Nampak et al., 2014; Pourghasemi and Beheshtirad, 2015), maximum entropy (Rahmati et al., 82 

2016), decision trees (Lee and Lee, 2015; Naghibi et al., 2019), and logistic model tree (Rahmati et al., 83 

2018). Recently, hybrid models and ensemble techniques have been proposed to improve the structure 84 

of data mining models (Naghibi et al., 2017a; Rahmati et al., 2018; Chen et al., 2019; Kordestani et al., 85 

2019; Miraki et al., 2019; Naghibi et al., 2019). In these studies, inventories of springs have been used 86 

for dependent variables. The number of springs (i.e., sample size) is a very important factor in 87 

groundwater potential modelling. On the other hand, the greatest cost related to geospatial modelling of 88 

groundwater potential is the expense of collecting spring location data, given the significant resources 89 

and time requirements of field surveys and investigations (Hancock and Boulton, 2009; Kollat et al., 90 

2011; Leach et al., 2016).  91 

It has been known that gathering hydrological data in the field is a main challenge in developing 92 

countries. However, a systematic assessment of the effect of sample size (i.e. the number of springs used 93 

to model groundwater potential) is needed not only to evaluate groundwater potential, but also to evaluate 94 

the predictive capability of machine learning models. Owing to cost and time constraints in most 95 

countries, it is essential to identify robust machine learning models that are less sensitive to the sample 96 



5 
 

size (i.e., the number of springs). Determining the dependence of a model’s results on the sample size 97 

used is a research gap. Therefore, there are two focal questions of this research: “What is the response of 98 

machine-learning models to changing sample size?” and “How large must a spring data sample be to 99 

construct robust, high-resolution groundwater-potential maps?”  100 

To answer these questions, four sample data sets were generated from a spring inventory set: data set 1 101 

(D1) (100% of the inventory), data set 2 (D2) (75% of the inventory), data set 3 (D3) (50% of the 102 

inventory), and data set 4 (D4) (25% of the inventory). This sampling enabled examination of the effect 103 

of changing sample sizes on the predictive performance of machine learning models for groundwater 104 

potential mapping. In contrast to the above studies, the effects on the quality of predicted maps by 105 

changing the sample size was explored in terms of predictive performance. Another main difference 106 

between this study and others is that individual ANFIS, a hybrid model namely ANFIS-imperial 107 

competitive algorithm (ANFIS-ICA), and alternating decision tree (ADT) were used for groundwater 108 

potential mapping; their capabilities for groundwater-potential studies have not been gauged before. The 109 

RF algorithm was used as a benchmark model to compare to the other models. Selection of robust yet 110 

less data-demanding machine learning models, which do not require a large spring inventory for 111 

groundwater potential mapping, saves time and financial expenditures and enables more effective water 112 

resource management. The objectives of this study are to: 1) evaluate the influence of sample size on the 113 

performance of four machine learning models – RF, ANFIS, ANFIS-ICA, and ADT; 2) compare the 114 

predictive performances of these models by means of cutoff-dependent and cutoff-independent indices; 115 

and 3) assess the importance of geo-environmental spring-affecting factors in modelling. This study 116 

provides useful reference information regarding the capability and sensitivity of models to sample size 117 

for water resources and environmental modelling and for application of machine learning algorithms to 118 

groundwater potential mapping. 119 
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2. Study area 120 

The Hableh-Roud basin extends from Tehran Province to Semnan Province in Iran. There are two 121 

morphologically distinct districts in the northern and southern parts of the basin. The current study is 122 

focused on the northern basin (northern Hableh-Roud) which is characterized by a mountainous 123 

morphology and a semi-humid, cold climate covering an area of approximately 5,203 km2. 124 

Geographically, the basin lies between 35°19′ and 35°55′N and between 51°46′ and 53°08′E (Fig. 1). 125 

The elevation ranges from 968 to 4,036 m.a.s.l. The average annual precipitation amounts to 470 mm, 126 

and the average temperature is 11oC. From a geological viewpoint, the region is in the Central Alborz 127 

structures and has a diverse lithology in which 38 rock units are evident. Rangelands, agricultural lands, 128 

forests, orchards, bare lands, and residential development are the primary land uses in the study area. The 129 

total population is 157,168 (86,947 reside in cities and 70,221 in rural areas). The region contains a 130 

notable number of springs, 83% of which are used for agriculture, 16% for potable water and for health, 131 

and a very small number are used by industries. The annual discharge of springs adds up to around 18 132 

million cubic meters. The abundance of springs distributed over the region suggests that there is a 133 

considerable amount of groundwater in the region. 134 

The host rocks have been either metamorphosed, deformed through tectonics, and/or is comprised of 135 

igneous intrusions. Consequently, the hydraulic conductivity in the study area is often controlled by a 136 

network of discrete fractures. A layer of thin surface deposits overlies the bedrock in most of the study 137 

area. These deposits are fluvial and colluvial sediments and they reach a maximum of 6.5 m thick. They 138 

were usually deformed by compression, erosion, and even uplift. The complexity of fracturing and the 139 

lithology can be observed at a range of scales (from lineaments to outcrops) (Table 1 and Fig. 2). Most 140 

of the rocks in the region belong to Ek (well bedded, green tuff and shale), Jl (Light grey, thin - bedded 141 
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to massive limestone), OMql (Massive too thick-bedded limestone), and Plc (conglomerate and 142 

sandstone). 143 

Fig. 1 here 144 

Fig. 2 here 145 

Table 1 here 146 

3. Methodology 147 

A methodology was conceptualized that involved several steps: data compilation, multicollinearity 148 

analysis, and spatial modelling (Fig. 3). 149 

Fig. 3 here 150 

3.1. Data compilation 151 

Drawing on an extensive literature review, the most representative spring-affecting factors were chosen 152 

to model groundwater potential. The factors were selected based on a sieving process with transparent 153 

contribution to groundwater volume. Among these, topological, hydrological, lithological, 154 

environmental, and anthropological factors, as well as the ones with dual characteristics (e.g., topo-155 

hydrological factors), are demonstrated contributors to groundwater potential modelling (e.g., Oh et al., 156 

2011; Manap et al., 2013; Rahmati et al., 2016; Naghibi et al., 2019). 157 

Based on data availability, 15 spring-affecting factors were chosen (Table 2): elevation, slope percentage, 158 

aspect, soil texture, land use, soil hydrological groups, lithological formation, topographic wetness index 159 

(TWI), relative slope position (RSP), plan and profile curvature, topographic position index (TPI), terrain 160 

ruggedness index (TRI), distance from faults, and drainage density (Fig. 4). These factors can be 161 

classified into a single category as each factor can be interpreted in a dual- or multilateral manner. Some 162 

factors, such as lithological formations, soil texture, formation, soil hydrological groups, and distance 163 
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from faults with both geological and geo-hydrological fabrics, represent subsurface water infiltration and 164 

percolation that contribute to groundwater. Meanwhile, topological and topo-hydrological factors, as 165 

derivatives of the digital elevation model (DEM), primarily represent surface-runoff generation, 166 

accumulation, and transformation which, in conjunction with subsurface processes, can address 167 

groundwater potential. The identification of factors that contribute the most to the modelling of 168 

groundwater potential, the ways in which groundwater potential reacts to the changes of each factor, and 169 

the ways these factors interact will be evident from the modeling process and each will be discussed in 170 

detail below. 171 

Table 2 here 172 

Fig. 4 here 173 

The locations of springs represents groundwater potential across the northern Hableh-Roud. Therefore, 174 

archival data, complemented with information from extensive field surveys that geolocated springs with 175 

a GPS unit, were used to document an inventory of spring locations. The inventory, a total of 714 springs 176 

in 2018, was mapped as point features in ArcGIS. To test the robustness of the models and the degree to 177 

which they are sensitive to the input data sample sizes, we created four data sets following a subordinate 178 

data sample reduction strategy: D1 (100% of springs, n=714), D2 (75% of springs, n=535), D3 (50% of 179 

springs, n=358), and D4 (25% of springs, n=177). Each data set was randomly split into two groups with 180 

a 70:30 (training:validation) ratio (Fig. 5). 181 

Fig. 5 here 182 

 183 

3.2. Multicollinearity analysis 184 
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To assess the multicollinearity of spring-affecting factors and to avoid bias, we used the variance inflation 185 

factor (VIF) and tolerance (TOL) indices as are customarily used to estimate multicollinearity of 186 

predictive factors in geospatial modelling (Bui et al., 2016). According to the literature (O’Brien 2007), 187 

a VIF >10 or tolerance <0.1 indicates a critical multicollinearity which itself suggests that the factor(s) 188 

has such strong correlation to others that it should be removed from modelling (Hair et al., 2009). 189 

 190 

3.3. Spatial modelling of groundwater potential 191 

3.3.1. Adaptive Neuro-Fuzzy Inference System (ANFIS) 192 

Artificial neural networks are powerful memorizing machines but are not capable of generalizing and 193 

predicting patterns (Liška et al., 2018). The learning stage is prone to overfitting, since the algorithm is 194 

designed to find the best solution in the shortest time and, therefore, the function becomes trapped in a 195 

suboptimal equilibrium point called local minimum and is unable to reach to the global minimum (i.e., 196 

the best solution) (Jang et al., 1997). Hence, the fuzzy inference system was fused with ANNs to 197 

compensate for their prediction deficiencies. More concisely, the Takagi–Sugeno fuzzy inference system 198 

updates the information on the phenomenon under study by perpetually setting new rules (termed “fuzzy 199 

if-then rules”) (Bui et al., 2018; Zare and Koch, 2018). As information rises through the updating 200 

procedure, the learned linear and nonlinear parameters are optimized using the gradient descent and 201 

recursive least-square algorithms (Premkumar and Manikandan, 2014). More details of this process can 202 

be found in Jang (1991) and Jang (1993). 203 

3.3.2. ANFIS-Imperial Competitive Algorithm (ICA) 204 

Finding the optimal values of learning parameters for a data-mining model usually takes considerable 205 

time. The state-of-the-art parameter-tuning algorithms have significantly solved this problem. In this 206 
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study, the imperial competitive algorithm (ICA) was selected and then fused with the ANFIS model. As 207 

a derivative of evolutionary computation, the ICA imitates the socio-political evolution of nations 208 

(Atashpaz-Gargari and Lucas, 2007). Seeking an optimal solution, the algorithm starts with a random 209 

selection of a solution, and proceeds by setting cost functions (Hosseini and Al Khaled, 2014). Random 210 

solutions imitate a candidate country. Candidate countries with the least cost function values create 211 

imperialists and by taking control of other country colonies form an empire. This process proceeds by 212 

following three evolutionary operators called assimilation (i.e. incorporating similar colonies), revolution 213 

(i.e. random reposition of the countries by giving them chances to take over), and competition (i.e. 214 

possessing the weak empires by the powerful ones) until the algorithm attains the optimal solution which 215 

is the optimal values of the learning parameters (Nazari-Shirkouhi et al., 2010). 216 

3.3.3. Alternating Decision Tree (ADT) 217 

Decision trees generally follow a divide-and-conquer strategy in which the problem is dissected into 218 

many branches (i.e. nodes and leaves) and instances, and similar features stored in data are categorized 219 

into the same groups (Witten et al., 2016). This process continues until the model attains the optimal 220 

solution, in that tree-pruning and the prediction power are balanced. Building a simple tree structure 221 

linked by the boosting algorithm, alternating decision trees (ADTs) render the problem into rule sets (i.e. 222 

leaves) and outcomes (i.e. end node of each branch) (Hong et al., 2015). The ADT starts by setting a 223 

constant value (e.g. a predicate condition and prediction nodes) and proceeds to split the branches. An 224 

ADT contains a decision node and a prediction node (i.e. a single number). Each time a weight is assigned 225 

to the node which is proportional to the number of training instances that lead to a specific classification. 226 

The final prediction (in probability terms) results from the summation of all the weights contributed to 227 

the root (Freund and Mason, 1999). In contrast to other classifiers, such as classification and regression 228 

trees (CART), which follow only one pass through the tree, ADT seeks through all the passes with true 229 
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decision nodes and predictions (Breiman et al., 1984). More details of these processes can be found in 230 

Freund and Mason (1999) and Pfahringer et al. (2001). 231 

3.3.4. Random Forest (RF) 232 

Random forest modeling is one of the most popular data mining techniques and has been widely applied 233 

to many environmental studies (Vorpahl et al., 2012). As an ensemble of the classification and regression 234 

tree models, the popularity of RF is indebted to the unique learning and prediction algorithm which is 235 

expedited by a recursive random data use at each tree node and an error minimization technique 236 

(Moghaddam et al., 2019). The recursive factor selection technique gives the spring-affecting factors 237 

many chances to contribute to the modelling process and, in parallel, the random aspect strengthens the 238 

model’s robustness and improves the learning process by shifting from one randomly partitioned 239 

inventory subset to another and accordingly the pattern of phenomenon of interest will be attained (Prasad 240 

et al., 2006). The error minimization technique follows an out-of-bag (OOB) error estimation which is a 241 

measure of prediction error (Bachmair and Weiler, 2012; Were et al., 2015). Simply put, the OOB is a 242 

mean prediction error and is estimated during the bootstrapping aggregation of the data sub-sample xi by 243 

using only those trees that did not have that subset in their bootstrap sample (James et al., 2013). The 244 

final prediction averages the prediction values at each node. The mathematics of the RF model is 245 

articulated by Ho (1995) and Breiman (2001). 246 

3.4. Performance assessment 247 

The assessment of the performance of data mining models consists of cutoff-dependent and cutoff–248 

independent measures. The receiver operating characteristic (ROC) curve as a practical cutoff-249 

independent measure was used to assess the learning and prediction power of the models (Pradhan, 2013; 250 

Umar et al., 2014; Chen et al., 2017; Kornejady et al., 2017; Pourghasemi et al., 2017). The ROC curve 251 
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plots the false positive rate (i.e. incorrectly predicting event-free locations or so-called absences as 252 

presences) on the X-axis against the true positive rate (i.e. correctly predicted presence locations) on the 253 

Y-axis (Pontius and Schneider, 2001; Swets, 2014). The area under the ROC curve (AUROC) is a 254 

common performance criterion in spatial modelling of groundwater potential (Naghibi et al., 2016; 255 

Rahmati et al., 2018). Additionally, the true skill score (so-called Hanssen and Kuipers discriminant or 256 

Pierces skill score) was used to address the differentiation power between the presence and absence 257 

localities (Allouche et al., 2006; Frattini et al., 2010). The performance measures were calculated using 258 

the ArcGIS toolbox PMT. For more information on PMT and mathematics of the performance measure 259 

one can refer to Rahmati et al. (2019).  260 

 261 

4. Results 262 

4.1. Multicollinearity analysis of predictive factors 263 

The results of multicollinearity analysis demonstrated that the highest VIF value was 3.723 and the 264 

lowest TOL value was 0.226 which indicates that there is no multicollinearity among the predictive 265 

factors (Table 3). Therefore, all the predictive factors were used in modelling. 266 

Table 3 here 267 

4.2. Assessing the accuracy of maps produced with sample data sets of different sizes 268 

Considering the goodness-of-fit and predictive performance values (Tables 4 and 5), a discernible 269 

performance decline was evident while progressing through the data sets (i.e., from D1 towards D2). This 270 

is in line with the preliminary graphical check. A rather sharp decrease in the predictive ability of the 271 

ADT and ANFIS models was observed when the number of springs decreased from 75% to 50% and 272 
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from 50% to 25%. However, RF and ANFIS-ICA were more stable than were ADT and ANFIS as the 273 

spring sample size decreased.  274 

Table 4 here 275 

Table 5 here 276 

Attesting to the previous inference, the descending pattern of learning capability and predictive power of 277 

all the models strictly stemmed from sample data reduction reflected by the data sets (i.e., 100%, 75%, 278 

50%, and 25%), whether for the locations of spring presence or spring absence. Providing large positive 279 

and negative samples for presence-absence data-mining models is crucial, since larger samples make a 280 

larger and more comprehensive information matrix for each model and accordingly facilitate the learning 281 

process, prediction power, and generalization capability. Despite the performance decline, all four 282 

models demonstrated good learning and predictive power in the training step (i.e., AUROC ranged 283 

between 0.8 and 0.9) and in some cases, they had reached excellent performance (i.e., AUROC higher 284 

than 0.9). Since there was no evidence of any drastic decline of performance as all AUROC values were 285 

within and above the acceptable range, it is safe to say that all the models showed rather stable results 286 

and the sensitivity of the results to input sample-size alteration was somewhat negligible. 287 

 288 

4.3. Groundwater potential mapping 289 

It is evident that by moving from D1 to D4, almost all four models lack spatial differentiation as they 290 

conservatively categorized most of the study area into the moderate, high, or very high groundwater 291 

potential classes (yellow, green, blue) (Figs. 6, 7, 8, and 9). This is particularly evident in the groundwater 292 

potential maps generated by the ANFIS model (Fig. 6) and less so in the case of the ADT model (Fig. 293 

9). 294 
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Fig. 6 here 295 

Fig. 7 here 296 

Fig. 8 here 297 

Fig. 9 here 298 

 299 

Since the RF model performed best, the final groundwater potential map derived from the RF model 300 

(data set D1) was categorized into five potentiality classes (i.e., very low to very high) using the equal 301 

interval classification scheme (Akgun, 2012; Rahmati et al., 2018) (Fig. 10). It appears that a high 302 

potential site is located in the westernmost part of the study area. Other patches are scattered across the 303 

northeastern, southeastern, and central parts of the region and are mostly associated with deep valleys, 304 

dense drainage networks, and fault traces. About 18.7% of the study was found to have high and very 305 

high groundwater potential (Table 6). 306 

Table 6 here 307 

Fig. 10 here 308 

4.4. Importance analysis of predictive factors 309 

Results of the variable importance (VI) analysis based on the premier model and replication strategy (i.e., 310 

the RF model built upon 100% sample size) signified that the RSP index had contributed strongly to the 311 

modelling of groundwater potential; visually the pattern of RSP is similar to the spatial pattern observed 312 

in the final groundwater potential map (Table 7). 313 

Table 7 here 314 

5. Discussion 315 

5.1. Model validation and comparison: influence of sample size on the model performance 316 
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In spatial modelling studies, the sample size has proven to be a significant factor affecting the predictive 317 

abilities of the models (Guisan et al., 2007). Since the gathering of hydrogeological data in mountainous 318 

regions is often the most costly and challenging part of a study, and because additional information may 319 

be difficult to acquire, guidance for researchers concerning model sensitivity and the amount of input 320 

data needed would be extremely useful (Hjort and Marmion, 2008). As discussed by Kresic and Bonacci 321 

(2010), this is especially important in studies using traditional survey methods and in situ measurements 322 

in remote areas. This study investigated the influence of sample size on the predictive performance of 323 

different models for groundwater potential mapping in a mountain bedrock aquifer. On the other hand, 324 

since the main role of performance metrics in the validation step is to filter the models by ranking their 325 

generalization capacity and spatial transferability, even the slight differences in a models’ performance 326 

can elevate one model over another (Osna et al., 2014). Therefore, considering that the AUROC and TSS 327 

values of ANFIS-ICA and RF models were higher compared to their counterparts and given that they are 328 

respectively the hybrid or advanced versions of ANFIS and ADT models, the promising role of hybrid 329 

and ensemble learning techniques seems apparent. Results indicate that coupling ANFIS with an 330 

optimization algorithm called ICA improved both learning and prediction capabilities by improving the 331 

efficiency (in terms of time and computational space) of ANFIS’ search for the best parameter values; 332 

this has also been discussed by Bui et al. (2018). The latter also enables ANFIS to overcome overfitting 333 

by avoiding selection of an amalgamation of parameter values and by circumventing a highly iterative 334 

learning process and becoming accustomed to the training data set (Jaafari et al., 2019). This process also 335 

improves the prediction power of ANFIS. In parallel, RF, by bearing on an ensemble mechanism 336 

comprised of numerous decision trees and choosing the training data sets with many replacements, can 337 

outperform simple tree models like ADT. In other subfields related to groundwater, Rahmati et al. (2019) 338 

compared the performances of several tree-based machine learning algorithms for predicting land 339 



16 
 

subsidence hazards and found that RF outperformed simple decision-tree models. They explained that 340 

decision tree models, such as ADT, are simple structures where non-terminal nodes represent tests on 341 

one or more attributes and terminal nodes reflect decision outcomes. 342 

The TSS metric, viewed as the true success of a model, is in complete accordance with the AUROC 343 

values. The differences between the values of TSS and AUROC result from their different computational 344 

methods. However, apart from TSS being an all-inclusive metric by using all the elements of the 345 

confusion matrix in conjunction, AUROC is reportedly used as a more reliable performance index 346 

(Nampak et al., 2014; Rahmati et al., 2016) particularly because it is cutoff independent, while TSS was 347 

calculated under a predefined 50% cutoff and any other cutoff value would result in a different set of 348 

TSS values. The AUROC and TSS metrics agree on the performances of models in the validation step, 349 

upon which the RF model can be determined to be the premier model for all four data sets of different 350 

sample sizes. 351 

 352 

5.2. Assessment of variable importance 353 

Assessing the relative importance of independent variables (i.e., groundwater conditioning factors) is of 354 

practical relevance to environmental managers and decision makers dealing with efficiency in the 355 

planning and allocation of limited resources (Testa et al., 2016). Although various numerical, statistical 356 

(e.g., logistic regression), and expert opinion-based (e.g., analytical hierarchy process (AHP)) models 357 

have been employed to spatially predict groundwater potential, the relative importance of geo-358 

environmental factors is still debated (Naghibi et al., 2019). Machine learning algorithms have been 359 

helping increasing numbers of environmental management decision makers to achieve new insights, both 360 

in terms of the relationships between hydrogeological and geo-environmental factors and groundwater 361 
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potential, and they are now regarded as practical components that efficiently contribute to improvement 362 

of water resources management (Deo and Şahin, 2016). On the other hand, the relative importance of 363 

factors is often affected by the model used (Bui et al., 2016). Therefore, to provide a fair judgment, a 364 

commonly used model should be selected to analyze the ranking of independent variables. Following the 365 

literature, the RF model was selected as it has performed well in groundwater-potential modeling in 366 

several regions (Rahmati et al., 2016; Zabihi et al., 2016; Naghibi et al., 2017b). Results indicate that 367 

RSP makes the highest contribution to the prediction of groundwater potential. The importance of RSP 368 

has been confirmed by Rahmati et al. (2018). The RSP factor is a geomorphometric index with values 369 

that range from 0 to 1 and it represents the relative position of a cell with respect to the valley floor and 370 

ridgetop (Krishnamurthy et al., 2016). Intuitively, areas with lower RSP values (i.e. closer to valley floor) 371 

were characterized as having higher groundwater potential. Conversely, the areas located at or near 372 

ridgetops correspond with fast subsurface flow (average elevations with steep slopes) or deep percolation 373 

mechanisms (high elevations with gentle slopes) where the water table was deep in the strata. Hence, the 374 

importance of RSP for groundwater potential mapping is sensible.  375 

Lithological formations and their structures represent the subsurface mechanism, such as permeability, 376 

porosity, and ultimately the way some rocks manage to restrict the water table close to the surface. This 377 

is in line with previous studies (Ozdemir, 2011; Chen et al., 2019). The distance from faults and generally 378 

any fissure formed by soil surface tension can be a good way to convey surface water to and nourish the 379 

water table. As has been shown (Adiat et al., 2012), faults are geological features with secondary 380 

permeability that control the movement and/or storage of groundwater and can provide important 381 

information about subsurface characteristics. In addition, drainage density and TWI are the other 382 

important representative indices for surface mechanisms, in that, the highest values represent the areas 383 
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contributing most to runoff generation that would contribute to the water table if the geo-topological 384 

conditions have been met. 385 

5.3. Limitations of the research 386 

The most important limitation is that hydrogeological data in the study area were unavailable. 387 

Hydrogeological parameters can improve model prediction, especially when models are applied at a 388 

large-scale where heterogeneity causes uncertainty (de Barros et al., 2012). As explained by Worthington 389 

(2015), groundwater modeling in bedrock aquifers is complex because there is often substantial flow 390 

through fractures, and the interconnectivity and magnitude of these fractures are usually uncertain. This 391 

challenge can be dealt with using multicomponent analysis of tritium data and stable isotope data, 392 

although they would be costly and time-consuming to implement (Chen et al., 2018). Geophysical 393 

techniques can provide useful information that enhance the predictive capacity of the model. Without the 394 

application of geophysical techniques, our knowledge about subsurface structures would remain 395 

extremely limited.  396 

5.4. Wider landscape-scale implications of the findings 397 

Numerical modeling of groundwater at a small-scale in mountain bedrock aquifers is often subject to 398 

substantial uncertainty because there is often a need for data regarding hydrogeological parameters that 399 

are not readily available (Wu and Zeng, 2013). Therefore, groundwater potential modeling using 400 

numerical models at small scales, especially in mountainous regions with bedrock aquifers, is difficult. 401 

However, machine learning models have overcome this issue and can spatially model groundwater 402 

potential over larger areas. For example, Ghorbani Nejad et al. (2017) successfully applied some data 403 

mining models for groundwater potential mapping in mountain bedrock aquifers of Lorestan province. 404 

Falah et al. (2017) assessed the applicability of generalized additive model for groundwater potential 405 
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modelling in a large region and compared its performance with some bivariate statistical methods. Their 406 

results clearly indicated that machine-learning models can model groundwater potential in large areas 407 

and also in data-scarce regions. These powerful models can analyze spatial variation of the groundwater 408 

potential conditions and can identify the relationships between the groundwater conditioning factors 409 

(topo-hydrological, lithology, etc.) and groundwater potential (Naghibi et al., 2016). 410 

One of the important points in applying machine learning and data-mining models for groundwater 411 

potential mapping over large regions is that sample size should be logical that models could analyze all 412 

parts of the region (Roy et al., 2013). This study investigated the sensitivity of models to groundwater 413 

sample size and distinguished their capabilities. Results clearly demonstrate that the RF model provides 414 

a better prediction of groundwater potential when the sample size limited. RF models can be applied in 415 

other large regions even if a spring inventory is not readily available. This conclusion is vital and useful 416 

for groundwater potential modeling in large and data-scarce regions. 417 

 418 

6. Conclusions 419 

This study was designed to determine the effect of the impact of sample size on the performance of 420 

different models for groundwater-potential mapping in a mountain bedrock aquifer. Four sample data 421 

sets were prepared from a spring-inventory: D1 (100% of springs, n=714), D2 (75% of springs, n=535), 422 

D3 (50% of springs, n=358), and D4 (25% of springs, n=177). The response of four machine learning 423 

algorithms including ANFIS, ANFIS-ICA, RF, and ADT to the change of sample size (i.e., springs 424 

number) was evaluated. The findings reported here lead to three main conclusions: 425 

I. Reducing sample sizes affected groundwater potential modelling, although the model type can 426 

considerably influence the level of its response. The performance of ADT (AUROC=79.29–427 
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88.46%, TSS=0.59–0.74), and ANFIS (AUROC=73.11–88.43%, TSS=0.59–0.74) sharply 428 

decreased when sample size decreased, whereas the hybrid ANFIS-ICA model and RF showed 429 

rather higher learning and prediction powers for all data sets. The ICA optimization algorithm 430 

enabled the ANFIS to find the best set of parameters and avoid any amalgamation of parameters 431 

upon which the model is to be built and trained. 432 

II. Ultimately, the RF model (AUROC=90.74–96.32%, TSS=0.79–0.85) was identified as the 433 

premier model based on performance metrics in both the training and validation stages. If only 434 

a limited number of observations (springs) is available for predictive modelling, the RF is the 435 

best choice for geospatially modelling groundwater potential. Results of this study suggest that 436 

RF should continue to be used as the benchmark model for groundwater potential modelling. 437 

III. Although the premier model is fed by all the spring-affecting factors, as with any spatial 438 

modelling effort, high groundwater potential can be rather more responsive to a few uniquely 439 

informative factors, such as RSP (VI=24.35%), lithology (VI=20.41%), and distance from faults 440 

(VI=15.29%). 441 
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Table 1 Lithology of the study area. 715 

Unit Description Age Area (ha) 

Cb Dolomite, limestone and variegated shale (Barut formation) Cambrian 12.88 

Cl 
Dark red medium - grained arkoses to sub arkoses sandstone and siltstone (Lalun 

formation) 
Cambrian 3536.6 

Cm Dark grey to black fossil limestone with subordinate black shale (Mobarak formation) Carboniferous 2742.8 

Czl Undifferentiated unit, composed of dark red siltstone and sandstone Cambrian 223.4 

Db-sh Undifferentiated limestone, shale and marl Devonian 685.2 

E1c Pale-red, polygenic conglomerate and sandstone 
Paleocene-

Eocene 
280.8 

E1m Marl, marl and limestone Eocene 25447.2 

E2s Sandstone, marl and limestone Eocene 13612.8 

E3m Marl, sandstone and limestone Eocene 5856.9 

Eav Andesitic volcanic Eocene 6156.6 

Ek Well bedded green tuff and shale (Karaj formation) Eocene 83437.1 

Ekgy Gypsum Eocene 592.9 

EOgy Gypsum (salt plug) 
Eocene-

Oligocene 
13404.9 

EOsa Salt dome 
Eocene-

Oligocene 
2694.5 

Jd 
Well - bedded to thin - bedded, greenish - grey argillaceous limestone with intercalations 

of calcareous shale (Dalichai formation) 
Jurassic 353.3 

Jl Light grey, thin - bedded to massive limestone (Lar formation) 
Jurassic-

Cretaceous 
44607.2 

Juc White, quartzes conglomerate 
Middle. 

Jurassic 
1940.6 

K Cretaceous rocks in general Cretaceous 815.3 

K2c Conglomerate and sandstone Cretaceous 3682.1 

Kbv Basaltic volcanic Cretaceous 2378.4 

Ktzl 
Thick bedded to massive, white to pinkish orbitolina bearing limestone (Tizkuh 

formation) 
Cretaceous 26267.3 

Ku Upper cretaceous, undifferentiated rocks Cretaceous 16386.4 

Mur Red marl, marl, sandstone and conglomerate (Upper red formation) Miocene 3078.4 

Murm Light - red to brown marl and marl with sandstone intercalations Miocene 21920.8 

Murmg marl Miocene 21669.5 

Mursh Variegated shale, marl and sandstone Miocene 16824.2 

Olgy Gypsum Oligocene 2049.2 

OMql Massive too thick - bedded limestone 
Oligocene-

Miocene 
43079.1 

pC-C Late Proterozoic - early Cambrian undifferentiated rocks Precambrian 3281.1 

PeEz Reef-type limestone and marl (Ziarat formation) 
Paleocene-

Eocene 
2081.6 

Pgkc Light-red coarse grained, polygenic conglomerate with sandstone intercalations 
Paleocene-

Eocene 
14807.9 

Plc conglomerate and sandstone Pliocene 42065.3 

PlQc Fluvial conglomerate, Piedmont conglomerate and sandstone. 
Pliocene-

Quaternary 
2192.7 

Pr Dark grey medium - bedded to massive limestone (Ruteh Limestone) Permian 587.9 

Qft1 High level piedmont fan and valley terrace deposits Quaternary 34551.4 

Qft2 Low level piedmont fan and valley terrace deposits Quaternary 32296.8 

TRe 

Thick bedded grey o'olitic limestone; thin - platy, yellow to pinkish shale limestone with 

worm tracks and well to thick - bedded dolomite and dolomitic limestone (Elikah 

formation) 

Triassic 9300.2 

TRJs Dark grey shale and sandstone (Shemshak formation) 
Triassic-

Jurassic 
15402.8 
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Table 2 Description of controlling factors used for groundwater potential modelling. 719 

Spring affecting-factor Scale Data source Data type 

Topographic wetness index (TWI) 1:50,000 DEM-derived Grid (10 m ×10 m) 

Relative slope position (RSP) 1:50,000 DEM-derived Grid (10 m ×10 m) 

Plan and profile curvatures 1:50,000 DEM-derived Grid (10 m ×10 m) 

Topographic position index (TPI) 1:50,000 DEM-derived Grid (10 m ×10 m) 

Terrain ruggedness index (TRI) 1:50,000 DEM-derived Grid (10 m ×10 m) 

Distance from fault 1:50,000 DEM-derived Grid (10 m ×10 m) 

Drainage density 1:50,000 DEM-derived Grid (10 m ×10 m) 

Slope 1:50,000 DEM-derived Grid (10 m ×10 m) 

Elevation 1:50,000 DEM-derived Grid (10 m ×10 m) 

Soil texture 1:50,000 IDWRMa Polygon 

Aspect 1:50,000 DEM-derived Grid (10 m ×10 m) 

Land use 1:50,000 IDWRMa Polygon 

Soil hydrological group 1:50,000 IDWRMa Polygon 

Lithology 1:50,000 GSDIb Polygon 

IDWRMa: Iranian Department of Water Resources Management; GSDIb: Geological Surveys Department 720 
of Iran  721 
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Table 3 Multicollinearity of predictive factors based on the VIF and TOL indices 728 

Factor VIF TOL 

Elevation 3.723 0.226 

Topographic wetness index (TWI) 3.168 0.318 

Aspect 1.632 0.896 

Slope 1.520 0.919 

Distance from faults 1.146 0.886 

Drainage density 1.797 0.871 

Relative slope position (RSP) 2.212 0.541 

Topographic position index (TPI) 3.663 0.337 

Lithology 1.455 0.769 

Terrain roughness index (TRI) 2.934 0.394 

Plan curvature 2.781 0.523 

Profile curvature 2.626 0.518 

Soil texture 1.354 0.869 

Soil hydrological group 2.433 0.437 

Land use 1.590 0.910 
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Table 4 Goodness-of-fit of the models for four data replicates (D1-D4) in the training step 732 

Evaluation 

criteria 
Data set 

Models 

ANFIS ANFIS-ICA RF ADT 

AUROC (%) 

D1 90.06 92.66 97.35 91.62 

D2 88.71 90.32 97.08 90.03 

D3 87.33 88.25 94.51 87.17 

D4 86.52 85.13 92.44 85.91 

TSS 

D1 0.79 0.81 0.87 0.80 

D2 0.73 0.78 0.84 0.71 

D3 0.65 0.73 0.82 0.64 

D4 0.61 0.66 0.80 0.60 
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 737 

Table 5 Predictive performance of the models for four data replicates (D1-D4) in the validation step 738 

Evaluation 

criteria 
Data set 

Models 

ANFIS ANFIS-ICA RF ADT 

AUROC (%) 

D1 88.43 91.55 96.32 88.46 

D2 84.32 88.98 95.41 85.12 

D3 78.59 84.45 92.86 81.33 

D4 73.11 81.23 90.74 79.29 

TSS 

D1 0.74 0.81 0.85 0.74 

D2 0.71 0.78 0.83 0.65 

D3 0.62 0.75 0.82 0.61 

D4 0.59 0.74 0.79 0.59 
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Table 6 Relative distributions of the groundwater potential classes based on the RF model (data set D1) 741 

Number Class Area (%) 

1 Very low 17.98 

2 Low 22.93 

3 Medium 40.41 

4 High 6.35 

5 Very high 12.33 
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Table 7 Results of the factor importance analysis derived from the RF model 754 

Factor Variable importance (VI) (%) 

Relative slope position (RSP) 24.35 

Lithology 20.41 

Distance from faults 15.29 

Drainage density 7.44 

Topographic wetness index (TWI) 5.32 

Elevation 4.12 

Topographic position index (TPI) 3.56 

Aspect 3.24 

Slope 3.11 

Terrain roughness index (TRI) 2.97 

Plan curvature 2.94 

Profile curvature 2.86 

Soil texture 2.43 

Soil hydrological group 1.38 

Land use 0.58 
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 759 

Fig. 1 Geographical location of the northern Hableh-Roud basin and the distribution of springs with inset (A) 760 

showing a photograph of a spring observed in the study area. 761 
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 763 

Fig. 2 Geological map of the study area showing faults and the age of geological units. 764 
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Fig. 3 Methodological flowchart adopted in this study 783 
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Fig. 4 Controlling factors: a) topographic wetness index, b) relative slope position, c) plan curvature, d) 791 

profile curvature, e) topographic position index, f) terrain ruggedness index, g) distance from fault, h) 792 

drainage density, i) slope, j) elevation, k) soil texture, l) aspect, m) land use, n) hydrological group of 793 

soil, and o) lithology. 794 
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Fig. 4 (continued) 796 

 797 

 798 

 799 

 800 

Fig. 5 Four spring sample data sets: a) data set D1 (100% of springs), b) data set D2 (75% of springs), c) 801 

data set D3 (50% of springs), and d) data set D4 (25% of springs). 802 
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Fig. 6 Groundwater potential maps generated by the ANFIS model built using: a) data set D1, b) data 808 

set D2, c) data set D3, and d) data set D4. 809 
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 814 

Fig. 7 Groundwater potential maps generated by the ANFIS-ICA model built using: a) data set D1, b) 815 

data set D2, c) data set D3, and d) data set D4. 816 
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Fig. 8 Groundwater potential maps generated by the RF model built using: a) data set D1, b) data set 824 

D2, c) data set D3, and d) data set D4. 825 
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 830 

Fig. 9 Groundwater potential maps generated by the ADT model built using: a) data set D1, b) data set 831 

D2, c) data set D3, and d) data set D4. 832 

 833 

 834 

 835 



46 
 

 836 

 837 

Fig. 10 Groundwater potential classes produced by the RF model (data set D1). 838 
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