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Highlights 

 A new deep eutectic solvent was developed to produce cationic cellulose 

 Both cationic cellulose nanofibrils and cellulose nanocrystals can be produced 

 This deep eutectic solvent can be re-used over 5 times at stable efficiency   

 No additional chemical is needed for the reproduction of  cationic cellulose 
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ABSTRACT:  

Deep eutectic solvents (DESs) are potential green systems that can be used as reagents, extraction 

agents and reaction media. DESs are often biodegradable, easy to prepare and have low toxicity. 

In this work, a recyclable DES formed from aminoguanidine hydrochloride and glycerol (AhG) 

was used as a reaction medium and reagent (aminoguanidine hydrochloride) for the production of 

cationic nanocelluloses. Under mild conditions (i.e., a reaction time of 10 min at 70°C), dialdehyde 

celluloses (DACs) with two different aldehyde contents (2.18 and 3.79 mmol g-1) were cationized 

by AhG DES to form cationic dialdehyde celluloses (CDACs). Both CDACs achieved a similar 

high charge density of approximately 1.1 mmol g-1. At 80°C (for 10 min), a very high cationic 

charge density of 2.48 mmol g-1 was obtained. The recyclability of AhG DES was demonstrated 

by reusing it five times without decreasing the reaction efficiency. In particular, due to the low 

consumption of amoniguanidine hydrochloride, high recycling efficiency could be achieved 

without the use of any additional chemicals. The cationized celluloses, CDACs, were further 

mechanically disintegrated to obtain cationic nanocelluloses. According to the initial aldehyde 

content of DACs, the morphology of the nanocellulose could be tailored to produce highly cationic 

cellulose nanofibrils (CNFs) or cellulose nanocrystals (CNCs). Transmission electron microscopy 

confirmed that individual CNFs and CNCs with an average width of 4.6 ± 1.1 nm and 5.7 ± 1.3 

nm, respectively, were obtained. Thus, the results presented here indicate that the AhG DES is a 

promising green and recyclable way of producing cationized CNFs and CNCs.    

KEYWORDS: Cationization, Nanocellulose, Recycle, Deep eutectic solvents.    
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1.  INTRODUCTION  1 

    Selection of the appropriate reaction medium is critical to many chemical processes, and c.a. 2 

80% of all consumed chemicals are used as solvents for different purposes.(Cruz, Jordão, & 3 

Branco, 2017) Traditional solvents are usually prepared from non-renewable and toxic 4 

petrochemical derivatives,(Gu & Jérôme, 2010) and they are often highly volatile, flammable and 5 

problematic for the environment.(Alonso et al., 2016) As a consequence of the depletion of oil 6 

resources and increasing environmental awareness, there has been growing interest in exploring 7 

alternative solvents such as water,(C.-J. Li & Chen, 2006) fluorinated compounds,(Khaksar, 2015) 8 

and ionic liquids (ILs)(Imperato, König, & Chiappe, 2007) in the past decade. Although promising 9 

results have been reported, obvious limitations (such as high cost and requirement for high purity 10 

of ILs) still restrict their practical use in many cases. Therefore, new green and easily available 11 

solvents are in high demand. (Q. Zhang, De Oliveira Vigier, Royer, & Jérôme, 2012)  12 

Currently, deep eutectic solvents (DESs) are of particular interest. The complexation of a hydrogen 13 

bond acceptor (HBA, which is typically a halide salt of quaternary ammonium) with a hydrogen 14 

bond donor (HBD, e.g., urea and glycerol) results in the formation of an eutectic mixture with a 15 

relatively low melting point, and this is how DESs are usually produced. (Paiva et al., 2014; J. A. 16 

Sirviö, Visanko, & Liimatainen, 2015; Smith, Abbott, & Ryder, 2014; Wagle, Zhao, & Baker, 17 

2014; Q. Zhang et al., 2012) DES candidates are abundant, and they can be produced from 18 

inexpensive, biodegradable and recyclable ingredients.(Ilgen et al., 2009; Singh, Lobo, & 19 

Shankarling, 2011; J. A. Sirviö, Visanko, Ukkola, & Liimatainen, 2018) Similar to ILs, DESs 20 

exhibit good solvent capacity and have a low vapor pressure that limits VOC emissions.(J. A. 21 
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Sirviö, Visanko, et al., 2015; J. A. Sirviö, Visanko, & Liimatainen, 2016; Smith et al., 2014) 22 

However, it is much easier to prepare DESs (by straightforward mixing and heating), and they are 23 

less sensitive to impurities and usually cheaper to prepare than ILs.(Wang et al., 2016) These 24 

unique properties make DESs promising green solvents and chemicals for sustainable biomaterial 25 

production processes. 26 

Cellulose is known as the most abundant natural biopolymer on earth. In addition, renewability, 27 

biodegradability, and low toxicity are all inherent green characteristics of cellulose.(Credou & 28 

Berthelot, 2014; Schenzel, Hufendiek, Barner-Kowollik, & Meier, 2014) Nanocelluloses, which 29 

are described as nano-structured celluloses and are often referred to as elongated cellulose 30 

nanofibrils (CNFs) or rigid cellulose nanocrystals (CNCs), have been considered as future 31 

biomaterials in recent years.(Moon, Martini, Nairn, Simonsen, & Youngblood, 2011) Depending 32 

on the raw materials and production methods, CNFs are mostly 3100 nm in width and several 33 

micrometers in length,(Klemm et al., 2011) whereas CNCs have a similar diameter but are shorter 34 

and have a more rod-like crystalline structure. Nanocelluloses possess certain inherent chemical 35 

characteristics (e.g., three reactive hydroxyl groups in each repeating unit) of celluloses, are 36 

lightweight,(Mohieldin, Zainudin, Paridah, & Ainun, 2011) and have high mechanical 37 

strength(Oksman, Mathew, Bondeson, & Kvien, 2006) and good thermal stability.(P. Li, Sirviö, 38 

Haapala, & Liimatainen, 2017) These favorable properties make nanocelluloses a promising 39 

resource in advanced applications such as UV-absorbing fillers for nanocomposites,(J. A. Sirviö, 40 

Visanko, Heiskanen, & Liimatainen, 2016) substrates for organic solar cells,(Zhou et al., 2014) 41 

agents for mineral flotation(O. Laitinen et al., 2016; Ossi Laitinen et al., 2014) and stabilizers of 42 

oil-water emulsions.(Ojala, Sirviö, & Liimatainen, 2016)  43 
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Typically, CNFs are produced through a mechanical nanofibrillation procedure (e.g., refining, 44 

grinding, and homogenization), which requires a significant amount of energy due to the highly 45 

ordered hydrogen bond network of cellulose.(Baati, Magnin, & Boufi, 2017; J. A. Sirviö, Hasa, et 46 

al., 2015) Nevertheless, the high energy consumption can be reduced with the use of chemically 47 

modified,(H. Liimatainen, Visanko, Sirviö, Hormi, & Niinimaki, 2012; Henrikki Liimatainen, 48 

Suopajärvi, Sirviö, Hormi, & Niinimäki, 2014; Saito, Nishiyama, Putaux, Vignon, & Isogai, 2006; 49 

Selkälä, Sirviö, Lorite, & Liimatainen, 2016) enzyme-assisted,(Henriksson, Henriksson, Berglund, 50 

& Lindström, 2007; Shahid, Mohammad, Chen, Tang, & Xing, 2016) or solvent-disintegrated(P. 51 

Li et al., 2017; J. A. Sirviö, Visanko, et al., 2015) pretreatment approaches.(Siró & Plackett, 2010a) 52 

Unlike CNFs, CNCs can be conventionally fabricated by simple acidic (e.g., sulfuric,(Bondeson, 53 

Mathew, & Oksman, 2006) hydrochloric,(Yu et al., 2013) or phosphoric acid(Camarero Espinosa, 54 

Kuhnt, Foster, & Weder, 2013)) hydrolysis of the amorphous regions of cellulose, which releases 55 

the hard crystalline parts of cellulose. However, there are noticeable limitations to acidic 56 

hydrolysis methods, such as material corrosion, sensitive reaction conditions, low production 57 

yield,(Corrêa, de Morais Teixeira, Pessan, & Mattoso, 2010; Lu et al., 2016) and fiber 58 

aggregation.(Araki, Wada, Kuga, & Okano, 1998) Therefore, oxidation-based methods such as 59 

TEMPO-,(Qin, Tong, Chin, & Zhou, 2011) persulfate(Leung et al., 2011; K. Zhang et al., 2016) 60 

and periodate oxidation(Visanko et al., 2014) have been developed not only to compensate for the 61 

shortcomings of acidic hydrolysis methods, but also to expand functionalized CNC 62 

production.(Montanari, Roumani, Heux, & Vignon, 2005; J. A. Sirviö, Visanko, Heiskanen, et al., 63 

2016; Visanko et al., 2014)  64 

The introduction of cationic groups on cellulose fibers can enhance nanocellulose production and 65 

prevent the aggregation of nanocelluloses due to electrostatic repulsion.(Visanko et al., 2014) In 66 
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addition, introduction of cationically charged groups combined with alkyl chains, such as aminated 67 

structures, to the hydrophilic backbone of cellulose can result in the formation of amphiphilic 68 

nanocelluloses, which have potential for use as a stabilizer in oil-water emulsions,(Visanko et al., 69 

2014) flocculation agent in dewatering,(Suopajärvi, Sirviö, & Liimatainen, 2017a) or a colloid 70 

aggregation agent.(Henrikki Liimatainen et al., 2014) Previously, cationized nanocelluloses have 71 

been synthesized in epoxypropyltrimethylammonium chloride,(Hasani, Cranston, Westman, & 72 

Gray, 2008) imidazolium,(Eyley & Thielemans, 2011) pyridinium(Jasmani, Eyley, Wallbridge, & 73 

Thielemans, 2013) and water.(Hua et al., 2014; J. A. Sirviö et al., 2014a; J. Sirviö, Honka, 74 

Liimatainen, Niinimäki, & Hormi, 2011; Yang & van de Ven, 2016)  75 

DESs have been used as alternative green routes to produce both non-derivatized (Ossi Laitinen, 76 

Suopajärvi, Österberg, & Liimatainen, 2017; P. Li et al., 2017; J. A. Sirviö, Visanko, et al., 2015; 77 

Suopajärvi, Sirviö, & Liimatainen, 2017b) and anionic(Ossi Laitinen, Ojala, Sirviö, & 78 

Liimatainen, 2017; Selkälä et al., 2016; J. A. Sirviö, Visanko, & Liimatainen, 2016; J. A. Sirviö 79 

& Visanko, 2017) nanocelluloses, but there was very few reports about its use for the fabrication 80 

of cationized nanocelluloses.(J. A. Sirviö, n.d.) Thus, to the best of our knowledge, this is the first 81 

time that a recyclable and effective DES was developed to produce cationic nanocelluloses. In this 82 

work, a DES produced using aminoguanidine hydrochloride and glycerol (AhG) was used as a 83 

reaction medium and reagent (aminoguanidine hydrochloride) for cationization of dialdehyde 84 

cellulose (DAC). Birch cellulose was first oxidized to DAC using recyclable sodium periodate(Jin, 85 

Li, Xu, & Sun, 2015; Henrikki Liimatainen, Sirviö, Pajari, Hormi, & Niinimäki, 2013; J. Zhang, 86 

Jiang, Dang, Elder, & Ragauskas, 2008) and then cationized by the AhG DES to produce cationic 87 

dialdehyde celluloses (CDACs) under different temperatures and reaction times. The CDACs that 88 

were synthesized at 70°C for 10 min were selected and further mechanically nanofibrillated to 89 
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obtain cationized nanocelluloses. The recyclability and yield of the DES were analyzed. The 90 

charge densities of CDACs were investigated by polyelectrolytic titration, and attenuated total 91 

reflection infrared (ATR-IR) spectroscopy was used for the chemical characterization of 92 

celluloses. Cationized nanocelluloses were characterized by transmission electron microscopy 93 

(TEM).  94 

2.  Materials and methods 95 

 2.1 Materials  96 

       Bleached kraft birch (Betula pendula) pulp sheets were used as cellulose raw material after 97 

they were disintegrated in deionized water. The properties of the pulp have been determined in a 98 

previous study.(Henrikki Liimatainen, Sirviö, Haapala, Hormi, & Niinimäki, 2011) Lithium 99 

chloride (99%) and sodium periodate (>99%) were obtained from Sigma Aldrich (Germany) to 100 

produce dialdehyde cellulose. Ethanol (96%) and glycerol (97%) (VWR, France) and 101 

aminoguanidine hydrochloride (>98%) (Tokyo Chemicals Industry, Japan) were used for the 102 

cationization of dialdehyde cellulose. Sodium polyethylene sulfonate (PES-Na) from BTG (UK) 103 

was used as a polyelectrolyte to determine the cationic charge. Uranyl acetate dihydrate (98%) was 104 

from Polysciences (Germany). Polylysine solution (0.01%) was from Sigma Aldrich (Germany). 105 

Deionized water was also used throughout the study. 106 

2.2 Synthesis of CDACs in the AhG DES 107 

      DAC was obtained from birch pulp by a slightly modified version of the sodium periodate 108 

oxidation method reported previously.(Dash, Elder, & Ragauskas, 2012; Sirvio, Hyvakko, 109 

Liimatainen, Niinimaki, & Hormi, 2011) Briefly, 10 g (abs.) of birch pulp was diluted with 1000 110 
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g of deionized water, and the suspension was heated to a final temperature of 55°C or 75°C in an 111 

oil-bath system. Following this, 18 g of lithium chloride (LiCl) and 8.2 g of sodium periodate 112 

(NaIO4) were added and left to react with cellulose for 3 h at their respective temperatures. The 113 

mixed reaction suspensions were fully covered with an aluminum foil to avoid light-induced 114 

decomposition of periodate. The products were filtered, washed with 1000 ml of a 50:50 115 

ethanol:water solution, mixed in 500 ml ethanol twice for 15 min, and filtrated. According to the 116 

reaction temperature (55°C or 75°C), the DAC products were labeled as DAC55 or DAC75. 117 

  The AhG DES was prepared by mixing 75 g aminoguanidine hydrochloride and 125 g glycerol 118 

in a molar ratio of 1:2 in a Scott bottle. The mixture was preheated at 90°C in an oil bath to obtain 119 

a clear liquid, and then adjusted to the desired reaction temperatures (70, 80, 90, and 100°C). 120 

Following this, 10 g (abs.) DAC55 or DAC75 was added into the DES, which was stirred 121 

continuously with a magnetic bar for a set of reaction times (5, 10, 15, 30 and 60 min) at the desired 122 

temperatures. The reaction bottle was removed from the oil-bath system and 250 ml of ethanol 123 

was added. The product suspension was filtrated and washed twice with 500 ml of ethanol. The 124 

filtrate (DES-ethanol solution) was collected for the next cationization cycle. The yield of CDACs 125 

was recorded.  126 

  2.3 ATR-IR 127 

       The FTIR spectra of birch cellulose, DAC75 and CDAC75 (synthesized from the original DES 128 

at 70°C for 10 min) were recorded with a Bruker IR spectrometer (Bruker Tensor II FTIR 129 

Spectrometer, USA) equipped with an attenuated total reflection (ATR) accessory. The samples 130 

were prepared by pressing 0.2 g (abs.) dried sample into a pellet.  131 

  2.4 Fabrication of cationized nanocelluloses 132 
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        CDAC55 and CDAC75 synthesized with the AhG DES at 70°C for 10 min were selected for 133 

nanofibrillation. Cationized nanocelluloses were produced by mechanical disintegration of 1% 134 

CDAC55 or CDAC75 solution with a microfluidizer (Microfluidics M-110EH-30, USA). Both 135 

CDAC55 and CDAC75 were treated similarly: they were first stirred with a magnetic bar for 10 136 

min and then passed through a pair of chambers (400 and 200 μm) twice in a microfluidizer under 137 

a pressure of 1000 bars.  138 

  2.5 TEM  139 

        The morphological features of the cationized nanocelluloses were observed with the help of 140 

a Tecnai G2 Spirit transmission electron microscope (FEI Europe, Eindhoven, The Netherlands). 141 

Nanocellulose samples were diluted with deionized water into a 0.01% solution (w/w), and a tiny 142 

droplet (7 μL) of polylysine used as adhesive of nanocellulose sample(Marsich et al., 2012) was 143 

first dosed on the top of a Butvar and carbon-coated copper grid and left for 1 min. Excess 144 

polylysine was wiped off with a filter paper. Similarly, 7 μL of the nanocellulose sample solution 145 

was then dropped, stayed and removed from the grid. Finally, a drop of negative staining agent, 146 

uranyl acetate (2% [w/v]), was applied using the same procedure. The stained samples were dried 147 

at room temperature and were later analyzed at 100 kV under standard conditions. Images were 148 

taken with a Quemesa CCD camera. The width of individual nanofibrils or nanocrystals was 149 

measured using the iTEM image analysis software (Olympus Soft Imaging Solutions GMBH, 150 

Munster, Germany). The data obtained are presented as the mean and standard errors. 151 

  2.6 Determination of cationic charge  152 

       The cationic charge density of CDACs was determined using the polyelectrolyte titration 153 

method with a particle charge detector (BTG Mütek PCD-03, Germany). The CDACs were diluted 154 
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with deionized water into a 0.01% solution and stirred with a magnetic stirrer at room temperature 155 

for 30 min. Then, 10 ml of well-dispersed CDAC suspension was titrated with the sodium 156 

polyethylene sulfonate (PES-Na) polyelectrolyte. The charge density was calculated based on the 157 

consumption of PES-Na.  The results are the average of two trials with minor difference.   158 

  2.7 Recycling of the AhG DES  159 

       The collected filtrate containing the AhG DES and ethanol from the cationization reaction was 160 

distilled under reduced pressure at 50°C using a rotatory evaporator (Büchi rotavapor R114, 161 

Switzerland) in a water bath. The recycled DES was reheated to 70°C and reused in the 162 

cationization of DACs (10-min reaction), in a similar manner as described earlier. The recycling 163 

was repeated five times without the use of any additional chemicals.   164 

2.8 The yield calculation  165 

      The yields of CDAC55 and CDAC75 were calculated by the measurement of mass 166 

differences, before and after chemical treatment. However, the yield of recycled DES was 167 

calculated by the measurement of mass differences, compared with original DES. 168 

2.9 Thermogravimetric Analysis 169 

Thermogravimetric analysis (TGA) of original AhG DES was carried out by a thermal analyzer 170 

(Netzsch STA 449F3 apparatus) under air atmospheres; the air flow (dynamic air), at a constant 171 

rate of 60 mL min-1. Approximate 20 mg of well mixed AhG DES was added into an aluminum 172 

pan and was heated from 20 to 650 °C with a heating rate at 10 °C min-1. The decomposition 173 

temperature (Td) was taken when the temperature at the onset point of the weight loss in the TGA 174 

curve was obtained. 175 
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2.10 X-ray diffraction  176 

The crystalline structures of the CDAC55 and CDAC75 were investigated using wide-angle X-177 

ray diffraction. Measurements were conducted on a Rigaku SmartLab 9 kW rotating anode 178 

diffractometer (Japan) equipped with a Cu Kα radiation source (λ = 0.1542 nm) at 45kV, 200mA. 179 

Specimens were prepared by pressing tablets with a thickness of 1 mm after freeze-drying the 180 

samples. Scans were taken over a 2θ (Bragg angle) range from 5° to 50° at a scanning speed of 2° 181 

s min−1 using a step of 0.05°. The degree of the peak intensity of the main crystalline plane (200) 182 

diffraction (I200) was located at 22.5°. The peak intensity associated with the amorphous fraction 183 

of cellulose (Iam) was observed at 18.0°. Crystallinity index (CrI) values were calculated according 184 

to the empirical Segal method. (Segal, Creely, A. E. Martin, & Conrad, 2016)  185 

CrI =
I − I

I
 × 100% 186 

 187 

3. Results and discussion 188 

     The AhG DES was prepared by aminoguanidine hydrochloride and glycerol in a molar ratio of 189 

1:2. The cationization of DAC was conducted in AhG DES, in which glycerol was applied as an 190 

HBD to help with the formation of an efficient and continuously derivable DES from 191 

aminoguanidine hydrochloride.(J. A. Sirviö, Visanko, et al., 2015; Smith et al., 2014; Wagle et al., 192 

2014; W. Zhang, Barone, & Renneckar, 2015) Glycerol is a well-known natural polyol that is often 193 

obtained as a by-product of the transesterification of a triglyceride in natural fatty acid 194 

production.(Wolfson, Dlugy, & Shotland, 2007) Glycerol has the combined advantages of water 195 

(which is renewable, inexpensive and abundant) and ILs (which has a high boiling point and low 196 
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vapor pressure),(Gu & Jérôme, 2010) which make it an alternative green medium for catalytic and 197 

non-catalytic reactions.(Kong et al., 2016; Wolfson et al., 2007) In addition to pure glycerol, 198 

glycerol-based solvent systems have also been reported as a reaction medium for organic 199 

synthesis,(García, García-Marín, & Pires, 2014) as a co-solvent for biotransformation,(Hernáiz, 200 

Alcántara, García, & Sinisterra, 2010; Wolfson, Dlugy, Tavor, Blumenfeld, & Shotland, 2006) as 201 

a dual solvent-reagent system for hydrogenation reaction,(Cravotto et al., 2011; Díaz-Álvarez, 202 

Crochet, & Cadierno, 2011) and as an HBD for DES formation.(Abbott et al., 2011; Abbott, Cullis, 203 

Gibson, Harris, & Raven, 2007; Zhao & Baker, 2013) In the literature, similar DESs formed by 204 

choline chloride–glycerol have also been studied and applied as a medium for the desulfurization 205 

of fuel and the absorption of CO2 and SO2.(Abbott et al., 2011; García et al., 2014) However, in 206 

the present case, the AhG DES was used as a derivatizing solvent for cellulose cationization.   207 

 208 

 3.1 Cationization of DAC in AhG DES  209 

      The reaction between DAC and aminoguanidine hydrochloride resulted in the formation of a 210 

stable imine bond, and thus could be used to introduce cationic groups to DAC (Figure 1).(J. A. 211 

Sirviö et al., 2014b; J. Sirviö et al., 2011) Here, DAC55 and DAC75 (which have an aldehyde 212 

content of 2.18 and 3.79 mmol g-1, respectively, as determined previously(Sirvio et al., 2011)) 213 

were successfully further cationized (CDAC55 and CDAC75) using a set of reaction times (5, 10, 214 

15, 30 and 60 min) and temperatures (70, 80, 90 and 100°C).  215 



 14

 216 

Figure 1. Cationization of cellulose using sequential periodate oxidation and imidization with 217 
aminoguanidine hydrochloride. 218 

The original AhG DES that was formed by the mixing of aminoguanidine hydrochloride and 219 

glycerol became a clear and colorless liquid at 90°C. The heating temperature was crucial to DES 220 

formation; i.e., a clear solution was obtained rapidly at 90 and 100°C, but a more turbid solution 221 

was obtained at 70 and 80°C. Therefore, the DES was first heated to 90°C, and then the 222 

temperature was adjusted to the desired reaction temperature. The addition of DAC into DES (at 223 

a mass ratio of 1:20) resulted in the formation of a turbid mixture immediately, which is due to the 224 

efficient reaction and swelling of the DAC pulp in the AhG DES.(Selkälä et al., 2016; J. A. Sirviö, 225 

Visanko, et al., 2015)   226 

  The effects of different reaction temperatures and reaction times on the charge densities and 227 

yields of CDAC are presented in Figure 2. The results indicated that a high charge density, i.e., 228 

effective cationization, in the AhG DES was obtained when the reaction time was less than 15 min 229 

(Figure 2a and b). In a relative high temperature (>70°), the yield of CDAC55 started to decrease 230 

when the reaction time was longer than 15 min (Figure 2c), whereas the yield of CDAC75 became 231 

relatively stable after 30 min reaction (Figure 2d). However, in a mild temperature at 70°C, both 232 

CDAC55 and CDAC75 started to decrease their yield sharply after 30 min reaction. The increase 233 

in CDAC mass (yield > 100%) at low reaction times (<10 min) was due to the addition of large-234 

molecular-weight cationic groups on cellulose during the reaction. In addition, DES residual might 235 
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attach to the CDAC could also lead to an unrealistic high yield. However, there was no direct 236 

relationship between the charge density and the yield, because the high charge density combined 237 

with elevated temperature and extended reaction time would also promote CDAC hydrolysis and 238 

dissolution, which in turn decreased the yield. For example, CDAC75 synthesized at 90°C and 30 239 

min had a high charge density of 2.19 mmol g-1, but a low yield of 50%. However, when the 240 

reaction temperature and time were decreased to 80°C and 10 min respectively, CDAC75 was 241 

obtained with a high charge density of 2.48 mmol g-1 along with a yield of 105%. Therefore, the 242 

yields reflect the combination effects of the introduced cationic groups, the degree of CDAC 243 

hydrolyzing and dissolution in DES and in ethanol during the washing, and the contribution of 244 

impurities (small amount of glycerol from DES can be attached to dialdehyde cellulose by acetal 245 

and hemiacetal formation).   246 

  Under the same DES reaction conditions, CDAC75 typically had higher charge densities than 247 

CDAC55. This result was due to the higher initial aldehyde content of its precursor compared to 248 

CDAC55.(J. Sirviö et al., 2011) In addition, there were clear trends for CDAC75, too: at all 249 

temperatures, the charge densities increased when the reaction time was increased from 5 to 10 250 

min (Figure 2b). In the case of CDAC55, the charge density increased steadily at 70°C with 251 

prolonged reaction time. Moreover, there was no significant difference in charge densities in 252 

response to changes in temperature or reaction time (Figure 2a). Therefore, applying the AhG DES 253 

under mild conditions (reaction time of less than 15 min and temperatures of 70°C and 80°C) 254 

seems to be favorable for the production of cationized DAC with a high charge density and mass 255 

yield. Overall, compared with previous catalyst-assisted cationization or cationization reactions 256 

that required several hours,75,76,87 AhG DES seems to be an effective solvent for the cationization 257 
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of aldehydes of cellulose. Further, from an up-scaling point of view, cationization through AhG 258 

DES could meet industrial needs on account of the low energy consumption and fast processing. 259 
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Figure 2. The charge density of CDAC55 (a) and CDAC75 (b), and the yield of CDAC55 (c) and 262 
CDAC75 (d), as a function of reaction time and temperature in cationization with AhG DES. 263 

 264 

  3.2 Characteristics of cationized celluloses  265 

       The original cellulose, DAC75 and AhG DES-synthesized CDAC75 (at 70°C for 10 min) were 266 

characterized by ATR-IR (Figure 3). The spectra of DAC75 and CDAC75 presented characteristic 267 

cellulosic bands in the range of 40002995 cm-1 that corresponded to OH stretching, an adsorption 268 

band at 2900 cm-1 that corresponded to CH stretching vibration, and a band at 1430 cm−1 that was 269 
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assigned to HCH and CHO in plane deformation vibrations.(Oh, Yoo, Shin, & Seo, 2005; J. A. 270 

Sirviö, Visanko, et al., 2015) The absorption band at 1728 cm−1, which is characteristic of the 271 

aldehyde carbonyl group in DAC75, was replaced with new bands that appeared at 1674 cm−1 and 272 

1635 cm−1 in CDAC75 and corresponded to the carbon-nitrogen double bond of imines and 273 

nitrogen-hydrogen bond bending, respectively. (J. A. Sirviö et al., 2014b; Y. Zhang, Jiang, & 274 

Chen, 1999). These findings indicated successful reaction between the aldehyde groups in DAC 275 

and aminoguanidine hydrochloride in the AhG DES. 276 
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Figure 3. ATR-IR spectra of birch cellulose, DAC75 with the characteristic aldehyde band (1728 278 
cm-1), and CDAC75 with the characteristic carbon-nitrogen double bond (1674 cm−1) and nitrogen-279 
hydrogen bond (1635 cm−1). 280 

The reaction mechanisms of DAC cationization in the AhG DES can be explained in two ways: 281 

(1) The AhG DES enabled the aldehyde groups of DAC to form stable imine structures with 282 

aminoguanidine hydrochloride. The driving force of the reaction was the formation of the 283 
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conjugated imine structure.(Clayden, Greeves, & Warren, 2012) (2) The AhG DES worked 284 

simultaneously as a cellulose disintegrating medium by disrupting the internal and external 285 

hydrogen and hemiacetal/acetal bonds of DAC, which in turn enhanced the reaction efficiency and 286 

later promoted the mechanical disintegration process to lead to the production of functionalized 287 

nanocelluloses.(P. Li et al., 2017) In addition, the AhG DES could increase the reactivity of the 288 

aldehyde groups through formation of hydrogen bonds with carbonyl and thus increased the 289 

electrophilicity of the aldehyde carbon.(Guigo, Mazeau, Putaux, & Heux, 2014)   290 

The XRD spectra of CDAC55 and CDAC75 (Figure 4) indicated an increase in crystallinity. I.e., 291 

after the DES cationization, the crystallinity of CDAC55 and CDAC75 were 63.2% and 64.9%, 292 

which were higher than the original birch pulp (56.6%) and previously reported to cationic 293 

cellulose synthesized in water (J. A. Sirviö et al., 2014b). These results suggested the dissolution 294 

of the amorphous parts of cellulose during AhG DES cationization.   295 
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Figure 4. X-ray diffraction spectra of CDAC55 and CDAC75. 297 

  298 

 3.3 Cationized nanocelluloses  299 

       CDAC55 and CDAC75 treated with AhG DES at 70°C for 10 min were selected for 300 

mechanical disintegration with a microfluidizer, owing to their relatively high charge density 301 

(0.918 and 1.206 mmol g-1, respectively). Unlike the raw cellulose and DAC fibers, there was no 302 

chamber clogging(Carrillo, Laine, & Rojas, 2014; Siró & Plackett, 2010b) with the AhG-treated 303 

CDAC55 and CDAC75. Both the samples smoothly passed through the microfluidizer chambers. 304 

The introduced repulsive positive surface charges and the weakened hydrogen bonding network 305 

of the cellulose fibers were useful for the mechanical disintegration. Furthermore, homogenous, 306 

gel-like materials were obtained after the first pass through the microfluidizer, whereas the visual 307 
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difference was clearer when CDACs were passed through the chambers twice. This showed that 308 

the nanofibrillated CDAC55 was more turbid and viscous than the CDAC75 sample (Figure 5).  309 

 310 

Figure 5. 1% CDAC55 (left) and CDAC75 (right) nanocellulose suspensions after mechanical 311 
disintegration.  312 

The TEM images presented in Figure 6 confirm that both CDAC55 and CDAC75 formed nano-313 

sized particles after mechanical disintegration; i.e., individual nanofibrils and nanocrystals with an 314 

average width of 4.6 ± 1.1 nm and 5.7 ± 1.3 nm were detected separately. Notably, CDAC75 315 

generally consisted of shorter particles with a more rod-like structure that corresponded to 316 

cellulose nanocrystals,(Klemm et al., 2011) while CDAC55 mainly consisted of elongated and 317 

flexible nanofibrils. Therefore, the TEM images indicated that the morphology of nanocellulose 318 

could be tailored by the reaction conditions of AhG DES treatment, and that the nanofibrillation 319 

products of CDAC55 and CDAC75 were mainly CNFs and CNCs, respectively. The CNCs 320 

produced from AhG DES had a smaller width than previously reported with acidic DES (917 321 

nm)(J. A. Sirviö, Visanko, & Liimatainen, 2016), while the CNFs had comparable width to those 322 

fabricated using DES-mediated succinylation (27 nm).(Selkälä et al., 2016) Besides, there were 323 

fewer but more dispersed web-like nanofibrous individual CNF or CNC structures observed from 324 

AhG DES-cationized nanocelluloses, which is different from the nanocelluloses obtained from 325 

urea-based DES pretreatment.(P. Li et al., 2017; J. A. Sirviö, Visanko, et al., 2015; Suopajärvi et 326 

al., 2017b) In addition to individual CNFs and CNCs, nanocellulose bundles (e.g., sequential 327 

periodate−chlorite oxidized nanofibrils with a width of 25 ± 6 nm(H. Liimatainen et al., 2012)) 328 

were rarely observed in both AhG DES-cationized nanocellulose samples; this finding is similar 329 

to that for nanocelluloses obtained from TEMPO-oxidization.(Habibi, Chanzy, & Vignon, 2006; 330 
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Saito, Kimura, Nishiyama, & Isogai, 2007) Overall, the AhG DES-cationized nanocelluloses had 331 

very similar behaviors to previously reported phosphonated nanocelluloses.(J. A. Sirviö, Hasa, et 332 

al., 2015) These findings indicate that according to the aldehyde content of DAC and charge 333 

density of CDAC, AhG DES combined with mechanical nanofibrillation led to the formation of 334 

cationic CNFs or CNCs. In the literature, periodate oxidation of cellulose is suggested to take place 335 

in clusters: that is, periodate molecules that are being formed preferentially react with the non-336 

crystalline locations of celluloses near the previously oxidized regions.(Kim, Kuga, Wada, Okano, 337 

& Kondo, 2000; J. A. Sirviö, Hasa, et al., 2015) Therefore, the high degree of oxidation (DAC75) 338 

results in partial dissolution of the cellulose and breaking up of the fibers into short nanocrystals. 339 

 340 

Figure 6. TEM images of nanofibrillated (a) CDAC55 and (b) CDAC75. 341 

   342 

3.4 Recycling of AhG DES  343 

      Aminoguanidine hydrochloride started to precipitate in the original AhG DES at room 344 

temperature (Figure 7a). However, even after the reaction and recycling, the AhG DES formed a 345 

clear eutectic liquid at room temperature without any visible precipitation. This may be explained 346 

by the introduction of impurities, such as ethanol and water, which may promote the dissolution 347 

of aminoguanidine hydrochloride. The AhG DES maintained a clear liquid appearance after five 348 

reuses and became yellowish only gradually with the increase in heating cycles (Figure 7bf). This 349 
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yellow color may originate from the impurities and degradation side products (e.g., cellulose and 350 

DES).(Guigo et al., 2014)  351 

 352 

Figure 7. The original AhG DES (a), and recycled AhG DES (bf) after one to five times of re-353 
use at room temperature. 354 

 During the recycling of the AhG DES, the yield of DES was slightly reduced after prolonged 355 

recycling. The decrease in the yield may be a result of the consumption of aminoguanidine 356 

hydrochloride as a result of reaction with the aldehyde groups of DAC. Theoretically, 1.81% of 357 

aminoguanidine hydrochloride was consumed in a single reaction cycle. Therefore, there was clear 358 

decreased mass of DES can be seen after first cycle. However, in some cases, the chemical mass 359 

of recycled AhG DES was over 100%, which most likely was a result of the impurities (e.g., water 360 

and ethanol) that were tightly bonded and could not be fully removed by evaporation.(van Osch, 361 

Zubeir, van den Bruinhorst, Rocha, & Kroon, 2015) Although the introduction of water often 362 

affects the properties of DES (Du, Zhao, Chen, Birbilis, & Yang, 2016), the cationization reaction 363 

efficiency of AhG DES was not affected by impurities from the recycling procedure. As the 364 

polyelectrolyte titration results showed, both the original AhG DES and the recycled AhG DES 365 

were able to deliver DACs with the same level of cationic charge density after a 10-min reaction 366 
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at 70°C (Table 1), the charge densities of CDAC55 and CDAC75 being around 1 and 1.2 mmol g-367 

1, respectively. It was also noted that the charge density value increased after mechanical 368 

disintegration; that is, compared to their precursors, the charge density of nanocelluloses from 369 

CDAC55 and CDAC75 was 39% and 42% higher, respectively. It seems that some of the cationic 370 

groups inside the CDAC fibers became accessible to the large polymer PES-Na, which was used 371 

for polyelectrolyte titration after mechanical nanofibrillation (Table 1).  372 

Table 1. Summary of the yield of recycled AhG DES and the yield and charge density of CDACs 373 

Product CDAC55 CDAC75 

 

Cycle 

Yield of 
AhG DES 

(%) 

Yield of 
CDAC55 

(%) 

Charge 
density 

(mmol g-1) 

Yield of 
AhG DES 

(%) 

Yield of 
CDAC75 

(%) 

Charge 
density 

(mmol g-1) 

I 100±3.5 107±2.5 0.918 100±2.5 116±1.5 1.206 

II 107±2.0 98±1.0 1.049 106±1.5 110±1.0 1.132 

III 103±0.5 99±0.5 0.942 102±2.0 110±0.5 1.160 

IV 100±1.5 98±0.5 1.026 96±2.5 108±1.5 1.180 

V 99±0.5 93±2.0 1.021 93±0.5 96±3.5 1.221 

Nano-
fibrillation I 

  1.274   1.713 

 374 

3.5 Thermal stability of AhG DES 375 

Compared with previously reported glycerol-choline chloride DES (Delgado-Mellado et al., 376 

2018), the original AhG DES showed similar results from thermogravimetric analysis (Figure 8). 377 

I.e., AhG DES had only one-step mass loss caused by the evaporation of glycerol and 378 

simultaneously thermal decomposition of aminoguanidine hydrochloride. It was also notable that 379 
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the onset decomposition temperature of AhG DES was much higher than the reaction temperature, 380 

which explains the reusability of AhG DES.   381 
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Figure 8. TGA and the first derivate of TGA of the original AhG DES at air condition. 383 

 384 

4. Conclusion 385 

    The AhG DES formed by aminoguanidine hydrochloride and glycerol was found to be an 386 

effective and recyclable medium and reagent for the production of cationic celluloses from DAC 387 

under mild conditions (70°C for 10 min). The DES was reused five times by a simple distillation 388 

procedure, and the recycled DES exhibited similar reaction efficiency to the original DES. In 389 

addition, no additional chemicals were used during the recycling, which further improved the 390 

feasibility of using the AhG DES as a cationization medium. According to the initial aldehyde 391 

content of DACs, the cationized cellulose could be disintegrated to highly cationic CNFs or CNCs. 392 

Individual CNFs and CNCs had a width of around 5 nm, which indicates that this recyclable AhG 393 

DES presents an efficient and green option for functionalized nanocellulose production. 394 
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