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ABSTRACT
Inter-release defect prediction (IRDP) is a practical scenario that employs the datasets of the
previous release to build a prediction model and predicts defects for the current release within
the same software project. A practical software project experiences several releases where data
of each release appears in the form of chunks that arrive in temporal order. The evolving data
of each release introduces new concept to the model known as concept drift, which negatively
impacts the performance of IRDPmodels. In this study, we aim to examine and assess the impact
of feature selection (FS) on the performance of IRDP models and the robustness of the model to
concept drift. We conduct empirical experiments using 36 releases of 10 open-source projects.
The Friedman and Nemenyi Post-hoc test results indicate that there were statistical differences
between the prediction results with and without FS techniques. IRDP models trained on the data
of most recent releases were not always the best models. Furthermore, the prediction models
trained with carefully selected features could help reduce concept drifts.

1. Introduction
In recent years, machine learning (ML) applications have been integrated into numerous research fields related to

our lives [1]. For example, ML-based prediction helps detect complex cardiac disease (e.g., congenital heart disease)
that reduces the time and effort required to diagnose congenital heart diseases [2]. The implications of ML-based
predictions not only enhance the medical sector but also influence the dining industry. The prediction techniques have
gained much attention for the wine industry to predict the quality of wine that improves the winemaking technique [3].
Indeed, software systems are spreading through all aspects of our daily lives with the automatic vehicles andAI personal
voice assistants such as Alexa, Cortana and Siri that have significant involvement in security, privacy and safety [4].
To build a reliable and high-quality software system, software quality assurance (SQA) guarantees that the developed
system meets specific quality standards [5]. Furthermore, the test phase of the software development is mainly used
to ensure the purpose of the software systems meets the client’s requirements [6]. To assist in SQA (software testing)
activities, software defect prediction (SDP) helps the software tester identify defects that help prioritize the scarce
SQA resources [7]. Consequently, SDP is considered one of the predominant research topics by the SE community
[8–12]. In SDP, the prediction models are built using machine learning (ML) techniques to identify defective modules
or classes that are likely to be defective in a newly developed software [10, 13–16]. These prediction models assist
software developers to allocate scarce testing resources such as code inspection in focusing on those modules that need
special attention [13, 17]. Over the years, many ML techniques have been proposed to build the classification models
for SDP [9, 18–21]. The SDP classification models utilize historical data (from which the prediction model is built)
and predict the defects (with which the prediction model is tested) [22]. Among the SDP classification studies, within-
project SDP is a scenario that trains a classification model on labeled modules and tests the model on the unlabeled
modules within the project [23, 24]. This scenario can be categorized into two schemes [18], which are inter-project
SDP and intra-project SDP. Intra-project SDP utilizes the current release to build the prediction model and testing data
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from the same release of the software project, whereas inter-release defect prediction (IRDP) is a process where the
historical data is retrieved from the previous release of the software project and tested on the current release of the
same project, which is considered as more practical and realistic [25, 26]. In the SDP literature, IRDP is also referred
to as cross-version defect prediction (CVDP) [25–27].

Abbreviations and acronyms
Abbreviations Description
ML Machine Learning
SE Software Engineering
SQA Software Quality Assurance
SDP Software Defect Prediction
SE Software Engineering
ML Machine Learning
IRDP Inter-Release Defect Prediction
CVDP Cross-Version Defect Prediction
FS Feature Selection
NSE Non-Stationary Environments
DT Decision Tree
KNN K-Nearest Neighbour
LR Logistic Regression
NB Naïve Bayes
RF Random Forest
CB Chunk-Based
CFS Correlation-based Feature Selection
CONFS Consistency-based Feature Selection
AUTOS Automated Feature Selection
ROC Receiver Operating Characteristic
AUC Area under the ROC curve
pf false alarm rate

Recently, IRDP has attracted more interest from SE
researchers due to some unique aspects [25–28]. For
example, Shukla et al. [25] argued that prior release of
a software project is more appropriate for building pre-
diction models for better results. The authors alluded
that the project characteristics regarding architectural de-
sign will be more or less the same across the releases.
Therefore, prior release becomes the more suitable train-
ing set for predicting the defects. We were able to iden-
tify the cited research works (i.e., [18, 20, 25–33]) that
studied long-running software projects for predicting de-
fects in the IRDP context through our SDP literature re-
view. Xu et al. [26–28] tried to mitigate the distribution
difference among two consecutive releases. The studies of
Amasaki [29–31] focused on the effects of cross-projects
SDP approaches under IRDP. The studies [18, 20, 25, 32,
33] discussed are likely to be developed for stationary en-
vironments.

Due to the rapid development of the software indus-
try, the prevalence of software systems has led to mas-
sive data volumes, making it a critical system released
over time [34]. Data generated in these environments are
non-stationary [35]. The effects of non-stationary environ-
ments (NSE) are detrimental, and it poses challenges to
learn from such an environment [36]. For example, data
probabilistic properties change over time [37] which con-
sequently can make a previously well-performing predic-
tion model trained in a stationary environment become obsolete [38]. Furthermore, software projects produce several
releases that appear in temporal order and become complex due to the frequent changes made in each release [27]. For
instance, the current release of a software project becomes more complicated due to the frequent changes made in some
modules in the prior release, which leads to the changes in data distribution among the releases. If the relationship
between variables of underlying data distribution changes (i.e., concept drift [37, 39]) due to unforeseeable reasons
after a stable period, the prediction model would not be reliable [40]. In such a scenario, the learning environment is
unlikely to be stationary. The researchers who studied IRDP seem reluctant to consider inter-release defect datasets as
non-stationary data distribution and do not investigate further by considering the temporal order of the distributions.
Since each release’s data appears as a chunk in temporal order, the learning environment becomes temporal chunk-
based learning. We formulate IRDP as a temporal chunk-based learning problem in which the data of different releases
of a software project appear at each time step.

In an attempt to enhance the performance of SDP models, feature selection (FS) techniques are known to have
a significant impact on SDP. Prior works [17, 41, 42] show that carefully selected features could achieve acceptable
prediction performance in SDP. Therefore, it is essential to examine the usability of FS techniques in the IRDP context
while considering temporal chunk-based learning over the releases of a software project. Furthermore, FS techniques
may alleviate concept drift due to the variation in selecting features in each release of inter-release defect datasets.
Therefore, our study investigates whether applying FS techniques separately on each release of the project when build-
ing IRDP classification models could improve prediction performance and examine the robustness of these trained
IRDP models to concept drifts. Specifically, we perform an empirical study aimed at answering the following two
research questions (RQs):

• (RQ1) How do the FS techniques impact the performance of IRDP?
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• (RQ2) Which FS method is more robust to concept drift?

Based on the above RQs, we conduct experiments on 36 releases of 10 software projects provided byMadeyski and
Jureczko [43, 44]. These datasets are selected because they have several releases and are widely used in previous studies
of SDP [25–28, 30–33]. The datasets contain static code metrics and are used for predicting defects for inter-release
at the class levels. We consider three best-performing FS techniques (correlation-based FS [45], consistency-based
FS [46], and AutoSpearman [47]), five prediction models (DT, KNN, LR, NB, and RF), and three key evaluation
measures (AUC, Recall, and pf ). To the best of our knowledge, this study is the first endeavor to assess the impact
of FS techniques on the performance of IRDP using temporal chunk-based learning. Thus, the contributions of our
empirical analysis can be summarized as follows.

• Provide findings and insights which are useful to the software engineering researchers interested in improving
the prediction performance of IRDP.

• Identify FS techniques that help to minimize the impact of concept drifts and improve the prediction performance
of IRDP.

The empirical study reveals that there are statistically significant differences in performance values between the
results with and without FS techniques when evaluated with AUC, Recall, and pf. We find that 50% of the inter-release
defect datasets are drift-prone when the considered classifiers were trained on them. The FS techniques improve the
prediction performance of IRDP models and minimizes the drifts from the defect datasets.

The rest of the paper is organized as follows: Section 2 formulates the problem for IRDP. Section 3 describes the
methodological procedure applied to conduct the empirical study. We report the results obtained from the experiments
in Section 4. Section 5 discusses the performance of our experimental results. Section 6 highlights the potential
threats to validity of our experimental results. Section 7 summarizes the closely related work describing the studies
about IRDP and finally, we conclude and state the future work in Section 8.

2. Problem Formulation
In this work, we formulate IRDP as the problem of temporal learning in which each release of the project is

considered as a training dataset at each time step. The training dataset is used to build IRDP models. At each time
step, the model is updated when the subsequent release arrives. Since each release’s data appears as a chunk in temporal
order, the learning environment becomes temporal chunk-based learning. An example of release-wise data chunk is
shown in Figure 1. As the first data chunk at time t1 for release r1, there are two classes denoted by circles and
diamonds. After some duration at time tk, a data chunk enters in the chunk-based learning process where the feature
space and decision boundary have changed for the release rn. The term “chunk-based learning” refers to learning the
data as chunk based on the “discard-after-learn” concept [48]. Here, the data chunk is used for learning only once and
then discarded from the learning process to keep the memory space available for the next data chunk. In contrast, batch
learning refers to only one subset of data presented for each epoch. The epoch numbers are not manageable because
the data is trained repeatedly for the weights until they reach the stopping condition, affecting the datum order during
the learning (i.e., the sensitivity of the learning data sequence) [48]. Junsawang et al. [48] suggested learning data as
a chunk at a time to overcome the impact of sensitivity of the learning data sequence. Overall, we formulate IRDP
as a temporal chunk-based learning problem in which the data of different releases of a project appear at each time
step. Here, the data of each release is considered as a chunk. We consider the learning method based on the concept
of discard-after-learn for temporal data chunks, in which the data of each chunk is utilized one single time.

In IRDP, two nearest releases are considered for the defect prediction. At each time step, the defects are predicted
in the next release in IRDP, bearing in mind that consecutive releases share similar characteristics, which helps to train
the model accurately, as suggested by Amasaki [29–31]. Based on this setting, we conduct 26 pairs of inter-releases
of the considered defect datasets. To manage the data in temporal learning environment, windowing techniques [49]
have been developed to manage the data [38]. In our case, the data of each release arrives as a chunk. Therefore,
a chunk-based learning strategy is more appropriate. Moreover, the release-based moving window is validated and
recommended by Harman et al. [34], where window size refers to one release’s data. In our study, we consider the same
strategy to build the prediction models for IRDP. In particular, the defect data is generated in such a manner so that the
sequence of data (at, bt) arrives at time step t. The examples at belong to feature vector and bt represents the discreteclass label at time point t, in which each example is generated with the joint probability distribution pt(a, b). The
Kabir et al.: Preprint submitted to Elsevier Page 3 of 24
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t1 t2 tk

r1 r2 rn

Figure 1: An example of release-wise chunk data with different classes.

examples can be produced by chunk-based (CB) settings [37, 38]. In each setting, a tupleDt = {(at, bt)} is provided tothe learning algorithm. The training examples could be generated by CB settings and form dataD = ⟨D1, D2, D3, ...⟩,in which a key issue could occur, i.e., concept drift, for which the predictive model may become outdated, resulting in
the performance of predictive models degrading, as noted by Ditzler et al. [37]. Minku [50] defines concept drift and
chunk-based (CB) learning as follows.

Concept drift: Given each point in time t, the joint probability distribution (i.e., concept) can be defined for
every example as pt(a, b) = pt(b|a)pt(a) where p(a) is the class prior probabilities and p(b|a) is the class conditionalprobability. Concept drift occurs at two distinct time-points, t and (t + Δ), iff ∃ t ∶ D(t)(a, b) ≠ D(t+Δ)(a, b).

CB learning: In CB learning, the prediction learner lg is processed for the CB learning, where data Dt =
{(a(i)t , b

(i)
t )}

pmt
i=1 ∼iid pt(a, b); pmt > 1 where pmt is the training data size at time t which is gather than 1 [50];

(a(i)t , b
(i)
t )�A×B; and pt(a, b) is a joint probability distribution at time t. At time t, we train the model ft ∶ A×B based

on the data chunk.

3. Methodology
To answer the RQs and empirically validate the results, we conduct a systematic investigation by selecting ap-

propriate inter-release benchmark datasets (Section 3.1), choosing best-performing FS techniques from SDP literature
(Section 3.2), selecting widely-used learning algorithms (Section 3.3), evaluating the results using several performance
metrics (Section 3.4), applying the robust statistical tests to obtain reliable experimental results (Section 3.5), and fol-
lowing a robust approach in conducting the experimental setup (Section 3.6). To gain a comprehensive understanding
of the impact of FS techniques for IRDP using a temporal chunk-based learning environment, we conduct several ex-
periments. First, we investigate the impact of each FS technique to answer RQ1. For each FS technique, we calculate
the prediction results of each performance measure. We train the IRDP model on the previous release and test the
subsequent release within the same software project as a practical scenario. Before preparing the model, we first pre-
process the data based on chronology. We split the releases from the main datasets into train and test sets based on the
release’s order. Thus, the datasets behave as a windowed stream containing v releases (see Figure 2). The train and
test sets are processed to build the model by following the window-based operation, where each release is considered
as a window. We build the prediction models by utilizing the defaults datasets and calculate the model performance.
To understand the impact of the FS technique, we then apply the FS techniques on the default datasets. After that, the
prediction models are built on the selected features and calculate the model performance of each performance measure.
As mentioned in Section 2, we consider chunk-based learning where the data of each release is considered as chunk
and processed based on the concept of discard-after-learn in the temporal order. This strategy ensures the memory
space available for the subsequent data chunk. The prediction model development and evaluation were conducted in R
Core Team [51]. To answer RQ2, we conduct a hypothesis test to detect concept drift. We calculate the test statistics
of two consecutive IRDP models and compute the diversity of the two consecutive prediction models. We consider
Fisher’s Exact test to assess the statistically significant differences of two consecutive time windows that identify the
drifts. Section 3.6 discusses the motivation behind these RQs and illustrates the experimental setup. Furthermore,
Figure 2 provides an overview of our empirical study.
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Figure 2: An overview of the design of our empirical study.

3.1. Benchmark datasets
We conduct our empirical investigation on a corpus of publicly available datasets containing 36 releases of 10

benchmark open-source software projects provided by Jureczko and Madeyski [43, 44], Jureczko and Spinellis [52].
These inter-release defect datasets have been widely utilized in the studies of IRDP [25–28, 30–33, 53]. We collect
the corpus from the SEACRAFT repository1 [54] (which was formerly known as the PROMISE repository [55]). A
summary of the datasets, including releases and number of modules, is shown in Table 1. Each instance or module
of these datasets includes 20 static code metrics with a labeled feature (BUG) listed in Table 2. The original datasets
contain the number of defects of each module. We convert it for binary classification, where a class is defective if
the BUG number is one (1). Otherwise, a class is defined as non-defective by annotating it as zero (0). From the
considered datasets, Xu et al. [28] observed that 40% of the modules of the subsequent releases were defective, which
indicates the distribution differences. Such differences can make the releases drift-prone.

Our selected open-source software projects contain specified release that appears in chronological order. The
release date of the versions is collected from version-control repositories, which are used in the study of Bangash et
al. [56]. As mentioned in the Section 2, each release’s data appears as a chunk in temporal order, and the learning
environment becomes chunk-based learning. Suppose that the ant project has five releases from 1.3 to 1.7 (Table 1). It
appears in temporal order and creates temporal chunk-based learning environments. Note that, the project considered
in our empirical study has at least three releases for constructing the scenario of IRDP.
3.2. Apply feature selection techniques

In prior studies of SDP, several feature selection (FS) techniques have been adopted to improve the prediction
performance. Since it is unrealistic to consider all the utilized FS methods, we select those that have demonstrated
better performance than others. In particular, filter-based (FS) techniques are widely adopted for classification models
in SDP [17, 41, 42, 58]. We apply three FS techniques in this empirical study. These are - correlation and consistency-
based FS techniques and the AutoSpearman FS technique.

Several recent investigations have revealed the impact of FS techniques on SDP [17, 41, 42, 58, 59]. Ghotra et
al. [41] conducted a large-scale empirical study by considering 30 FS techniques applied on software defect datasets
with 21 classification models. They found that correlation-based FS technique performed best among the others,
which is recommended to consider while building classification-based prediction models for SDP. Another empirical
investigation containing 32 FS techniques conducted by Xu et al. [42] on software defect datasets. Based on their
experiment, they observed that among the filter-based FS techniques, correlation and consistency-based FS techniques
performed best compared to other techniques. The study of Kondo et al. [17] on FS techniques for feature reduction
on SDP models demonstrated that correlation and consistency-based FS techniques outperformed other techniques.
Here, we give a brief description of these two techniques. Correlation-based FS searches the best subset of features
among the considered features. The selected features share the most substantial relationship with the outcome variable
and have a low correlation with the other feature sets [60]. Consistency-based FS, a deterministic technique, selects
the feature sets by using consistency measures. This technique aims at selecting the consistent features whose rate is
equal to all the features [45]. We denote Correlation-based FS method as CFS and Consistency-based FS method as
CONFS throughout our experimental analysis. We utilize the implementation of the functions, cfs and consistency,
respectively, provided by the R FSelector package [61].

1https://zenodo.org/communities/seacraft/
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Table 1
A statistical summary of selected chronological defect datasets.

Project release Release Date #Modules #Defects Defects(%)
ant ant-1.3 12-Aug-2003 125 20 15.90%

ant-1.4 12-Aug-2003 178 40 22.50%
ant-1.5 12-Aug-2003 293 32 10.90%
ant-1.6 18-Dec-2003 351 92 26.10%
ant-1.7 13-Dec-2006 745 166 22.30%

camel camel-1.0 19-Jan-2009 339 13 3.80%
camel-1.2 19-Jan-2009 608 216 35.50%
camel-1.4 19-Jan-2009 872 145 16.60%
camel-1.6 17-Feb-2009 965 188 19.50%

poi poi-1.5 24-Jun-2007 1988 141 59.50%
poi-2.0 24-Jun-2007 9277 37 11.80%
poi-2.5 24-Jun-2007 1988 248 64.40%
poi-3.0 24-Jun-2007 125 281 63.60%

log4j log4j-1.0 08-Jan-2001 135 34 25.20%
log4j-1.1 20-May-2001 109 37 33.90%
log4j-1.2 10-May-2002 205 189 92.20%

xerces xerces-init 08-Nov-1999 162 77 47.50%
xerces-1.2 23-Jun-2000 440 71 16.10%
xerces-1.3 29-Nov-2000 453 69 15.20%
xerrces-1.4 26-Jan-2001 588 437 74.30%

velocity velocity-1.4 01-Dec-2006 196 147 75.00%
velocity-1.5 06-Mar-2007 214 142 66.40%
velocity-1.6 01-Dec-2008 229 78 34.10%

ivy ivy-1.1 13-Jun-2005 111 63 56.80%
ivy-1.4 09-Nov-2006 241 16 6.60%
ivy-2.0 18-Jan-2009 352 40 11.40%

lucene lucene-2.0 26-May-2006 195 91 46.70%
lucene-2.2 17-Jun-2007 247 144 58.30%
lucene-2.4 08-Oct-2008 340 203 59.70%

synapse synapse-1.0 13-Jun-2007 157 16 10.20%
synapse-1.1 12-Nov-2007 222 60 27.00%
synapse-1.2 09-Jun-2008 256 86 33.60%

xalan xalan-2.4 28-Aug-2002 723 110 15.20%
xalan-2.5 10-Apr-2003 803 387 48.20%
xalan-2.6 27-Feb-2004 885 411 46.40%
xalan-2.7 06-Aug-2005 909 898 98.80%

Recently, Jiarpakdee et al. [47] proposed an approach called AutoSpearman for interpreting defect models. They
conducted an investigation to assess the impact of FS techniques on the interpretation of SDPmodels. They considered
11 FS techniques that are commonly used in the studies of SDP to compare with their proposed one, AutoSpearman,
an automated FS approach based on Spearman rank correlation, and variance inflation factor analysis [62]. From their
experimental study, they observe that AutoSpearman alleviates the correlated metrics better than other FS techniques
[59]. In our empirical study, we adopt this automated FS technique. We use the implementation of AutoSpearman
using the AutoSpearman function as provided by the AutoSpearman R package [62]. We refer to this automated
FS method as AUTOS in this study. To compare the performance of the considered FS method in the scenario of
IRDP using temporal chunk-based learning, we consider all metric sets as a baseline method that is widely used in
the existing studies [26, 27].
3.3. Construct inter-release defect models

There are a plethora of classification methods used in SDP. We adopt a manageable amount of classification tech-
niques for our empirical investigation. Hall et al. [63] show that Random Forest (RF) and Logistic Regression (LR)
are the most widely used techniques found in SDP. Naive Bayes is also used for classification in SDP and shows bet-
ter performance. For example, He et al. [57] conduct an empirical study on 34 releases of defect data sets from the
PROMISE repository for cross and within-project defect prediction. They observed that NB was able to show better
performance compared to other classifiers. Furthermore, Menzies et al. [14] affirm the effectiveness of NB on NASA
defect data sets. For our experimental study, we choose commonly-used five machine learning algorithms to con-
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Table 2
List of the static code metrics used in this empirical study [57].

Abbreviation Description
CK suite (6)

WMC Weighted methods per class
DIT Depth of inheritance tree
NOC Number of children
CBO Coupling between objects
RFC Response for classes
LCOM Lack of cohesion in methods

Martins metric (2)
CE Efferent couplings
CA Afferent couplings

QMOOM suite (5)
MOA Measure of aggregation
CAM Cohesion among methods
MFA Measure of functional abstraction
DAM Data access metric
NPM Number of public methods

Extended CK suite (4)
LCOM3 Normalized version of LCOM
IC Inheritance coupling
AMC Average method complexity
CBM Coupling between methods

McCabe’s CC (2)
AVG_CC Mean values of methods in the same class
MAX_CC Maximum values of methods in the same class

LOC Lines of code

BUG Bugs or no-bug

Table 3
Confusion matrix.

Predicted
Positive

Predictive
Negative

Actual Positive TP FN
Actual Negative FP TN

struct the inter-release defect predictors, i.e., Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), K-Nearest
Neighbor (KNN), and Logistic Regression (LR).

Since the considered algorithms have settings of configurable parameter, we utilize the implementation of caret
parameter optimization prior to building the models by the train function with the option of nb, rf, rpart, knn, and
glm, respectively.
3.4. Calculate model performance

For a comprehensive evaluation of the prediction models, three key performance indicators are employed: Recall,
pf (probability of false alarm), and AUC. The defect dataset is classified into two groups: non-defective and defective.
These performance indicators are calculated from the prediction models’ outcomes. When the model is built to predict
the defective modules, the prediction comes with the result i.e., either defective or not. To that end, the performance
results of the classification models are computed from a confusion matrix (Table 3) where the defective modules are
considered as positive and non-defective modules as negative. The outcomes are classified as follows:

1. True Positives (TP) refers to correctly classified positive samples as positive samples;
2. True Negatives (TN) refers to correctly classified negative samples as negative samples;
3. False Positives (FP) refers to wrongly classified negative samples as positive samples; and
4. False Negatives (FN) refers to incorrectly classified positive samples as negative samples.
Using the confusion matrix described in Table 3, the measures are calculated and defined as follows: Recall is

Kabir et al.: Preprint submitted to Elsevier Page 7 of 24
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TP
(TP+FN) and pf is FP

(TN+FP ) . Metrics such as the probability of false alarms (pf ) and Recall were recommended as
stable metrics for imbalanced datasets by Menzies et al. [14, 64]. The Recall is the completeness of the prediction
performance that achieves a high value of 100% if the false negatives are zero. AUC refers to Area Under the receiver
operator characteristic Curve that is used to measure the discrimination power of the prediction models [65]. It
computes the region under the curve that outlines the true and false-positive rate for x and y-axis, respectively. The
value of AUC ranges between 0 and 1. A high Recall and low pf indicate as the best predictor. Higher values of AUC
denote better performance. The measures (pf, Recall, and AUC) are used to report the RQs results in our study. To
make a fair-comparison with the state-of-the-art methods, we adopt F-measure ((F-measure= 2∗Precision∗Recall

P recision+Recall ) where
Precision= TP

TP+FP ) and G-mean (
√

( TP
TP+FN ) ∗ (

TN
TN+FP )) in our study.

3.5. Statistical tests
The authenticity of empirical results can only be verified using statistical tests. Demsar [66] recommended using a

non-parametric statistical test for comparing the prediction results of multiple classifiers obtained from an experiment,
which is validated and recommended by Malhotra [21] and Lessmann et al. [67]. Haouari et al. [18] advocated for the
use of Friedman test to determine performance differences statistically significant. Later, the pairwise comparisons of
the ML techniques are completed the Post-hoc analysis utilizing Nemenyi test [68].

Tomake a statistical evaluation and determinewhether the performance differences of the predictors are statistically
significant across themethods over the datasets, we assess the prediction results using the non-parametric statistical test,
Friedman test [69], at a 5% significant level. Two types of predictors are developed in our study: (1) a predictor with
only the classification model (i.e., without FS-based predictor) and (2) a predictor is a combination of the prediction
model and FS technique (i.e., with FS-based predictor). Using the Friedman test, we find the mean ranks based on the
evaluated Recall, pf, and AUC performance measure of the methods (predictors). We determine the null hypothesis
(H0) that all the methods have the same performance results. We reject the null hypothesis (H0) if the performance
results are statistically different at a 5% significant level. The lower position of rank becomes, the better method is. If
the prediction performances are statistically significant, we perform the Post-hoc analysis utilizing the Nemenyi test to
examine whether the performance differences between any two methods (predictors) are significant, which is widely
used in the previous studies of SDP [18, 19, 21, 28, 67, 70–75]. We present the mean ranks of the methods for each
performance measure in Table 5, post-hoc analysis using the Nemenyi test presented in Table 6.
3.6. Experimental setup

The main goal of this empirical study is not only focused on applying the FS techniques separately on each release
for IRDP, but it also evaluates the robustness of the impact on concept drift. Thus, we conduct an empirical analysis
to answer the RQs.
(RQ1) How do the FS techniques impact the performance of IRDP?

Motivation: The findings of prior research have revealed the benefits of adapting FS techniques to predict software
defects [41, 42, 59, 76]. For example, Ghotra et al. [41] studied the impact of FS techniques on SDP. Still, the
conclusion derived from their study is not compatible with the scenario of IRDP concerning temporal chunk-based
learning. At the same time, the main goal of our empirical study is to investigate whether FS techniques performed
separately for each release of the project while creating prediction models that can improve prediction performance.
We set out to explore the impact of the best-performing FS techniques retrieved from the literature on the performance
of IRDP models through the RQ1.

Approach: To assess whether FS techniques impact IRDP, we compute and analyze the prediction performance
of IRDP models that are created using the subsets of metrics generated by the FS techniques and a baseline (without
applying FS technique, i.e., all metrics of an inter-release defect dataset). In the IRDP scenario, we utilize a temporal
chunk-based learning strategy using the releases’ order. Then we train a model using a release and test it with subse-
quent release defect datasets. We use each metric set generated by a FS technique as input to the studied five defect
prediction models. We adopt three key performance indicators. We consider 10 benchmark open-source software
projects containing 36 releases. As mentioned, the experiment is conducted in the inter-release scenario. Therefore,
each model has 26 performance values for 26 consecutive pairs for each performance measure. For the baseline, our
experiment yields 390 performance measure values (26 performance values × 5 classifiers × 3 performance measures).
For 3 FS techniques, our experiment yields (390×3) 1170 performance measure values. We compare the results of
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each performance measure with baseline (default datasets) and considered FS techniques. After that, we plot the dis-
tribution of performance differences using the boxplots for each performance measure corresponding to each classifier
and FS techniques in Figure 3.
(RQ2) Which FS method is more robust to concept drift?

Motivation: In data mining and machine learning, concept drift refers to the changes of data distributions over
time [38, 77]. Such drift may negatively influence the prediction performance of a model trained on past datasets
when applied to the new datasets, as noted by Dong et al. [78]. Based on our previous works [35, 79], we confirm that
the accuracy of predictionmodels negatively affected due to the changes of defect data over time. Due to the variation of
FS for different releases, the FS technique may avoid concept drift. Therefore, in this research question, we investigate
the studied benchmark datasets and evaluate which FS techniques are robust to concept drift. In particular, we leverage
the statistical test to identify the concept drift.

Approach: Prior research effort on concept drift detection [80, 81] assumes that a predictionmodel trained on a time
window (past data) would have a statistically significant difference in the prediction performance of the model of the
consecutive time window (data of next period) when there is a concept drift. We follow the same hypothesis to measure
the concept drift. If a defect prediction model trained from the previous release’s data exhibits a statistically significant
prediction performance difference for identifying defective or non-defective modules of the models of consecutive
release data, then a concept drift exists.

In this experimental study, we split the releases based on project chronology (also referred release-based moving
window), as prior work applied a similar strategy (i.e., split the releases). For example, Xu et al. [26] consider splitting
the releases of the defect datasets and tried to mitigate the distribution differences between two consecutive releases.
The experimental setup is as follows: (1) We collect all the available releases from the sources and restructure them
into a time frame. The windowing technique manages the releases whereas two time period contains two consecutive
releases. (2) We train the prediction models using the release’s data from the period and test the model using the
release’s data for the next period. (3) Similar to prior work [80, 81], we calculate the test statistics of two consecutive
IRDP models. We calculate the diversity of the two prediction models, i.e., agreement (number of correctly classified
instances at two-time windows) and disagreement (number of incorrectly classified instances at two-time windows)
between two prediction models. (4) We conduct Fisher’s Exact test at a 5% significant level to assess the statistical
significance of the difference based on diversity observed in two consecutive time windows. If a prediction model
trained on the previous release’s defect data shows a significant difference on the new release’s data, then a drift exists.
This statistical test has recently been adapted for concept drift detection and recommended by de LimaCabral et al. [80].
Nishida et al. [82] suggested employing this test when the sample sizes are small. The rationale behind employing this
test is that the sample size (i.e., number of modules) of each release is small (see Table 1). In particular, we conduct
the statistical analysis on the test statistics acquired from the two windows. We portray the drift detection results in
Figure 7 A for default datasets. After that, we conduct the test again on metric sets obtained by performing the FS
techniques separately for every release and show the results in Figure 7 B.

4. Results
In this section, we present the results of our empirical study with respect to the following two RQs.

(RQ1) How do the FS techniques impact the performance of IRDP?
Results: To assess the abilities of FS techniques on IRDP in the temporal learning environment, we compare the

performance results across each performance measure and exhibit the experimental results to answer RQ1. Table 4
compile the prediction results in which include max, min, and average performance of each performance measure. The
bold font values describe the best values reported upon all the methods.

From Table 4, AUTOS FS technique with NB achieves maximum average Recall, the probability of defective
modules that are correctly classified by 81% and outperforms others in the range from 1% to 26%. In terms of Recall
values, KNN achieves the lowest mean values than the FS-based models by 55%. Among all the models, the FS-based
models reach a perfect Recall score of 100%, resulting in a high probability for detecting defective modules correctly;
for example, the FS-based models classify all defect-prone modules when the models are trained with camel-1.0 and
tested with the consecutive release camel-1.2. Overall, the results demonstrate that FS-based models are competitive
for correctly classifying the defective modules in the temporal learning environment and produce better IRDP.
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Table 4
Summary of prediction results of inter-release defect prediction across the algorithms.

Recall pf AUC
AVG MAX MIN AVG MAX MIN AVG MAX MIN

NB 0.62 0.92 0.04 0.75 1.00 0.04 0.54 0.78 0.20
RF 0.57 0.94 0.04 0.67 1.00 0.07 0.48 0.77 0.00
DT 0.61 0.94 0.03 0.70 1.00 0.00 0.30 0.73 0.00
KNN 0.55 0.94 0.04 0.66 1.00 0.03 0.39 0.67 0.00
LR 0.57 0.93 0.04 0.68 1.00 0.06 0.46 0.74 0.16
CFS-NB 0.80 1.00 0.11 0.52 0.90 0.03 0.72 0.90 0.54
CFS-RF 0.73 1.00 0.04 0.47 0.99 0.04 0.70 0.89 0.53
CFS-DT 0.71 1.00 0.00 0.44 0.89 0.00 0.61 0.78 0.50
CFS-KNN 0.71 1.00 0.03 0.48 0.98 0.03 0.64 0.88 0.46
CFS-LR 0.72 1.00 0.04 0.46 0.97 0.00 0.70 0.87 0.55
CONFS-NB 0.75 1.00 0.00 0.50 0.94 0.00 0.66 0.87 0.48
CONFS-RF 0.67 1.00 0.03 0.49 0.97 0.03 0.68 0.88 0.54
CONFS-DT 0.70 1.00 0.00 0.42 0.93 0.00 0.61 0.78 0.50
CONFS-KNN 0.68 1.00 0.00 0.48 0.98 0.00 0.65 0.85 0.50
CONFS-LR 0.68 1.00 0.00 0.51 1.00 0.00 0.69 0.87 0.55
AUTOS-NB 0.81 1.00 0.38 0.53 0.91 0.06 0.72 0.89 0.49
AUTOS-RF 0.71 1.00 0.15 0.45 0.99 0.02 0.71 0.90 0.52
AUTOS-DT 0.73 1.00 0.00 0.38 0.92 0.00 0.70 0.90 0.50
AUTOS-KNN 0.68 1.00 0.01 0.44 1.00 0.00 0.65 0.78 0.48
AUTOS-LR 0.72 1.00 0.23 0.51 0.98 0.02 0.70 0.84 0.56

In terms of probability of false alarm pf, the prediction models that do not consider FS achieves high pf. Among all
of the methods, the models trained with NB achieve maximum pf by 75%. In contrast, among all the methods, those
methods that achieve 0 pf score mean that the models can identify all defective software modules, resulting in less
testing effort. Among all of the methods, ATUOS-DT has the lowest average pf by 38%, meaning that it detects the
minimum amount of software modules that are not defective. In practice, we want to achieve low pf with high Recall
that reduces the high testing effort for a critical software system [18, 72, 83]. Especially for a critical software system,
where each release changes over time, the proper identification (prediction) will be more effective in practice in such
a temporal chunk-based learning environment.

The outcomes of the AUC measure range from 0.30 to 0.72 score, with the worst average prediction performance
for DT and the best one for AUTOS-NB, and CFS-NB, followed by AUTOS-NB with an average highest Recall score
of 0.81. This means that AUTOS-NB has the ability to detect defective modules for IRDP and reduces the testing effort.
The FS-based models’ outcome ranges from 0.61 to 0.72 AUC score. Overall, CFS-NB and AUTOS-NB achieve a
maximum average AUC of 72% and outperform others in the range from 2% to 42%. The best value of AUC is recorded
by 90% for CFS-NB, ATUOS-RF, and AUTOS-DT, respectively. However, in Table 4, we observe that RF, DT, and
KNN gain the AUC values of 0, meaning that the models whose predictions achieve maximum errors (100% wrong
prediction). From these empirical results, we observe that the choice of classifier employed with FS techniques is as
important as the temporal defect data used to build the IRDP models in such a realistic environment.

Figure 3 presents the performance difference values between the results with and without FS techniques for each
of the three performance measures. We present our experimental findings that (1) are not impacted the prediction
performance and (2) impacted the performance by utilizing the FS techniques. In this figure, the distributions centered
at zero indicate that the performance measures are not impacted negatively or positively by FS techniques for IRDP.
Figure 3 shows that when applying FS techniques, we find that the performance difference of AUC measure varies
from -16% to 90% (i.e., min-max). We observe that the performance distribution of the AUC measure for 75% IRDP
models varies from 8% to 37% (i.e., the values of 1st-3rd quantiles). This result indicates that FS techniques tend to
have a positive impact on AUC when they are employed to IRDP models. In terms of Recall values, the performance
distributions that are centered at zero indicate that the Recall is not impacted positively or negatively by FS techniques
for IRDP models. As mentioned above, FS-based IRDP models are effective for correctly classifying the defective
modules in this temporal learning environment. We observe that the performance distribution of the Recall measure
for 75% IRDP models varies from -5% to 97% (i.e., min-max). We also observe that the performance distribution of
the Recall measure for 75% IRDP models varies from -3% to 22% (i.e., the values of 1st-3rd quantiles). Overall, from
the Figure 3, it can be seen that the FS techniques have a positive impact on the performance for correctly classifying
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Figure 3: The performance difference when employing FS techniques to inter-release defect prediction models. A red line
indicates no performance improvement.

the inter-release defective modules. Note that, pf is measured by the total number of non-defective modules predicted
as defective. Interestingly, AUTOS, CFS, and CONFS FS techniques decrease pf and increase Recall, which implies
the positive impact of FS techniques in classifying the inter-release defective modules.

The prediction performance values across the releases of the considered datasets are depicted in the Figures 4 to 6.
We observe that the Recall and AUC scores do not always increase over the releases with time in the temporal learning
environment (Figure 4 and 5), which means that the latest release does not always give the height values of Recall and
AUC. In some cases, the initial releases are more suitable for correctly classifying the defective modules. For example,
as a training set for an IRDP model, synapse-1.0 is able to classify the defective modules correctly (i.e., high Recall)
than synapse-1.1. For pf values, initial releases across the considered datasets are more effective that have low rate of
pf (Figure 6). We also see that the IRDP models remain competitive throughout the releases in the temporal chunk-
based learning environment. Another observation can be drawn from the Figures 4 to 6: the IRDP models trained on
the most recent releases do not always yield the best inter-release defect predictors. This observation agrees with the
results of Harman et al. [34]. They found that the latest release is not always the best predictor when considered SDP
as a temporal learning problem suggested by Harman et al. [34], dynamic adaptive prediction systems [84] could be
employed to recognize the best model. Point to be noted that the ability to underline the best models among the IRDP
models is out of the scope of our study.

To achieve reliability and statistical validation, Demsar [66] alluded not to depend only on mean values of perfor-
mance measures while compared with multiple classifiers over datasets and recommended considering an additional
statistical test to verify the comparison of the prediction results. In particular, we assess the prediction results using
the non-parametric Friedman statistical test amongst the methods. The null hypothesis (H0) is that all the methods
have the same performance. We reject H0 if and only if the test is statistically significant. Here, we set the p-value to
reject H0 at 5% significant level (p-value<0.05). We compare twenty classification methods (5 classifiers × 4 types of
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Figure 4: IRDP models performance across the releases of the considered datasets for Recall.
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Figure 5: IRDP models performance across the releases of the considered datasets for AUC.

feature sets (i.e., obtained from ALL, CFS, CONFS, and AUTOS)) over the defect datasets in our selection. Therefore,
the degree of freedom is 19. The computed Friedman test statistics for the Recall are 84.243, 202.533 for pf, finally
272.565 for AUC. The p-value for recall, pf, and AUC measures are 3.42E-10, 1.07E-32, and 8.07E-47, respectively.

After observing the statistical test results of the Friedman test, we reject the null hypothesis, meaning that there is
a statistically significant difference between the compared methods. Therefore, we can now adopt a Post-hoc test using
Nemenyi’s Post-hoc test to verify if each pair of methods or classifiers is different statistically. Themean ranks obtained
from the Friedman test are shown in Table 5, regarding the Post-hoc test results displayed in Table 6. In Table 6, 0
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Figure 6: IRDP models performance across the releases of the considered datasets for pf.

Table 5
The Friedman means ranks of the with and without FS-based predictive models based on pf, Recall, AUC-score. The lower
position of rank becomes, the better model is. ALL refers to all feature sets considered to develop the models.

ALL CFS CONFS AUTOS
NB RF DT LR KNN NB RF DT KNN LR NB RF DT KNN LR NB RF DT KNN LR

Recall 8.9 7.1 8.5 6.6 5.6 13.3 10.4 12.6 10.8 11.7 13.8 4.8 11.8 10.2 10.6 14.0 10.5 13.2 10.0 11.6
pf 16.4 16.5 16.9 16.4 16.3 9.7 7.3 8.4 9.1 8.7 9.7 7.8 7.0 8.9 9.2 10.7 6.7 5.4 8.8 10.1
AUC 5.5 5.2 3.6 3.3 2.3 16.2 14.8 8.7 10.3 14.3 11.7 12.9 9.2 10.8 13.9 15.1 15.0 12.9 10.8 13.5

refers to there is no statistical difference between the pair of classifiers otherwise, there is a statistical difference in
terms of P for pf, R for Recall, and A for AUC. From the pairwise comparison, 71 is found to be statistically significant
for pf and Recall, respectively, and 67 is found to be statistically significant for AUC.

Results drawn from Tables 5 and 6, in terms of Recall, CONFS-RF achieved the best average rank among the
classifiers, followed by KNN with an average rank of 5.6. The Post-hoc test results manifest that there is a statisti-
cally significant difference among the without FS-based classifiers. All the FS-based classifiers are not statistically
significant from each other, which makes it hard to determine which FS-based classifier is best based on Recall. In
terms of pf, AUTOS-DT achieved the best average rank of 5.4 among the classifiers, followed by AUTOS-RF with
an average rank of 6.7. From the Post-hoc results, they are the statistically significant difference among the without
FS-based classifiers. When it comes to FS-based classifiers, they are not statistically significant from each other. On
the other hand, without FS-based classifiers ranked the best average ranks among all the classifiers when it comes to
AUC (Table 6). From the results, KNN achieved the best average rank with an average rank of 2.3, followed by LR
with an average rank of 3.3. But, they are not statistically significant based on the Post-hoc test results. Overall, we
observe that the performance differences between with and without FS-based classifiers are statistically significant.
However, the performance differences are not statistically significant among the FS-based classifiers, confirming the
observation that FS-based classifiers are suitable for IRDP when the learning environment is temporal chunk-based
learning.
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Table 6
The post-hoc analysis results. 0 refers to there is no statistical difference between the pair of classifiers otherwise, there
is a statistical difference in terms of P for pf, R for Recall, and A for AUC. ALL refers to all feature sets considered to
develop the predictive models.

ALL CFS CONFS AUTOS
NB RF DT KNN LR NB RF DT KNN LR NB RF DT KNN LR NB RF DT KNN

RF 0 - - - - - - - - - - - - - - - - - -
DT 0 0 - - - - - - - - - - - - - - - - -
KNN 0 0 0 - - - - - - - - - - - - - - - -
LR 0 0 0 0 - - - - - - - - - - - - - - -
CFS-NB PRA PRA PRA PRA PRA - - - - - - - - - - - - - -
CFS-RF PRA PRA PRA PRA PRA 0 - - - - - - - - - - - - -
CFS-DT PR PR PR PRA PR A A - - - - - - - - - - - -
CFS-KNN PR PR PRA PRA PRA 0 0 0 - - - - - - - - - - -
CFS-LR PRA PRA PRA PRA PRA 0 0 0 0 - - - - - - - - - -
CONFS-NB PRA PRA PRA PRA PRA 0 0 0 0 0 - - - - - - - - -
CONFS-RF PRA PRA PRA PRA PRA 0 0 0 0 0 0 - - - - - - - -
CONFS-DT PR PR PR PRA PR A 0 0 0 0 0 0 - - - - - - -
CONFS-KNN PR PR PRA PRA PRA 0 0 0 0 0 0 0 0 - - - - - -
CONFS-LR PRA PRA PRA PRA PRA 0 0 A 0 0 0 0 0 0 - - - - -
AUTOS-NB A A PRA A A 0 0 A 0 0 0 0 A 0 0 - - - -
AUTOS-RF PRA PRA PRA PRA PRA 0 0 0 0 0 0 0 0 0 0 0 - - -
AUTOS-DT PRA PRA PRA PRA PRA 0 0 0 0 0 0 0 0 0 0 0 0 - -
AUTOS-KNN PR PR PRA PRA PRA 0 0 0 0 0 0 0 0 0 0 0 0 0 -
AUTOS-LR PRA PRA PRA PRA PRA 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Summary

When there is a need to identify (predict) the most defect-prone modules for a critical software system, we
require to choose the prediction models that achieve high Recall [18, 72, 83]. Especially for IRDP, where the
software system becomes more critical in each release due to refactoring and organizational needs, we need to
choose the models with high Recall scores. When we consider exploring the impact of FS-based classification
models in comparison without FS-based classification models for a chunk-based temporal learning environ-
ment in an IRDP scenario, the FS-based prediction models surpassed all the without FS-based models. Our
experiment shows that the AUTOS-NB achieves the highest average Recall, followed by CFS-NB with an av-
erage score of 0.80. They also achieve the highest average AUC values with low pf scores. From the Post-hoc
analysis, the performance differences are statistically significant compared with the without FS-based classifi-
cation models. We observe that the IRDP models trained on the most recent releases do not always yield the
best inter-release defect predictors (Figures 4 to 6).

(RQ2) Which FS method is more robust to concept drift?
Results: Figure 7 represents the status of concept drift for each release of the defect datasets. Figure 7 A depicts the

detection of drift while considered all feature sets, and Figure 7 B exhibits drifts while employed FS techniques. The
various number of drift identified by the prediction models may be due to the different models have different sensitivity
to the evolution of the inter-release defect data. For example, the NB and RF models are probably more sensitive to the
specific pattern in each release of the inter-release defect data. We observe the maximum drift while considered the
full feature sets (i.e., default data) with KNN by 50%. When FS techniques are applied to each release, the considered
techniques help eliminate drift from the datasets.

Figure 8 shows the drift detection in percentage when FS techniques are applied to the datasets. In this figure,
ALL represents to all features sets used to detect the percentage of concept drift in the defect datasets. Using all the
feature sets, the identification rate of concept drift is much higher than the drift detection rate with FS techniques. We
observe that CONFS FS technique with DT is the robust technique to concept drift that detects only 12% drift among
the considered datasets. We also observe that while applying the CFS FS technique with DT, it achieves noteworthy
improvement on average for Recall 71% and for AUC 61%. By considering the IRDP as temporal chunk-based learning,
we observe that while the FS techniques are applied separately on each release of the project, it eliminated the drift
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Figure 7: Concept drift detection in the studied benchmark datasets. Figure A shows the detection of drift while considered
all metric sets (all features) and Figure B exhibits the drift detection while considered AUTOS, CFS, and CONFS FS
techniques. A red symbol indicate a drift between two consecutive releases of the project (p-value<0.05 in Fisher’s Exact
Test); while a green symbol indicates otherwise (p-value≥0.05 in Fisher’s Exact Test).

from all of the releases of the ivy, log4j, and xerces projects, whereas most of the releases contain drift in the default
datasets. This observation guides us to recommend practitioners to consider the FS technique as an attention technique
for concept drift adaptation [85] in the defect datasets that arrive in temporal order. Overall, the findings suggest that
FS techniques play an important role in concept drift reduction and improve the performance of IRDP models. Note
that elimination of concept drift entirely in the defect datasets is beyond of this empirical study.

Summary

From the experiment, we observe that concept drift exists in the inter-release defect datasets, which can be
described by the fact that the relationship between the features in the datasets changes over time. We find
that almost 50% of the inter-release defect datasets are drift-prone while employed the classifiers only. The
FS techniques help mitigate (i.e., drift elimination difference) the drift up to 23% (35%-12%) by the CONFS-
DT technique and obtain 70% Recall on average in the IRDP scenario. Here, the drift elimination rate refers
to the difference between the original drift rate and drift rate obtained after applying FS techniques with the
specific classifier (identified 12% drift by CONFS FS technique with DT). Researchers and practitioners should
consider concept drift for IRDP while learning environment as a temporal chunk-based temporal learning. For
the concept drift adaptation process [85], the FS technique could be used as an attention technique.

5. Discussion
In this section, we first discuss results obtained from the RQ2 related to concept drift and then present a comparative

discussion to verify the discriminating capacity of the FS techniques with the state-of-the-art methods for the IRDP
performance concerned with RQ1.
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and CONFS. Here, a low value represents the best score.

5.1. Is continuously retraining a model actionable enough?
Prior research effort affirms that concept drift exists in the defect data and deteriorates the performance of predic-

tion models, i.e., the models trained on past data may become obsolete over time [35, 86–88]. To eliminate concept
drift, the most common remedy in such a situation is to update the existing model [85]. However, from the RQ2, the
results obtained from our empirical study are in disagreement with the common findings from data mining and ma-
chine learning, i.e., continuously retraining the model may not help reduce concept drifts and improve the prediction
performance [85]. We elaborate on how continuously a model is updated and how an FS technique helps eliminate

release 

release 1 release 2

release 2 release 3

Train Data

Test Data

release 1 release 2 release 3 release n

ti
m

e

Figure 9: Release-based moving window, where window size refer to one release’s defect data.

the drift while updating the model and calibrate the model to be more actionable using the release-based moving
window strategy. This strategy can be called “learning based on project chronology”. In software effort estimation
(SEE), the use of project chronology has demonstrated as a valuable method for improving prediction performance
[89–97]. In SDP, Harman et al. [34] conducted a study on 8 Hadoop releases where chronology played an important
role in predicting defect over time. Like Harman et al. work, in our empirical study, a model is retrained using the
next release’s defect data. As mentioned above, a release-based moving window technique is adopted to update the
model (see Figure 9). We do not use all the historical data of previous releases to retrain the model. Furthermore,
updating the prediction models using all the data of previous releases may not lead to better prediction performance
[98]. Please note that we split the releases from the main datasets into train and test sets based on the release’s order
(i.e., release-based splitting). In Figure 7 A, we exhibit the drifts detection for each release of the datasets. Figure 7
B shows the drift detection when we applied the considered FS techniques during the model retraining process. From
the experiment, we observe that adopting FS techniques during retraining the models helps reduce concept drifts and
improve the prediction performance. We also notice that detection of drift in software inter-release defect datasets is
model-aware, i.e., the percentage of drift detection varies from model to model. Figure 8 describes the drift detection
in percentages per classifiers, i.e., sensitive to the models. Even if we adopt the CFS, CONFS, and AUTOS FS tech-
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Figure 10: Comparison of FS-based IRDP classification models with DS3, HALKP, and WGNCS state-of-the-art methods
using F-measure and G-mean evaluation indicators. Here, horizontal red lines indicate the mean value obtained from the
state-of-the-art methods. The vertical red lines separate the FS-based methods from the state-of-the-art methods.

niques in the drift detection process, it shows the different rate of drift detection percentages. Accordingly, we may
conclude that drift detection in defect datasets is model-aware, and model-awareness may reduce the sensitivity of drift
detection and improve prediction performance. Based on our experiment results, we suggest that software engineering
researchers and practitioners should consider FS techniques if they wish to eliminate drift from the defect datasets.
Furthermore, they could also consider adding FS techniques as an attention technique in concept drift adaptation.
5.2. General discussion

To verify the discriminating capacity of the considered FS techniques in the temporal chunk-based learning envi-
ronment, we compare the IRDP performance using F-measure and G-mean. For comparison, we assess three state-of-
the-art methods obtained from the CVDP studies, in which two sparse subset selection methods, DS3 [26] and HALKP
[27], and one hybrid method, WGNCS [99], considered. Briefly, Xu et al. [26] proposed a dissimilarity-based sparse
subset selection (DS3) method to enhance the CVDP performance. Based on their experiments, DS3 outperformed
two baseline methods, Turhan Filter (TF) [100] and Peter Filter (PF) [101]. In [27], Xu et al. proposed hybrid active
learning and kernel PCA (HALKP) method that selects representative feature sets to enhance CVDP performance.
HALKP outperformed its five downgraded variations. Zhang et al. [99] proposed WGNCS (wasserstein GAN with
gradient penalty and CNN-SVM), a deep learning-based hybrid method that outperformed seven baselines CVDP
models. We report the results using the box-plots of the F-measure and G-mean performance indicators for IRDP as
depicted in Figure 10. To cope with chunk-based learning, we consider the average value of each inter-release pair for
each project as the indicator value of the project. For instance, camel project contains three inter-release pairs (camel-
1.0 → camel-1.2, camel-1.2 → camel-1.4, camel-1.4 → camel-1.6) (see Table 1). For the F-measure indicator value
of the camel project, we take the average value. Thereby, we report all of the average values of all projects. From the
F-measure and G-mean, we observe that most of the FS-based methods surpassed all the state-of-the-art methods, as
depicted in Figure 10. Compared with the state-of-the-art methods, CFS with NB and CONFS with NB achieve aver-
age F-measure by 67% and outperform others in the range from 1% to 21% on the evaluated software projects. Among
the methods, HALKP attains the lowest average F-measure by 46%. In Figure 10, we draw a horizontal red line by the
highest average F-measure value of 0.537 obtained by the WGNCS state-of-the-art method. We notice that FS-based
methods performed best among the state-of-the-art methods. In terms of the G-mean, CFS with DT and CONFS with
NB gain an average value of 62% and outperform others in the range from 1% to 12%. On average, we observe a similar
G-mean of HALKP, CFS with RF, and CONFS with LR. In this figure, the average G-mean of 0.546 is obtained by
HALKP outlined by a horizontal red line. Most prediction performance of the FS-based IRDP models performed bet-
ter than the considered state-of-the-art methods, as shown by the red line in Figure 10. Furthermore, RF, LR, and NB
were used as baseline methods in the studies of SDP (e.g., [74, 102]). In RQ1, these baseline methods are compared
with the FS-based methods that performed best in the IRDP chunk-based learning environment. Results computed for
F-measure and G-mean are made available in additional material [103]. From the results of RQs, we conclude that
FS techniques do improve the performance (Recall, pf, and AUC) of IRDP. The performance differences between the
results with and without FS techniques are statistically significant among the prediction models. By conducting an
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empirical analysis with acceptable performance measures and statistical tests, we present the overall findings.
Findings In a temporal learning environment where the data appears as chunks, FS techniques do improve for

correctly classifying the defective modules by achieving high Recall scores. The Post-hoc analysis exhibits that the
performance differences are statistically significant while compared the prediction results with FS and without FS-
based classification models in the temporal learning environment. Compared with the state-of-the-art methods, FS-
based methods demonstrate better performance based on the experimental results. The recently developed FS tech-
nique, AutoSpearman that validated with the software defect datasets [47], performs best to identify (predict) the most
defect-prone modules for the considered critical software systems. From the results, we also observe that the IRDP
models trained on the most recent releases do not always yield the best predictors. Even the IRDP models are more
competitive throughout the releases. In some cases, the prediction results obtained by using first-release data are more
suitable. These observations agree with the findings of Harman et al. [34], suggested to adaptive prediction systems to
find and utilize the best predictors in such temporal learning environment. Furthermore, concept drift is a widespread
problem in such a learning environment. The use of FS techniques could eliminate drift and its associated effects from
the temporal learning environment.

6. Threats to validity
In our comprehensive and systematic empirical study, we consider the benchmark projects that maintain the tem-

poral order of the software development cycle. We conduct our experiment on 36 releases of 10 benchmark projects.
In addition, we consider only static code metrics. We acknowledge that our experimental results may not generalize
for other metrics. Other researchers could have different choices to conduct the experiments in IRDP. However, the
considered benchmark projects were adopted by prior IRDP studies where static code metrics performed well [26–28].
Besides, Basili et al. [104] affirmed that it is challenging to gain a comprehensive judgment from an investigation in
software engineering because the experimental process requires a vast number of relevant context variables. As a re-
sult, the conclusions may not generalize beyond the experimental environment and datasets. In addition, we consider
three best-performing FS techniques in temporal chunk-based learning. We carefully selected those that performed
best for SDP [17, 41, 42, 58, 59]. The impacts of other FS techniques deserve further investigation. Five commonly
used classifiers are used to build inter-release prediction models. Different classifiers may be sensitive to concept drift
and performance results. We intend to extend our experiment in the future. For the performance measures, we consider
three performance measures, one threshold-independent measure (i.e., AUC) and two threshold-dependent measures
(i.e., Recall and pf ) that are widely adopted as valid measures in the study of SDP. However, the choice of measures
could influence the results. In the future, we plan to adopt more measures to generalize our experimental results.

7. Related work
In recent years, IRDP has emerged and drawn significant attention because of its applicability in practice. In this

defect prediction scenario, the distribution of the dataset shares similar characteristics due to software project context,
architectures, and development settings [105]. To predict defects within the same projects, most researchers attempted
to build MLmodels merging the datasets of all prior releases and test the model using the latest release. In this section,
we provide the related work of IRDP.

Xu et al. [26] tried to mitigate the distribution differences between the two releases by utilizing dissimilarity-based
sparse subset selection (DS3). The study was conducted on 56 releases of 15 projects for IRDP. They discovered that
distribution differences degraded the prediction performance of all the models and attempted to mitigate the distri-
bution difference between two adjacent releases by spare subset selection. However, it needs further effort to level
the representative modules, as claimed by Xu et al. [28]. To overcome this issue, Xu et al. [28] proposed a two-stage
training subset selection method by conducting a large-scale experiment on 50 releases of 17 projects. In the first
stage, the modules are selected by leveraging a sparse modeling approach. In the second stage, the modules are refined
by using a dissimilarity-based sparse subset selection method. The selected modules are used for defect prediction
by using a weighted extreme machine learning classifier. Bennin et al. [32] conducted an empirical study with a pair
of open-source software systems using effort-ware measures. The empirical results show that K* and M5 achieved
the best results among the 11 models, but they are affected by the size and defect ratio. Furthermore, Xu et al. [28]
affirmed that the results obtained are not statistically significant among all prediction models. Xu et al. [27] proposed a
two-phase framework by combining hybrid learning strategy and kernel principal component analysis (KPCA) where
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features are selected from the current release and merged with the previous release to obtain a representative module
set (i.e., mixed training sets). By leveraging KPCA, mapped training sets are selected, and a linear regression model
is applied to predict defects. The proposed framework tried to enrich the training sets; however, it required extra effort
to produce suitable training sets. The studies of Amasaki [29–31] focused on the effects of CPDP approaches under
IRDP. These studies were conducted by utilizing multiple older releases. The empirical results indicated that some of
the CPDP models could improve the performance of IRDP. Shukla et al. [25] considered IRDP as a multi-objective
problem (i.e., maximizing recall by minimizing cost and misclassification) and conducted experiments on 30 releases
from 11 projects. They observed that multi-objective logistic regression was more effective than single-objective
methods. Yang and Wen [33] investigated ridge and lasso regression to conduct IRDP by addressing it as a problem of
multicollinearity. The experiments were conducted on 41 releases from 11 projects. They noticed that ridge regression
performed better compared with the linear and negative binomial regression. Lu et al. [106] compacted the techniques
of dimensional reduction and active learning to address the issue of IRDP. The experiments were conducted on the
three successive releases of the Eclipse project. From the experimental results, they observed that dimensional reduc-
tion performs better than filter and wrapper-based FS techniques. Zhang et al. [105] formulated IRDP as a problem of
data selection. They addressed differences in data distribution and class overlapping to solve IRDP. Gao et al. [107]
conducted an empirical study based on a logistic regression model with complex network features. They observed that
complex network features had the ability to predict defects for inter releases than the merged feature sets. Zhang et
al. [99] formulated a robust IRFP model by considering class imbalance, feature subset selection, feature matching,
and convolutional Neural Network with SVM. They conducted experiments on 32 releases of 45 software projects and
observed the satisfied defect prediction performance. Yao et al. [108] proposed transition class ratio and static metric
category number evaluation metrics for defect prediction among the releases. The experimental study was conducted
on 36 releases of 10 open-source software projects. They observed better performance in the evolution metrics than
traditional static metrics. Harman et al. [34] conducted an investigation on 8 Hadoop releases for SDP by considering
the learning environment as a temporal problem. They developed the prediction models by a tuned SVM classifier.
They found that the prediction models developed with the recent release are not always the best predictors. In summary,
previous research studies developed the IRDP models by considering the data distribution stationary (i.e., no concept
drift). At the same time, they did not consider that the software companies grow with time, and the software projects
experience several releases after a stable period, appearing in temporal order and making non-stationary data distribu-
tion. Thereby, the relationship between data variables changes (i.e., concept drift) over time due to a dynamic software
development environment (e.g., refactoring and organizational changes). Therefore, the developed well-trained IRDP
models may be obsolete after a certain time point and could be deceptive if the distribution changes over time, as
affirmed by Dong et al.[78]. Different from previous research studies, we employ chunk-based learning based on the
discard-after-learn concept formulated in Section 2 for IRDP. We examine the impact of correlation and consistency-
based, and AutoSpearman FS techniques on the IRDP models trained on the temporal order of the inter-release defect
datasets for predicting defects that face concept drift. We apply FS techniques separately on each release of the project
when creating IRDP models to check whether it improved prediction performance and examine the robustness of the
model to concept drift, which can well compensate for the deficiency that occurred due to concept drifts.

8. Conclusions
This study focuses on the empirical assessment of the effectiveness of feature selection (FS) methods for inter-

release defect prediction (IRDP). The impact of FS techniques on IRDP has not been investigated in detail, consid-
ering temporal chunk-based learning where the relation between data variables changes (i.e., concept drift) in the
inter-release defect datasets. Additionally, the effect of concept drift in IRDP is unknown. This empirical study em-
ploys three best-performing FS techniques obtained from software defect prediction (SDP) literature: correlation-based
(CFS) and consistency-based FS (CONFS) and AutoSpearman (AUTOS) FS methods. The study utilizes five machine
learning (ML) classifiers, namely Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbor
(KNN), and Logistic Regression (LR). The primary analysis was conducted on the IRDP performance results using
three recommended performance measures, pf, Recall, and AUC. Additionally, three state-of-the-art methods (DS3,
HALKP, and WGNCS) were adopted to compare the prediction results obtained from the FS-based IRDP models.

We conducted a comprehensive empirical study on 36 releases, distributed in 10 benchmark open-source software
projects, and used statistical tests to obtain a more reliable conclusion using a non-parametric Friedman test and the
Nemenyi test to compare the prediction results. The IRDP performances of the models that use no FS techniques

Kabir et al.: Preprint submitted to Elsevier Page 19 of 24



IRDP with FS using temporal chunk-based learning

were compared with the prediction performances of the models, which utilized FS techniques using temporal chunk-
based learning. We assessed the robustness of the FS methods to concept drift in the temporal chunk-based learning
environment. The results obtained from the empirical study are summarized as follows:

• From our empirical results, FS techniques significantly improved the IRDP performance (AUC, Recall, and pf )
of the IRDP models across all the considered datasets. The IRDP predictor, trained with AUTO FS technique
with NB classifier, achieves the highest average Recall, followed by the prediction model, CFS FS technique with
NB, with an average score of 0.80. They also achieve the highest average AUC values with low pf scores. For a
software system that experiences releases due to refactoring and organization demands, a prediction model with
high Recall and low pf is recommended [18, 72, 83]. For such a scenario to predict defects, FS-based prediction
models are suitable for better prediction performance in the temporal chunk-based learning environment.

• Assessing the prediction results statistically, the non-parametric Friedman test and the post-hoc Nemenyi test
confirm that the performance differences are statistically significant between the prediction results with and
without FS-based IRDP models.

• In the temporal chunk-based learning environment, the IRDPmodels are build based on the release-basedmoving
window and discard-after-learn concept. For this reason, we are able to observe the prediction results for each
pair. From the results, we observe that the IRDP models trained on the most recent releases do not always yield
the best inter-release defect predictors. This result agrees with the observation of Harman et al. [34]. However,
finding the best models in the IRDP scenario is beyond this empirical study.

• Compared with the state-of-the-art methods, CFS with NB and CONFS with NB achieve average F-measure
by 67% and outperform others in the range from 1% to 21% on the evaluated software projects. Among the
methods, HALKP attains the lowest average F-measure by 46%. In terms of the G-mean, CFS with DT and
CONFS with NB gain an average value of 62% and outperform others in the range from 1% to 12%. On average,
we observe a similar G-mean of HALKP, CFS with RF, and CONFS with LR. The most prediction performance
of the FS-based IRDP models performed better than the considered state-of-the-art methods.

• The result obtained from our empirical study regarding concept drift elimination is in disagreement with the
common finding, retaining the prediction model when drift occurred [85]. We observe that continuously re-
training the model may not help reduce concept drift and improve the prediction performance. Furthermore, we
notice that different drift rates are identified for the considered classifiers, which indicates the model-awareness
to concept drift. We recommend adopting the FS technique as an attention technique while retraining the IRDP
models to eliminate concept drifts and improve prediction performance in a chunk-based temporal learning en-
vironment for software engineering researchers and practitioners.

Further extensions of our work involve other open-source software projects with more releases, utilizing the results
obtained from this empirical study. We also intend to extend our current study by exploring other feature selection
techniques. By the experimental evaluation of Artificial Immune Systems conducted by Haouari et al. [18], we plan
to investigate such systems for concept drift detection and elimination.
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