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Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in
changing environments. Social interactions between population members may, however, require more
cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hy-
potheses about the material payoff consequences of alternative action combinations. It is unclear in this
context whether natural selection necessarily favours individuals to use information about payoffs
associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized
payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use
either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the
evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games
played over the individual's lifetime. We analyse through stochastic approximation theory and simula-
tions the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error
learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs
in particular under repeated cooperative interactions with the same partner. By contrast, we find that
hypothetical reinforcement learners tend to be favoured under random interactions, but stable poly-
morphisms can also obtain where trial-and-error learners are maintained at a low frequency. We
conclude that specific game structures can select for trial-and-error learning even in the absence of costs
of cognition, which illustrates that cost-free increased cognition can be counterselected under social
interactions.
© 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Many species have a learning ability because this allows an in-
dividual to adapt, within its lifetime, to the currently fitness-
relevant features of its environment (e.g. by tracking the location
of food patches; Charnov, 1976; McNamara & Houston, 1985;
Shettleworth, Krebs, Stephens, & Gibbon, 1988). Hence, learning
is likely to provide a selective advantage (Dunlap& Stephens, 2009;
Johnston, 1982; Mery & Kawecki, 2002; Stephens, 1991; Wakano,
Aoki, & Feldman, 2004). One of the simplest ways of learning an
action is through trial and error (Bush & Mostelller, 1951;
Thorndike, 1911). This consists of trying different actions, experi-
encing the rewards associated with each action, and repeating
more often the actions yielding higher rewards (or, equivalently,
avoiding actions that yield negative payoffs, or punishments). For
example, rats in the Skinner box learn that pressing a lever is
associated with obtaining food, and various instances of
and Evolution, Universit�e de

nimal Behaviour. Published by Els
reinforcement learning in other mammals, birds, fish and insects
have been demonstrated (Dugatkin, 2010; Shettleworth, 2009).

Although trial and error is the main paradigm for describing the
learning of actions in animals (Dickinson, 1980; Dugatkin, 2010;
Shettleworth, 2009), it cannot solve all decision problems. With
this behavioural rule, an individual has to physically try (or expe-
rience) an action to get the knowledge of the reward (or payoff)
associated with it. In other words, information gathering and action
choice cannot be dissociated. Inherent to this type of learning is
thus the problem of balancing exploration and exploitation
(Achbany, Fouss, Yen, Pirotte,& Saerens, 2006; Arnold, 1978; Krebs,
Davies, & West, 1993; McNamara & Houston, 1985; Shettleworth
et al., 1988; Sutton & Barto, 1998). The individual needs to try
various actions in order to identify the good ones, but must also
exploit at some point the information gathered during exploration.
The balancing problem (or trade-off) comes in because an indi-
vidual that does not explore enough risks misses highly rewarding
actions. On the other hand, an individual that explores too much
and disregards small rewards (always searching for the best op-
tions) risks not getting any payoff at all.
evier Ltd. All rights reserved.
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Faced with the explorationeexploitation dilemma, one is
tempted to ask: in the course of learning, are there other ways than
trial and error to get information about the payoff of an action? One
can distinguish at least two non-mutually exclusive ways of
obtaining information about the material consequences of actions
without explicitly expressing them. First, an individual can use
social information: it may observe conspecifics' actions and their
consequences, and if an action tried by conspecifics is seen to be
followed by positive consequences, the observer will subsequently
have a greater probability of choosing that action (Kendal,
Giraldeau, & Laland, 2009; Laland, 2004; Schlag, 1998). Second,
an individual can use environmental cues to deduce information
about the value of different actions. This may be achieved via belief-
based learning, i.e. by representing in one's mind the outcome of
alternative actions, which has been extensively studied as a model
of human cognition (Camerer, 2003; Chmura, Goerg, & Selten,
2012; Feltovich, 2000). Further, it has been argued that chimpan-
zees, Pan troglodytes, and various large-brained bird species are
capable of forming beliefs to solve cognitively challenging tasks
(Emery & Clayton, 2004, 2009; Premack & Woodruff, 1978;
Schloegl et al., 2009; Taylor, Miller, & Gray, 2012).

Two lines of evidence suggest that belief-based learning could
give a selective advantage over trial-and-error learning and that
this is relevant to animal learning. First, in the field of animal
behaviour, it is often argued that natural selection should favour
individuals that reason about their environment in a Bayesian
fashion, because Bayesian learning (which is equivalent to belief-
based learning, Fudenberg & Levine, 1998) leads to individuals
having a correct representation (or belief) of the distribution of the
states of the world (McNamara, Green, & Olsson, 2006; Trimmer
et al., 2011). This has been extensively studied empirically in the
context of individual decision problems, for example when an an-
imal tries to learn about the quality of food patches (van Gils,
Schenk, Bos, & Piersma, 2003; Lima, 1984; Luttbeg & Warner,
1999; for a review, see Valone, 2006). The second line of evidence
suggesting that belief-based learning may perform better than
trial-and-error comes from the theoretical literature on learning in
games. Belief-based learning leads to the optimal solution (Nash
equilibrium) in several types of social interactions (Hofbauer &
Sandholm, 2002), while trial-and-error learning (studied under
different specific forms) can lead to nonoptimal outcomes in the
same social interactions (Izquierdo, Izquierdo, Gotts, & Polhill,
2007; Macy & Flache, 2002; Stephens & Clements, 1998). Since
empirical evidence suggests that many social behaviours, such as
cooperation, mate choice or conflict through the winner and loser
effects, may involve learning (Dugatkin, 2010; Dugatkin & Reeve,
2000), it is relevant to understanding the conditions under which
belief-based learning for social interactions can be favoured by
natural selection.

While the evolution of both learning and social interactions has
been extensively studied on its own (e.g. Maynard Smith, 1982;
Boyd & Richerson, 1988; Rogers, 1988; Feldman, Aoki, & Kumm,
1996; Hofbauer & Sigmund, 1998; McElreath & Boyd, 2007;
Borenstein, Feldman, & Aoki, 2008; Rendell et al., 2010; Kempe &
Mesoudi, 2014) surprisingly few studies have examined the evo-
lution of learning for social interaction dilemmas. For instance,
many studies on the evolution of social learning have focused on
individual decision problems. This is well exemplified by the social-
learning tournament (Rendell et al., 2010), in which the tasks in-
dividuals need to learn to perform are individual decision prob-
lems, and not social interactions (so that individuals were not
playing frequency-dependent games). Further, the studies that did
investigate learning in games generally assumed that individuals
face only a producerescrounger game (Arbilly, Motro, Feldman, &
Lotem, 2010; Dubois, Morand-Ferron, & Giraldeau, 2010; Hamblin
&Giraldeau, 2009; Katsnelson, Motro, Feldman,& Lotem, 2011). For
instance, Hamblin and Giraldeau (2009) showed that the relative-
payoff sum (RPS), a simple variant of trial-and-error learning, can
be the evolutionarily stable learning rule under the conditions of a
producerescrounger game. Arbilly et al. (2010, 2011) demonstrated
that a simple learning rule can coexist with a more complex
learning rule in a producerescrounger environment. However, re-
sults from game theory suggest that the game faced by population
members should change for learning to be really useful (Heller,
2004). This may explain why evolutionary ecologists have found
it difficult for learning to evolve initially in the producerescrounger
game (Dubois et al., 2010; Katsnelson et al., 2011), and investigation
of the evolution of learning rules when the game itself is changing
appears to be lacking.

Previous results have also been divergent on whether trial-and-
error learning or a more sophisticated learning rule should be
favoured by selection. Interestingly, the models of both Hamblin
and Giraldeau (2009) and Arbilly et al. (2010, 2011) suggest that
simple learning rules can coexist withmore complex learning rules.
By contrast, Josephson (2008) modelled the competition between a
continuum of rules from the linear operator to rules using hypo-
thetical payoffs, and confirmed results from game theory that rules
of the belief-based type, which put higher weight on hypothetical
payoffs, are evolutionarily stable most of the time. It thus remains
unclear under what ecological conditions one should expect to
observe simple or complex learning, and more work is needed to
understand the selection pressures on learning mechanisms in
situations in which individuals can experience different games
during their lifetime.

In this paper, we aim to relax previous assumptions and ask
whether trial-and-error learning is sufficient in social interactions,
or whether a more sophisticated belief-based learning rule will
necessarily be selected for. To address this question, we studied the
competition between two forms of reinforcement learning rules.
The first is standard trial-and-error reinforcement learning
(Amano, Ushiyama, Moriguchi, Fujita, & Higuchi, 2006; Bernstein,
Kacelnik, & Krebs, 1988; Bush & Mostelller, 1951; Erev & Roth,
1998; Hamblin & Giraldeau, 2009; McNamara & Houston, 1987;
Rescorla & Wagner, 1972; Stephens & Clements, 1998), while the
second rule we call hypothetical reinforcement learning, a termi-
nology borrowed from Camerer and Ho (1999) where individuals
can use ‘hypothetical reinforcements’. Here, individuals are
assumed to have the ability to infer foregone payoffs given the
actions of partners and the state of the environment (either via
social observation of other interactions or active reasoning/mental
simulation), and reinforce actions according to these hypothetical
payoffs.

To assess whether learning based on hypothetical re-
inforcements provides a selective advantage over trial-and-error
learning, we studied the evolutionary stability of trial-and-error
and hypothetical reinforcement learning in the simplest possible
social situation where the environment can change, i.e. in a situa-
tion of pairwise social interactions with only two actions. Our
approach is very similar to that of Josephson (2008), because we
use the framework of Camerer and Ho (1999) to capture learning
rules that rely either on trial and error or on hypothetical re-
inforcements. In such a setting, genuine environmental fluctuations
(where learning is necessary) correspond to the fact that the games
faced by individuals change with time; in particular, the evolu-
tionarily stable strategies (ESS) of these various games have to be
different, and we studied exhaustively the cases where the envi-
ronment switches between the Prisoner's Dilemma, the Hawk-
Dove (a form of producerescrounger game) and a Coordination
game. These three games have been previously studied on their
own to capture, respectively, cooperation (e.g. costly production of
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a public good), conflict (e.g. fighting for territories) and coordina-
tion problems (e.g. collective hunting) in nature (Dugatkin& Reeve,
2000) and it is likely that animals of the same species may confront
all of these games within their lifetime. We also analysed two ways
of forming pairs of opponents from the population. In the first, each
individual is randomly paired with only one partner with which it
interacts for the entire interaction period. In the second matching
scheme, there is random matching at each time step so the in-
dividuals learn to play against the whole population. Because the
underlying model is stochastic, we used, when possible, a deter-
ministic approximation to analyse the equations and then
compared the analytical results to individual-based simulations.

The paper is organized as follows. In the next section (‘Model’),
we present the biological assumptions behind our model, we
formalize trial-and-error and hypothetical reinforcement learning,
and we describe how natural selection on these learning rules can
be approximated analytically. Then, we present analytical and
simulation results for the evolution of these learning rules under
our two matching schemes, different types of games and different
learning rates (‘Results: one-shot matching’ and ‘Results: repeated
matching’). Finally, we summarize and discuss the results (‘Sum-
mary and discussion’).

MODEL

Setting the Stage

Population
We consider a haploid population of constant size N. The main

life cycle stages are the following. (1) Each individual interacts
socially with others for T time periods. (2) Each individual re-
produces according to its gains and losses incurred during social
interactions. (3) All individuals of the parental generation die and N
individuals from the offspring generation are randomly sampled to
form the new adult generation.

Repeated game affected by environmental fluctuations
During stage (1), individuals play a game at each time period

t ¼ 0,1,2,…,T, where the game that is played is determined by some
environmental state u, which is an element of the set U of envi-
ronmental states. The environment may include any factor that
alters the payoffs associated with actions taken by individuals. We
assume that the environmental process follows an ergodic Markov
chain (Karlin & Taylor, 1975), and denote by m(u) the stationary
probability that state u obtains.

For example, one can consider an environment in which in-
dividuals play one of two games, e.g. a Prisoner's Dilemma and a
HawkeDove game; the set of environmental states is then U ¼
{Prisoner’s Dilemma, HawkeDove}. In this example, one could set
m(Prisoner’s Dilemma) ¼ m(HawkeDove) ¼ 1/2, meaning that it is
as if we toss a fair coin at each time t to determine the game to be
played. If the current environmental state is
u ¼ Prisoner’s Dilemma, then all individuals in the population will
have to choose between cooperating and defecting.

More generally, we consider that all the games in U consist of
the same number of actions, saym (in our previous examplewe had
m ¼ 2). Hence, in every period of time, each organism in the pop-
ulation chooses its action from a fixed finite set of actions A ¼
{1,…,m}, and we denote by ut the game played at time t, which is a
random variable. The action taken by individual i at time t is also a
random variable denoted by ai,t (we allow individuals to use
probabilistic action choice) and the action profile in the population
is at ¼ (a1,t,…,aN,t) (this is the collection of the actions of all in-
dividuals in the population at time t). The payoff to individual i at
time t when it takes action ai,t and the game is ut is denoted
pi(ai,t,a�i,t,ut), where a�i,t is the action profile of the remaining in-
dividuals in the population (all individuals excluding i).

With this, the mean payoff obtained by individual i during the
whole sequence of interactions is

Pi ¼
1
T

XT
t¼1

pi
�
ai;t ; a�i;t ;ut

�
; (1)

which is taken as its number of offspring produced during stage 2 of
the life cycle (i.e. fecundity).

Learning Actions

To evaluate the fecundity, Pi, of individual i, we need to predict
the sequence of actions taken by individuals in the population. We
assume that actions are learned and we now present a model of
learning that takes both trial-and-error and hypothetical rein-
forcement learning into account.

Action choice
Our way of modelling learning is shared by many previous

studies and relies upon two components: (1) dynamic preferences
for action and (2) a rule for choosing an action given preferences
(Arbilly et al., 2010, 2011; Camerer & Ho, 1999; Hamblin &
Giraldeau, 2009; Harley, 1981; Ho, Camerer, & Chong, 2007;
Leslie & Collins, 2005). Specifically, we let individuals have pref-
erences or motivations for actions, which they update through
repeated playing of the game. For each action a in its behavioural
repertoire A , individual i has an associated motivation Mi,t(a) that
represents howmuch action a is valued by i. Thus, the collection of
motivations can be thought of as the state of the organism (Enquist
& Ghirlanda, 2005; Niv, 2009) and we assume that action a is
chosen at time t by individual i with probability

pi;tðaÞ ¼
exp

�
lMi;tðaÞ

�P
k2A

exp
�
lMi;tðkÞ

� : (2)

This is a standard choice rule (Anderson, de Palma, & Thisse,
1992; Arbilly et al., 2010, 2011; Camerer & Ho, 1999; Fudenberg &
Levine, 1998; Ho et al., 2007; McKelvey & Palfrey, 1995), where
the action that has the highest motivation is chosen with the
greatest probability. The parameter l2 [0,∞) represents the
sensitivity of an animal to its motivations. If l is near 0, the animal is
not very reactive to its motivations and has a tendency to explore
(because pi,t(a) is close to 1/m). If l is high, we have a ‘greedy’ an-
imal, almost certainly taking the action that has the highest moti-
vation (if action a* has the highest motivation, pi,t(a*) is close to 1,
see Dridi and Lehmann (2014) and references therein for more
justifications underlying the use of equation (2)).

Motivations
The motivations of an individual are updated after each inter-

action stage. To achieve this updating, we use a special case of the
model of Camerer and Ho (1999) and its application to stochasti-
cally varying environments (Dridi & Lehmann, 2014). Individual i
starts off with some initial preferences over actions at time t ¼ 1
given by the initial motivations Mi,1(a) for all actions a. We assume
that the motivationMi,tþ1(a) for action a of individual i at time t þ 1
(for t � 1) is given by

Mi;tþ1ðaÞ ¼
t

t þ 1
fi;tMi;tðaÞ þ

1
t þ 1�

gi þ ð1� giÞ1
�
a; ai;t

��
piða; a�i;t ;utÞ:

(3)
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Equation (3) can be seen as a weighted average of the previous
motivation Mi,t(a) and of the new payoff pi(a, a�i,t, ut). In the first
term, the motivation Mi,t(a) is weighted by fi,t � 0, a memory
parameter, or learning rate, that indicates the relative importance
of the last motivation as opposed to the current payoff (note that fi,t
can change as a function of time and also has an initial value fi,1,
possibly genetically determined). This first term is also weighted by
t/(t þ 1), which entails that the previous motivation is weighted
according to the number of interactions that have occurred up to
time t.

The second term can be termed the increment, or reinforcement
to the motivation. It has weight 1/(t þ 1) and depends on the payoff
pi(a, a�i,t, ut) of action a when all other individuals in the popula-
tion play a�i,t and the game is in state ut at time t. The expression
1(a, ai,t) is an indicator function, which is

1
�
a; ai;t

� ¼ �1; if ai;t ¼ a;
0; otherwise;

(4)

i.e. if individual i takes action a at time t, then 1(a, ai,t) ¼ 1. We
see that if 1(a, ai,t) ¼ 1, the numerator of the second term of
equation (3) reduces to pi(a, a�i,t,ut). If, on the other hand, indi-
vidual i does not play a at time t, then the numerator of the second
term reduces to gipi(a, a�i,t,ut).

The parameter gi weights the ability of an individual to infer the
payoffs of unchosen actions (nonrealized or foregone payoffs) and
reinforce motivations accordingly. If gi ¼ 0, the individual is not
able to infer nonrealized payoffs and thus only reinforces actions
according to realized payoff. In this case we obtain a rule in the
form of the linear operator model of Bush and Mostelller (1951)
(see Appendix 1, equation (A1.3)). We will call this trial-and-error
reinforcement learning (TR). By contrast, if gi ¼ 1, the payoffs
associated with unchosen actions are always perfectly inferred.
This is called hypothetical reinforcement learning (HR), where in-
dividuals have the capacity to access information about nonrealized
payoffs. When a hypothetical reinforcement learner plays action a
at time t, it reinforces not only action a but also all other actions
according to the payoffs they would have yielded (see Appendix 1).
In other words, the learner can observe a posteriori the payoff it
would have obtained had it chosen another action, given its op-
ponent's current action. This information about foregone payoffs
may come from reasoning about the environment, or from
observing interactions involving other individuals. A well-studied
special case of HR obtained when fi ¼ 1 and gi ¼ 1 is belief-based
learning, where the motivations represent expected payoffs given
the history of play by individual i's opponents (Brown, 1951;
Camerer, 2003; Chmura et al., 2012; Fudenberg & Levine, 1998;
Feltovich, 2000; Hofbauer & Sandholm, 2002; Hopkins, 2002; see
also Appendix 1).

Note that the motivations of all actions are updated by indi-
vidual i after each time t. Consequently, a hypothetical reinforce-
ment learner [with gi ¼ 1], which observes foregone payoffs,
computes as many payoffs as there are available actions (m), at each
time t. On the other hand, a trial-and-error learner [with gi ¼ 0] has
a much lighter computational task because it computes only the
payoff of the action it actually took. Thus, we postulate in the
analysis below that the cost of additional computations will affect
the fitness of HR by an amount k.
Evolutionary Analysis

Parameter space
Equations (2) and (3) define the learning dynamics of individual

i for action a. Our aim was to investigate the coevolution of trial-
and-error and hypothetical reinforcement learning under these
dynamics. To that aim, we consider that the parameter gi is the
genotype of individual i, and that individuals in the population can
use only two learning rules, TR with gi ¼ 0 or HR with gi ¼ 1. We
investigated the following cases.

(1) We consider two special values of fi,t, the learning rate, that
differ in terms of the behavioural equilibrium they produce and the
extent to which they relate to existing learning mechanisms.
Standard belief-based learning (Camerer & Ho, 1999) is obtained in
our model when fi ¼ 1, which entails that a constant amount of
noise is included in its dynamics. We could not analyse mathe-
matically the learning dynamics under this condition, so in order to
obtain analytical insight, we studied an ‘unperturbed’ version of
belief-based learning, which is obtained when fi,t ¼ (1/t) þ 1. This
particular value of fi,t does not result in a loss of generality: it is
only a mathematical device used to make the analysis tractable (see
Appendix 2 for details), and one can show that the unperturbed
version of belief-based learning (when fi,t ¼ (1/t) þ 1) can be
recovered from the original version with noise (when fi ¼ 1), by
making l very large. One of our goals in this paper was to see
whether the study of the unperturbed dynamics can help us un-
derstand the original perturbed dynamics. The two values of the
learning rate are studied in the following order. First, we study the
case fi,t ¼ (1/t) þ 1, where analytical results can be derived about
the learning behaviour (see next section). For this special value of
the learning rate, we obtain a special version of TR, which we call
pure trial-and-error reinforcement (PTR), and a special version of
HR, which we call pure hypothetical reinforcement (PHR). These
names follow from the fact that, at a behavioural equilibrium, in-
dividuals will express essentially only pure actions. Second, we use
a constant value fi ¼ 1 for the learning rate, which entails that
individuals are likely to be more exploratory at a behavioural
equilibrium and are likely to expressmixed actions. For this value of
the learning rate, we obtain a special version of TR, which we call
exploratory trial-and-error reinforcement (ETR), and a special
version of HR, which we call exploratory hypothetical reinforce-
ment learning (EHR), where the latter strategy corresponds to
belief-based learning in the game theory literature, a learning
procedure that relies on Bayesian updating of beliefs (Fudenberg &
Levine, 1998). The ETR rule is related to the linear operator model, a
simple learning algorithm that has a long tradition in the study of
animal behaviour and has been used to describe the dynamics of
instrumental learning in various species (Appendix 1, equation
(A1.3); Amano et al., 2006; Bernstein et al., 1988; Bush&Mostelller,
1951; Hamblin & Giraldeau, 2009; McNamara & Houston, 1987;
Rescorla & Wagner, 1972; Stephens & Clements, 1998).

In Appendix 1, we provide more details on the dynamics of the
motivations (equation (3)) of these learning rules, and in our
analysis we always consider competition between TR and HR under
the same learning rate.

(2) We assume pairwise interactions and we analyse two
matching rules. First, in what we call one-shot matching, in-
dividuals are randomly paired at the beginning of the game (t ¼ 1)
and each pair interacts for the whole duration of the game (until
time T and reproduction). Second, we consider repeated matching,
where individuals are rematched during each stage of the game, i.e.
individuals meet different partners at each time t.

(3) All games consist of two actions (m ¼ 2), that is, individuals
play 2 � 2 symmetric games. This means that, at each time t, in-
dividuals play one of three types of games: a Prisoner's Dilemma
(PD), a HawkeDove game (HD) or a (pure) Coordination game (CG);
i.e. the set of games is U ¼ {PD, HD, CG}, and the stationary distri-
bution of games thus satisfies m(PD) þ m(CG) þ m(HD) ¼ 1. These
three games are instances from the three possible categories of
2 � 2 games (the PD is a game with a dominant action, the HD is a
type of ‘anticoordination’ game, and the CG is a special coordination
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Figure 1. Example of learning dynamics for two interacting individuals (1 and 2) in a
2 � 2 HawkeDove game with p(1, 1) ¼ B/2, p(1, 2) ¼ 0, p(2, 1) ¼ B, p(2, 2) ¼ B/2 � C ,
where B ¼ 5 and C ¼ 3. The blue line represents the probability p1,t of playing Dove for
individual 1 and the red line the probability p2,t of playing Dove for individual 2 when
the learning rule is characterized by 4i,t ¼ 1þ 1/t and li ¼ 1, for both players (rule
called pure trial-and-error reinforcement learning, PTR). Parameter values for player 1
are g1 ¼ 0, M1,1 (Dove) ¼ 1 and M1,1 (Hawk) ¼ 0 (hence p1,1z 0.73), while for player
2 they are g2 ¼ 0, M2,1 (Dove) ¼ 0 and M2,1 (Hawk) ¼ 1 (hence p2,1 z 0.27).
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game, Weibull, 1997, Chapter 1). The four possible payoffs for game
u are real numbers and are written ℛu, S u, T u and P u, where
u2 {PD, CG, HD}. For instance, when the game is u, player 1 plays
action 2, and player 2 plays action 1, then player 1 obtains T u and
player 2 obtains S u. Table 1 describes the payoffs to each player for
every possible combination of actions.

Stochastic approximation
Although equations (2) and (3) describe a bona fide learning

process, this is a nonhomogeneous multidimensional Markov
process that is very difficult to analyse (see Fig. 1). It is thus
necessary to approximate it in order to obtain analytical results,
which is useful to form an intuition about behavioural dynamics.
We were able to perform such an analysis only under the one-shot
matching scheme andwhen the learning rate fi,t takes the dynamic
value fi,t ¼ (1/t) þ 1.

Using the above assumptions (1e3) with fi,t ¼ (1/t) þ 1 and
stochastic approximation theory (Appendix 2; Benaim, 1999;
Benveniste, Metivier, & Priouret, 1991), we can write a system of
differential equations that describes the learning dynamics of a
given pair of individuals (i,j) in the population for the one-shot
matching model as

p
,
i ¼pið1� piÞl

hn
pjℛ þ

	
1� pj



S
o
fpi þ gið1� piÞg

�
n
pjT þ

	
1� pj



P
o
fgipi þ ð1� piÞg

i
;

(5)

p
,
j ¼pj

	
1� pj



l
h
fpiℛ þ ð1� piÞS g

n
pj þ gj

	
1� pj


o
� fpiT þ ð1� piÞP g

n
gjpj þ

	
1� pj


oi
;

(6)

where a dot accent is used to represent a time derivative, i.e.
p
,
i ¼ dpi/dt, pi is the probability that individual i plays action 1 and pj

is the probability that individual j (the opponent of individual i)
plays action 1. Since individuals cannot detect the state u of the
game, the parameters ℛ, S , T and P are actually the payoffs of
the average game faced by the individuals in the fluctuating envi-
ronment (Table 4), that is, the average over the distribution m(u) of
games. For example, when a focal individual chooses action 2 and
its opponent chooses action 1, the former obtains the average
payoff T ¼ mðPDÞT PD þ mðHDÞT HD þ mðCGÞT CG, and the three
other payoffs ℛ, S and P , are similarly computed. Equations (5)
and (6) show that, asymptotically, the probability of playing ac-
tions is driven by the average payoff to actions, which itself can be
thought to determine a game (Appendix 2, equation (A2.3)), which
we call the average game (see Dridi & Lehmann, 2014; for more
details).

To evaluate fitness, we assume that the learning dynamic
(equations (5) and (6)) has reached an equilibrium during an in-
dividual's lifetime, and that the game is played a long enough time
after the equilibrium action choice has been reached. With this, the
Table 1
Payoff matrix for a typical stage game u, where u2 {PD, CG, HD}

Action 1 Action 2

Action 1 ℛu S u

Action 2 T u P u

One player chooses a row and its opponent chooses a column. Payoffs are to row
player. In order to numerically implement the three possible sub-games (PD, CG,
HD) we used the following constraints on the payoffs. In the Prisoner's Dilemma
game (PD): T PD >ℛPD >P PD >S PD and ðT PD þ S PDÞ=2<ℛPD. In the Hawk-Dove
game (HD): T HD >ℛHD;S HD >P HD;P HD >ℛHD. In the Coordination Game (CG):
ℛCG >S CG;ℛCG ¼ P CG;S CG ¼ T CG.
payoffs obtained before the equilibrium is reached can be ignored.
This is equivalent to saying that we let the time horizon, T, of the
game become very large (ideally infinite) so that the equilibrium of
equations (5) and (6) determines the fecundity of individuals i and j.
Then, the fecundity of individual i (equation (1)) is taken as the
average (or expected) payoff obtained at the equilibrium of learning
(when T/∞). That is,

Pij ¼ bpi	bpjℛ þ
	
1� bpj



S


þ ð1� bpiÞ

	bpjT þ
	
1� bpj



P


;

(7)

where we use the subscript j in Pij to emphasize that the fecundity
of individual i depends on its single opponent (j), bpi is the equi-
librium probability that individual i plays action 1, and bpj is the
equilibrium probability that individual j plays action 1 (i.e. bpi and bpj
are the solutions of the system of equations p

,
i ¼ 0; p

,
j ¼ 0).

Because there are two learning rules in the population (TR or
HR), it is also convenient to use the subscripts in equation (7) to
identify learning rules of interacting individuals, whereby i,j2 {TR,
HR}. To use these payoffs to investigate evolutionary dynamics, we
make the customary assumption that the population size is infi-
nitely large so that we can use a deterministic evolutionary model.
Calling qi the frequency of learning rule i2 {TR, HR} in the popu-
lation, the expected reproductive output of an individual of
learning rule i2 {TR, HR} is then defined as
Table 2
Local Stability analysis of the equilibria in the PTR vs. PTR case when the average
game is the Prisoner's Dilemma

Equilibrium Associated Eigenvalues Eigenvalues' sign

(0,0) (0,0) (0,0)
(0,1) (�B,C) (�,þ)
(1,0) (�B,C) (�,þ)
(1,1) (C�B,C�B) (�,�)	
1; B

2B�C


 	
C þ B2

C�2B;Bþ B2

C�2B


 (�,þ)

	
B

2B�C;1

 	

C þ B2

C�2B;Bþ B2

C�2B


 (�,þ)

	
BþC
2B ; BþC

2B


 	ðB�CÞ2ðBþCÞ
4B2 ;

ðB�CÞðBþCÞ2
4B2


 (þ,þ)



Table 3
Local Stability analysis of the equilibria for the PTR vs. PTR interaction in the Hawk-
Dove game

Equilibrium Associated Eigenvalues Eigenvalues' sign

(0,0)
	
�B

2;�B
2



(�,�)

(0,1) (�B,0) (�,0)
(1,0) (�B,0) (�,0)
(1,1) 	

� B
2 þ C;�B

2 þ C

 (þ,þ)

(0,1/3) 	
�B

3;
B
3


 (�,þ)

	
1
3;0

 	

�B
3;

B
3


 (�,þ)�
B

2Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p ; B
2Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p



(þ,þ)

�
B

2B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p ; B
2B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p



(�,þ)

Expressions of the eigenvalues associated to the interior equilibria are too long to fit
in the table.
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fi ¼ aþ qiPii þ qjPij; (8)

where a is a baseline fecundity. In the following, we call qTR ≡ q the
frequency of TR in the population (so that qHR ¼ 1 � q is the fre-
quency of HR). Hence, the change in frequency Dq of TR in the one-
shot matching model over one iteration of the life-cycle is given by
the discrete-time replicator dynamics

Dq ¼ qð1� qÞ
 
fTR � fHR

f

!
; (9)

where f ¼ qfTR þ ð1� qÞfHR is the mean reproductive output in the
population. In the next section, we evaluate the replicator dynamics
(equation (9)) for three different average games: the Prisoner's
Dilemma (PD), the HawkeDove game (HD) and the Coordination
game (CG) (Table 4). The details of the analysis are provided in
Appendix 4. Note that we use pi and pj to denote the probability of
playing action 1 when both individuals have the same learning rule
(i.e. for the interactions PTR versus PTR and PHR versus PHR) but
we use pTR and pHR for the interaction between a PTR and a PHR
learner.
RESULTS: ONE-SHOT MATCHING

In this section, we present both analytical and simulation results
for the three average games (Prisoner's Dilemma, HawkeDove and
Table 4
Payoff matrices for the average games studied

G Action 1 Action 2

Action 1 ℛ S
Action 2 T P
PD Cooperate Defect
Cooperate B� C �C
Defect B 0
HD Dove Hawk
Dove B/2 0
Hawk B B/2�C
CG Left Right
Left B 0
Right 0 B

The rows correspond to the actions of player 1 and the columns correspond to the
actions of player 2. Payoffs are to row player. Thematrix at the top shows the generic
payoffs used in the paper. In the Prisoner's Dilemma game (PD, second sub-table),
we assume B > C > 0. In the Hawk-Dove game (HD, third sub-table), we have
B > C > B/2 > 0. In the Coordination game (CG, fourth sub-table), B > 0.
Coordination game). For each game, we first analyse the learning
dynamics for fi,t ¼ (1/t) þ 1 (section ‘Equilibrium behaviour’), and
use this to characterize analytically the evolutionarily stable
learning rule (section ‘ESS analysis’). For each game, we also
compare our analytical results to individual-based simulations
(section ‘Simulations: dynamic learning rate’), and then extend the
simulation analysis to the case where fi ¼ 1 (section ‘Simulations:
constant learning rate’).
Prisoner's Dilemma

Equilibrium behaviour
The learning dynamics for the Prisoner's Dilemma is obtained by

substituting into equations (5) and (6) the payoffs ðℛ;S ;T ;P Þ
defined in Table 4 for the corresponding average game. Hence,
action 1 can now be thought of as ‘Cooperate’ and action 2 as
‘Defect’. To determine the fate of PTR (equation (9)), we need to
evaluate the payoffs for each possible interaction between types of
learners, which will depend on the equilibrium points of the
learning dynamics. In the population, three types of pairwise
interaction can occur: (1) PTR versus PTR; (2) PHR versus PHR; (3)
PTR versus PHR.

When a PTR is paired with another PTR we find that the learning
dynamics can end in two possible states, depending on the initial
preferences (pi,1,pj,1) individuals have for each action. If individuals
have a high enough initial probability of playing Cooperate, then
both PTR will learn to cooperate ðbpi ¼ 1; bpj ¼ 1Þ at the equilibrium
of learning (Fig. 2a and Appenidx 4). For other initial conditions,
both PTR learn to defect ðbpi ¼ 0; bpj ¼ 0Þ. The fact that cooperation is
a possible endpoint of the learning dynamics can be intuitively
understood by realizing that the payoff for mutual cooperation is
positive B � C > 0, where B is the benefit received when the
opponent cooperates and C the cost of cooperation (Table 4). Hence,
if both players initially cooperate on some rounds, cooperation will
be rewarded, and ultimately players will stick with Cooperation.
Defection is also a stable equilibrium because an individual that
experiences the high payoff B > 0 if it defects and its opponent
cooperates will reinforce Defection. This will in turn lead the other
player to Defect because cooperating against a defector is punished
by the payoff �C < 0. The interaction between two PHR gives a
different result: irrespective of initial conditions, both PHR will
learn to defect (Fig. 2b). Finally, when a PTR meets a PHR, both
individuals learn to defect regardless of initial conditions, which
means that PTR does not get exploited by PHR (Fig. 2c). The
behaviour of PHR stems from its ability to observe that defection is
better than cooperation (B > B � C and 0 > �C), whatever the
opponent chooses. A PTR individual does not get exploited by PHR
because the payoff�C < 0 is punishing, and thus will be avoided by
a trial-and-error learner.
ESS analysis
Using the above results on equilibrium action play, we can

compute the fitness of both learning rules (equation (8)) by using
Table 4 and calling k the cost of PHR for cognitive complexity. For
the Prisoner's Dilemma, this gives�
fHR ¼ a� k; fTR ¼ aþ qðB� CÞ if IC is in the basin ofð1;1Þ;

fHR ¼ a� k; fTR ¼ a otherwise;

(10)

where IC refers to the initial conditions of learning in the PTR versus
PTR interaction. Under the replicator dynamics (equation (9)), the
frequency of the PTR learning rule increases when fTR > fHR. In the
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Figure 2. Solution orbits of the learning dynamics in the three average games for the one-shot matching model. (a, b, c) Prisoner's Dilemma (B ¼ 5 and C ¼ 3). (d, e, f) HawkeDove
(B ¼ 5 and C ¼ 3). (g, h, i) Coordination game (B ¼ 5). (a, d, g) The interaction between two TRs. (b, e, h) The interaction between two HRs. (c, f, i) The interaction between a TR and a
HR. A white-filled circle denotes an unstable node (both associated eigenvalues are positive), a grey-filled circle is a saddle (one positive and one negative eigenvalue) and a black
circle is a locally stable equilibrium. In (a) the grey shaded area represents the initial conditions for which all trajectories go to the (Cooperate, Cooperate) (1, 1) equilibrium. In (d)
the grey shaded area represents the initial conditions for which all trajectories go to the (Dove, Dove) (1, 1) equilibrium.
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first case of equation (10) (i.e. when we start close enough to the
equilibrium (1,1)), this means that PTR invades PHR if

qðB� CÞ þ k>0: (11)

Because the left-hand side is always positive, PTR is the evolu-
tionarily stable learning rule (ESLR); that is, it cannot be invaded by
PHR and can invade PHR. Note that, evenwhen k ¼ 0, PTR is still the
ESLR.

In the second case of equation (10), i.e. when the learning dy-
namics start in the basin of (Defect, Defect) of the PTR versus PTR
interaction, both PTR and PHR learn to defect. Here, fTR > fHR always
holds when k > 0, hence PTR is also the ESLR. For k ¼ 0, we have
neutrality (fTR ¼ fHR for all q).
Why does PTR outcompete PHR? The reason is that trial-and-
error learners reinforce positive payoffs and so a pair of PTR in-
dividuals learn to Cooperate when they have an initial tendency to
do so. In that case a PTR can avoid being exploited by a defector PHR
and learns to defect, since playing cooperate then leads to very low
payoffs. Hence, if k > 0 and there is initially a small frequency of PTR
individuals (q > 0), these can always invade a population of PHR
individuals and establish cooperation if the initial conditions of the
learning dynamics favour it; otherwise they will maintain defec-
tion. By contrast, a small frequency of PHR individuals cannot
invade a population of PTR individuals since they cannot exploit
them. Note that the advantage of PTR over PHR when individuals
initially prefer cooperation still holds even when there is no cost of
cognition (k ¼ 0).
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While we consider the initial preferences as parameters of the
model, and not as evolving characteristics of the individuals, these
results suggest that it is unlikely that a mutant PTR with an initial
genetic tendency for defection invades a population of PTR that
initially prefer to cooperate. Indeed, pairs of PTR defectors will
obtain a lower payoff than pairs of PTR cooperators, so they will not
be able to displace cooperators. This illustrates that in our one-shot
matching setting there is a selection pressure in favour of
cooperation.

Individual-based simulations
To see whether the above analytical approximation reflects

accurately the underlying stochastic model of learning and evolu-
tion, we performed individual-based simulations. We ask two
questions in the simulations. (1) What are the parameter values for
which the above approximation works? (2) To what extent can the
results where an approximation works be generalized to the (more
realistic) case where the learning rate is constant? As to question
(1), we find that an exploration parameter of l ¼ 10 and a number
T ¼ 500 of interactions in the game lead to similar results in the
simulations and the analysis. Given the values we used for the
payoffs, a bigger value of l would induce almost deterministic
behaviour after the first few steps of exploration, which would lead
to an irreversible escape of the basins of attractions of predicted
equilibria. A smaller value of lwould induce very slow convergence
to the equilibria and would thus imply that a higher T is needed to
observe correspondence between analysis and simulations.
Regarding question (2), we generally find a good correspondence
between the results for the two studied learning rates in this one-
shot matching model (Table 5). In Appendix 5, we provide a
detailed description of these simulations.

Simulations: dynamic learning rate
Since the analytical prediction in the Prisoner's Dilemma de-

pends on whether individuals have an initial preference for Coop-
eration or Defection (section ‘ESS analysis’), we ran a set of
simulations for each type of initial preference (see Appendix 6 for a
detailed description of results for both dynamic learning rate and
constant learning rate for all studied games).

Both players initially prefer cooperation. For this case, simulation
results are similar to the analytical results (section ‘ESS analysis’). In
particular, two PTR players that are paired with one another can
learn to cooperate, while a PTR player that is paired with PHR al-
ways learns to defect (Fig. 3a, b, c). This leads to the fixation of PTR
in the population. However, it is noteworthy that the simulations
differ slightly from the analysis: pairs of PTR can sometimes learn to
Table 5
Summary of results in the one-shot matching model

Average Game Initial condition of learning

Prisoner's Dilemma Basin of (Cooperate, Cooperate) of TRvsTR

Basin of (Defect, Defect) of TRvsTR

Hawk-Dove Game Basin of (Hawk, Dove) of TRvsHR

Basin of (Dove, Hawk) of TRvsHR

Coordination Game Basin of (Left, Left)

The column “Predicted q�” shows the frequency of TR expected at evolutionary equilib
approximate equilibrium frequency of TR obtained in the corresponding evolutionary s
different initial compositions of the population (see Appendix 5 for details).

y In this case, the different simulation runs give disparate results with either learning
defect (Fig. 3a), which is a consequence of the possibility of
escaping the basin of attraction of cooperation due to stochastic
fluctuations. This does not affect our evolutionary prediction
(Table 5): PTR players will obtain a higher fitness than PHR because
some pairs of PTR learn to cooperate while PHR individuals defect
and only meet defectors. This is true for any probability P that pairs
of PTR learn to cooperate. Indeed, in our large population, Pwill also
be the proportion of PTR pairs that learn to cooperate, so the fitness
of PTR reads

fTR ¼ aþ q½PðB� CÞ þ ð1� PÞ0�; (12)

while the fitness of PHR is only fHR ¼ a � k, so for any positive P and
any q, we have fTR > fHR.

Both players initially prefer defection. For these initial preferences,
the simulation results differ from the analytical prediction
regarding equilibrium action play (section ‘Equilibrium behaviour’)
and also regarding the evolutionary outcome (section ‘ESS anal-
ysis’), because pairs of PTR individuals sometimes learn to coop-
erate despite their initial tendency to defect. Hence, certain pairs of
PTR individuals learn to cooperate and some other pairs learn to
defect, while the interactions involving PHR always lead to Defec-
tion (Fig. 3d, e, f). We then are in the situation described by equa-
tion (12) so that the fitness of PTR is higher than that of PHR, even if
the value of P is here much smaller than when individuals initially
preferred cooperation (compare Fig. 3a and d). As a consequence,
we indeed observe that PTR fixes in the population in our evolu-
tionary simulations (Table 5).

Simulations: constant learning rate

Both players initially prefer cooperation. In this scenario, the same
qualitative results as in the dynamic learning rate situation are
obtained. Namely, pairs of ETR can learn to cooperate (Fig. A1a, b, c)
so the ETR learning rule fixes in the population (Table 5).

Both players initially prefer defection. In this situation there is only
one (but important) difference compared to the dynamic learning
rate case. Namely, when ETR individuals are paired with EHR, we
observe that ETR do not learn full defection and converge to a
positive probability of cooperating, while EHR always learn to
defect. This gives an evolutionary advantage to the latter when
present in high frequency in the population (Fig. A1d, e, f). This
implies that in our simulations of evolution we observe that ETR
fixes when the population initially consists only of ETR, but EHR
fixes when the population initially consists only of EHR (Table 5). In
other words, mutants cannot invade in this case.
Predicted q� Learning rate Simulated q�

1 Dynamic 0.99
Constant 0.98

1/2 Dynamic 0.98
Constant 0.5y

1 Dynamic 0.97
Constant 0.98

0 Dynamic 0.01
Constant 0.01

1/2 Dynamic 0.27
Constant 0.56

rium under the deterministic approximation. The column “Simulated q�” gives the
imulation. The simulation results represent the average over simulation runs with

rule getting fixed depending on the initial conditions (see main text).
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Figure 3. Behavioural equilibrium of learning in the average Prisoner's Dilemma for the one-shot matching model with dynamic learning rate for pairs of opponents (simulation
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HawkeDove Game

Equilibrium behaviour
To analyse the dynamics of learning (equations (5) and (6)) for

the HD game, we use the corresponding payoffs given in Table 4.
Now, action 1 corresponds to ‘Dove’ and action 2 to ‘Hawk’.

In the PTR versus PTR interaction, the learning dynamics have
three pure stable equilibria: (Hawk, Dove), (Dove, Hawk) or
(Dove, Dove). In other words, depending on the initial conditions,
individuals will reach either a Nash equilibrium or the ‘coopera-
tive’ outcome where both individuals choose Dove, a result
similar to that one obtained in the average PD game (Fig. 2d,
Appendix 4). This can be explained in terms of the signs of the
payoffs and in terms of reward and punishment. The (Dove, Dove)
outcome is rewarded (it yields B/2 > 0) when players try the Dove
action, so it is a possible endpoint of the learning dynamics. The
8>><>>:
fHR ¼ aþ qBþ ð1� qÞB

2
� k; fTR ¼ aþ q

B
2

if IC: in basin of ð0;1Þ

fHR ¼ aþ ð1� qÞB
2
� k; fTR ¼ aþ q

B
2
þ ð1� qÞB if IC: in basin of ð1;0Þ;

(13)
Nash equilibria are also endpoints because if one player plays
Hawk against a player that plays Dove, it will also reinforce Hawk.
Its opponent cannot reinforce Hawk because this would yield a
punishment (B/2 � C < 0), hence (Hawk, Dove) is a stable equi-
librium. When two PHR interact (Fig. 2e), they end up playing one
of the two Nash equilibria (Hawk, Dove) or (Dove, Hawk). The
reason why (Dove, Dove) is not an equilibrium for pairs of PHR is
that this outcome induces a ‘regret’ in both players of not having
played the Hawk action (because they observe that they could
have obtained B > B/2). But if both players switch to Hawk, this is
also an unsatisfactory outcome and one of the players will
eventually stick with Dove (because 0 > B/2 � C). Finally, when a
PTR meets a PHR, there are two possible endpoints: the equilib-
rium where PTR plays Hawk and PHR plays Dove; or the reverse
situation where PTR learns to play Dove and PHR learns to play
Hawk (Fig. 2f). Hence, in this heterogeneous interaction,
depending on the initial conditions, either PTR or PHR will get
exploited by its opponent.
ESS analysis
The homogeneous interactions (PTR versus PTR and PHR versus

PHR) always lead to a payoff of B/2, irrespective of the initial
preferences for actions, because both individuals have equal
chances of learning to become a Hawk or a Dove. However, the
payoffs in the heterogeneous interaction between PTR and PHR
depend onwhether the initial condition is in the basin of attraction
of (0,1) or (1,0). Thus, the reproductive output is
where IC is the initial condition of the PTR versus PHR interaction.
In the first case of equation (13), PTR increases in frequency

when rare (fTR > fHR) if

k� B
2
>0: (14)

This implies that when k > B/2, PTR is the ESLR; when k ¼ B/2
evolution is neutral; when k < B/2, PHR is the ESLR.

In the second case of equation (13), PTR increases in frequency if
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B
2
þ k>0; (15)
which is always true because B > 0 and k � 0. In this case, PTR is the
only ESLR.

In other words, in the HD game the learning rule that is the ESLR
is the one that has the greatest initial preference for playing Hawk
(in the absence of cost, k ¼ 0) because this allows it to learn the
Hawk action against the other learning rule that learns to play
Dove. The learner playing Hawk will thus obtain a larger payoff.
Indeed, either learning rulewith any initial preference for actions in
a monomorphic population obtains an average payoff of B/2 (as
explained above). Hence, to determine whether a mutant learning
rule can invade, one should determine whether the mutant obtains
a higher payoff than B/2 when paired with the resident. The
learning rule that prefers Hawk can invade when the resident
prefers Dove because it obtains the payoff B of the (Hawk, Dove)
outcome. On the other hand, the mutant preferring Dove is not able
to invade when the resident prefers Hawk because the mutant will
obtain the payoff 0 of the (Dove, Hawk) outcome. Hence the
learning rule that prefers Hawk can invade and is stable against
invasion, and is consequently the ESLR in the HawkeDove game in
the absence of cost.
Simulations: dynamic learning rate

PTR initially prefers to play Hawk and PHR prefers Dove. In this case,
the simulation results agree qualitatively well with the analytical
results (section ‘ESS analysis’). The only difference is that in the
simulations, we observe some pairs of PTR that learn the outcome
(Dove, Dove) (Fig. 4a, b, c), while we expect them to learn (Hawk,
Dove) or (Dove, Hawk) under the above analysis. This is due to the
possibility of escaping a basin of attraction in the stochastic
learning model (as occurred above for the PD). However, this small
difference does not affect the evolutionary outcome because the
average payoff for pairs of PTR is the same at the equilibrium (Dove,
Dove) as it is in the equilibria (Hawk, Dove) or (Dove, Hawk).
Consequently, the analytical prediction (section ‘ESS analysis’)
regarding evolution applies andwe indeed observe that PTR fixes in
the population in the long run (Table 5).
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Figure 4. Same as Fig. 3 describing the results for the behavioural equilibrium under the ave
prefers Hawk (pTR,1 ¼ 0.15) and HR prefers Dove (pHR,1 ¼ 0.85). (d, e, f) TR initially prefers Do
(b, e). Interaction between two HRs. (c, f). Interaction between TR (player 1) and HR (playe
PTR initially prefers to play Dove and PHR prefers Hawk. As
explained in the ESS analysis above (section ‘ESS analysis’), the
equilibrium behaviour of homogeneous pairs (PTR versus PTR and
PHR versus PHR) does not depend on initial conditions (one
member of the pair learns Hawk and the other learns Dove).
However, the equilibrium behaviour in the heterogeneous inter-
action (PTR versus PHR) does depend on the initial preferences for
actions. In the current scenario, according to the above ESS analysis,
PHR should learn to play Hawk and PTR should learn to play Dove.
All of these predictions are observed in the simulations of learning
(Fig. 4d, e, f). Thus the analytical prediction regarding which
learning rule will fix in the evolutionary long run is also verified in
the evolutionary simulations: PHR individuals fix in the population
(Table 5).

Simulations: constant learning rate
ETR initially prefers to play Hawk and EHR prefers Dove. Here the
results are the same as under the dynamic learning rate and ETR
fixes in the population in the long run (Fig. A2a, b, c, Table 5).

ETR initially prefers to play Dove and EHR prefers Hawk. This case is
similar to the situation with the dynamic learning rate, where EHR
individuals outcompete ETR and fix to a frequency close to 1 at the
equilibrium of evolution (Fig. A2d, e, f, Table 5).

Coordination Game

Equilibrium behaviour
If we use the payoffs of the CG game (Table 4) in equations (5)

and (6), we obtain the learning dynamics of a pair of opponents
in the coordination game. In the labelling of Table 4, action 1 cor-
responds to Left and action 2 corresponds to Right. In this game, all
three types of pairs succeed in learning to coordinate in the long
run (Fig. 2g, h, i), and depending on the initial preferences for Right
or Left, the equilibrium reached will either be (Right, Right) or (Left,
Left).

ESS analysis
Under the three types of interactions, the players coordinate on

a single action and get a payoff at equilibrium of B. The fitness of the
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PTR learning rule is then fTR ¼ a þ B and the fitness of PHR is
fHR ¼ a þ B � k. Trivially, PTR is the ESLR for all positive k; for k ¼ 0,
evolution is neutral. This is because both learning rules get the
average payoff B in all types of interactions, so no learning rule is
able to invade a population consisting of the other learning rule.
Hence, under the recurrent inflow of symmetric mutations, we
expect, in the long run, to observe a stationary state of the popu-
lation where the average frequency of both learning rules is 1/2.
Simulations: dynamic learning rate
In this game, our analytical results predict that evolution does

not favour one learning rule over the other for all initial conditions
because both learning rules always induce coordination on a single
action (section ‘ESS analysis’). Because our evolutionary simulations
feature recurrent mutations, this situation should lead to neutral
evolutionary dynamics where the expected frequency of both types
under the stationary distribution of the process is equal (q ¼ 1/2). In
the simulations, we arbitrarily set initial preferences of individuals
close to the outcome (Left, Left) and we indeed observed that all
types of pairs of individuals succeed in coordinating on a given ac-
tion (but the particular action learned depends on the pair, Fig. 5).
This learning behaviour corresponds to our analytical prediction
(section ‘Equilibrium behaviour’) but simulations of evolution do
not match this, and we observe a mixed evolutionary equilibrium
dominated by PHR (Table 5). This result can be explained by game
stochasticity. Indeed, when we simulate evolution by letting the
Coordination game be the only game played by individuals (this
gives a situationwith a constant game instead offluctuating games),
we observe that both learning rules coexist in near-equal frequency
at evolutionary equilibrium (Fig. A6).
Simulations: constant learning rate
Learning in this case also leads to coordination of all pairs

(Fig. A3). Evolutionary simulations give a result close to what is
expected, with a frequency of ETR of qz 0.56 at the equilibrium of
evolution (Table 5).
RESULTS: REPEATED MATCHING

We now assume that individuals in the population are
randomly paired at every time t of their lifetime, but otherwise
keep all previous assumptions. An individual will now meet
different partners during its lifetime. Its learning dynamics may
then depend on the distribution of behaviour of all individuals
in the population because anybody can be met for a one-shot
interaction.

Unfortunately, we could not find any simple analytic approxi-
mation to the evolutionary dynamics for this matching model, so
we used exclusively individual based simulations to investigate the
evolutionary stability of TR and HR.
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Figure 5. Same as Fig. 3 describing the results for the behavioural equilibrium under the
Coordination game. (a) Interaction between two TRs. (b) Interaction between two HRs. (c)
The simulations for the repeated matching model follow the
same two steps applied for the one-shot matching model. First,
we simulated only learning dynamics in a large population (this
step can be thought of as simulating the behavioural dynamics of
a single generation). These simulations of learning were per-
formed for various values of q, the frequency of TR in the popu-
lation. To understand how the frequency of the learning rules
affected the learning dynamics, we computed the behavioural
equilibrium of TR and HR for all frequencies q (Fig. 6). Second, we
simulated the full evolutionary process, namely, learning and
reproduction, over many generations, in order to track the fre-
quency of TR and HR over evolutionary time (Table 6). In these
two types of simulations (learning and evolutionary), we used the
same initial conditions for the learning dynamics that we used in
the one-shot matching model, so that we can compare the results
of the two matching schemes (for more details on the method-
ology of the simulations, see Appendix 5). The results of the
evolutionary simulations can be interpreted in light of the sim-
ulations of learning dynamics.
Prisoner's Dilemma

Dynamic learning rate

All individuals initially prefer cooperation. For this case, when we
simulate learning in the population, we obtain that PTR individuals
can learn to cooperate when very common in the population (pre-
cisely, when q � 0.8), while PHR individuals always learn to defect
for all compositions of the population (Fig. 6a). Consequently, the
fitness of PHR and PTR are the same for q < 0.8 (because everybody
defects) but PTR has a smaller fitness when q � 0.8, because it co-
operates a positive proportion of the time, which leads PHR to
exploit PTR. This implies that, on the evolutionary timescale, the
population will move neutrally through all the states such that
q < 0.8, but is repelled from the states where q � 0.8. As a conse-
quence, we observe in our evolutionary simulations that the equi-
librium frequency of PTR is small but positive (Table 6).
All individuals prefer defection. With these initial preferences, the
simulations of learning show that both learning rules always
converge to Defection, so no one has an advantage (Fig. 6b). When
we simulate evolution, the result is qualitatively in agreement with
this: the frequency of PHR at evolutionary equilibrium is slightly
above 0.5 (Table 6).When both learning rules have the same fitness,
we expect that mutation in the population will maintain both
learning rules at a frequency of 0.5. The slight deviation from 0.5
that we observed can be explained by the variance in convergence
time of PTR individuals. Some of themmight converge more slowly
to full Defection and will be exploited on some interaction rounds
when they meet the defector PHR (Fig. A4).
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Figure 6. Average probability of choosing action 1 at the behavioural equilibrium for different frequencies q of TR in the population in the repeated matching model. Red line: TR;
blue line: HR. (a, b, c, d) Prisoner's Dilemma. (e, f, g, h) HawkeDove game. (i, j) Coordination game. For the Prisoner's Dilemma: (a, b) dynamic learning rate; (c, d) constant learning
rate. Individuals start with an initial preference for (a, c) Cooperation (pi,1 ¼ 0.85) or (b, d) Defection (pi,1 ¼ 0.15). For the HawkeDove game: (e, f) dynamic learning rate; (g, h)
constant learning rate. (e, g) TR initially prefers Hawk (pTR,1 ¼ 0.15) and HR prefers Dove (pHR,1 ¼ 0.85). (f, h) TR initially prefers Dove (pTR,1 ¼ 0.85) and HR prefers Hawk
(pHR,1 ¼ 0.15). For the Coordination game: (i) dynamic learning rate; (j) constant learning rate.
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Table 6
Summary of results in the repeated matching model

Average Game Initial condition of learning Learning
rate

Simulated q�

Prisoner's
Dilemma

All individuals prefer Cooperation Dynamic 0.2
Constant 0.05

All individuals prefer Defection Dynamic 0.48
Constant 0.04

Hawk-Dove
Game

TR prefers Hawk, HR prefers Dove Dynamic 0.18
Constant 0.11

TR prefers Dove, HR prefers Hawk Dynamic 0.07
Constant 0.05

Coordination
Game

All individuals prefer Left Dynamic 0.01
Constant 0.06

This is the same table as for the one-shot matching model (Table 5) but without
analytic prediction.
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Constant learning rate

All individuals initially prefer cooperation. Here ETR players learn to
cooperate with a small probability for all frequencies, while EHR
learn to defect as usual (Fig. 6c). As a consequence, the frequency of
EHR in evolutionary simulations is close to 1 at equilibrium
(Table 6).

All individuals initially prefer defection. The result is here the same
as in the previous section: ETR individuals learn to cooperatewith a
positive probability (Fig. 6d) which leads to the evolutionary suc-
cess of EHR observed in our evolutionary simulations (Table 6).

HawkeDove Game

Dynamic learning rate

PTR initially prefers to play Hawk and PHR prefers Dove. Here, we
obtain that individuals using the PTR rule learn to play Dove with a
higher average probability than PHR does. As the frequency of PTR
increases, their probability of playing Dove also increases, while
PHR plays Hawk more and more often (Fig. 6e). Consequently,
when we perform simulations of evolution, we observe a stable
polymorphismwith a clear domination of PHR (Table 6). The reason
is that playing Hawkwith a higher probability than the opponent is
beneficial in one-to-one interactions (which favours PHR in in-
teractions against PTR) but playing Hawk too often renders the
population susceptible to invasion by individuals that play the nicer
Dove action (which favours PTR).

PTR initially prefers to play Dove and PHR prefers Hawk. The
learning behaviour of the learning rules is similar to the previous
case but now the average probability that PTR plays Dove is less
affected by its frequency, and is always relatively high. Individuals
using PHR still have a tendency to increase their probability of
playing Hawk as q increases (Fig. 6f), which gives them an advan-
tage. This is confirmed by our evolutionary simulations where PHR
dominates the population at a polymorphic evolutionary equilib-
rium (Table 6).

Constant learning rate

ETR initially prefers to play Hawk and EHR prefers Dove. Here the
results are similar to the case with a dynamic learning rate so ETR
learns to play Dove more often than PHR (Fig. 6g), such that the
simulations of evolution lead to a polymorphic equilibrium, where
PHR constitutes almost all the population (Table 6).

ETR initially prefers to play Dove and EHR prefers Hawk. The results
for the learning behaviour are not different from the case with a
dynamic learning rate (Fig. 6h) so we also observe in our
simulations of evolution that EHR constitutes almost all the pop-
ulation at an evolutionary endpoint (Table 6).

Coordination Game

Dynamic learning rate
The results for the learning behaviour show here that PTR in-

dividuals fail to all coordinate on a given action. The PHR in-
dividuals are efficient in doing this (Fig. 6i) and thus fix in the
population (Table 6).

Constant learning rate
The learning behaviour of both learning rules is qualitatively

similar to the dynamic learning rate case (Fig. 6j) and this explains
why EHR almost fix in the population (Table 6).

Robustness to Changes in l and T

In order to check whether the above results are robust to
changes in parameter values, we ran simulations for other values of
l (the sensitivity to payoffs) and T (the length of the lifespan). The
results of these simulations are reported in Appendix 8
(Tables A1eA10). We find that for small l and T values, the num-
ber of situations where trial-and-error learning (TR) subsists in the
population is generally reduced. In the PD game, TR is no longer
evolutionarily stable, but our qualitative results continue to hold for
the other two games (e.g. Table A5). Lower values of l and T
generate an evolutionary pressure for learning speed, inwhich case
hypothetical reinforcement learning (HR) is favoured in the PD
game because an HR individual starts defecting when paired with a
TR. By contrast, TR individuals switch to defection against HR only
after having experienced a sequence of punishments with the
payoff�C (Fig. A4). Hence, when l and Tare small, TR individuals do
not have the time to switch to Defection against HR but pairs of TR
still learn to cooperate (Fig. A5). Although lower values of l

generally induce slower learning for any learning rule, our addi-
tional results suggest that HR are less affected than TR by a
reduction in the learning speed (i.e. HR individuals are faster than
TR). Higher values of l induce faster learning and the results are
essentially identical to the case with an intermediate value of l

(regardless of the value of T). However, high l seems to slightly
favour more TR than under intermediate l (Tables A2, A4).

In summary, only small l affect our qualitative results (i.e. TR is
not an ESLR in the PD game), and this effect is increased when T is
small. Otherwise varying these parameter values does not change
the qualitative results, because we still observe situations where
the simple TR outcompete the more complex HR, especially in the
PD game (e.g. Tables A6eA7).

SUMMARY AND DISCUSSION

To determine whether selection favours cognitively more so-
phisticated individuals than simple trial-and-error learning in so-
cial interactions, we analysed an evolutionary model of the
competition between trial-and-error and hypothetical reinforce-
ment learning. Trial-and-error learners only use information about
realized payoffs, which is a common form of learning in animals
(e.g. Mery & Kawecki, 2002; Staddon & Cerutti, 2003), while hy-
pothetical reinforcement learners also use information about the
foregone payoffs of playing alternative actions (where this infor-
mation can come from either social copying or active reasoning).
This learningmode can be thought of as one step up in the cognitive
hierarchy and is a special case of standard belief-based learning
(see equation (A1.9) in Appendix 1), which is a form of learning that
has been suggested to occur in animals (van Gils et al., 2003; Lima,
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1984; Luttbeg & Warner, 1999; Valone, 2006) and humans
(Camerer, 2003; Chmura et al., 2012; Feltovich, 2000).

To analyse the coevolution of trial-and-error and hypothetical
reinforcement learning, we assumed that individuals in a large
population are genetically programmed to be either trial-and-error
learners or hypothetical reinforcement learners and interact
repeatedly in a two-player, two-action stochastically fluctuating
game.We defined twomatching schemes, that is, twoways inwhich
individualsmeet to play the games. In the one-shotmatchingmodel,
individuals are paired at the beginning of the fluctuating game and
each pair interacts for the rest of the game. In the second model, we
used repeatedmatching: here, a randommatching is realized at each
period of the game so that an individual has a negligible probability
ofplaying twice against the samepartner (sincewealso consider that
the population is very large). Payoffs are evaluated at the equilibrium
of the learning process, and this defines the number of offspring
produced (fecundity) by an individual.

We applied stochastic approximation theory to analyse learning
during an individual's lifetime, and obtained that the equilibrium
behaviour of the learners could be characterized in terms of an
average game of the fluctuating game (i.e. a gamewhose payoffs are
averages of the subgames' payoffs of the original fluctuating game).
We thus analysed three standard cases of the average game: the
Prisoner's Dilemma, the HawkeDove game and the Coordination
game, and checked our analytic approximations by running simu-
lations of the exact process.

Evolutionary Outcomes

Overall, the presupposed domination of hypothetical rein-
forcement learning over trial-and-error described in the introduc-
tory section is not complete in our results. In other words, the
ability to obtain information about payoff outcomes of unchosen
actions does not necessarily give a selective advantage in social
interactions. We do not claim that a selective advantage of hypo-
thetical reinforcement is unlikely, but we have found a set of social
situations and learning dynamics where this ability does not pro-
vide a selective advantage. In general, we observed three main
types of results, which hold for the two learning rates we studied
(constant or dynamic).

(1) In simple social interactions, where the average game faced
by individuals only requires that two partners coordinate on the
same action or ‘anticoordinate’ on two different actions, trial-and-
error and hypothetical reinforcement learning do not produce
different behaviours at the behavioural equilibrium. In this case,
natural selection does not favour one learning rule over the other.

(2) In the class of Prisoner's Dilemma games parametrized by a
benefit and a cost variable, the ability of two trial-and-error
learners to generate cooperative pairwise interactions by rein-
forcement of actual rewards, rather than to play a Nash equilibrium,
can give them a selective advantage over hypothetical reinforce-
ment learners. The main explanation of this result is that trial-and-
error learners can learn any outcome that yields positive payoffs
(which is the case when both members of a pair cooperate), while
hypothetical reinforcement learners reach the Nash equilibrium of
the one-shot game (which is to defect), but miss the important
information that the game is repeated (because they are not for-
ward looking). However, in the repeated Prisoner's Dilemma, when
individuals with the same learning rule cooperate with each other,
they are favoured over full defectors (if they avoid being exploited
by defectors). Importantly, we obtained this result even when hy-
pothetical reinforcement learning incurred no cost for cognitive
complexity.

(3) We observed many examples where hypothetical rein-
forcement learning dominates the population at an evolutionary
endpoint (i.e. it either gets to fixation or the population reaches a
polymorphism where hypothetical reinforcement learning is at a
high frequency), especially when two individuals cannot interact
more than once (i.e. in the repeated matching model). Since hy-
pothetical reinforcement learning produces a Nash equilibrium at
the level of the one-shot average game, this makes perfect sense,
because it is the type of behaviour that is selected when individuals
cannot interact more than once.

Across all these results, the interaction between the learning
rule and the initial preferences (which can be interpreted as an
innate predisposition for a certain type of action) plays an impor-
tant role for the outcome. We observed that this predisposition can
be overcome or reversed after many learning rounds, but this is
much constrained by the dynamic properties of the interacting
learning rules (e.g. the size of the basin of attraction of the
behavioural equilibria). This should be kept in mind in the
following discussion about the more specific effect on evolutionary
outcomes of the two different matching models.

One-shot Matching

The one-shot matching model allows one to capture situations
where the same pair of animals interact many times together, so
that each animal has the opportunity to adapt its behaviour during
its lifetime to the actions of its partner. Examples of such situations
may include communal breeding species that live in relatively
small stable groups like meerkats, Suricata suricatta, cooperative
breeding cichlids, or chestnut-crowned babblers, Pomatostomus
ruficeps. But one-shot matching also captures interactions between
males and females in monogamous species (Black, 1996; Kleiman,
1977), where unrelated partners interact for very long periods of
time, possibly under conditions of environmental change.

In the one-shot matching model, we either observed results of
type (1) or type (2) but we never observed results of type (3). Re-
sults of type (1) were obtained when the average gamewas either a
HawkeDove game or a Coordination game. In these two games, the
two learners did not differ from one another at a behavioural
equilibrium, which leads to the absence of an advantage of one
learning rule over the other. In the Coordination game, we found
that individuals of both learning rules generally succeeded in
coordinating on a single action, because it is only necessary to
repeat the action that leads to positive payoffs, and both the trial-
and-error and hypothetical reinforcement learning are capable of
this.

The HawkeDove game favours one learning rule or the other
depending on the initial conditions, so no learning rule is favoured
under all conditions, because both learning rules are able to reach
the optimal (Nash equilibria) outcomes (Hawk, Dove) and (Dove,
Hawk). This game actually illustrates well the interaction effect
between genetic predisposition and learning rule, because we find
that it is the learning rule that has the biggest predisposition for
aggression (big initial probability of choosing ‘Hawk’) that is
evolutionarily stable. Besides, it is noteworthy that the behaviour of
reinforcement learners is slightly more cooperative in the sense
that pairs of this type could also learn to play the socially peaceful
outcome (Dove, Dove). This does not give an advantage or a
disadvantage compared to hypothetical reinforcement learners in
this particular game, but it is interesting to note that trial-and-error
learners are capable of achieving the equilibrium with the highest
mutual payoff (Dove, Dove), where nobody is playing the aggres-
sive ‘Hawk’ strategy, while hypothetical reinforcement learners
cannot. The reason for this is that the equilibrium (Dove, Dove)
provides a positive payoff (i.e. a reward) to both players in the
HawkeDove game, which suffices to make it a stable equilibrium
for the trial-and-error learning dynamics.
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In the average Prisoner's Dilemma, we also observed that trial-
and-error learners could reach the socially beneficial outcome
where both partners cooperate (i.e. they ‘solve’ the dilemma), but
this time this ability made trial-and-error learning evolutionarily
stable. Indeed, pairs of trial-and-error learners are able to learn to
cooperate together because the payoff for mutual cooperation is
positive. On the other hand, hypothetical reinforcement learning
always leads to defection (because if they cooperate, they have the
regret of not having defected in the previous round). Interestingly,
trial-and-error learners do not get exploited by hypothetical rein-
forcement learners as they succeed in learning to defect against
them. The long-run behaviour of trial-and-error learning is actually
reminiscent of that of the Tit-for-tat (TFT) strategy (Axelrod, 1980;
Axelrod& Hamilton, 1981; Rapoport & Chammah, 1965): trial-and-
error learning cooperates with itself a high proportion of the time
(but not always) and defects against the defector hypothetical
reinforcement learning. This result is striking when we realize that
the underlying principle of trial-and-error is closer to win-stay,
lose-shift (WSLS, Axelrod, 1980; Axelrod & Hamilton, 1981;
Nowak & Sigmund, 1993; Rapoport & Chammah, 1965) than to
TFT: a trial-and-error learner is essentially repeating actions fol-
lowed by positive consequences and avoiding actions followed by
negative consequences (in Appendix 7, we indeed show that
impulsive trial-and-error learners derived from our learning pro-
cess (equation (3)) with a memory of only one time step behave as
WSLS).

The repeated Prisoner's Dilemma has been the topic of many
studies aiming at understanding the evolution of cooperation, but
most of the time no learning rules are used in evolutionary analysis,
but qualitative strategies consisting of finite state automata such as
TFT (or WSLS, Grim, etc.). Learning rules may actually represent a
more appropriate way of conceptualizing animal behaviour
because it describes several realistic features of animals, such as
incremental adaptation, forgetting or, habituation. Moreover,
learning rules provide a quantitative approach (in our case through
the motivations for actions) that can potentially be linked to
neuronal decision making (Dayan & Abbott, 2005; Enquist &
Ghirlanda, 2005; Niv, 2009). It is thus interesting to see that a
fairly simple learning rule based on thewidely accepted principle of
trial-and-error produces qualitatively similar behaviour as TFT,
although trial-and-error is much less domain specific than TFT. It is
noteworthy that this behaviour of trial-and-error learning results
from its ignorance of foregone payoffs, not from a better ability to
understand the specificities of repeated games. This suggests that,
while trial-and-error learning performs well in the Prisoner's
Dilemma, it is unlikely do so in general-domain learning tasks
where the ability to form simple stimulus-action association is not
sufficient.

Repeated Matching

In the repeated matching setting, individuals meet different part-
ners at each interaction round. The learning task is here more
complicated because an individualmust adapt to an entire population
composed of individuals with different learning rules which them-
selves adapt their behaviour. This type of matching model is widely
used in evolutionary biology as a baseline model of interactions
(Maynard Smith, 1982), and refers to cases where no particular
assumption regarding population or social structure can be applied.
This may be the case when interference competition for resources
occurs periodically during a lifetime (Begon, Harper, & Townsend,
1996), but at random between a large number of population mem-
bers during each period, as for instance duringfishing bymarine birds.

Here, we mainly observed results of type (3), i.e. hypothetical
reinforcement learning generally dominated the population at an
evolutionary equilibrium. The most representative example is the
average HawkeDove game, where we found that hypothetical
reinforcement learning was able to exploit the tendency of trial-
and-error learners to play the ‘Dove’ action too often, especially
when trial-and-error learners are at a high frequency in the pop-
ulation. Besides, we also observed in this repeated matching model
an interaction between genetic predisposition for actions and
learning rule in the average Prisoner's Dilemma. When individuals
initially prefer ‘Defection’, we obtained a neutral situation where
both learning rules learn full defection. However, when individuals
had an initial preference for ‘Cooperation’, trial-and-error learning
could lead to cooperation when at high frequency in the popula-
tion, and get exploited by hypothetical reinforcement learning
which always leads to defect.

Evolutionary Paths to Increased Cognition

Our primary goal in this paper was to provide some intuition as
to when a learning rule located one step up above trial-and-error in
the cognitive hierarchy can be favoured by selection in simple sit-
uations of social interactions. In comparative cognition
(Shettleworth, 2009), trial-and-error learning is often the null hy-
pothesis against which one tests hypotheses regarding more
advanced cognition, and we adopted the same approach here by
letting trial-and-error compete with hypothetical reinforcement
learning. Because hypothetical reinforcement learning is related to
the class of belief-based learning rules, which have been shown to
lead to Nash equilibrium in the simple social interactions that we
studied here (Hofbauer & Sandholm, 2002), one would expect hy-
pothetical reinforcement learning to generally outcompete trial-
and-error learning. Our findings do not support this view. Rather,
they illustrate that learning rules using more information do not
necessarily outcompete trial-and-error learning in social in-
teractions, so the advantage of ‘complex cognition’ is not automatic
and depends on the type of games played by the individuals in a
population. Since Bayesian decision making (which is closely
related to belief-based learning, i.e. our EHR rule) has been previ-
ously proposed to be likely to occur in animals facing individual
decision problems (McNamara et al., 2006; Trimmer et al., 2011;
Valone, 2006), our results suggest that behavioural rules that
performwell for social interactions are not necessarily the same as
those performing well under individual decisions, as long as in-
dividuals discount strongly the future when making decisions (see
Molleman, van den Berg, & Weissing, 2014 for empirical evidence
along these lines in humans). Hence, despite its apparent simplicity,
trial-and-error or instrumental learning is not easy to displace,
whichmay in part explainwhy it is ubiquitous across taxa (Staddon
& Cerutti, 2003).

That a simple learning mechanism can be favoured in social
interactions is not a surprising result when we look at previous
work in evolutionary ecology (Arbilly et al., 2010, 2011; Hamblin &
Giraldeau, 2009). However, the reasons why the simple mechanism
of trial-and-error learning outcompeted the sophisticated hypo-
thetical reinforcement learning are different from previous work. In
Hamblin and Giraldeau (2009), the relative payoff sum rule
(another implementation of trial-and-error learning) outcompeted
a rule with perfect memory mainly because it had less inertia,
which was most adapted to the changing environment considered
by the authors. In our setting, trial-and-error and hypothetical
reinforcement learning have the same level of inertia (same
learning rate) and we generally compare the long-run behaviour of
learners, ignoring transient behaviour. In Arbilly et al. (2010, 2011),
an allele coding for simple learning can be genetically associated
with an allele coding for a scrounger strategy in a producere-
scrounger game, while complex learning is associated with a
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producer strategy. Such genetic associations cannot happen in our
setting because we studied evolution on only one locus, but note
that in the Prisoner's Dilemma, there was a phenotypic association
between trial-and-error learning and cooperation, which strongly
influenced the result under both matching schemes. We also note
that our results are also consistent with the findings of Josephson
(2008). His model of matching corresponds to our repeated
matching scheme, and even though we did not use exactly the
same rules, we find like him that a learning rule with no observa-
tion of hypothetical payoffs (i.e. the trial-and-error learning rule)
cannot be evolutionarily stable in this case. Hence, adding a more
realistic feature such as environmental fluctuations does not help in
favouring trial-and-error learning, suggesting that random in-
teractions constitute a strong factor in favour of belief-based
learning.

Our results also echo findings in the field of repeated games. For
instance in Axelrod's tournament, the dominating strategy (Tit-for-
tat) was not the most complex of all the proposed strategies
(Axelrod, 1980). Further, research in economics also indicate that
repeated games and social interactions do not always select for
more complex strategies, and these results were obtained either by
taking into account explicitly the costs of cognitive complexity
(Binmore & Samuelson, 1992) or, more recently, in the absence of
such costs (Duersch, Oechssler,& Schipper, 2014; Horv�ath, Kov�a�rík,
& Mengel, 2012; Mohlin, 2012). All this suggests that it is relevant
to try to characterize the type of games species are playing in na-
ture (or the social problems they face), in order to characterize the
real demands on social cognition.

It might be difficult to assess the payoff structure of the games
played by individuals, but our results show that when individuals
cannot condition their actions on the type of games they are
playing (as we assumed here), the behavioural outcomes only
depend on the average game, which can thus be used to produce
predictions about the psychological capacities of that species.
Indeed, we only had to analyse the behaviour in the average game
(Table 4) in order to predict equilibrium behaviour for the learning
dynamics, and learning behaviour in the average game explained
well the results of evolutionary simulations. These complications
regarding the fluctuating aspects of the games can be ignored in
potential experimental tests of our model because our results
showing that trial-and-error and hypothetical reinforcement
learning produce different behaviours in social interactions still
hold if we interpret the average game as only a constant, fixed
game. Accordingly, in order to test which of these learning rules is
used by a particular species, we think that experiments in which
individuals socially interact according to a Prisoner's Dilemma are
the best suited because our two learning rules lead to distinct
outcomes in this game.

By contrast, a coordination problem is not a good situation to
perform these tests because it is solved by both trial-and-error and
hypothetical reinforcement learning and consequently does not
allow one to distinguish between these rules. In previous empirical
studies, Prisoner's Dilemma games have been implemented to test
the cooperativeness of species (e.g. Schneeberger, Dietz, &
Taborsky, 2012) by giving individuals the choice between selfish
and social options, e.g. when deciding whether or not to make an
effort to provide food to a conspecific. Repeating such tasks mul-
tiple times between pairs of individuals can determine whether
only simple trial and error is used, in which case one would expect
to see a proportion of pairs learning to exchange food in this task,
by reinforcement of actual reward. On the other hand, observing
only defection would suggest that the species of interest is using a
rule other than trial-and-error learning, and the use of hypothetical
reinforcement learning could be further tested using classical tests
of Bayesian learning in an individual decision task. It must be noted
that in such empirical tests, one does not need to consider that the
animal is able to condition its behaviour on the type of game it is
facing. Being able to condition behaviour on the type of game re-
quires the individual to detect features of the environment and
combine them correctly in order to compute game payoffs
accordingly, which is cognitively more demanding and requires
more inference than we have assumed in this paper. Here, we only
assumed that individuals had access to limited information on
opportunities they did not try. This information can be reached
through explicit reasoning (e.g. noticing that a food patch has been
exploited by others is a cue that nearby patches have probably also
been exploited) or via social observation.

In this work, we assumed that the information obtained by
hypothetical reinforcement learners was always correct. In other
words, nonrealized payoffs are always perfectly observed by HR,
but this assumption does not always hold in nature. Social obser-
vation of nonrealized payoffs is dependent on the frequency of
actions taken in the population, so an individual is generally unable
to evaluate socially the relative advantages of all possible behav-
iours, i.e. if nobody in the population takes an optimal action, a
social learner will be unable to act optimally. Moreover, social
observation is error-prone (e.g. when an individual is trying to
assess how much food a conspecific has) and reasoning is even
more so. Future research could produce different results by
modelling a situation in which the information acquisition process
involves errors, e.g. when the genotype g in equation (3) can take
values lower than one (payoffs are underestimated) or higher than
one (overestimated payoffs), or even when g is a random variable
whose support, mean and variance are genetically determined
(representing a situation where payoffs are sometimes under- and
sometimes overestimated).

Our paper also contributes to modelling in behavioural ecology,
where researchers acknowledge the need to describe animal
behaviour in terms of general rules that are used to face several
decision problems an individual may face (Dijker, 2011; Fawcett,
Hamblin, & Giraldeau, 2013; Hammerstein and Stevens, 2012;
McNamara & Houston, 2009). By modelling an environment in
which individuals face different social games and partners, but use
the same behavioural rule (either trial-and-error or hypothetical
reinforcement learning), a learning rule can only work well on
average. We concentrated here on social behaviours only under the
simplest games and mainly studied long-term behavioural dy-
namics, but this approach can also be applied for studying rules of
behaviour that can serve under a variety of ecological contexts,
under more complex social structures, or to investigate the effects
of learning speed. This may help to better delineate the possible
evolutionary paths from simple to more sophisticated decision-
making processes.

We thank the reviewers for extensive comments on the manu-
script. This work was supported by Swiss NSF grant PP00P3-
123344.
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APPENDIX 1. TRIAL-AND-ERROR AND HYPOTHETICAL
REINFORCEMENT LEARNING

In this appendix, we give the stochastic recursions for the mo-
tivations for the four learning rules studied in this paper. We have
defined two forms of trial-and-error learning, PTR and ETR, and two
forms of hypothetical reinforcement learning, PHR and EHR.

Trial-and-Error

Dynamic learning rate
Substituting gi ¼ 0, fi,t ¼ (1/t) þ 1 into equation (3), we obtain

PTR with the updating rule

Mi;tþ1ðaÞ ¼ Mi;tðaÞ þ
1

t þ 1
1
�
a; ai;t

�
piða; a�i;t ;utÞ: (A1.1)

Every new experienced payoff is thus divided by the total
number of interactions and added to the previous motivation. In
the long run, the effect of new payoffs on motivations goes to zero.
Note that when action a is not played, the motivation is not
updated. Moreover, the learner does not forget information from
the past. It is the payoffs obtained in the first rounds of interaction
that have the biggest effect on the motivations at time t.

Constant learning rate
Substituting gi ¼ 0 and fi,t ¼ 1 into equation (3) gives ETR,

which has the updating rule

Mi;tþ1ðaÞ ¼
t

t þ 1
Mi;tðaÞ þ

1
t þ 1

1
�
a; ai;t

�
piða; a�i;t ;utÞ: (A1.2)
This rule looks like a time average of the payoffs obtained when
playing action a but it is actually a biased average. Indeed, in a
nonbiased average, the motivation of action a should not be
updated when action a is not played. However, here when action a
is not played at time t, the motivation is still updated but it is as if
the payoff obtained for action a at time t was zero. Hence,
depending on the signs of the payoffs in the game, the nonplayed
actions have a tendency to lose weight (e.g. when all payoffs in the
game are positive) or gainweight (e.g. when all payoffs in the game
are negative).

While equation (A1.2) may seem unfamiliar to students of ani-
mal learning, especially because of the time average principle, one
can translate this equation into the well-known form

Mi;tþ1ðaÞ ¼
� ð1� gtÞMi;tðaÞ þ gtpiða; a�i;t ;utÞ; if a ¼ ai;t ;
ð1� gtÞMi;tðaÞ; otherwise;

(A1.3)

where gt ¼ 1/(t þ 1) can be seen as a learning rate or discount
factor. This type of equation is common in the literature on ani-
mal learning and is often termed the linear operator model
(Amano et al., 2006; Bernstein et al., 1988; Bush & Mostelller,
1951; Hamblin & Giraldeau, 2009; McNamara & Houston, 1987;
Rescorla & Wagner, 1972; Stephens & Clements, 1998). However
in general the learning rate g is considered to be a constant, and
not a function of time as is the case here. The effect of having a
dynamic rather than constant learning rate is discussed in Sutton
and Barto (1998). In our model we required that gt ¼ 1/(t þ 1), but
our results hold as long as gt is a decreasing step size (in the
sense of stochastic approximation theory, Benaim, 1999; Dridi &
Lehmann, 2014).

Hypothetical Reinforcement Learning

Dynamic learning rate
Substituting gi ¼ 1 and fi,t ¼ (1/t) þ 1 into equation (3) yields

the PHR updating rule

Mi;tþ1ðaÞ ¼ Mi;tðaÞ þ
1

t þ 1
piða;a�i;t ;utÞ: (A1.4)

This equation is the counterpart of equation (A1.1) but
without the factor 1(a, ai,t) in front of the payoffs. The dynamics
will essentially obey the same principles as equation (A1.1), with
early payoffs (small t) having a bigger effect than late payoffs
(big t).

Constant learning rate
Substituting gi ¼ 1 and fi,t ¼ 1 into equation (3) gives EHR,

which is the standard belief-based learning rule (Camerer & Ho,
1999; Fudenberg & Levine, 1998), with motivation updating
given by

Mi;tþ1ðaÞ ¼
t

t þ 1
Mi;tðaÞ þ

1
t þ 1

piða;a�i;t ;utÞ: (A1.5)

For every action a, this equation represents the average payoff
that a player would have obtained if he were constantly playing
action a, given the history of his opponent's actions and environ-
mental states fa�i;t;utgtt¼1.

Belief-based learning
We now show that equation (A1.5) can also be interpreted in

terms of updating average payoffs given beliefs over the action
play probabilities of partners as in Camerer and Ho (1999). Note
that belief-based learning requires observing at the same time the
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action of the opponent and the entire payoff matrix of the game
after each interaction round, which relies on much more infor-
mation than just knowing the payoffs of unchosen actions as in
equation (A1.5). In this section, we also show that extending
belief-based learning to a situation of environmental fluctuations
is not trivial. In particular, the individual cannot just ignore the
effect of the environment on its payoffs. Indeed, whereas the in-
dividual cannot observe environmental states ut, we will see that
it must realize that another factor than just the behaviour of its
opponent is influencing its payoff. The individual must average out
the effect of this additional factor explicitly, as is detailed below.

For ease of presentation, but without loss of generality, we
consider that individual i interacts onlywith one other individual in
the population (one-shot matching model), which plays action
a�i;t2A at time t. We then write for t � 1

B �i;tþ1ðaÞ ¼
t

t þ 1
B �i;tðaÞ þ

1
t þ 1

1
�
a; a�i;t

�
; (A1.6)

where B �i,tþ1(a)2 [0,1] is the frequency of times the partner of
individual i has played action a up to time t, and which is the belief
of individual i that its partner plays a at t þ 1 given the initial belief
B �i,1 at t ¼ 1. We also define

~pi;tþ1ða; kÞ ¼
Pt

t¼1 1
�
k; a�i;t

�
piða; k;utÞ

n�i;tþ1ðkÞ
; (A1.7)

to be the average payoff at time t þ 1 individual i would have
obtained if he constantly played action a on all the interaction
rounds where his opponent played k. This allows the individual to
average out the effect of environmental fluctuations on its payoffs.
In equation (A1.7), n�i,tþ1(k) ¼ (t þ 1)B �i,tþ1(k) is the number of
times the opponent of i played action k up to time t. In the
following, it will be useful to write equation (A1.7) as the
recursion

~pi;tþ1ða; kÞ ¼
tB �i;tðkÞ

ðt þ 1ÞB �i;tþ1ðkÞ
~pi;tða; kÞ

þ 1
ðt þ 1ÞB �i;tþ1ðkÞ

1
�
k; a�i;t

�
piða; k;utÞ: (A1.8)

Let us now write

Mi;tþ1ðaÞ ¼
X
k2A

~pi;tþ1ða; kÞB �i;tþ1ðkÞ; (A1.9)

which can be interpreted as the expected payoff to individual i
given its beliefs over the action distribution of its partner and given
the history of environmental states. Substituting equation (A1.6)
and equation (A1.8) into equation (A1.9) shows that the motiva-
tion dynamics still satisfy equation (A1.5) for the case of two
players. Hence, when a hypothetical reinforcement learner ex-
presses action by using the logit choice rule (equation (2)), it be-
haves as if it tries to maximize its expected current reward given its
beliefs.
APPENDIX 2. STOCHASTIC APPROXIMATION

Here, we show the main steps to derive equations (5) and (6)
from equations (2) and (3). First, an application of stochastic
approximation theory (e.g. Benaim, 1999) shows that equations (2)
and (3) can be approximated by the set of differential equations
p
,
iðaÞ ¼piðaÞ

"
εi

X
k2A

log
�
piðkÞ
piðaÞ



piðkÞ

þ l

 
RiðaÞ �

X
k2A

RiðkÞpiðkÞ
!#

;

(A2.1)

where

RiðaÞ ¼ ½piðaÞ þ gið1� piðaÞÞ�
X

a�i2A N�1

p�iða�iÞpiða; a�iÞ (A2.2)

and

piða; a�iÞ ¼
X
u2U

mðuÞpiða; a�i;uÞ (A2.3)

(Dridi& Lehmann, 2014, equations (11)e(13)). Here, Ri;tða;MtÞ is
the expectation of the reinforcement to the motivation of action a,
i.e. the expectation of the numerator of the second term of equation
(3) over the distribution of environmental states and the distribu-
tion of choice probabilities, p�i(a�i), is the probability of the joint
action profile of individuals other than i, and piða; a�iÞ represents
the payoff of the average game in which individual i is involved.

In our context, the parameter εi in equation (A2.1) takes the
value εi ¼ 1 þ t(1�fi,t) (Dridi & Lehmann, 2014, equation (8) with
ni,t ¼ t and ri ¼ 1). Since we assumed that fi,t ¼ (1/t) þ 1, this gives
εi ¼ 0 and the exploration term (the first term in square brackets in
equation (A2.1)) cancels. Moreover, we are interested in 2 � 2
games so there are only two actions (A ¼ f1;2g) and two players.
Let the two players be denoted i and j, pi the probability that in-
dividual i takes action 1, and pj the probability that individual j
takes action 1. With this, we can write the differential equation for
the probability that individual i takes action 1 using equation (A2.1)
as

p
,
i ¼ pil

�
Rið1Þ �

�
Rið1Þpi þ Rið2Þð1� piÞ

��
; (A2.4)

where

Rið1Þ ¼ ½pi þ gið1� piÞ�
X

a�i2A N�1

p�iða�iÞpið1; a�iÞ (A2.5)

Rið2Þ ¼ ½ð1� piÞ þ gipi�
X

a�i2A N�1

p�iða�iÞpið2; a�iÞ: (A2.6)

Further, in the 2 � 2 games that we study here (one-shot
matching model), the single opponent of individual i is individual j
so a�i 2 {1,2} and p�i(1) ¼ pj. Replacing these in equation (A2.5),
we can write equation (A2.4) as

p
,
i ¼ pið1� piÞl

hn
pjpið1;1Þ þ

	
1� pj



pið1;2Þ

o
fpi þ gið1� piÞg

�
n
pjpið2;1Þ þ

	
1� pj



pið2;2Þ

o
fgipi þ ð1� piÞg

i
:

(A2.7)

Using the definition of the payoffs of the average game in
Table 4, we have
pið1;1Þ ¼ ℛ;pið1;2Þ ¼ S ;pið2;1Þ ¼ T ;pið2;2Þ ¼ P , to equation
(2.7) yields

p
,
i ¼pið1� piÞl

hn
pjℛ þ

	
1� pj



S
o
fpi þ gið1� piÞg

�
n
pjT þ

	
1� pj



P
o
fgipi þ ð1� piÞg

i
:

(A2.8)

For player j, the differential equation for its probability to take
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action 1 is the exact symmetric (because i is the single opponent of
j), whereby

_pj ¼pj
	
1� pj



l
h
fpiℛ þ ð1� piÞS g

n
pj þ gj

	
1� pj


o
� fpiT þ ð1� piÞP g

n
gjpj þ

	
1� pj


oi
:

(A2.9)

Perturbed versus Unperturbed Learning Dynamics

In this section we discuss how the case with dynamic learning
rate approximates the case with constant learning rate. When the
learning rate is dynamic (fi,t ¼ (1/t) þ 1), the exploration term in
equation (A2.1) disappears (because in this case εi ¼ 0) and we
call this the unperturbed dynamics. When the learning rate is
constant fi ¼ 1, the exploration term is weighted by εi ¼ 1, and we
call this case the perturbed dynamics. The role of the exploration
term is essentially to move the dynamics from pure states (i.e. the
corners of the state space) in the perturbed dynamics. However,
when l is very high the second term in brackets of equation
(A2.1) dominates the exploration term so that the equilibria of
the perturbed dynamics approach the equilibria of the unper-
turbed dynamics (see Dridi & Lehmann, 2014 for an illustration of
this statement).
APPENDIX 3. FECUNDITY AT BEHAVIOURAL EQUILIBRIUM

In this section, we derive an expression for fecundity (equation
(7)) under the assumption that the learning process (equations (5)
and (6)) has reached an equilibrium during the individual's lifetime.
Indeed, if the individuals interact for a long enough time, the action
probabilities pi,t(a) may reach an equilibrium for all i and a, and the
fecundity of player i will be its average payoff at equilibrium. Then,
the fecundity of individual i is

Pi ¼
X
u2U

X
a2A

X
a�i2A N�1

mðuÞbpiðaÞbp�iða�iÞpiða; a�i;uÞ; (A3.1)

where bpiðaÞ denotes the equilibrium probability with which indi-
vidual i chooses action a, while bp�iða�iÞ is the equilibrium proba-
bility with which the opponents of individual i choose action profile
a�i. This equilibrium is obtained by setting p

,
jðaÞ ¼ 0 in equation

(A2.1) for all j and a.
Equation (A3.1) should be understood as a long-run average

payoff in the game taken over three distributions. The first dis-
tribution gives the probability m(u) of playing game u; the second
distribution gives the equilibrium probability bpiðaÞ that player i
takes action a; the third distribution gives the probability bp�iða�iÞ
that the opponents of individual i take action profile a�i. The
distribution m(u) is already provided as a parameter of the model.
The other tow distributions have to be computed by studying the
equilibria of the choice probabilities bpiðaÞ for all i in the popu-
lation. Using equation (A2.3), the average payoff can be simplified
to

Pi ¼
X
a2A

X
a�i2A N�1

bpiðaÞbp�iða�iÞpiða; a�iÞ: (A3.2)

Since we are concerned with 2 � 2 games, and since the single
opponent of individual i is individual j (equations (5) and (6)), we
have a2 {1,2} and a�i 2 {1,2}. If we further call bpi the probability
that individual i plays action 1 at a behavioural equilibrium and bpj
the corresponding probability for individual j, equation (A3.2) can
be developed as
Pi ¼ bpibpjpið1;1Þ þ bpi

	
1� bpj
pið1;2Þ þ ð1� bpiÞbpjpið2;1Þ

þ ð1� bpiÞ
	
1� bpj



pið2;2Þ:

(A3.3)

Factoring out and replacing the average payoffs, pið,; ,Þ, by their
values in Table 4, we finally obtain

Pi ¼ bpi

	bpjℛ þ
	
1� bpj



S


þ ð1� bpiÞ

	bpjT þ
	
1� bpj



P


;

(A3.4)

where in the main text we usedPij ¼Pi in order to emphasize that
in the one-shot matching model, the payoff of individual i depends
only on its single opponent (j).
APPENDIX 4. QUALITATIVE ANALYSIS FOR THE ONE-SHOT
MATCHING MODEL

Here, we carry out the stability analysis of the equilibrium
points of the learning dynamics presented in the main text
(equations (5) and (6)). Before starting the analysis, let us make a
technical remark. The dynamical systems we will analyse can
display hyperbolic equilibria that admits stable manifolds (with
one positive and one negative eigenvalue). We will completely
discard the possibility that an initial condition is on a stable
manifold because doing so leads to a locally unstable equilibrium,
which is not robust to small perturbations under the original sto-
chastic process (Pemantle, 1990). Equilibria and eigenvalues were
calculated using the Mathematica software. The payoffs of the
average games are defined in Table 4.
Prisoner's Dilemma

PTR versus PTR. The dynamical system obtained by setting gi ¼ 0,
gj ¼ 0, ℛ ¼ B� C, S ¼ �C, T ¼ B, and P ¼ 0 into equations (5)
and (6) admits seven equilibria (Table 2). Four are at the corners
of the state space, two are on the edges and one is completely
interior. The first equilibrium on the edge is situated on the line
pi ¼ 1 and the other one is symmetric with respect to the line

pj ¼ pi. The interior equilibrium is
�bpi ¼ BþC

2B ; bpj ¼ BþC
2B



.

Evaluating the Jacobian matrix at each equilibrium and
computing the eigenvalues (Table 2) reveals that all equilibria are
characterized by at least one positive eigenvalue, except the two
equilibria (0,0) (both players defect) and (1,1) (both players
cooperate). These two latter equilibria are thus the only possible
endpoints of the learning dynamics (Hirsch, Smale, & Devaney,
2004), for all possible solution orbits (Fig. 2a). There, we can see
that the interior equilibrium (B þ C/2B, B þ C/2B) is an unstable
node, i.e. both its eigenvalues are positive. Moreover, the two
equilibria on the edges admit a stable and unstable manifold
because they have one positive eigenvalue and one negative
eigenvalue. All this implies that the equilibria (0,0) and (1,1) have a
basin of attraction that is delimited by these stable manifolds.
Since solutions along the nullcline defined by p

,
i ¼ 0 verify p

,
j >0

and solutions along the other nullcline (p
,
j ¼ 0) verify p

,
i >0, solv-

ing the inequalities p
,
i >0; p

,
j >0 for pi and pj (the region above the

nullclines) gives a subset of the basin of attraction of (1,1). In other
words, trajectories are increasing in this region and cannot escape
it. Using Mathematica, we find that these inequalities are satisfied
in two cases:
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8>>>>><>>>>>:

 
B

2B� C
<pj;1 � Bþ C

2B
and

Cpj;1
�Bþ 2Bpj;1

<pi;1 <1

!
or

 
Bþ C
2B

< pj;1 <1 and
Bpj;1

�C þ 2Bpj;1
< pi;1 <1

!
:

(A4.1)

PHR versus PHR. The dynamical system obtained by setting
gi ¼ 1, gj ¼ 1, and the PD game payoffs into equations (5) and (6)
admits the four corners of the state space [(0,1), (1,1), (1,0), (1,1)]
as equilibria. The only locally stable equilibrium is the point (0,0)
because it has negative eigenvalues (�C,�C). Hence, two players
using belief learning will end up always defecting (Fig. 2b).

PTR versus PHR. Setting gi ¼ 0, gj ¼ 1, and the PD game payoff
into equations (5) and (6), we find five equilibria. The four corner
equilibria and one on the edge pHR ¼ 1 situated at�bpTR ¼ B

2B�C; bpHR ¼ 1


. The linearization shows that all equilibria

are characterized by at least one positive eigenvalue, except the
equilibrium (0,0) which has eigenvalues (�C,0), implying, by
elimination, that it is the only stable equilibrium. Both players will
tend to defect in the long run (Fig. 2c).

HawkeDove Game

PTR versus PTR. In this case (gi ¼ 0, gj ¼ 0, ℛ ¼ B=2� C, S ¼ B,
T ¼ 0, and P ¼ B=2), equations (5) and (6) have eight different
equilibria. In addition to the four at the corners, we have two
interior equilibria and two symmetric (with respect to the line
pi ¼ pj) equilibria on the edges pi ¼ 0 and pj ¼ 0 (Table 3). The vector
field can be divided into three regions, each one being the basin of
attraction of an asymptotically stable equilibrium. The first is the
region where all trajectories tend to the equilibrium (0,0). This
equilibrium has negative eigenvalues. Its basin of attraction is
delimited by the stable manifolds of the equilibria situated on the
edges, precisely situated at (0,1/3) and (1/3,0). The nullclines give a
good approximation of the limits of this basin (Fig. 2d) and delimit a
region where all the points verify that pi_<0, p

,
j <0,

pj;1 < B
2B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p , pj;1 < B
2B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p . These are the points below the

equilibrium

 
B

2B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p ; B
2B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p
!

and where the vector field

points southwest. Excluding this specific region, all points below
the diagonal line pj ¼ pi are in the basin of (0,1) and all points
above this line pertain to the basin of (1,0). The points on this line
pi ¼ pj (again excluding the points that are in the basin of
(0,0)) are on the stable manifold of the interior equilibrium 

B
2B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p ; B
2B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BðB�CÞ

p
!
.

PHR versus PHR. Here, equations (5) and (6) admit only two
equilibria (0,1) and (1,0), which are asymptotically stable in the
region below the diagonal line pi ¼ pj and above this line, respec-
tively. This represents the stable manifold of the equilibrium (B/2C,
B/2C). On pi ¼ pj, we have the single population replicator dynamics
(Fig. 2e), hence the stable point on this line is the ESS of the Hawk-
Dove game, (B/2C, B/2C) (Weibull, 1997).

PTR versus PHR.We have six equilibria and three of them have at
least one positive eigenvalue. We are left with (0,1), (1,0) and one
interior at (B/2C,3B � 2C/2B). The latter equilibrium has eigenvalues�
� Bþ 3B2

8C þ C
2;�BðB�2CÞ

4C



, where the first one is always negative

and the second one always positive. This equilibrium thus admits a
stable manifold that splits the vector field into two regions: above
the stable manifold, this is the basin of attraction of (1,0) and below
it trajectories go to (0,1) (Fig. 2f). This stable manifold is a curve
passing through the equilibria (0,1/3), (B/2C,3B � 2C/2B), and (1,1).
Coordination Game

This game provides the simplest dynamics, where the equilibria
(0,0) and (1,1) are always the only two asymptotically stable states.

PTR versus PTR. Here, we set gi ¼ 0, gj ¼ 0, ℛ ¼ B, S ¼ 0, T ¼ 0,
and P ¼ B in equations (5) and (6), which then admits four trivial
corner equilibria plus all the points on the line pj ¼ 1 � pi. The
equilibria (0,0) and (1,1) both have negative eigenvalues and are
thus locally stable. The two other equilibria in the corners ((0,1) and
(1,0)) have eigenvalues (0,0). The equilibria on the line pj ¼ 1 � pj
have eigenvalues (0,2Bpi(1 � pi)), where the second eigenvalue is
0 when pi ¼ 0 or pi ¼ 1 and positive otherwise. This all implies that
the equilibrium (0,0) is asymptotically stable in the region below
the line pj ¼ 1 � pi and the equilibrium (1,1) is asymptotically stable
above this line (Fig. 2g). Note that the unstable line pj ¼ 1 � pi is not
an interesting set of initial conditions.

PHR versus PHR. The system in equations (5) and (6) admits five
equilibria in this situation: the four corners and one interior at
(½,½). The equilibria (0,0) and (1,1) are both asymptotically stable
because they both have eigenvalues (�B,�B) while the equilibria
(0,1) and (1,0) have eigenvalues (B,B). The interior equilibrium (½,½)
is a saddle with eigenvalues (�B/2,B/2) and consequently admits a
stable and an unstable manifold. It is easy to see that the stable
manifold is the diagonal line pj ¼ 1 � pi while the unstable mani-
fold is the other diagonal pj ¼ pi (Fig. 2h). Every trajectory starting
above pj ¼ 1 � pi will tend to (1,1) while if it starts below this line it
will tend to (0,0).

PTR versus PHR. Here, equations (5) and (6) have again five
equilibria: the four corners plus one interior at (½,½). The points
(0,0) and (1,1) are both asymptotically stable having eigenvalues
(�B,�B). The interior equilibrium is a saddle with eigenvalues (�B/
4,B/2). Hence a stable manifold passing through this saddle splits
the vector field in two regions, which correspond respectively to
the basin of attraction of (0,0) and (1,1). Here the stable manifold is
no longer situated on the diagonal because we have lost the sym-
metry property of the PHR versus PHR case (compare Fig. 2i with
Fig. 2h).
APPENDIX 5. SIMULATIONS

Individual-Based Simulations

Here, we present the algorithm of our individual-based simu-
lations. Each individual i2 {1,2,…,N} takes a genotypic value gi 2
{0,1}. In every generation, each individual i obtains fecundity Pi ¼PT

t¼1piðai;t ; a�i;t ;utÞ (equation (1), but we do not use the normal-
ization factor 1/T in the simulations), where the actions (ai,t, a�i,t),
which are random variables, are calculated by implementing
equations (2) and (3). The environmental state in each period (ut) is
drawn from a uniform distribution, which entails that m(PD) ¼
m(HD) ¼ m(CG) ¼ 1/3. The average game is parametrized according
to the B and C parameters as in Table 4 (we always used B ¼ 5 and
C ¼ 3), but the payoffs of the three subgames (PD, HD and CG) are
randomly generated at the beginning of each generation so that
they average to the desired average game and satisfy the in-
equalities described in Table 4. This implies that there are between-
generation fluctuations, and we used them to represent the con-
ditions where a learning ability gives an advantage over innate
behaviour. Under one-shot matching, individuals were paired only
at the beginning of the generation (t ¼ 1) and each pair played
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together until T, while under repeated matching individuals were
rematched at each time period t ¼ 1,2,…,T.

The next generation is sampled with replacement according to
the relative fecundity of individuals (i.e. Pi=

PN
i¼1Pi, a Wright-

Fisher process). An offspring inherits the genotype of its parent
with probability 1 � h or mutates with probability h to the other
genotype. The mutation rate was set to h ¼ 10�3. We ran simula-
tions with N ¼ 1000 and we used a value of T bigger than the
average time needed for learning to converge to a stable value
(where this average time was computed separately for each game
and initial condition, and we did not use values smaller than
T ¼ 500). Each case described in the main text (i.e. each game and
each type of initial preferences of the learners) was run in three
different replicates: one with an initial population (at the first
generation) composed of half PTRs and half PHRs; one with an
initial population of only PTRs; one with an initial population of
only PHRs. This was to check that our simulation results are inde-
pendent of initial conditions. Moreover, wewaited for each run that
the dynamic mean frequency of learning rules converge to a stable
value, at which point we stopped the simulation. Our convergence
criterion was met when the time average of the learning rules'
frequencies did not change by more than 10�6 for 100 successive
generations. We used k ¼ 0 and varied l from 10�1 to 103 (see
below).

We also carried out simulations only of the learning phase. To
that aim, we implemented, in the one-shot matching model, pairs
of individuals playing outside a population setting using the same
parameters as in the full evolutionary simulations. We shall remark
at this point that, contrary to the evolutionary simulations (which
implement a Markov Chain admitting a stationary distribution), the
learning dynamic is not ergodic so it does not admit a stationary
distribution; stochastic approximation theory rather shows that
the dynamics of learning will converge to one of the equilibrium
points under the corresponding deterministic differential equation
(see for example Borkar, 2008, Chapter 2, Corollary 4). In our sim-
ulations we observed convergence only to linearly stable equilib-
rium points (but note that, in general, stochastic approximation
algorithms may not necessarily converge to a linearly stable equi-
librium point, Pemantle, 1990). To understand the simulations, just
note that the learning dynamics should converge to one of the
equilibria but that it need not converge to the same equilibrium for
two different replicates of a simulation, hence the necessity to run
many replicates of the same parameter set.

For repeated matching, learning simulations consisted of
running only one generation but setting the frequencies of PTR and
PHR manually. We took the same cases (i.e. the three different
average games (PD, HD and CG) and the different initial preferences
over actions of the learners) as in the one-shot matchingmodel and
simulated learning behaviour for 11 different values of the fre-
quency q of PTR in the population ranging from0 to 1 by steps of 0.1.

Tuning Parameters

To find parameters that reproduce our analytical results, the
process of running simulations consisted of two steps. First, we ran
simulations between pairs of learners (PTR versus PTR, PTR versus
PHR, and PHR versus PHR) for each game, in order to establish the
accuracy of the approximation of the equilibrium action play
probabilities. It has been previously found that the time t needed
for the simulated learning process to converge to the predicted
equilibrium critically depends on the sensitivity to motivations, l,
and on the initial difference between motivations of action 1 and 2,
DMi,1 ≡Mi,1(1) �Mi,1(2) at time t ¼ 1 (Dridi & Lehmann, 2014).
Since our analytic prediction is asymptotic, it tells nothing about
the values of l, DMi,1, and T. Hence, we first ran several simulations
of learning with different values of l and DMi,1, and waited for the
learning process to ‘converge’ (based on a numerical convergence
criterion). This gives us the parameter T needed for convergence to
happen during the individual's lifetime. We then compared the
equilibrium behaviour in these simulations with the predicted
equilibrium, and chose the values of DMi,1 and l that give the best
match to prediction. To reduce our search in parameter space, we
fixed the value of pi,1(a) to 0.85 for the initially preferred action a
(see below) and only varied l. This automatically changes the initial
value of motivations DMi,1, such that we do not require to vary them
explicitly. We used five different values of l of the form 10a for
a ¼ �1,0,1,2,3. In the second step, we simulated the evolutionary
process of selection on PTR versus PHR. To this end, we used the
values of l, DM, and T found in step 1 which give the best match
between the stochastic learning process and deterministic
approximation. The idea is that, since we chose parameters of
learning where the approximation works well, the evolutionary
simulations should also match the evolutionary predictions based
on our approximation of learning. To further investigate the model
under the alternative condition that fi is constant, we also per-
formed the same set of simulations but with fi ¼ 1. This changes
the type of the learning rules, which are now the counterpart to PTR
and PHR when fi ¼ 1; that is, exploratory trial-and-error rein-
forcement (ETR) and hypothetical reinforcement learning (EHR).
We used the parameter values for l and DMi,1 applied in the case
with dynamic learning rate.

We also explored parameter values that did not necessarily
reproduce our analytical results. We report the results of such
exploration in Appendix 8.

APPENDIX 6. DETAILED SIMULATION RESULTS

In this appendix, we describe in greater detail the results of our
individual-based simulations.

One-shot Matching

Prisoner's Dilemma: dynamic learning rate
Both players initially prefer cooperation. Here, the simulations give
results close to what is expected under our approximation when
l ¼ 10. Regarding learning, we find the following results for the
three possible interactions between learning rules. When PTR plays
against PTR, most pairs learn to cooperate, but some pairs learn to
defect (Fig. 3a): this is not surprising because under the stochastic
learning process, individuals can escape basins of attraction and
reach the locally stable equilibrium where both players defect. In
the interaction between PHRs, all pairs learn to defect (Fig. 3b), as
predicted by the analysis. In the interaction between PTR and PHR,
both learning rules learn to defect: PTR does not get exploited by
PHR (Fig. 3c). Overall this gives an advantage to PTR because this
learning rule cooperates with itself but defects with the defector
PHR. As a consequence, in the evolutionary simulations, PTR fixes in
the population irrespective of the initial composition of the popu-
lation (Table 5).

Both players initially prefer defection. In this case, we also find that
l ¼ 10 gives the best fit to deterministic analysis. Surprisingly at
first sight, we also observe that PTR individuals sometimes learn to
cooperate when paired with themselves (Fig. 3d; while the analysis
predicts that they will always defect in this case). This is actually
perfectly possible, and is explained (as above) by the fact that initial
conditions do not constrain absolutely the equilibrium behaviour:
individuals with initial preference for defection can still learn to
cooperate because this is also a stable equilibrium for the dynamics.
PHR individuals do not deviate from perfect defection (Fig. 3e). For
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the interaction between PTR and PHR, we find again that both
learning rules learn to defect (Fig. 3f). Since learning behaviour is
somehow similar to the case where individuals prefer cooperation,
we find as expected that PTR fixes in the population when we
simulate natural selection. This is due to the tendency of PTR to
sometimes cooperate with itself (Table 5).
Prisoner's Dilemma: constant learning rate
Both players initially prefer Cooperation. In this situation, the

results are very similar to the case with a dynamic learning rate.
Namely, ETR is able to learn to cooperate against itself, a behaviour
that EHR cannot express, and this gives a fitness advantage to ETR
because ETR learns to defect against EHR (Fig. A1a, b, c). As a
consequence, the frequency of ETR at an evolutionary equilibrium
is very close to 1 (Table 5).
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Figure A1. Distribution of behaviour at equilibrium of learning in the average Prisoner's Dilemma for the one-shot matching model with constant learning rate for pairs of op-
ponents. This represents the frequency of pairs having reached the probability of playing action 1 (p1,T, p2,T) at the end of the individual's lifetime, T . We used a total of 1000
individuals of each learning rule in each simulation. (a, b, c) Initial preference for Cooperation (pi,1 ¼ 0.85). (d, e, f) Initial preference for Defection (pi,1 ¼ 0.15). (a, d) Interaction
between two TRs. (b, e) Interaction between two HRs. (c, f) Interaction between TR (player 1) and HR (player 2).
Both players initially prefer defection. Here ETR individuals display
the same behaviour as with a dynamic learning rate when paired
together: namely some pairs learn to defect and others learn to
cooperate (Fig. A1d). EHR individuals on the other hand, still learn
to defect whatever their opponent is (Fig. A1e). The interactions
between ETR and EHR display a different outcome than previously.
Here we observe that ETR individuals converge to a state where
they have a positive probability of cooperating, and hence get
exploited on some interaction rounds (Fig. A1f).

As a consequence of this learning behaviour, the evolutionary
simulations show that EHR fixes in the population in the long run
when they are initially at high frequency but otherwise this is ETR
that invades (Table 5). Such a result is possible if there is an interior
unstable equilibrium in the evolutionary dynamics: when ETR are
common in the population, they have a tendency to increase in
frequency; when they are at low frequency they have a tendency to
further decrease in frequency. This situation corresponds to
observed learning behaviour: while ETR individuals have the
advantage of cooperating with themselves, this does not seem to
compensate the for fitness loss due to sometimes cooperating
against the defector EHR when EHR constitutes most of the
population.
HawkeDove game: dynamic learning rate

PTR initially prefers to play Hawk and PHR prefers Dove. In the
analysis, we predict that with these initial preferences, PTR in-
dividuals will learn to play half of the time Hawk and half of the
time Dove when paired against themselves. However, in the sim-
ulations, we observe that a high proportion of PTR learned to play
Dove (Fig. 4a; the best value found for sensitivity is here l ¼ 10). As
before, this can be explained by the possibility of escaping a basin of
attraction: the outcome (Dove, Dove) is also an equilibrium for the
dynamics and some pairs of individuals converge to this equilib-
rium. When a PHR plays against a PHR, we find as predicted that
approximatively half PHRs learn Hawk and half learn Dove (Fig. 4b).
Finally, for PTR versus PHR, things go as predicted with a vast
majority of PTR learning Hawk and a vast majority of PHR learning
Dove: PHR gets ‘exploited’ by PTR here (Fig. 4c).
Whenwe run simulations of natural selection in a population of
PTR and PHR we obtain that PTR fixes for all initial compositions of
the population (Table 5). Since learning behaviour is in conformity
with our analytic prediction, this is not a surprise. The important
interaction between PTR and PHR turns to the advantage of PTR.
The latter is more prompt to learn the Hawk strategy and PHR is
penalized by its initial preference for Dove. One unpredicted
outcome of learning, namely the fact that PTR will learn to play
Dove against itself even if it initially prefers Hawk, gives no special
advantage to PTR with the payoff structure of our HawkeDove
game.

PTR initially prefers to play Dove and PHR prefers Hawk. This initial
condition is mirroring the previous case, and the analysis thus
predicts that PHR should be the one that learns to play Hawk
against PTR (the sensitivity that gives the best match to prediction
is l ¼ 100 for this case). This is indeed what we observe (Fig. 4f). For
the interactions between the same learning rules (PTR versus PTR
and PHR versus PHR), we have the same behaviour as before: most
PTR learn to play Dove (Fig. 4d), and PHR learn half of the time to
play Hawk and half of the time to play Dove (Fig. 4e). With this
learning behaviour, PHR invades and fixes in the population for all
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initial compositions of the population, and this happens very fast
(in the first generations; Table 5).

HawkeDove game: constant learning rate

PTR initially prefers to play Hawk and PHR prefers Dove. In this sit-
uation, we observe qualitatively the same learning behaviours as
with a dynamic learning rate. In particular, ETR learns Hawk against
EHR and the latter learns Dove (Fig. 2a, b, c). As a consequence, ETR
fixes to a frequency of 1 at an evolutionary equilibrium (Table 5).

PTR initially prefers to play Dove and PHR prefers Hawk. The result is
again very similar to the case with dynamic learning rate. Namely,
in ETR versus HR interactions, ETR learn Dove and EHR learn
Hawk (Fig. A2d, e, f) and this implies that EHR rapidly take over
and fixes in the population under the evolutionary simulations
(Table 5).
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Figure A2. Same as Fig. A1 but for the average HawkeDove game in the one-shot matching model with constant learning rate. (a, b, c) TR initially prefers Hawk (pTR,1 ¼ 0.15) and HR
prefers Dove (pHR,1 ¼ 0.85). (d, e, f) TR initially prefers Dove (pTR,1 ¼ 0.85) and HR prefers Hawk (pHR,1 ¼ 0.15). (a, d) Interaction between two TRs. (b, e) Interaction between two HRs.
(c, f) Interaction between TR (player 1) and HR (player 2).
Coordination game: dynamic learning rate
In this average game, we give to all individuals a preference for

the ‘Left’ action and find that all individuals succeed in coordinating
at time T. Pairs of PTR individuals coordinate mostly on action 2
(‘Right’) while pairs of PHR coordinate mostly on action 1 (‘Left’)
(Fig. 5a, b). The heterogeneous pairs (PTR versus PHR) coordinate
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Figure A3. Distribution of behaviour at equilibrium of learning in the average Coordinatio
between two TRs. (b) Interaction between two HRs. (c) Interaction between TR (player 1) a
mostly on the Right action (Fig. 5c). This result is difficult to explain
because individuals had an initial preference for ‘Left’ but since the
analysis demonstrates that (Right, Right) is also a stable equilib-
rium of the associated deterministic system, this result does not
contradict our qualitative analysis.

Interestingly, the evolutionary simulations give an outcome
different thanwhatwe expected.While the above learningbehaviour
suggests that both learning rules should coexist in equal frequency in
the long-run, we find that the population converges to a mixed state
with domination of PHR individuals (Table 5). Again, it is difficult to
knowwhy this happened, but a possible reason for thismight be that
some PTR individuals converge more slowly to the equilibrium. Even
ifwe chose T big enough, our criterionwas based on the average time
needed for all individuals to converge in the population. Some in-
dividualsmight convergemore slowly than inT time steps, and fail to
coordinate at this time, giving an advantage to PHR.
Coordination game: constant learning rate
The results of learning dynamics under constant learning rate

are very similar to the above, with ETR pairs coordinating on Right,
EHR pairs coordinating on Left and heterogeneous pairs coordi-
nating on Right (Fig. A3a, b, c).
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Regarding evolution, the result is in conformity to our analysis
since the population converges to a mixed state where the fre-
quency of both learning rules is close to 0.5 but with a slight
domination of ETR individuals (qz 0.56; Table 5).

Repeated Matching

Prisoner's Dilemma: dynamic learning rate
All individuals initially prefer cooperation. In the average PD game,
we use the value l ¼ 10 that gives the best correspondence be-
tween analysis and simulation in the one-shot matching (OM)
model. We find that PHR learns to defect irrespective of the fre-
quency of the learning rules in the population. However, PTR in-
dividuals can learn to cooperatewhen at sufficiently high frequency
in the population (precisely, the average probability of cooperating
at equilibrium of learning of PTR is above 0 for q � 0.8; Fig. 6a). This
result is not surprising given the OM results. Indeed, when at high
frequency, there is a positive probability that a PTR individual
meets only other PTRs and the dynamics of those individuals will
likely be similar to the dynamics of pairs of PTR in the OM model.

This learning behaviour implies that evolution leads to an
interior equilibrium with the coexistence of PTR and PHR. Indeed,
when PTR are at lower frequency than 0.8, evolution is neutral
because everybody defects. However, when the population reaches
a state where the frequency of PTR is above 0.8, PTR starts to
cooperate so the latter has a disadvantage compared to PHR and
thus has a tendency to decrease in frequency. The population thus
visits all the states such that the frequency of PTR is less than 0.8
equally often, and in our evolutionary simulations we obtain a
stable average frequency of PTR around qz 0.19 (Table 6).

All individuals initially prefer defection. In this game and with these
initial preferences, individuals of both learning rules learn to defect
for all frequencies of PTR in the population (Fig. 6b).

This leads us to think that evolution is neutral here and that the
evolutionary simulations should converge to a state where q ¼ 0.5.
Our simulations give a result close to this prediction but we also
find that PHR slightly dominates the population at an evolutionary
equilibrium (Table 6).

Prisoner's Dilemma: constant learning rate
All individuals initially prefer cooperation. At all frequencies, ETR
individuals converge to a state where their average probability of
cooperation is above 0, which gives a complete advantage to the
defector EHR in this repeated matching model (Fig. 6c). As a
consequence, the evolutionary dynamics display a state where the
domination of EHR is almost total as they nearly fix in the popu-
lation at an evolutionary equilibrium (Table 6).

All individuals initially prefer Defection.
In the same vein as when individuals initially prefer Coopera-

tion, ETR players also converge to an average probability of Coop-
eration that is positive for all values of q, while EHR always learn to
defect (Fig. 6d). This situation makes EHR almost fix in the popu-
lation in an evolutionary long run (Table 6).

HawkeDove game: dynamic learning rate
ETR initially prefers to play Hawk and EHR prefers Dove. Even
though we implement an initial preference for Hawk to PTR in-
dividuals, we find here that, in their learning behaviour, PTR
converge to a state where their probability of playing Dove is al-
ways higher than that of PHR. Moreover, PTR have a tendency to
increase their probability of playing Dove as they increase in fre-
quency while we observe the inverse tendency among PHR
individuals, which decrease their learned probability of playing
Dove as the frequency of PTR increases (Fig. 6e).

As a result, the evolutionary simulations of natural selection
give the result that both learning rules coexist in the long runwith a
domination of PHR individuals. Indeed, we observe that at low
frequencies q, PHR are playing Hawk a little more often than pre-
scribed by the ESS (which is here 1 � B/2Cz 0.17 because we use
B ¼ 5 and C ¼ 3), and PTR are playing Dove with a high average
probability. This gives an advantage to PTR at low frequencies since
they perform better against PHR than PHR perform against them-
selves (because they play Hawk too often). However, when the
frequency of PTR increases, the latter gets exploited more often by
PHR because PTR plays more and more Dove while PHR plays more
and more Hawk, which gives an advantage to PHR. Hence at high
enough frequencies of PTR, PHR has a higher fitness than PTR. This
explains the interior equilibrium with a domination of PHR in the
evolutionary simulations (Table 6).

ETR initially prefers to play Dove and EHR prefers Hawk. This initial
condition was favouring PHR in the one-shot matching model, and
we have the same situation here.We observe that PTR learns to play
Dove with high average probability (not smaller than 0.6) for all q,
while PHR learns to play Hawk with a high average probability, and
this probability evendecreases as PTR increases in frequency (Fig. 6f).

Hence, PHR obtains a higher payoff against PTR than PTR against
PTR which gives it an advantage for high q. However, for low q, PTR
against PHR cannot obtain a much better payoff than PHR against
PHR since the latter plays close to the ESS at low q. This is why we
observe in the evolutionary simulations that PHR dominates the
population in an interior equilibrium (Table 6).

HawkeDove game: constant learning rate

ETR initially prefers to play Hawk and EHR prefers Dove. The results
for this case resemble the case with dynamic learning rate above.
Namely, ETR individuals have for all q a learned probability of
playing Dove above that of PHR. Moreover, the probability of
playing Dove of ETR increases as q increases but this probability
decreases for EHR (Fig. 6g).

For the same reason as in the case with dynamic learning rate,
natural selection leads to an interior equilibrium with a large
domination of PHR (Table 6).

ETR initially prefers to play Dove and EHR prefers Hawk. Again this
situation is very similar to the one with dynamic learning rate
above. ETR always has an average probability of playing Dove higher
than PHR, while the latter plays close to the ESS when frequent in
the population and plays almost always Hawk when rare (Fig. 6h).

This learning behaviour favours EHR over ETR and simulations
of evolution confirm this by showing that the frequency of ETR at
evolutionary equilibrium is around qz 0.05 (Table 6).

Coordination game: dynamic learning rate
In this game, PTR has difficulties in coordinating on the same

equilibrium as PHR for all frequencies q, while PHR always succeeds
in learning to coordinate on a single action (that can be Left or Right
depending on stochastic events in the simulations; Fig. 6i).

This learning behaviour implies that PTR has lower fitness for all
q. Indeed simulations of natural selection show that PHR fix in the
population in the long run (Table 6).

Coordination game: constant learning rate
In this case, the learning behaviour of EHR is similar to the sit-

uation with dynamic learning rate, namely, all EHR learn to coor-
dinate on a single action. On the other hand, ETR still have



Table A3
Summary of results in the repeated matchingmodel for l ¼ 1 (otherwise identical to
Table 6)

Average Game Initial condition of learning Learning
rate

Simulated
q�

Prisoner's
Dilemma

All individuals prefer
Cooperation

Dynamic 0.04
Constant 0.02

All individuals prefer
Defection

Dynamic 0.1
Constant 0.02

Hawk-Dove
Game

TR prefers Hawk, HR
prefers Dove

Dynamic 0.82
Constant 0.65

TR prefers Dove, HR
prefers Hawk

Dynamic 0.07
Constant 0.25

Coordination
Game

All individuals prefer Left Dynamic 0.02
Constant 0.25

Table A4
Summary of results in the repeated matching model for l ¼ 100 (otherwise identical
to Table 6)

Average Game Initial condition of learning Learning
rate

Simulated
q�

Prisoner's
Dilemma

All individuals prefer
Cooperation

Dynamic 0.36
Constant 0.26

All individuals prefer
Defection

Dynamic 0.47
Constant 0.24

Hawk-Dove
Game

TR prefers Hawk, HR
prefers Dove

Dynamic 0.16
Constant 0.15

TR prefers Dove, HR
prefers Hawk

Dynamic 0.08
Constant 0.09

Coordination
Game

All individuals prefer Left Dynamic 0.01
Constant 0.02

Table A1
Summary of results in the one-shot matchingmodel for l ¼ 1 (otherwise identical to
Table 5)

Average Game Initial condition of
learning

Predicted
q�

Learning
rate

Simulated
q�

Prisoner's
Dilemma

Basin of (Cooperate,
Cooperate) of
TRvsTR

1 Dynamic 0.97
Constant 0.02

Basin of (Defect,
Defect) of TRvsTR

1/2 Dynamic 0.09
Constant 0.02

Hawk-Dove
Game

Basin of (Hawk,
Dove) of TRvsHR

1 Dynamic 0.99
Constant 0.99

Basin of (Dove,
Hawk) of TRvsHR

0 Dynamic 0
Constant 0.03

Coordination
Game

Basin of (Left, Left) 1/2 Dynamic 0.52
Constant 0.61

Table A2
Summary of results in the one-shot matching model for l ¼ 100 (otherwise identical
to Table 5)

Average Game Initial condition of
learning

Predicted
q�

Learning
rate

Simulated
q�

Prisoner's
Dilemma

Basin of (Cooperate,
Cooperate) of TRvsTR

1 Dynamic 0.99
Constant 0.99

Basin of (Defect, Defect)
of TRvsTR

1/2 Dynamic 0.98
Constant 0.98

Hawk-Dove
Game

Basin of (Hawk, Dove)
of TRvsHR

1 Dynamic 0.97
Constant 0.22

Basin of (Dove, Hawk)
of TRvsHR

0 Dynamic 0
Constant 0

Coordination
Game

Basin of (Left, Left) 1/2 Dynamic 0.21
Constant 0.56
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difficulties coordinating for sufficiently high q, but coordinate
efficiently for low q (Fig. 6j).

This learning behaviour implies that evolution should be neutral
for low q but should favour EHR for higher q. This is indeed
consistent with what we obtain when we simulate natural selec-
tion, where we observe an interior equilibrium with a large
domination of EHR (qz 0.06; Table 6).

APPENDIX 7. WIN-STAY, LOSE-SHIFT FROM EWA

Here, we show that the automaton strategy win-stay, lose-shift
(WSLS) can be obtained from EWA (Camerer & Ho, 1999), which
confirms the verbal explanation given by Nowak and Sigmund
(1993) arguing that WSLS is a payoff-based strategy in the spirit
of trial-and-error reinforcement learning (but see Stephens and
Clements (1998) on the misuse of the name ‘Pavlov’ to designate
WSLS). Essentially, WSLS repeats its last action if the payoff
received is above a certain aspiration level, but WSLS switches
action if the payoff is below that aspiration level. Let L be such an
aspiration level, which must satisfy T >ℛ > L>P >S . We will
show that EWA with parameters g ¼ 0, f ¼ r ¼ 0, l ¼∞, and L
subtracted from motivations can indeed produce the WSLS
behaviour. The updating rule for motivations with these parame-
ters in a pairwise interaction is

Mi;tþ1ðaÞ ¼ 1
�
a; ai;t

��
pi
�
a; a�i;t ;ut

�� L
�
: (A7.1)

Consider two players engaged in the repeated play of the Pris-
oner's Dilemma with payoff matrix�
ℛ S
T P



:

Let us focus on player 1 which will be called player i.
Player i plays according to WSLS if

ai;tþ1 ¼

8>><>>:
C; if at ¼ ðC;CÞ;
C; if at ¼ ðD;DÞ;
D; if at ¼ ðC;DÞ;
D; if at ¼ ðD;CÞ;

(A7.2)

where at ¼ (ai,t,a�i,t). In terms of motivations under EWA, this
means that we must have, when l ¼∞,8>><>>:

Mi;tþ1ðCÞ>Mi;tþ1ðDÞ; if at ¼ ðC;CÞ;
Mi;tþ1ðCÞ>Mi;tþ1ðDÞ; if at ¼ ðD;DÞ;
Mi;tþ1ðCÞ<Mi;tþ1ðDÞ; if at ¼ ðC;DÞ;
Mi;tþ1ðCÞ<Mi;tþ1ðDÞ; if at ¼ ðD;CÞ:

(A7.3)

Substituting the definition of the motivation (equation (A7.1)),
we obtain8>><>>:

ℛ � L>0; if at ¼ ðC;CÞ;
0>P � L; if at ¼ ðD;DÞ;
S � L<0; if at ¼ ðC;DÞ;
0<T � L; if at ¼ ðD;CÞ;

(A7.4)

which effectively gives

T >ℛ > L>P >S ; (A7.5)

as required by the definition of WSLS given above.

APPENDIX 8. ROBUSTNESS TO CHANGES IN l AND T

In this appendix, we display results of simulations for other
values of l and T, in order to test the robustness of our results
(Tables A1eA10) and Figs. A4eA6.



Table A9
Summary of results in the repeated matching model for l ¼ 10 and T ¼ 50 (other-
wise identical to Table 6)

Average Game Initial condition of learning Learning
rate

Simulated
q�

Prisoner's
Dilemma

All individuals prefer
Cooperation

Dynamic 0.11
Constant 0.05

All individuals prefer
Defection

Dynamic 0.21
Constant 0.05

Hawk-Dove
Game

TR prefers Hawk, HR
prefers Dove

Dynamic 0.17
Constant 0.10

TR prefers Dove, HR
prefers Hawk

Dynamic 0.04
Constant 0.04

Coordination
Game

All individuals prefer Left Dynamic 0.02
Constant 0.02

Table A5
Summary of results in the one-shot matching model for l ¼ 1 and T ¼ 50 (otherwise
identical to Table 5)

Average Game Initial condition of
learning

Predicted
q�

Learning
rate

Simulated
q�

Prisoner's
Dilemma

Basin of (Cooperate,
Cooperate) of TRvsTR

1 Dynamic 0.02
Constant 0.02

Basin of (Defect, Defect)
of TRvsTR

1/2 Dynamic 0.06
Constant 0.02

Hawk-Dove
Game

Basin of (Hawk, Dove)
of TRvsHR

1 Dynamic 0.99
Constant 0.99

Basin of (Dove, Hawk)
of TRvsHR

0 Dynamic 0.01
Constant 0.01

Coordination
Game

Basin of (Left, Left) 1/2 Dynamic 0.55
Constant 0.74
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Table A6
Summary of results in the one-shot matching model for l ¼ 10 and T ¼ 50 (other-
wise identical to Table 5)

Average Game Initial condition of
learning

Predicted
q�

Learning
rate

Simulated
q�

Prisoner's
Dilemma

Basin of (Cooperate,
Cooperate) of TRvsTR

1 Dynamic 0.99
Constant 0.98

Basin of (Defect, Defect)
of TRvsTR

1/2 Dynamic 0.96
Constant 0.60

Hawk-Dove
Game

Basin of (Hawk, Dove)
of TRvsHR

1 Dynamic 0.99
Constant 0.98

Basin of (Dove, Hawk)
of TRvsHR

0 Dynamic 0
Constant 0

Coordination
Game

Basin of (Left, Left) 1/2 Dynamic 0.37
Constant 0.60

Table A7
Summary of results in the one-shot matching model for l ¼ 100 and T ¼ 50
(otherwise identical to Table 5)

Average Game Initial condition of
learning

Predicted
q�

Learning
rate

Simulated
q�

Prisoner's
Dilemma

Basin of (Cooperate,
Cooperate) of TRvsTR

1 Dynamic 0.99
Constant 0.99

Basin of (Defect, Defect)
of TRvsTR

1/2 Dynamic 0.98
Constant 0.98

Hawk-Dove
Game

Basin of (Hawk, Dove)
of TRvsHR

1 Dynamic 0.97
Constant 0.93

Basin of (Dove, Hawk)
of TRvsHR

0 Dynamic 0.01
Constant 0.01

Coordination
Game

Basin of (Left, Left) 1/2 Dynamic 0.53
Constant 0.70

Table A8
Summary of results in the repeated matching model for l ¼ 1 and T ¼ 50 (otherwise
identical to Table 6)

Average Game Initial condition of learning Learning
rate

Simulated
q�

Prisoner's
Dilemma

All individuals prefer
Cooperation

Dynamic 0.01
Constant 0.02

All individuals prefer
Defection

Dynamic 0.06
Constant 0.02

Hawk-Dove
Game

TR prefers Hawk, HR
prefers Dove

Dynamic 0.91
Constant 0.67

TR prefers Dove, HR
prefers Hawk

Dynamic 0.05
Constant 0.07

Coordination
Game

All individuals prefer Left Dynamic 0.03
Constant 0.05
Table A10
Summary of results in the repeated matching model for l ¼ 100 and T ¼ 50
(otherwise identical to Table 6)

Average Game Initial condition of learning Learning
rate

Simulated
q�

Prisoner's
Dilemma

All individuals prefer
Cooperation

Dynamic 0.15
Constant 0.22

All individuals prefer
Defection

Dynamic 0.23
Constant 0.24

Hawk-Dove
Game

TR prefers Hawk, HR
prefers Dove

Dynamic 0.15
Constant 0.09

TR prefers Dove, HR
prefers Hawk

Dynamic 0.04
Constant 0.04

Coordination
Game

All individuals prefer Left Dynamic 0.01
Constant 0.01

0 200 300 400
0

0.2

0.4

0.6

1

0.8

Pr
ob

ab
il

it
y 

of
 p

la
yi

n
g 

co
op

er
at

e

100
Interaction round, t

Figure A4. Behavioural dynamics of cooperation in the average Prisoner's Dilemma for
a typical pair of HR (blue line) versus TR (red line) (4i,t ¼ (1/t)þ1) in the one-shot
matching model with initial preference for cooperation (pi,1 ¼ 0.85 for both players).
Parameter values: T ¼ 500, l ¼ 1 for both players, B ¼ 5, C ¼ 3, m(u) ¼ 1/3 for all u2

{PD, HD, CG}.



0 20 000 30 000 40 000 50 000 60 000 70 000
0

0.2

0.4

0.6

1

10 000

Generation

0.8

Fr
eq

u
en

cy
 o

f 
tr

ia
l-

an
d

-e
rr

or
 l

ea
rn

er
s

Figure A6. Evolutionary dynamics of the frequency of reinforcement learners in the
one-shot matching model when the game is constant and corresponds to a Coordi-
nation Ggame. We plot the time average of the frequency of reinforcement learners at
each generation. The three different lines represent distinct simulations where we
used different initial compositions of the population. In red, the population is initially
composed of HR only, in black of TR only and in blue of half TR and half HR.
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Figure A5. Distribution of behaviour at equilibrium of learning in the average Pris-
oner's Dilemma for the one-shot matching model with dynamic learning rate for pairs
of TR individuals. Same as Fig. 3a but with l ¼ 1.
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