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‘BUREAUCRATIC’ SET SYSTEMS, AND THEIR ROLE IN

PHYLOGENETICS

DAVID BRYANT AND MIKE STEEL

Abstract. We say that a collection C of subsets of X is bureaucratic if every maximal hierar-
chy on X contained in C is also maximum. We characterise bureaucratic set systems and show
how they arise in phylogenetics. This framework has several useful algorithmic consequences:
we generalize some earlier results and derive a polynomial-time algorithm for a parsimony
problem arising in phylogenetic networks.

1. Bureaucratic sets and their characterization

We first recall some standard phylogenetic terminology (for more details, the reader can
consult [6]). Recall that a hierarchy H on a finite set X is a collection of sets with the property
that the intersection of any two sets is either empty or equal to one of the two sets; we also
assume that X ∈ H.
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Figure 1. (a): A rooted tree T with leaf set X = {1, 2, 3, 4, 5}, and
with cluster set c(T ) being equal to the hierarchy H consisting of the sets
{1, 2, 3}, {4, 5} and the trivial clusters. (b): A binary tree T with a cluster
set consisting of H ∪ {{1, 2}}. (c): A binary and planar phylogenetic net-
work N over X = {1, 2, 3, 4} with a soft-wired cluster set sw(N ) consisting
of {1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4} and the trivial clusters.

A hierarchy is maximum if |H| = 2|X | − 1, which is the largest possible cardinality. In this case
H corresponds to the set of clusters c(T ) of some rooted binary tree T with leaf set X (a cluster
of T is the set of leaves that are separated from the root of the tree by any vertex). A maximum
hierarchy necessarily contains {x} for each x ∈ X , as well as X itself; we will refer to these
|X |+ 1 sets as the trivial clusters of X . More generally, any hierarchy containing all the trivial
clusters corresponds to the clusters c(T ) of a rooted tree T with leaf set X (examples of these
concepts are illustrated in Fig. 1(a),(b)). Note that a hierarchy H is maximum if and only if (i)
H contains all the trivial clusters, and (ii) each set C ∈ H of size greater than 1 can be written
as a disjoint union C = A ⊔B, for two (disjoint) sets A,B ∈ H.

We now introduce a new notion.
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Definition: We say that a collection C of subsets of a finite set X is a bureaucracy if (i) C 6= ∅
and ∅ 6∈ C, and (ii) every hierarchy H ⊆ C can be extended to a maximum hierarchy H′ such
that H ⊆ H′ ⊆ C. In this case, we say that the collection is bureaucratic.

Simple examples of bureaucracies include two extreme cases: the set of clusters of a binary
tree, and the set P(X) of all non-empty subsets of X . Notice that {{a}, {b}, {c}, {a, b}, {a, b, c}}
and {{a}, {b}, {c}, {b, c}, {a, b, c}} are both bureaucratic subsets of X = {a, b, c} but their in-
tersection, {{a}, {b}, {c}, {a, b, c}}, is not. In particular, for an arbitrary subset Y of X (e.g.
Y = {{a}, {b}, {c}, {a, b, c}}), there may not be a unique minimal bureaucratic subset of X

containing Y .
In the next section we describe a more extensive list of examples, but first we describe some

properties and provide a characterization of bureaucracies. In the following lemma, given two
sets A and B from C we say that B covers A if A ( B and there is no set C ∈ C with A ( C ( B.

Lemma 1. If C is bureaucratic then:

(i) For any pair A,B ∈ C, if B covers A then B −A ∈ C.
(ii) For any C ∈ C with |C| > 1, we can write C = A ⊔B for (disjoint) sets A,B ∈ C.

Proof. For Part (i), suppose that A,B ∈ C and that B covers A. Let H = {A,B}. Then H is
a hierarchy that is contained within C and so there exists a maximum hierarchy H′ ⊆ C that
contains H. Note that A must be a maximal sub-cluster of B in H′ (as otherwise B does not
cover A) which requires that B −A is a cluster of H′ and thereby an element of C.

For Part (ii), observe that the set H = {C} is a hierarchy, and the assumption that C is
bureaucratic ensures the existence of a maximum hierarchy H′ ⊆ C containing H, and so H′

contains the required sets A,B. �

Note that the conditions described in Parts (i) and (ii) of Lemma 1, while they are necessary
for C to be a bureaucracy, are not sufficient. For example, let X = {1, 2, 3, 4, 5, 6} and let C be
the union of

{{1, 2}, {3, 4}, {5, 6}, {1, 2, 3}, {4, 5, 6}, {3, 4, 5}, {1, 2, 6}, {1, 5, 6}, {2, 3, 4}}

with the set of the seven trivial clusters. Then C satisfies Parts (i) and (ii) of Lemma 1, yet C is
not bureaucratic since H = {{1, 2}, {3, 4}, {5, 6}} does not extend to a maximum hierarchy on
X using just elements from C.

Theorem 2. A collection C of subsets of X is bureaucratic if and only if it satisfies the following
two properties:

• (P1) C contains all trivial clusters of X.
• (P2)If {C1, C2, . . . , Ck} ⊆ C are disjoint and have union ∪iCi in C then there are distinct
i, j such that Ci ∪ Cj ∈ C.

Proof. First suppose that C is bureaucratic. Then C contains a maximal hierarchy; in particular,
it contains all the trivial clusters, and so (P1) holds. For (P2), suppose that C′ is a collection
of k ≥ 3 disjoint subsets of X , each an element of C, and

⋃

C′ ∈ C. Then H = C′ ∪ {
⋃

C′} is
a hierarchy. Let H′ ⊆ C be a maximal hierarchy on X that contains H (this exists, since C is
bureaucratic) and let C be a minimal subset of X in H′ that contains the union of at least two
elements of C′. Since H′ is a binary hierarchy, and

⋃

C′ ∈ H′, C is precisely the union of exactly
two elements of C′; since C ∈ H′ ⊆ C, this establishes (P2).

Conversely, suppose that a collection C of subsets of X satisfies (P1) and (P2), and that
H ⊆ C is a maximal hierarchy which is contained within C. Suppose that H is not maximum
(we will derive a contradiction). Then H contains a set C that is the disjoint union of k ≥ 3
maximal proper subsets A1, . . . , Ak, each belonging to H (and thereby C). Applying (P2) to
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C′ = {A1, . . . , Ak}, there exists two sets, say Ai, Aj for which Ai ∪ Aj ∈ C. So, if we let H′ =
H ∪ {Ai ∪ Aj}, then we obtain a larger hierarchy containing H that is still contained within C,
which is a contradiction. This completes the proof. �

2. Examples of bureaucracies

We have mentioned two extreme cases of bureaucracies, namely the set of clusters of a binary
X−tree and the full power set P(X). Here are some further examples.

(1) The set of intervals of [n] = {1, 2, . . . , n} is a bureaucracy, where an interval is a set
[i, j] = {k : i ≤ k ≤ j}, 1 ≤ i ≤ j ≤ n.

Proof. Let C be the set of intervals of [n]. Then C contains the trivial clusters. Also, a
disjoint collection I1, . . . , Ik, k > 2 of intervals has union an interval if and only if every
element of [n] between min

⋃

Ij and max
⋃

Ij lies in (exactly) one interval, in which case
the union of any pair of consecutive intervals is an interval, so (P2) holds. By Theorem
2, C is bureaucratic. �

Similarly, if we order the elements ofX in any fashion, we can define the set of intervals
on X for that ordering by this construction (associating xi with i), and can thus obtain
a bureaucracy.

A natural question at this point is the following: Does the extension of intervals in a
1-dimensional lattice (Example 1) to rectangles in a 2-dimensional lattice also necessarily
lead to bureaucracies? The answer is ‘no’ because condition (P2) can be violated due
to the existence of subdivisions of integral sized rectangles into k > 2 disjoint squares of
different integral sizes, the union of any two of which must therefore fail to be a rectangle
(see e.g. [2]).

(2) Let T be a rooted tree (generally not binary) with leaf set X and let C be the set of all
clusters compatible with all the clusters in c(T ). Then C is bureaucratic.

Proof. We have C = {C ⊆ X : C ∩C′ ∈ {C,C′, ∅} for all C′ ∈ c(T )}. C is also the set of
clusters that occur in at least one rooted phylogenetic X− tree that refines T , that is:

C =
⋃

T ′:c(T )⊆c(T ′)

c(T ′).

Suppose that H ⊆ C is a hierarchy on X . Then H ∪ c(T ) is also a hierarchy on X since
every element of H is compatible with every element of c(T ). Let H′ be any maximal
hierarchy on X containing H. Then since c(T ) ⊆ H′, we have H′ ⊆ C, and so, by
definition, C is a bureaucracy. �

(3) Let C be a collection of subsets of X that includes the trivial clusters and which satisfies
the condition:

(1) A,B ∈ C and A ∩B 6= ∅ ⇒ A ∪B ∈ C.

Then C is bureaucratic if and only if C satisfies the covering condition in Lemma 1(i).
Condition (1) is a weakening of the condition required for a ‘patchwork’ set system on

X due to Andreas Dress and Sebastian Böcker (see e.g. [6], where the covering condition
of Lemma 1(i) leads to an ‘ample patchwork’).

Proof. The ‘only if’ part follows from Lemma 1(i). Conversely, suppose that (1) holds
for a set system C that includes all the trivial clusters of X and that satisfies the covering
condition of Lemma 1(i). Suppose that H ⊆ C is a maximal hierarchy contained within
C. We show that H is maximum. Suppose that this is not the case – we will derive a
contradiction (by constructing a larger hierarchy H′ containing H but still lying within
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C). The assumption that H is not maximum implies that there exists a set B ∈ H which
is the union of three or more disjoint sets A1, A2, A3, . . . , Ak, where Ai ∈ H (since the
rooted tree associated with H has a vertex of degree k ≥ 3). We consider two cases:
(i) B covers none of the sets from A1, A2, A3, . . . , Ak.
(ii) B covers one of the sets from A1, A2, A3, . . . , Ak.
We first show that Case (i) cannot arise under Condition (1). Suppose to the contrary
Case (i) arises. Then for i = 1, . . . k there exists a set Ci ∈ C that contains Ai and which
is covered by B. For any pair i, j with i 6= j, if (B −Ci) ∩Cj = ∅ then Cj ⊆ Ci. On the
other hand, if (B−Ci)∩Cj 6= ∅ then, by Condition (1), (B−Ci)∪Cj ∈ C, which means
that B = (B − Ci) ∪ Cj (otherwise (B − Ci) ∪ Cj an element of C strictly containing
Cj and strictly contained by B) and so Ci ⊆ Cj . Thus Case (i) requires that either
Ci ⊆ Cj or Cj ⊆ Ci, which implies (again by the assumption that B covers Ci and B

covers Cj) that Ci = Cj . Since this identity holds for all distinct pairs i, j it follows that

C1, C2, . . . , Ck are the same set C and this set contains
⋃k

i=1 Ai (since Ai ⊂ Ci). But

then B =
⋃k

i=1 Ai ⊆ C which contradicts the assumption that B covers C1(= C).
Thus only Case (ii) can arise. In this case, suppose that B covers Ai. By assumption

that C satisfies the covering condition described in Lemma 1(i), B − Ai ∈ C holds, and
so we can take H′ = H ∪ {B −Ai} which provides the required contradiction.

�

(4) Let G = (X,E) be a connected graph. Let C be the set of subsets Y ⊆ X such that G[Y ]
is connected (where G[Y ] is the subgraph formed by deleting vertices not in Y , together
with their incident edges). Then C is bureaucratic.

Observe that taking G to be a linear graph recovers Example (1).

Proof. First note that C satisfies (P1), since G itself is connected, as is each vertex by
itself. Now suppose that A1, . . . , Ak, k > 2, are disjoint clusters in C whose union, A,
is also in C. As G[A] is connected, at least two clusters Ai, Aj must contain adjacent
vertices, in which case G[Ai ∪Aj ] is connected and Ai ∪Aj ∈ C. The result now follows
by Theorem 2.

An alternative proof is to apply Example (3) and note that C satisfies Condition (1)
and the covering condition of Lemma 1(i). �

3. Algorithmic applications

3.1. Maximum weight hierarchies. In general, the problem of finding the largest hierarchy
contained within a set of clusters is NP-hard [3]. The problem becomes trivial in a bureaucratic
collection since all maximal hierarchies are maximum. Less obvious, however, is the fact that
finding a hierarchy with maximum weight can also be solved in polynomial time.

Theorem 3. Let C be a bureaucratic collection of clusters on X and let w : C −→ R be a weight
function on C. The problem of finding the hierarchy H ⊆ C such that w(H) =

∑

A∈Hw(A) is
maximized can be solved in polynomial time.

Proof. If there are any clusters A ∈ C with negative weight w(A) then set their weights to zero. It
follows then that the weight of any maximum hierarchyH ⊆ C equals the weight of the maximum
weight hierarchy contained within H. The ‘Hunting for Trees’ algorithm of [1] can now be used
to recover the maximum hierarchy of maximum weight. �

3.2. Parsimony problems on networks. Consider a set C of clusters on X and let f : X → A
be a function that assigns each element x ∈ X a state f(x) in a finite set A (f is referred to in
phylogenetics as a (discrete) character). Suppose we have a non-negative function δ on A × A
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where δ(a, b) assigns a penalty score for changing state a to b for each pair a, b ∈ A (the default
option is to to take δ(a, b) = 1 for all a 6= b and δ(a, a) = 0 for all a).

Given any rootedX−tree T , with vertex set V and arc setE, let l(f, T, δ) denote the parsimony
score of f on T relative to δ; that is,

l(f, T, δ) = min
F :V →A,F |X=f







∑

(u,v)∈E

δ(F (u), F (v))







.

In words, l(f, T, δ) is the minimum sum of δ-penalty scores that are required in order to extend
f to an assignment of states to all the vertices of T . This quantity can be calculated for a given
T by well-known dynamic programming techniques (see e.g. [6]). Let l(f, C, δ) (respectively,
lbin(f, C)) denote the minimal value of l(f, T, δ) among all trees T (respectively, all binary trees)
that have their clusters in C. Then we have the following general result.

Theorem 4. Suppose that C is contained within a bureaucratic collection C′ of subsets of X

and f : X → A. There is an algorithm for computing l(f, C, δ) with running time polynomial in
n = |X |, |A| and |C′|. Moreover, the algorithm can be extended to construct a rooted phylogenetic
X−tree having all its clusters in C and with parsimony score equal to l(f, C, δ) in polynomial
time.

Proof. For any subset Y of X, let

δY (a, b) =











δ(a, b), if Y ∈ C;

0, if Y 6∈ C and a = b;

∞, otherwise;

and for any rooted phylogenetic X−tree T , let

l′(f, T, δ) := min
F :V→A,F |X=f







∑

(u,v)∈E

δc(v)(F (u), F (v))







,

where c(v) is the cluster of T associated with v.
Let l′(f, C′, δ) (respectively, l′bin(f, C

′, δ)) be the minimal value of l′(f, T, δ) over all trees
(respectively, all binary trees) with clusters in C′. By the definition of δY , we have:

(2) l(f, C, δ) = l′(f, C′, δ),

and by the assumption that C′ is bureaucratic we have:

(3) l′(f, C′, δ) = l′bin(f, C
′, δ).

We now describe how l′bin(f, C
′, δ) can be efficiently calculated by dynamic programming.

For an element a ∈ A and Y ∈ C′, let L′(Y, a) be the minimum value of l′(f |Y, T, δ) across all
binary trees T having leaf set Y and clusters in C′, in which the root is assigned state a.

For |Y | = 1, say Y = {y}, we have

L′(Y, a) =

{

0, if f(y) = a;

∞, otherwise

and for |Y | > 1, we have

(4) L′(Y, a) = min
Y1,Y2∈C′,a1,a2∈A

{L′(Y1, a1) + δY1
(a, a1) + L′(Y2, a2) + δY2

(a, a2) : Y1 ⊔ Y2 = Y } .
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Now,
l′bin(f, C

′δ) = min
a∈A

L′(X, a).

Notice that when one evaluates L′(X, a) using the above recursion (Eqn. (4)), it is sufficient to
compute L′(Y, a) for just the sets Y ∈ C′ rather than all subsets of X .

Thus, in view of Eqns. (2) and (3), one can compute l(f, C, δ) in time polynomial in n =
|X |, |A| and |C′|. Moreover, by suitable book-keeping along the way, one can construct a rooted
binary phylogenetic X−tree with clusters in C′ and with a parsimony score equal to lbin(f, C′, δ);
by collapsing all edges of this tree that have a δ-score equal to 0 we obtain a rooted phylogenetic
X−tree with clusters in C and with parsimony score equal to l(f, C, δ). �

We note that this result has been described in the particular case when C is the bureaucracy
described in example (2) above, and where f maps to a set A with only two elements [5]. We
provide a second application, to phylogenetic networks, based on Example (1) above, of intervals
as bureaucratic set systems.

Let N be a rooted binary phylogenetic network on X . We say that N is planar if it can be
drawn in the plane so that all the leaves and the root all lie on the outer face. Let sw(N ) denote
the set of ‘soft-wired’ clusters in N (the union of the cluster sets of all trees embedded in N ; see
e.g. [4]). A simple example is shown in Fig. 1(c).

Corollary 5. Suppose that N is a binary and planar phylogenetic network on X, and f : X → A.
There is an algorithm for computing l(f, sw(N )) with running time polynomial time in n.

Proof. Let x1, . . . , xn be the ordering of X given by their positions around the outer face in a
planar embedding of N , where x1 and xn come immediately after and before the root. Then any
tree T embedded in N can be ordered so that the leaves are in order x1, . . . , xn, implying that
the clusters of T are all of the form {xi, xi+1, . . . , xj} for some 1 ≤ i ≤ j ≤ n. It follows that
the set sw(N ) is contained in the set of intervals of X = {x1, . . . , xn} (Example 1, above). The
corollary now follows from Theorem 4. �

We end this paper by posing a computational problem.

Question. Is there an algorithm for deciding whether or not C is bureaucratic that runs in time
polynomial in |C| and |X |?
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