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Abstract 

We present a method for dynamically gen­
erating Bayesian networks from knowledge 
bases consisting of first-order probability 
logic sentences. We present a subset of proba­
bility logic sufficient for representing the class 
of Bayesian networks with discrete-valued 
nodes. We impose constraints on the form of 
the sentences that guarantee that the knowl­
edge base contains all the probabilistic infor­
mation necessary to generate a network. We 
define the concept of d-separation for knowl­
edge bases and prove that a knowledge base 
with independence conditions defined by d­
separation is a complete specification of a 
probability distribution. We present a net­
work generation algorithm that, given an in­
ference problem in the form of a query Q and 
a set of evidence E, generates a network to 
compute P(QIE). We prove the algorithm to 
be correct. 

1 Introduction 

The flexibility of Bayesian networks for representing 
probabilistic dependencies and the relative efficiency 
of computational techniques for performing inference 
over them makes Bayesian networks an extremely pow­
erful tool for solving problems involving uncertainty. 
But Bayesian networks have two limitations that tend 
to restrict their use to modeling relatively narrow do­
mains. First, they are basically propositional, i.e., 
nodes in a network represent multi-valued random 
variables. Thus to describe a class of actions or a class 
of individuals, one must represent each action or indi­
vidual with a separate proposition. Second, a Bayesian 
network is a static representation in which the entire 
domain model is used each time an inference is per­
formed, even though only a small portion of the net­
work may be relevant to a particular inference. Since 
�he general problem of inference in Bayesian networks 
IS NP-hard lCooper, 1990], this feature limits the size 
of domains that can be effectively modeled. 

The approach known as knowledge-based model con­
struction [Wellman et al., 1992] has attempted to ad­
dress these two limitations. The idea is to represent 
a class of networks with a knowledge base of proba­
bility sentences containing quantified variables and to 
instantiate a subset of these sentences to generate a 
network for solving a given inference problem. The 
generated network is a subset of the domain model 
represented by the collection of sentences in the knowl­
edge base. Several concrete approaches to achieving 
this functionality have been proposed [Poole, 1993, 
Goldman and Charniak , 1990, Goldman and Charniak, 
1993, Breese, 1992, Bacchus, 1993] But none of the ap­
proaches that provides a network generation algorithm 
presents a complete semantics for the knowledge base 
representation language, independent of that particu­
lar generation algorithm. Such a semantics is impor­
tant for two reasons. First, since a user of a network 
generation system encodes information in the knowl­
edge representation language, he must know the pre­
cise meanin�s of sentences in that language. As Well­
man, et.al. l1992] point out, this semantics should be 
specified without recourse to the details of the network 
generation process. Second, one would like to be able 
to prove that the network generation algorithm is cor­
rect. In order to be correct, the algorithm must faith­
fully map probabilistic relations in the knowledge base 
into probabilistic relations in the network. In order to 
be able to prove this, we must have a formal specifi­
cation of the probabilistic relations in the knowledge 
base. 

We address the problem of providing a formal seman­
tics for the knowledge base by using first-order proba­
bility logic as the representation language. We present 
a subset of probability logic sufficient for represent­
ing the class of Bayesian networks with discrete-valued 
nodes. We impose constraints on the form of the sen­
tences that guarantee that the knowledge base con­
tains all the probabilistic information necessary to gen­
erate a network. We define an independence seman­
tics for the knowledge base that is analogous to Pearl's 
[1988] definition of d-separation for Bayesian networks. 
We prove that a knowledge base with independence 
conditions defined by d-separation is a complete spec-
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ification of a probability distribution. 

We present an implemented network generation algo­
rithm that, given an inference problem in the form of a 
query Q and a set of evidence E, generates a network 
to compute P(QIE). The generated network is equiv­
alent to a set of ground instances of the sentences in 
the knowledge base. The algorithm avoids generating 
many nodes that are irrelevant to the given inference 
problem, without a separate step to check the rele­
vance of the nodes. Using the semantics defining the 
probability distribution encoded by a knowledge base, 
we prove the algorithm correct. 

2 Representation Language 

We would like to represent a class of Bayesian net­
works using a knowledge base consisting of a collec­
tion of probability logic sentences in such a way that 
a network generated on the basis of the information 
contained in the knowledge base is isomorphic to a set 
of ground instances of the sentences. As the formal 
representation of the knowledge base, we use a subset 
of Halpern's [1991] probability logic .C';;. We represent 
random variables with function symbols and restrict 
ourselves to using only the equality predicate. 

We can represent the information contained in the 
topology of a Bayesian network, as well as the quanti­
tative information contained in the link matrices, if we 
can represent all the direct parent/child relations. We 
express the relation between each random variable and 
its parents over a class of networks with a collection 
of universally quantified sentences. The collection of 
sentences represents the relation between the random 
variable and its parents for any ground instantiation of 
the quantified variables. The network fragment con­
sisting of a random variable with function symbol g 
and its parents with function symbols fi is represented 
with a set of sentences of the form 

'VXP(g(xo) = v71ft(x1) = vfA ... Afn(in) = vf) =a, 

where X is a set of variables and i0, . . . , Xn are subsets 
of X. We have one such sentence for each possible com­
bination of values for the ranges of g and !1, . . . , fn· 
If g has no parents , we use unconditional probability 
sentences. We also need to express the fact that the 
values in the range of each function are mutually ex­
clusive and exhaustive. We do so with the following 
sentences. 

'Vi g(x) = v� v g(x) = vg v 0 0 .  v g(x) = v! 
-,(vJ = v2) for all j, k E {1, . .. , m} 

'r/x J;(x) = v� v fi(x) = v� v 0 .  0 v fi(x)::: v� 
-.(vj = v� ) for all j, k E {1, . .. , l} 

The above probabilistic and logical sentences are all 
well-formed formulas of the logic £'2. 

We represent such a collection of sentences with a rule 
of the form 

Ante: ft(xt) : {vi, .. . , vn 1\ ... A fn(xn) : { v? , ... , vr} 
Conse: g(xo) : { v�, ... , v;;.J 
Matrix: IYI · Iii I · ... ·lfn I entries 

where Matrix contains the conditional probability of 
each possible value for g(x0) given each possible com­
bination of values of the /i( x;); I fd is the cardinality of 
the range off;; and the universal quantifier is implicit. 
We call Matrix the link matrix of the rule. We call the 
f; the antecedents and g the consequent. To identify 
the antecedents and consequent of a rule R, we will use 
ante(R) for the set of antecedents and conse(R) for the 
consequent. We will refer to the terms with function 
symbols, such as g(x) and 11 ( x), as the terms of the 
knowledge base. 
The truth values of the probability sentences are de­
fined with respect to the models of logic .C'f. A model 
is a tuple {D, S, 1r, !J), where Dis a domain; Sis a set 
of possible worlds; 1r is a function such that for each 
world s E S, 11"(s) assigns to the predicate and func­
tion symbols predicates and functions of the right arity 
over D; and p is a discrete probability function on S. 
The semantic value of a formula is defined relative to 
a model M, a possible world s, and a value assignment 
g. We interpret a conditional probability sentence of 
the form P(AIB) ::: a as shorthand for the sentence 
P( A A B) = a· P( B). So we have the following seman­
tic definition for each conditional probability sentence 
represented by our rules, were g[xjd] denotes the as­
signment of values to variables that is identical to g 
with the possible exception that element d is assigned 
to x. 

[VXP(g(io) = v0 I A; f;(x;) =vi)= a]M,•,g =true 
if and only if for all d � D 

�J{s': [g(io) = v0]M,•',g[X/d1 =true and 

[II (x1) = v1 ]M,•' ,g[X/dJ =true and ... and 

[fn(xn) = vn]M,s',g[X/dJ =true}= 
a ·IJ{s': [fi(xi) = v1]M,•',g[X/dl =true and . .. and 

[fn(xn) = vn]M,s',g[X/dl =true} 

This definition says that the universally quantified 
conditional probability sentence is true if for all ways 
we can substitute domain elements for the quantified 
variables, the probability of the consequent and an­
tecedent is equal to o: times the probability of the 
antecedent. The truth values of the nonprobabilistic 
sentences are defined in the usual way. 

We would like a knowledge base to represent a class 
of Bayesian networks in the sense that a set of ground 
instances of a subset of the rules is structurally iso­
morphic to some Bayesian network and contains the 
same quantitative information.1 Thus we must have a 

1This does not mean that the knowledge base is isomor­
phic to a single Bayesian network since each rule can be 
instantiated multiple times, a.s is shown in the example in 
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f(a,a) f(a,b) 

�/ 
g(a) 

(i) 

f1 (a) f2(a) 

�/ 
g(a) 

(ii) 

Figure 1: Ramifications of violating the syntactic con­
straints. 

link matrix for each term in the knowledge base. We 
can guarantee this by requiring every term to be the 
consequent of some rule: 

Cl (Existence of Link Matrix) Each rule antecedent 
must also appear as the consequent of some rule. 

Furthermore, the link matrix on each rule must be a 
complete specification of the probabilistic relation be­
tween the antecedents and the consequent for all possi­
ble ground instantiations of the rules in the knowledge 
base. To ensure that this property holds, we impose 
two constraints on the form of the rules. First, to guar­
antee that the matrix fully specifies the dependencies 
represented by the individual rule, we require the fol­
lowing: 

C2 (Completeness of Consequent) All variables in the 
antecedents must appear in the consequent. 

Without this constraint we could run into the situation 
where we have a rule with antecedent f(x, y) and con­
sequent g(x) that gets instantiated twice to produce 
network fragment {i), shown in figure 1. The matrix 
associated with this rule is not sufficient to specify the 
dependency between g(a) and its two direct predeces­
sors f(a, a) and f(a, b) in the generated network. 

Second, to guarantee that the matrix fully specifies the 
dependencies represented by multiple rules, we require 
that: 

C3 {Uniqueness of Consequents) The knowledge base 
does not contain two distinct rules that have 
ground instances with identical consequents. 

Without this constraint, we could have a knowledge 
base that contains one rule with antecedent fl ( x) 
and consequent g( x) and another rule with antecedent 
h(x) and consequent g(x). These rules could be in­
stantiated to produce network fragment (ii) shown in 
figure 1. The individual matrices on the two rules 
are insufficient to specify the dependency between g( a) 
and its two direct predecessors ft (a) and h (a) in the 
generated network. If we wish to express that g( x) is 
influenced by both ft(x) and h(x), this can be repre-

section 5. 

sented simply by using the single rule with antecedents 
fl(x) and h(x) and consequent g(x). 
Finally, since a Bayesian network is a directed acyclic 
graph, we must ensure that the knowledge base con­
tains no cycles: 

C4 {Acyclicity) There does not exist a set of ground 
instances Rt, R2, ... , Rn of the rules in the knowl­
edge base such that 
conse(Rt) E ante(R2), conse(R2) E ante{R3), ... , 
conse(Rn) E ante(Rt). 

These four constraints give us an isomorphic mapping 
between sets of ground instances of the rules in the 
knowledge base and Bayesian networks but they also 
limit the expressiveness of the knowledge base. Con­
straint C2 restricts the knowledge base from contain­
ing recursive rules. For example, we might wish to 
describe the ancestor relation with a rule that says "if 
x is the ancestor of y and y is the ancestor of z then 
x is the ancestor of z. Constraint C2 would not allow 
this since the variable y does not appear in the conse­
quent. Constraint C3 means that we cannot have two 
rules describing alternative causes of a condition. One 
might wish to have alternative rules and to choose the 
most specific one for which information concerning the 
antecedents is available. 

3 Bayesian Knowledge Bases 

Just as the parent/child relations in a Bayesian net­
work do not in general completely specify a probability 
distribution, in general neither will a collection of our 
rules. Using the concept of d-separation, the Bayesian 
network formalism adds independence information to 
complete the distribution. We will supplement the 
probabilistic information contained in our rules with 
independence information by defining a version of d­
separation for knowledge bases. Using an analogue 
of d-separation to specify independence relations in 
the knowledge base provides a simple mapping from 
the semantics of the knowledge base to the seman­
tics of the network. Thus it should be clear to a user 
what independencies will be encoded in the topology 
of any network generated from such a knowledge base. 
With a precise definition of how a knowledge base rep­
resents a complete joint probability distribution, we 
can prove whether or not any network generation al­
gorithm is correct. A generation algorithm is correct 
if it preserves the distribution when mapping from the 
knowledge base representation to the network repre­
sentation. 

The concept of d-separation is defined in terms of 
paths between nodes in a network. So in order to 
define an analogous notion for a knowledge base, we 
need to define the concept of a path through the rules 
in a knowledge base. 

Definition 1 There is a directed edge from a 
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ground term F to a ground term G if there is a 
role ground instance R such that F E ante(R) and 
G :::: conse(R). There is a path between two ground 
terms F and G if there is a set of rule ground instances 
Rand a set of ground terms F = {F1, ... ,Fn} appear­
ing in R such that the F; can be ordered so that there 
is an edge between F and F1, F1 and F2, • • •  , Fn and 
G. We call the F; the ground terms on the path. A 
ground term F; on this path is said to have converg­
ing arrows if there are two directed edges on the path 
pointing to F;. 
Let F and G be two ground terms. We say that F is 
a direct predecessor of G and G is a direct suc­
cessor of F zf there is a directed edge from F to G. 
We say that F is a predecessor of G and G a suc­

cessor of F if there is a path in the knowledge base 
between F and G along which all edges point toward 
G. If a ground term has no direct predecessors, it is 
called a root. Similarly, if a ground term has no direct 
successors, it is called a leaf. 

Using the definition of path we can now define d­
separation for know ledge bases. Notice that our defi­
nition of path in a knowledge base results in a defini­
tion of d-separation that is almost identical to Pearl's 
[1988] definition of d-separation in Bayesian networks. 

Definition 2 lfX, Y, and Z are three disjoint sets of 
ground instances of terms in a knowledge base KB then 
Z is said to d-separate X from Y in KB, denoted 
{X/Z/Y){5B, if along every path between a ground term 
in X and a ground term in Y there is a ground term W 
satisfying one of the following two conditions: {1) W 
has converging arrows and none of W or its descen­
dents are in Z, or {2) W does not have converging 
arrows and W is in Z. 

We now complete the specification of the semantics of 
the knowledge base by using d-separation to identify 
probabilistic independencies. 

Definition 3 Given a set of rules KB of the form 
specified above and obeying constraints Cl-C4 and 
given a model M satisfying the sentences correspond­
ing to the rules of KB, KB is called a Bayesian 
knowledge base of M if and only if for every three 
disjoint sets X, Y, and Z of ground instances of terms 
in KB if(X/ZIY}�B then X is independent ofY given 

Z in M. X is independent of Y given Z in M if the 
sentences P(A;X; = u;l Aj }j = Vj At Z�c = w�;;) = 

P(/\;X; = u;[ /\�;; Z�:; = w�:;) over all possible combi­
nations of values u;, Vj, w�: are satisfied by M for all 
Xi EX, }j EY, and Z�: EZ. 

With the independencies indicated by d-separation, a 
knowledge base is now a complete specification of a 
probability distribution. We will prove this but we 
first provide a useful lemma. 

Lemma 4 A ground term in a Bayesian knowledge 

base is independent of all ground terms which are not 
its successors, given its direct predecessors. 

Proof: Let KB be a Bayesian knowledge base of a 
probability logic model M and let G and F be any 
two distinct ground terms contained within any non­
empty set of ground instances of the rules of a Bayesian 
knowledge base KB. We wish to show that given only 
the direct predecessors of G, if F is not a successor of 
G, then G is independent of F. 

We know that for any path in KB between G and F, 
exactly one of the following must hold: 

1. The path is a direct link from G to F. 

2. The path is a direct link from F to G. 

3. The path must pass through one of G's direct pre­
decessors. 

4. The path must pass through one of G's direct suc­
cessors. 

1) Because F is a successor of G, nothing must be 
shown. 

2) Because F is a direct predecessor of G, the theo­
rem is trivially true. 

3) The path from F to G is blocked by the direct prede­
cessor. So by the definition of d-separation in a knowl­
edge base, the direct predecessor d-separates G and F 
and by the definition of a Bayesian knowledge base, G 
is independent ofF given the direct predecessor. 

4) Since F is not a successor of G, for F to be linked to 
G, it must be linked through a successor of G. That 
successor has converging arrows. Such a path is ac­
tive only if that ground term or one of its successors 
is given. But we are only given direct predecessors of 
G. Therefore, that path is blocked and G and F are 
independent. This completes the proof. 0 

Theorem 5 A Bayesian knowledge base ts a com­
plete specification of a joint probability distribution 
over the ground terms contained in any non-empty set 
of ground instances of its rules in which every ground 
term is the consequent of some role instance. 

Proof: We prove this by showing that the joint proba­
bility distribution can be expressed as the product of 
the conditional probabilities in the link matrices of the 
rule instances. We define the link matrix of a ground 
term to be the link matrix of the rule instance for 
which the ground term is the consequent. Since con­
straint C3 prohibits the knowledge base from contain­
ing two rules that have ground instances with identical 
consequents, the concept is well-defined. 

Let S be any non-empty set of ground instances of 
the rules in a Bayesian knowledge base KB, such that 
every ground term is the consequent of some rule in­
stance. Let T = { r1, .. . , Tm} be the set of ground 
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terms contained in S. We can express a joint proba­
bility distribution over T by choosing any ordering of 
the ground terms and using the chain rule: 

P(Tt, 72, ... , Tm) =P(Tm I Tm-1, .. . , Tt ) .. . P(r31 72, rl) 
P(r2l rt)Ph) 

We w ill show that we can choose an ordering of the 
ground terms to put them in correspondence with the 
factors of the chain rule expression above such that 
their link matrices in conjunction with the independen­
cies expressed through d-separation completely specify 
the conditional probability factors. We will order the 
ground terms according to the following scheme. We 
first assign levels to the terms. 

• Leaves will be labeled as level zero. 

• The level of a ground term is one plus the highest 
level of any direct successor . (Note that this is 

well-defined, by the acyclicity of the rules.) 

The ground terms are ordered as follows. 

• Label the k leaves comprising the bottom level as 
Tt, . . . , T�;. 

• Label the j ground terms comprising the next 
level (direct predecessors of the leaves) as 
71<+1, · · ., Tk+j · 

• Label the remaining levels of ground terms in this 
manner until all are labeled. 

Observe that with this ordering, each conditional prob­
ability factor P( r; I r;-1 ... r1) in the chain rule expres­
sion has all of r; 's direct predecessors on the right hand 
side of the conditioning bar and none of T;'s successors. 
So by Lemma 4, each conditional probability factor is 
completely specified by the link matrix on r;. Thus 
the joint probability distribution is completely speci­
fied by the probabilities in the link matrices of the rule 
ground instances. o 

4 Network Generation Algorithm 

Our network generation algorithm is query driven. 
Given a query Q and a set of evidence E, we generate 
a network to compute P(QIE) such that the proba­
bility computed with the network is equal to that de­
fined by the knowledge base semantics. The evidence 
E will be a conjunction of ground atomic formulas 
such as f(a, b) = v. Since probability logic can rep­
resent a large range of possible queries, we might ask 
what kinds of queries can be answered using the infor­
mation in a Bayesian knowledge base. If we wish to 
infer a point probability for our query, then the seman­
tics of our rules requires that the query be a ground 
formula. A non-ground query would be either univer­
sally or existentially quantified, or a combination of 
both. But it is clear from the semantic definition of 

the universally quantified conditional probability sen­
tences that we can only infer precise probabilities of 
individual elements of the domain and thus only of 
ground formulas. For universally quantified formulas, 
we can only infer upper bounds and for existentially 
quantified formulas, we can only infer lower bounds. 
So our algorithm takes a query Q in the form of a 
ground term (e.g. g( a)), a collection of evidence E 
in the form of a set of ground atomic formulas, and a 
Bayesian knowledge base KB, and generates a network 
to compute P(QIE). The probability computed with 
the generated network is equal to that defined by the 
knowledge base semantics. 

The key idea behind the algorithm is that since the 
rules in the knowledge base are structurally similar to 
Horn-clauses, we can use a backward-chaining theorem 
prover to search through the rules for paths between 
the evidence and the query. The generated network 
is just the resulting proof tree. By simply backward 
chaining on the query and on the evidence formulas the 
algorithm generates all relevant nodes and avoids gen­
erating barren nodes [Shachter, 1988], which are nodes 
below the query that have no evidence nodes below 
them. Such nodes are irrelevant to the computation 
of P�QIE). The algorithm has been implemented in 
Lisp. 

Network Generation Algorithm 

Input: A Bayesian knowledge base, a query 
in the form of a ground term, and evidence in 
the form of a set of ground atomic formulas. 
Output: A network to compute the proba­
bility of the query given the evidence. 

Procedure: 

1. Backward chain on the query, generating 
all its predecessors. Call this the query's 
predecessor network. 

2. For each evidence formula without a cor­
responding node in the query's predeces­
sor network do: 

• Backward chain on the evidence for­
mula. If an antecedent has a corre­
sponding node in the network gener­
ated so far, create a link to it. Oth­
erwise create a new node. 

Since the query and the evidence formulas are ground 
and all variables in the antecedents of a rule must ap­
pear in the consequent (constraint C2) , the nodes gen­
erated by backward chaining will always be ground 
terms. So the generated network is a subset of the set 

2We have implemented and proven correct a slightly 
more complex algorithm that is guaranteed to generate the 
smallest network necessary to answer a given query but do 
not discuss it here due to space limitations. The imple­
mentation interfaces to the IDEAL [Srinivas and Breese, 
1990] inference system and is available via anonymous ftp 
to ftp.cs.uwm.edu in pub/tech_reports/ai/BNG.tar.Z. 
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Rl Ante: Neighborhood(x):{b,a,g} R2 Ante: Burglary(x):{+,-}, Quake:{t,m,s} 
Conse: Burglary(x):{+,-} Conse: Alarm(x):{ +,-} 
Matrix: ( 6 entries) Matrix: ( 12 entries) 

R3 Ante: Quake:{t,m,s} R4 Ante: Alarm(x):{ +,-}, 
Conse: Radio:{+,-} Neighbor(n,x):{ +,-} 
Matrix: (6 entries) Conse: Phone-call(n,x):{ +,-} 

Matrix: (8 entries) 

R5 Ante: Report(x):{+,-}, R6 Ante: 
Burglary(x):{ +,-} Conse: Neighbor(n,x):{ +,-} 

Conse: Recovered{x):{ +,-} Matrix: (prior) 
Matrix: (8 entries) 

R7 Ante: R8 Ante: 
Conse: Quake:{ t,m,s} Conse: N eighborhood(x):{b ,a,g} 
Matrix: (prior) Matrix: (prior) 

R9 Ante: 
Conse: Report:{+,-} 
Matrix: (prior) 

Figure 2: Example Bayesian Knowledge Base. 

of ground instances of the rules in the knowledge base, 
as desired. Furthermore, since the algorithm backward 
chains until a root term is reached, the roots in the 
network correspond to roots in the knowledge base. 

We can view the network generation algorithm as map­
ping from the knowledge base representation of a prob­
ability distribution to a Bayesian network representa­
tion of that distribution. We now prove that the al­
gorithm is conect in the sense that the mapping pre­
serves the probability distribution specified by the se­
mantics of the knowledge base. 

Theorem 6 The Bayesian network generation algo­
r ithm is correct in the following sense. Let N be a 
Bayesian network generated from a Bayesian knowl­
edge base KB in response to a query Q and evidence E. 
Let PN be the probability distribution over the ground 
terms inN, as specified by N. Let PKB be the probabil­
ity distribution over the ground terms in N, as spec­
ified by KB. Then PN and PKB are identical. Thus 
PK.a(QIE) = PN(QIE). 

Proof: By theorem 5, the Bayesian knowledge base 
from which the network is generated is a comp1ete 
specification of the joint distribution over the ground 
terms in the rule instances representing the generated 
network. Since the proof of theorem 5, can be dupli­
cated for Bayesian networks using the network defini­
tion of d-separation, the distribution over the ground 
terms as specified by the network and by the knowl­
edge base are equal. 

5 Example 

Consider the knowledge base describing a burglary do­
main shown in figure 2.3 The rules express the follow­
ing information. 

Rl: The type of neighborhood someone lives in influ­
ences whether their house will be burglarized. 

R2: Both a burglary and an earthquake can cause 
someone's alarm to go off. 

R3: An earthquake is often reported on the radio. 

R4: If someone's alarm goes off, his neighbor is likely 
to call him. 

R5: Whether or not someone's house was burglarized 
and whether they filed a report influences whether 
the stolen goods will be recovered. 

R6-R9: These rules specify unconditional probabili­
ties for the root terms. 

All random variables are binary-valued except Quake 
which has values {tremor, moderate, severe} and 
Neighborhood which has the values {bad, average, 
good}. 

Suppose we have the evidence 

{Radio=+, Neighbor(Watson,Holmes)=+, 
Phone-call(Watson,Holmes )=+, 
N eighbor(Moriarty,Holmes )=+, 
Phone-call(Moriarty,Hoimes )=+} 

3This example is based on one presented by Breese 
[1992]. 
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Neighborhood(Holme.-;) 

Quake 

� 
I Radio I 

Figure 3: Network generated for query Bur-
glary(Holmes). 

and we wish to know the posterior probability of Bur­
glary(Holmes). The network generation algorithm will 
generate the network shown in figure 3. The query 
node is indicated by an ellipse and evidence nodes by 
boxes. Notice that rule R4 is used twice: once for 
Watson and once for Moriarty. This illustrates how 
the use of quantification allows us to represent a po­
tentially large class of networks. Notice also that we 
do not generate the nodes Report(Holmes) or Recov­
ered(Holmes) since they are irrelevant to this particu­
lar inference problem. 

6 Related Work 

In some early work, Poole [1991] and Poole and Horsch 
[1990] present a method for representing Bayesian net­
works with Horn-clauses. This is considered to be a 
template representation and is not provided with a 
logical semantics. Poole [1993] presents a framework 
for logic-based abduction that incorporates probabil­
ities. He describes a logical language for specifying 
a probabilisitic Horn abduction theory that consists 
of definite clauses and disjoint declarations. A dis­
joint declaration specifies the probabilities on a set of 
mutually exclusive hypotheses. His probabilistic Horn 
abduction language can be viewed as a logic of discrete 
Bayesian networks. He shows how to translate between 
Bayesian networks and probabilistic Horn abduction 
theories and proves that the probability distribution 
represented by a Bayesian network is equivalent to that 
represented by its probabilistic Horn abduction theory 
translation. He provides a model-theoretic semantics 
for his language in terms of Bacchus's propositional 
probability logic [Bacchus, 1990]. 

Goldman and Charniak [1990, 1993] present a lan­
guage, Frail3, for representing belief networks and out­
line their associated generation algorithm. The lan­
guage includes numerous generic causal models, such 
as the noisy-OR gate [Pearl, 1988], for specifying link 

matrices when complete probabilistic information is 
not available. Networks are generated by a forward 
and backward chaining TMS type system. Frail3 rep­
resents network dependencies by rules with variables, 
but the semantics of the variables is not specified. 

Breese [1992] presents a language, Alterid, that can 
represent the class of Bayesian networks and influence 
diagrams with discrete-valued nodes. Probabilistic re­
lations are specified with universally quantified condi­
tional probability sentences. Breese presents a detailed 
algorithm to generate networks from an Alterid knowl­
edge base. Given a query Q and a set of evidence E, 
the algorithm uses both forward and backward chain­
ing to generate a network to compute P(QIE). 
Breese does not constrain the syntax of the knowl­
edge base as we do. Thus a set of ground instances 
of the rules may not represent a single network. In 
this case, the generation algorithm must choose be­
tween networks to generate. Breese does not provide 
a formal semantics for his representation and does not 
prove his algorithm correct in the sense that we do. By 
assuming that the generated network is what Breese 
calls a Bayesian interpretation network, he shows that 
the algorithm generates all nodes necessary to compute 
P(QIE). A Bayesian interpretation network is essen­
tially an 1-map of a probability distribution, but not 
necessarily a minimal 1-map. But he does not prove 
that the algorithm generates a network to correctly 
compute P(QIE). 
Bacchus [Bacchus, 1993] sketches a framework for 
knowledge-based construction of Bayesian networks 
using first-order statistical probability logic. The lan­
guage is first-order logic augmented with the ability 
to express assertions about proportions. He discusses 
representing a class of networks with a set of univer­
sally quantified conditional probability sentences, each 
of which expresses a piece of local statistical informa­
tion. Because he is interested in representing proba­
bilistic information of varying degrees of specificity he 
does not constrain his representation in the ways that 
we do. But because he does not impose constraints, he 
cannot show that a knowledge base consisting of sep­
arate pieces of statistical information can completely 
specify either a Bayesian network or a joint probabil­
ity distribution. He suggests generating a network by 
looking for chains of influence and instantiating the 
sentences but does not provide a network generation 
algorithm. 

7 Current and Future Research 

One of the objectives of the present work is to intro­
duce quantification into the Bayesian network formal­
ism. Here we have explored only universal quantifi­
cation outside the scope of the probability operator. 
Since the logic £2 permits arbitrary quantification, we 
could think of extending the current subset of proba­
bility logic to include existential quantification, as well 



Generating Bayesian Networks from Probablity Logic Knowledge Bases 269 

as quantification within the scope of the probability 
operator. For example, we might wish to write a sen­
tence like Vy P(3x Q(x)IR(y)) = 0.7. To extend the 
representation in this way, we need to identify par­
ticular sentence forms that can be used to generate 
networks, as we have done for sentences with a uni­
versal quantifier outside the scope if the probability 
operator. 

One application to which the technique of dynamic 
network generation seems particularly well suited is 
the representation of time, since with temporal prob­
lems we typically do not know a priori the exact time 
p oints at which we will have or want to compute infor­
mation. To formulate an algorithm to generate tem­
poral Bayesian networks, we first require a represen­
tation for the knowledge base that can express infor­
mation about temporal ordering as well as probabil­
ities of temporal objects. Haddawy [Haddawy, 1991, 
Haddawy, 1994} presents a logic that integrates both 
time and probability and hence has the needed expres­
siveness. 
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