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Initial clinical manifestations of Parkinson’s disease: features 
and pathophysiological mechanisms
Maria C Rodriguez-Oroz, Marjan Jahanshahi, Paul Krack, Irene Litvan, Raúl Macias, Erwan Bezard, José A Obeso 

A dopaminergic defi ciency in patients with Parkinson’s disease (PD) causes abnormalities of movement, behaviour, 
learning, and emotions. The main motor features (ie, tremor, rigidity, and akinesia) are associated with a defi ciency of 
dopamine in the posterior putamen and the motor circuit. Hypokinesia and bradykinesia might have a dual 
anatomo-functional basis: hypokinesia mediated by brainstem mechanisms and bradykinesia by cortical mechanisms. 
The classic pathophysiological model for PD (ie, hyperactivity in the globus pallidus pars interna and substantia nigra 
pars reticulata) does not explain rigidity and tremor, which might be caused by changes in primary motor cortex activity. 
Executive functions (ie, planning and problem solving) are also impaired in early PD, but are usually not clinically 
noticed. These impairments are associated with dopamine defi ciency in the caudate nucleus and with dysfunction of 
the associative and other non-motor circuits. Apathy, anxiety, and depression are the main psychiatric manifestations 
in untreated PD, which might be caused by ventral striatum dopaminergic defi cit and depletion of serotonin and 
norepinephrine. In this Review we discuss the motor, cognitive, and psychiatric manifestations associated with the 
dopaminergic defi ciency in the early phase of the parkinsonian state and the diff erent circuits implicated, and we 
propose distinct mechanisms to explain the wide clinical range of PD symptoms at the time of diagnosis. 

Introduction
Parkinson’s disease (PD) has typically been considered to 
be a motor disorder1,2 secondary to basal ganglia 
dysfunction. The defi nition in the 1960s of the 
nigrostriatal dopaminergic pathway and the discovery of 
dopamine striatal loss provided one of the best established 
correlations between clinical features and biochemical 
pathology.3 The main manifestations of PD—akinesia or 
bradykinesia, rigidity, and tremor—are now known to be 
directly related to dopaminergic striatal loss. Other 
clinical manifestations, albeit usually less noticeable, that 
are also seen at the time of diagnosis include sensory 
symptoms (eg, pain and tingling), hyposmia, sleep 
alterations, depression and anxiety, and abnormal 
executive, working memory-related functions. 

The clinical manifestations of PD after diagnosis 
comprise a mixture of disease-related and treatment-
induced manifestations. Motor and non-motor side-eff ects 
directly related to treatment such as dyskinesias or 
hallucinations, and other features arising after long-term 
disease progression (eg, gait problems and disequilibrium, 
autonomic failure, and dementia), are not covered in this 
Review. We discuss the pathophysiological mechanisms 
underlying the main clinical features of PD at the time of 
diagnosis and, therefore, when the clinical features are 
mainly aff ected by catecholaminergic (ie, mainly 
dopaminergic) defi cits. We provide a diff erential 
explanation for the anatomo-functional basis of the major 
clinical manifestations of PD (ie, tremor, rigidity, akinesia, 
dysexecutive syndrome, and depression) to expand the 
views and concepts held by the classic pathophysiological 
model. 

Key motor features: basic concepts
PD motor manifestations begin focally, typically in one 
limb segment, when dopamine concentrations fall 
below 60–70% in the contralateral striatum. The onset 

of motor features correlates with loss of dopamine in 
the posterior putamen (fi gure 1), corresponding to the 
motor region of the striatum. The main features of PD 
(ie, akinesia or bradykinesia, rigidity, and tremor) are 
therefore mainly related to dysfunction of the motor 
circuit (fi gure 2). 

Reduced and slow movements 
The term akinesia (strictly defi ned as “lack of 
movement”) comprises many clinical features, which 
need to be diff erentiated for the discussion of underlying 
patho physiological mechanisms. One type of akinesia, 
hypokinesia, consists of reduced frequency and 
amplitude of spontaneous movement, which is 
particularly noticeable in automatic movements. Typical 
manifest ations are reduced blinking rate and facial 
expressions, absent or reduced arm swinging, and 
absence of associated movements during daily life 
activities such as rising from a chair and waving. All 
these hypokinetic features were collectively grouped 
under the descriptive term “poverty of movement” by 
Wilson1 in his infl uential series on disorders of motility 
and tone. This term also included a tendency of patients 
to stand still and to have reduced gesticulation. The 
parkinsonian gait includes several hypokinetic features 
such as reduced stride length and decreased off -ground 
elevation of the feet, leading to short stepping and 
shuffl  ing, which are associated with reduced arm 
swinging and predominance of fl exor posture. 
Micrographia is a particular form of hypokinesia, in 
which a highly learned automatic motor task is not only 
characteristically reduced in amplitude but is also 
associated with slowness in the execution. 

Bradykinesia is characterised by reduced speed when 
initiating and executing a single movement and 
progressive reduction of its amplitude, up to complete 
cessation1,2 during repetitive simple movements. 
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Undertaking sequential or simultaneous movements is 
severely disrupted and frequently impeded, which has 
substantial eff ects on daily living.5 Kinematic studies 
have consistently shown that both movement time for 
single movements and inter-onset latency for sequential 
movements are increased. Although all types of 
movements are slower in PD, there is some evidence 
that externally triggered movements are less impaired 
than those that are self-initiated; this is best exemplifi ed 
by gait improvement when external cues are provided.6

Disorders of muscle tone
Rigidity is characterised by increased muscular tone to 
palpation at rest, reduced distension to passive 
movement, increased resistance to stretching, and 
facilitation of the shortening reaction. Both fl exor and 
extensor muscular groups are involved but fl exor 
muscles of the limbs are more aff ected in the early 
stages of disease progression.7 Increased resistance is 
dependent on velocity and is more noticeable when the 
examined joint is stretched slowly;7 fast displacement is 
associated with minimum or no rigidity. Joint elongation 
is typically increased by voluntary activation of other 
body parts (Froment’s manoeuvre) and is commonly 
interrupted by so-called cog-wheel rigidity.8 

Tremor
Tremor is typically characterised by 4–6 Hz activity at 
rest in the limbs with distal predominance. The fi ngers 
are most commonly aff ected, giving rise to the classic 
“pill-rolling” tremor. The jaw muscles and tongue can 
occasionally be involved but axial muscles (abdomen, 
back, and hip) and the neck are rarely aff ected. Tremor 
increases in amplitude, or can be triggered by 
manoeuvres such as voluntary movement of other body 
parts, arithmetic calculation, and stress. Levodopa and 
other dopaminergic drugs are less effi  cacious against 

A B C

Figure 1: 18F-fl uorodopa PET of a healthy individual (A) and a patient with 
Parkinson’s disease at the time of diagnosis (B) and after 12 years of 
follow-up (C)
18F-fl uorodopa uptake is asymmetrically reduced in the early stages of disease, 
mostly localised to the posterior putamen. As the disease progresses, the anterior 
putamen and caudate are aff ected. Images provided by Carlos Juri and Javier Arbizu 
(Neurology and Neuroscience and Nuclear Medicine Departments, University of 
Navarra, Pamplona, Spain). 

Leg

Putamen PutamenGPi
STN

GPi GPe

Thalamus
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Face

Figure 2: The motor circuit and its somatotopic organisation
The motor circuit (indicated by red arrows connecting the regions that modulate leg movements) is somatotopically organised throughout the loop, with 
the regions representing leg movements lying dorsal and medial, those representing face movements lying ventral and lateral, and those representing arm 
movements lying in-between. The somatotopic arrangement of the primary motor cortex is generally maintained in the striatopallidal and subthalamic 
nuclei. Figure reprinted from Obeso and colleagues.4 GPe=globus pallidus pars externa. GPi=globus pallidus pars interna. STN=subthalamic nucleus. 
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tremor than other key features of PD, an assumption 
generally accepted without clear explanation or formal 
assessment. 

Pathophysiology of key motor features: the 
classic model
The classic pathophysiological model of the basal 
ganglia, which was elaborated in the 1980s,9–11 triggered a 
large amount of experimental and clinical activity and 
led to the revitalisation of surgery for PD and other 
movement disorders. Figure 3 provides a summary of 
this original model in the healthy and pathological states, 
and the table summarises the main experimental 
fi ndings that support this model. The initial model, 
based on cortico-basal ganglia-cortical loops and changes 
in neuronal fi ring rate in the globus pallidus pars interna 
(GPi) and the substantia nigra pars reticulata (SNr), is 
now recognised as limited and incapable of providing 
explanations for many clinical observations. The main 
clinical paradoxes of this model13,14 are summarised in 
the panel.

However, there are several aspects that fi t well with 
this model. The importance of hyperactivity of the 
subthalamic nucleus (STN) and GPi in the parkinsonian 
state has been substantiated by diff erent functional 
approaches in patients with PD. An increased neuronal 

fi ring rate in the “off ” state is a typical fi nding in the 
STN,15 which correlates with increased metabolic 
activation measured by PET of the putamen and the 
GPi.16 Moreover, substantial amelioration of motor 
features and improvement of neurophysiological and 
PET metabolic markers have been documented after 
surgery (ie, pallidotomy, subthalamotomy, and deep 
brain stimulation).17,18

Pathophysiology of PD: expanding classic 
concepts
The basal ganglia networks are now known to be 
anatomically and physiologically subdivided into motor, 
oculomotor, associative, and limbic territories that are 
involved in functions such as learning, planning, 
working memory, and emotions19,20 (fi gure 4). The 
dopaminergic system innervates all striatal regions, as 
well as other non-striatal basal ganglia nuclei and limbic 
and associative cortical areas.21 Progressive loss of 
dopaminergic striatal innervation (fi gure 1) is associated 
with the emergence of executive dysfunction, learning 
problems, and mood disorders.22,23 Loss of dopaminergic 
cortical input is also an early feature,24 and cell loss in 
the raphe nuclei and locus coeruleus25 might also have a 
role in the origin of non-motor manifestations. In this 
section we discuss the origin of the main movement, 
cognitive, and psychiatric manifestations commonly 
seen in early (ie, around diagnosis) phases of PD. 

Motor features
Akinesia 
Diffi  culty with movement has been generally considered 
the main manifestation of dysfunction of the basal 
ganglia.1,2 The clinical characteristics of akinesia indicate 
that hypokinesia and bradykinesia are probably mediated 
by diff erent pathophysiological mechanisms. Hypo-
kinesia is closely associated with reduced rhythmic 
movements, which in turn depends on timing 
mechanisms. This timing is mediated by central pattern 
generators, which are neuronal circuits that fi re 
synchronously without sensory input to produce 
rhythmic activity. Central pattern generators thus provide 
a pacemaker function to the nervous system. These 
generators are well typifi ed in the spinal cord for 
locomotion in quadruped animals and in the brainstem 
for the respiratory centre.26 Presumably, other highly 
rhythmic and automatic movements such as eye blinking 
and arm swinging also have a central pattern generator, 
although the precise anatomical basis is undefi ned. 

Dopamine and other catecholamines have a 
fundamental role in modulating the excitability of the 
central pattern generator and the perception of time.27 
Additionally, the substantia nigra and the basal ganglia 
connections with the supplementary motor area and the 
lateral premotor and dorsolateral prefrontal cortices are 
involved in time processing in animals and human 
beings.28,29 Moreover, time estimation and rhythm 

L-dopa

A   Healthy B   Parkinsonian state C   Dyskinetic state
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Figure 3: The classic pathophysiological model of the basal ganglia in healthy (A), parkinsonian (B), and 
dyskinetic (C) states
Cortical motor areas project glutamatergic axons to the putamen, which sends GABAergic projections to the GPi 
and the SNr by two pathways: the monosynaptic GABAergic “direct circuit”(putamen-GPi) and the trisynaptic 
(putamen-GPe-STN-GPi/SNr) “indirect circuit”. Dopamine from the SNc facilitates putaminal neurons in the direct 
pathway and inhibits those in the indirect pathway. Activation of the direct pathway leads to reduced neuronal 
fi ring in the GPi/SNr and movement facilitation, while activation of the indirect pathway suppresses movements. 
The STN is also activated by an excitatory projection from the cortex (“hyperdirect” pathway), a connection that 
was not included in the original model. In Parkinson’s disease (B), dopamine defi cit leads to increased activity in 
the indirect circuit, in which STN hyperactivity is a key characteristic, and hypoactivity in the direct circuit. 
Together, these actions result in increased GPi/SNr output inhibition of the VL nucleus of the thalamus and reduced 
activation of cortical and brainstem motor regions. In the dyskinetic state (C), abnormal putaminal dopaminergic 
activation (L-dopa arrow) leads to hypoactivity in the indirect circuit and hyperactivity in the direct circuit, 
resulting in reduced inhibitory output activity from the basal ganglia. Green arrows indicate excitatory activity and 
red arrows indicate inhibitory activity. Figure modifi ed from Obeso and colleagues.12 GPe=globus pallidus pars 
externa. GPi=globus pallidus pars interna. SNc=substantia nigra pars compacta. SNr=substantia nigra pars 
reticulata. STN=subthalamic nucleus. VL=ventrolateral nucleus. 
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generation are abnormal in PD27,30 and increased striatal 
expression of D2 receptors in rodents (PD model; table), 
is associated with impaired interval timing.31 Extra-
cellular neuronal recordings in non-human primate and 
rodent models of PD have also shown impairment in 
temporal processing of spatial information.32 Therefore, 
hypokinesia in PD is probably mediated by disruption 
of central pattern generators and abnormal timing 
mechanisms. GPi and SNr project and activate several 
brainstem regions (ie, the pedunculopontine nucleus 
and the superior colliculus) that are functionally 
impaired in the parkinsonian state. The clinical features 
of hypokinesia suggest that excessive inhibition of 
brainstem circuits from the basal ganglia might have a 
major role in its pathophysiology. For example, a low 
blinking rate suggests direct inhibition of the central 
pattern generators, whereas increased excitability of the 
blink refl ex and Meyerson’s sign might be caused by 
SNr overinhibition of the superior colliculus and 
secondary disinhibition of the nucleus gigantocellularis.33 
Brainstem mechanisms are also likely to be engaged in 
the origin of postural disturbances and other motor 
signs such as dysphagia and dysarthria; however, these 
features typically occur later in the disease.

Bradykinesia can be understood as a failure of 
neuronal recruitment or “energisation”.34,35 Movement 
patterns are correctly selected but the parameters for 
undertaking the action in terms of speed and amplitude 
of the movement are incorrectly set,36,37 despite preserved 
capability to choose the appropriate parameters.35 
Striatal medium spiny neurons receive many 
glutamatergic aff erents (about 10 000 synaptic contacts 
per medium spiny neuron) and about 100 of these 
neurons converge into one GPi neuron.38 This large 
input to output gradient requires that the basal ganglia 
is largely involved in selecting which neuronal signals 
are facilitated or not.39,40 In the parkinsonian state, 

activity in the motor circuit is disrupted at several 
fundamental levels. First, the proportion of striatal 
medium spiny neurons and GPi neurons responding to 
stimulation is increased and the inhibition to excitation 
ratio decreases substantially.41 Second, selectivity of 
somatotopic neuronal responses to peripheral 
stimulation is blurred in cortical motor areas42,43 and 
basal ganglia nuclei.44 Third, corticostriatal activity is 
biased towards activation of striatal neurons in the 
indirect circuit,45 which, in association with increased 
collateral inhibition from medium spiny neurons,46 
leads to globus pallidus pars externa (GPe) inhibition 

Panel: Major clinical paradoxes and observations in 
Parkinson’s disease that are not explained by the classic 
model 

Origin of key features
Increased neuronal activity in the STN/GPi-SNr and the 
associated inhibition of the thalamocortical projection does 
not provide an explanation for the origin of tremor and 
rigidity in Parkinson’s disease.

Pallidotomy abolishes dyskinesias
Levodopa-induced dyskinesias in patients with Parkinson’s 
disease are eliminated by GPi lesions, which is incompatible 
with a model that associates excessive inhibition with the 
GPi/SNr and reduced basal ganglia eff erent activity with 
dyskinesias.

No defi cits after interrupting basal ganglia-cortical 
connections
Disruption of the motor circuit by surgical lesions (ie, 
thalamotomy or pallidotomy) does not aggravate bradykinesia 
in Parkinson’s disease nor induces any new motor defi cit.

GPi=globus pallidus pars interna. SNr=substantia nigra pars reticulata. 
STN=subthalamic nucleus.

Putamen GPe GPi STN SNr

Parkinsonian 
state

• Increased expression of D2 receptors, 
enkephalin, preproenkephalin (rat, 
monkey)

• Decreased expression of D1 
receptors, dynorphin, 
preprotachykinin and substance P 
(rat, monkey)

Decreased rate of 
neuronal fi ring (rat, 
monkey)

• Increased rate of neuronal fi ring  
(monkey, patients with PD)

• Increased expression of CO-I and 
GAD (rat, monkey) 

• STN lesion reduces CO-I and GAD 
(monkey) and neuronal fi ring rate 
(monkey, rat)

• Increased rate of neuronal fi ring 
(rat, monkey, patients with PD)

• Increased expression of CO-I (rat, 
monkey) 

• Decreased expression of 2-DG  
(monkey)

• STN lesion improves parkinsonism 
(monkey, rat, patients with PD)

• Increased expression of 
CO-I and GAD (monkey, 
rat) 

• STN lesion reduces 
expression of CO-I and GAD 
(monkey)

Treatment with 
L-dopa or 
apomorphine 

• Normalisation of expression of D1 
and D2 receptor (rat, monkey)

• Normalisation of expression of 
preprotachykinin and substance P 
(rat, monkey)

Normalisation of rate 
of neuronal fi ring 
(monkey)

• Decreased rate of neuronal fi ring 
(rat, monkey, patients with PD)

• Decreased expression of CO-I and 
GAD (rat, monkey)

• Decreased rate of neuronal fi ring 
(rat, monkey, patients with PD)

• Decreased expression of CO-I 
(monkey)

• Decreased expression of 
CO-I and GAD (monkey)

2-DG=2-deoxyglucose measured by autoradiography. 6-OHDA=6-hydroxydopamine. CO-I=cytochrome oxidase-I measured by in situ hybridisation. GAD=glutamic acid decarboxylase measured by in situ 
hybridisation. GPe=globus pallidus pars externa. GPi=globus pallidus pars interna. MPTP=1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. PD=Parkinson’s disease. SNr=substantia nigra pars reticulata. 
STN=subthalamic nucleus.

Table: Summary of the main fi ndings in the 6-OHDA rat and the MPTP monkey models of parkinsonism and in patients with PD
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and increased STN and GPi output (fi gure 3B). Fourth, 
striatal plasticity is impaired, so that synaptic changes 
induced by cortical aff erent stimulation such as 
long-term depression or potentiation are eliminated.47 
Fifth, neuronal fi ring synchrony increases substantially 
within basal ganglia structures such as the STN and 
GPi43,48 and also among diff erent structures throughout 
the motor loop nuclei,49,50 producing abnormal oscillatory 
activity. In patients with PD,51 the “off ” medication state 
is characterised by a net predominance of beta-band 
activity in the STN, which is substantially reduced in 
the “on” state52 (fi gure 5). This activity propagates to the 
basal ganglia and thalamocortical projection, so that the 
entire motor circuit is synchronised at about 20 Hz.50

Accordingly, bradykinesia can be seen as a defect of 
the motor circuit to generate a phasic and time-locked 
inhibition of GPi neurons and to achieve substantial 
desynchronisation in the beta band to facilitate 
recruitment of cortical motoneurons appropriately 
adjusted for the intended movement.41,53–55 This activity 
is not only due to reduced activation of medium spiny 
neurons in the direct circuit,56 but also to the 
combination of functionally hypoactive GPe with 
hyperactive STN and GPi, which reduces the probability 
that a cortical signal will be facilitated via the 
STN-GPe-GPi loop.56,57 Increased responsiveness of the 
STN-GPi might also increase movement-related activity 
through the hyperdirect pathway and contributes to 
progressive attenuation of repetitive and sequential 
movements and micrographia. A similar explanation 
might account for the prolonged latency between 
sequential time-locked simple movements that are 
automatically undertaken (ie, shaking hands or saluting 
at a distance). When the sequence involves diff erent 

movements and body parts, there is a higher demand 
on serial striatal input-output and GPe-STN-GPi 
modulation, accounting for the greater slowness and 
increased errors in execution compared with single 
(one joint) movements.

Rigidity 
The clinical features of rigidity suggest a complex 
pathophysiological origin for this key feature. Thus, 
increased muscle tone at rest and augmented resistance 
to passive displacement of the joint readily evoke 
diff erent mechanisms. On the one hand, there must be 
facilitation of spinal cord motoneuron activity, probably 
related to increased supraspinal driving or facilitation. 
On the other hand, a fundamental role for the stretch 
refl ex must be considered. Classic physiological studies 
have shown that rigidity is abolished by dorsal root 
sectioning or by local dural injection of anaesthetics 
supporting a refl exive origin.58 The latter fi nding led to 
many studies of spinal cord excitability in the 1960s and 
1970s. These studies showed that spinal motoneuron 
responsiveness to aff erents from muscle spindles 
(type Ia fi bres), which sustains the clinically applied 
tendon jerk, is unaltered in PD but the inhibition 
normally evoked from tendon organs (type Ib fi bres) is 
reduced,59 whereas interneurons activated by secondary 
muscle aff erents (type II fi bres) are hyperactive. These 
fi ndings suggest a shifting of spinal cord motoneurons 
towards increased activity in response to peripheral 
stimulation. 

The importance of supraspinal mechanisms in rigidity 
has also received much attention. Slow and sustained 
muscle stretching (giving rise to the tonic stretch refl ex) 
is increased in patients with PD.7 Furthermore, brief and 
rapid phasic muscle stretching of the limbs evokes a 
typical spinal refl ex (latency about 20 ms) and a 
long-latency response (about 40 ms). The long-latency 
stretch refl ex is mediated through the primary motor 
cortex and is increased in patients with PD. However, 
this stretch refl ex is larger in distal muscles than in 
proximal muscles of the upper limb, whereas rigidity is 
also present proximally and in the axial musculature. The 
correlation of this refl ex with clinical rigidity is not 
clear.60 

The importance of cortical mechanisms is reinforced 
by fi ndings of increased primary motor cortex excitability 
as detected by magnetic cortical stimulation.61,62 
Stimulation of the premotor cortex in patients with PD 
in the “off ” medication state did not increase motor 
cortex excitability, an eff ect that was present in healthy 
controls and in the same patients with PD when “on” 
medication.63 These results are similar to fi ndings in 
monkeys treated with MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) in which primary motor cortex 
neurons responded more vigorously and with less 
specifi city to passive limb movements, although the 
fi ring rate at rest was not modifi ed.43,53 

Associative circuitMotor circuit Limbic circuitB CA

Thalamus

GPe

GPi

STN

Putamen

Thalamus
Caudate

GPe

GPi

STN

Putamen

Thalamus
Caudate

GPe

GPi

STN

Putamen

Figure 4: Functional organisation of the basal ganglia
The basal ganglia are divided into motor (A), associative (B), and limbic (C) subregions, which are topographically 
segregated, as highlighted by areas coloured in red (motor cortex), green (prefrontal cortex), and blue (anterior 
cingulate cortex). Figure reprinted from Obeso and colleagues.4 GPe=globus pallidus pars externa. GPi=globus 
pallidus pars interna. STN=subthalamic nucleus. 
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Surgery of the basal ganglia and motor thalamus has a 
clear antirigidity eff ect, indicating a direct role of the 
motor circuit in the origin of rigidity. How dopamine 
defi ciency and increased basal ganglia output activity are 
associated with primary motor cortex excitability and 
rigidity is not understood. There might be several 
possible and not mutually exclusive mechanisms. For 
example, changes in GABA and cholinergic interneurons 
lead to reduce intrastriatal inhibition in the indirect 
circuit, which could facilitate responses to peripheral 
stimulation. Neuronal responsiveness of the STN and 
GPi to peripheral stimulation is increased in the 
parkinsonian state, suggesting that responses to normal 
muscle aff erent impulses could facilitate cortically 
mediated responses. Hyperactivity of area 4 (the primary 
motor cortex) plus increased gain in the cortico-STN-GPi 
microcircuit and the loss of somatotopic specifi city could 
explain Froment’s sign. However, neuronal discharges in 
the STN and GPi should lead to cortical inhibition or 
absence of facilitation, which does not explain the 
excessive response to stretching that characterises rigidity 
and the increased muscle tone at rest. Thus, rigidity is 
not explained by the classic model of basal ganglia 
pathophysiology. The origin of rigidity in PD would be 
easier to understand if basal ganglia output to the 
thalamus was not only inhibitory. Additionally, rigidity 
probably involves disinhibition of brainstem mechanisms 
(ie, reticulospinal projections64 mediating muscle tone 
and posture).

Tremor
Rhythmic and synchronous neuronal fi ring recorded in 
the STN and the GPi correlates with tremor in the limbs 
in both monkeys treated with MPTP and in patients 
with PD.65 Surgery of the STN can readily stop 
parkinsonian tremor. This tremor is inhibited at the 
onset of a voluntary muscle contraction involving the 
same body part and by cortical magnetic stimulation, 
and disappears after stroke causing hemiparaesis, all of 
which indicate that the pyramidal tract is the fi nal 
output pathway mediating tremor. However, rhythmic 
fi ring is better recorded and tremor stopped in the 
ventralis intermedius nucleus (Vim) of the thalamus.66 
The Vim is outside the basal ganglia projection territory; 
it receives propioceptive (type Ia) aff erents from muscle 
spindles and projects to the primary somatosensory 
cortex and motor cortex (area 3a). In monkeys treated 
with MPTP, 5 Hz stimulation of the GPi is not capable 
of recruiting and driving motor cortex activity, revealing 
a fi ltering characteristic of low frequency activity in the 
motor circuit.67 This fi nding means that rhythmic 
activity in the basal ganglia is unlikely to drive 
cortical-spinal motor activity to generate tremor. The 
origin of tremor in PD is therefore a pathophysiological 
puzzle. Specifi cally, the mechanistic link between 
dopamine defi ciency and abnormal oscillatory activity 
in an extensive motor network that involves the basal 

ganglia, the cerebellar, the thalamus and the motor 
cortex needs to be understood. We suggest two main 
possible mechanisms. 

First, basal ganglia could be directly involved. In this 
potential mechanism, increased basal ganglia output 
leads to increased excitability of the primary motor cortex 
and increased sensitivity to stretching and synchronous 
basal ganglia fi ring, thus facilitating the onset of 
oscillations around the motor loop. Muscle stretching 
evokes neuronal responses in the STN of patients with 
PD, which show a pronounced tendency to oscillate at 
tremor frequency. The latency of about 60–100 ms of 
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these responses and total movement time of each tremor 
beat of 150–200 ms fi t with a loop through the basal 
ganglia at 5 Hz. Loss of direct dopaminergic control of 
the microcircuity network formed by the STN-GPe/GPi 
interconnections could play a part in this regard.68

Second, the neuronal network underlying tremor 
might not primarily lie in the basal ganglia. This 
possibility is supported by the high association between 
the Vim and cerebellar activation and tremor and by the 
exquisite sensitivity of Vim manipulations to cessation of 
tremor. Dopaminergic projections to the thalamus are 
known to be present in monkeys and human beings,69 
and the STN-GPi form a loop with the centromedian 
thalamic nuclei,70 which in turn is reciprocally connected 
to the primary motor cortex. Extrastriatal dopamine 
denervation, or loss of other transmitters, could facilitate 
synchronous 5 Hz activity within the thalamus and basal 
ganglia. The possibility therefore arises that loss of 
catecholaminergic neurons required for tremor in PD 
might have a diff erent pattern to that underlying the 
akinetic-rigid presentation. ¹⁸F-fl uorodopa PET striatal 
uptake does not correlate with tremor severity71 and 
resting tremor is not associated with striatal lesions. 
However, a specifi c pattern of neurodegeneration 
accounting for tremor and diff erentiating predominant 
tremor from akinetic-rigid forms of PD has not been yet 
found.72 

Key motor features of PD: conclusions and suggestions 
Two main characteristics of parkinsonian motor features 
are the greater diffi  culty in moving with self-initiated 
than with externally triggered movements and the 
abnormal activation of specifi c body parts. Movements of 
the limbs or gait improve when initiated in response to 
external cues, and bradykinesia is made worse when 
more than one body part is activated simultaneously; 
both rigidity and tremor are also increased or are induced 
by movements of other body parts. These features fi t well 
with the concept that the basal ganglia have a fundamental 
role in modulating activity of premotor areas 
(supplementary motor area, pre-supplementary motor 
area, and dorsolateral prefrontal cortex) that deal with 
selection of self-initiated actions.39,40,55 However, analysis 
of the main motor manifestations of PD suggests a more 
complex pathophysiological origin. Thus, key features of 
hypokinesia such as absence of spontaneous movement 
or reduced blink rate are unlikely to share mechanisms 
with bradykinetic manifestations such as reduced 
amplitude and slowness of the limbs or simultaneous 
manual movements. We suggest that hypokinesia is 
related to overinhibition of the brainstem central pattern 
generator, whereas bradykinesia is related to perturbed 
activation or inhibition of the basal ganglia-thalamocortical 
pathway. The primary motor cortex is impaired in a 
complex way in the parkinsonian state and there is a 
functional uncoupling of premotor areas and primary 
motor area. This impairment could be due to a 

preferential involvement of area 4 activity in the origin of 
rigidity (and possibly tremor), whereas hypoactivation of 
premotor areas could underlie bradykinesia. Recent data 
indicate that bradykinesia itself encompasses several 
mechanisms, with amplitude and speed of movement 
probably mediated by diff erent mechanisms,37 which 
suggest diff erential involvement of cortical motor areas. 
Additionally, the role of basal ganglia output on to the 
brainstem deserves greater attention. Several features of 
akinesia and rigidity probably involve a brainstem 
mechanism. It is diffi  cult to explain the key motor 
features of PD on the basis of a common pathophysio-
logical mechanism. Moreover, current data on the 
anatomo-functional organisation of the basal ganglia can 
not comprehensively explain the range of motor 
manifestations associated with dopamine depletion in 
PD. 

Cognitive manifestations
Cognitive defi cits in PD range from “frontal” executive 
dysfunction, which can be present in a mild form from 
early stages, to frank dementia in late stages. Here, we 
concentrate on disorders of executive function, which 
can be recognised as early features of PD.

Executive dysfunction
Executive function refers to processes involved in the 
higher-order control of behaviour, such as strategic 
planning and problem solving, maintaining and shifting 
attention, and behavioural regulation: the ability to 
initiate, execute, inhibit, and monitor a sequence of 
actions. Depending on sample characteristics and criteria 
used, cognitive defi cits are present in early PD in 20–40% 
of patients73–75 but are often overshadowed by motor 
features. 

The fi nding that patients with PD show defi cits 
compared with matched controls on several standardised 
neuropsychological tests of executive function such as 
the Wisconsin card sorting test, verbal fl uency, and the 
Stroop test has been well documented.76 Patients with PD 
also show impaired performance on other tests of 
executive function that require planning and problem 
solving76,77 or shifting of attentional set,77,78 on tasks 
requiring suppression of prepotent or habitual 
responses,76,79 and in task situations that require sharing 
of attentional resources for concurrent performance of 
two tasks.80,81 Such impairment becomes more evident 
when patients have to rely on internal control of attention 
relative to when external cues are available to guide 
behaviour,82 in a way that is similar to what occurs with 
movement. Other defi cits of cognitive function, such as 
impairment of visuospatial function, can also occur in 
PD,83 but language is generally intact in early PD.73–75 
Memory impairment in early PD could be largely due to 
eff ortful retrieval, as cueing improves recall and 
recognition memory is usually not impaired,76,84 although 
defi cits in recognition memory have been found in other 
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studies (reviewed elsewhere85). Patients with PD have 
impaired implicit learning on both cognitive and motor 
tasks, such as the weather prediction task86 and the serial 
reaction time task.87 

Generally, many aspects of the dysexecutive syndrome 
improve with dopaminergic treatment.88,89 However, 
dopaminergic medication has a detrimental eff ect on 
other aspects of cognition, such as reversal or conditional 
associative learning. These defi cits have been attributed 
to a dopamine overdose eff ect in the frontostriatal circuits 
through the ventral striatum (orbitofrontal, anterior 
cingulate, and inferotemporal circuits). This eff ect could 
be because there is not substantial dopamine depletion 
in these circuits in the early stages of PD.90,91

Pathophysiology of executive dysfunction
Reduced ¹⁸F-fl uorodopa uptake in the caudate has been 
associated with executive dysfunction in patients with 
PD in some92,93 but not all studies,94 thus implicating 
nigrostriatal dopamine depletion in these cognitive 
defi cits. The mesocortical dopamine system is also 
aff ected,95 although prefrontal overactivity, particularly in 
the anterior cingulate, has been found at early stages of 
the disease.96 Imaging studies have shown that executive 
defi cits and working memory impairment in patients 
with PD are associated with dysfunction in the basal 
ganglia,23,79,97,98 the dorsolateral prefrontal cortex,79,99 or the 
caudate and prefrontal cortex,100 thus implicating both 
the nigrostriatal and the mesocortical pathways in these 
defi cits. However, a recent ¹¹C-raclopride study of spatial 
working memory concluded that executive dysfunction 
in patients with early PD is associated with impaired 
nigrostriatal function and that mesocortical dopaminergic 
function is well preserved in early PD.22 Similarly, data 
from several studies in monkeys with minimum motor 
defi cits after low and slow MPTP exposure have shown 
defi cits in executive function and attention,101 which were 
best explained by a nigrostriatal lesion.102

These fi ndings suggest that dysfunction of cortico-basal 
ganglia associative areas secondary to dopamine 
depletion might have an important role in early executive 
problems in patients with PD. However, the relative 
contribution of the nigrostriatal and mesocortical 
dopamine depletion to executive dysfunction probably 
varies during the course of the illness and also depends 
on the nature of the specifi c executive process under 
investigation. Evidence also implicates other neuro-
transmitters such as acetylcholine in the cognitive 
manifestations of PD.88,103–105

Psychiatric manifestations 
A premorbid personality has been described in several 
studies.106,107 The typical personality of patients with PD 
is mainly characterised by emotional and attitudinal 
infl exibility, introversion, and a depressive tendency, 
which can precede the development of motor 
abnormalities by many years.

Psychiatric symptoms might appear at any time, 
usually worsen as the disease progresses, and occur 
frequently in patients with PD but without dementia.108 
Depression, anxiety, and apathy are the most prevalent 
symptoms. Apart from these features, most psychiatric 
symptoms that develop in the course of PD are seen in 
patients with advanced PD and are associated with 
complications derived from chronic dopaminergic 
treatments.109

Psychiatric problems in patients with early PD 
In untreated patients with early PD, depression (37%), 
apathy (27%), sleep disturbances (18%), and anxiety (17%) 
are the most common neuropsychiatric symptoms.110 
Patients with PD who have never been treated also have 
deficits on reward processing and novelty seeking, which 
can be reversed by dopamine agonist therapy.106,111

Longitudinal studies assessing the predominant 
clinical psychiatric manifestations during disease 
progression are scarce.112 Depression occurs in about 
40–50% of patients with PD throughout the course of 
the disease,113 but this symptom is commonly 
underdiagnosed and undertreated, despite being a 
predictor of poor quality of life.114 Guilt and self-blame 
are less frequently reported. Suicidal ideation is not 
uncommon, but suicidal behaviour is rare. Depression 
is manifested as pessimism and feelings of hopelessness, 
can be associated with apathy and anxiety, and can 
occasionally be diffi  cult to discern from symptoms such 
as bradyphrenia, fatigue, and sleep disturbances. Apathy 
is a generalised lack of motivation accounting for a 
decrease in goal-orientated activities, loss of interest, and 
blunted emotional experience. Apathy is seen in 17–70% 
of patients with PD,115,116 and frequently coexists with 
depression or dementia, although it can occur as the sole 
major manifestation116 or can be associated with executive 
dysfunction.117

Generalised anxiety, panic attacks, and social phobias 
are common in PD.118 About 40% of patients have 
anxiety,119,120 although a recent series reported a 
prevalence of 69% (930 of 1351).108 The symptoms 
include apprehensiveness, nervousness, irritability, and 
feelings of impending disaster as well as palpitations, 
hyperventilation, and insomnia. Panic disorder is the 
most common anxiety disorder in PD. 

Pathophysiological basis of psychiatric manifestations 
The pathophysiological basis of the non-drug-induced 
psychiatric manifestations in PD is poorly understood. 
Depression and apathy have been linked to ventral 
striatum and mesolimbic dopaminergic denervation.121,122 
Involvement of norepinephrinergic122 and serotoninergic 
metabolism has also been suspected.123 As apathy, 
anxiety, and depression precede disease onset in 30% of 
recently diagnosed patients,124 and there is no evidence 
of generalised catecholaminergic cell loss in patients 
with early PD, these manifestations could be associated 
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with dopaminergic striatal defi cit. Thus, dopaminergic 
treatments are usually benefi cial125 and lead to a period 
of restored behaviour and mood. However, the available 
data do not allow any fi rm conclusion regarding the 
relative role of catecholamines in the origin of 
depression and other early psychiatric manifestations. 
In patients with more advanced disease, depression, 
acute sadness, or dysphoria might be associated with 
“off -drug” fl uctuations,126 which could be seen as the 
opposite of the hyperdopaminergic behaviours (ie, 
impulse control disorders109) induced by dopaminergic 
drugs. Additionally, apathy improves with dopamin-
ergic treatment.127

Conclusions 
The basal ganglia networks involve complex sets of 
cortical and subcortical connections involved in motor 
control, cognitive functions, and emotional processing, 
probably through a common pathway, whereas the 
nigrostriatal dopaminergic system modulates input and 
the glutamatergic subthalamic projection regulates 
output. The wide clinical range of symptoms in patients 
with PD, even in early stages, could be due to dysfunction 
in distinct cortico-basal ganglia loops. The classic 
pathophysiological model of the basal ganglia does not 
explain the origin of rigidity and tremor or the 
constellation of features comprising akinesia. Moreover, 
there is insuffi  cient understanding of the mechanisms 
underlying executive dysfunction and psychiatric 
features. The eff ect of defi cits in neurotransmitters other 
than dopamine, albeit known for many years, has not 
been adequately incorporated in the pathophysiology of 
PD. What is now required is a new holistic model dealing 
with the broadened clinical manifestations in early and 
later stages. The role of compensatory mechanisms 
would be an important feature to consider and incorporate 
into future models. 
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