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The field strength correlator from QCD sum rules
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The gauge invariant two–point correlator for the gluon field strength tensor is analysed by means of the QCD

sum rule method. To this end, we make use of a relation of this correlator to a two–point function for a quark–

gluon hybrid in the limit of the quark mass going to infinity. From the sum rules a relation between the gluon

correlation length and the gluon condensate is obtained.

1. Introduction

An important role in non–perturbative ap-

proaches to QCD is played by the gauge invariant

non–local gluon field strength correlator

Dµνρσ(z) ≡ 〈0|T {g2sF
a
µν(y)Pe

gfabczτ
∫

1

0

dtAc
τ(x+tz)

×F b
ρσ(x)}|0〉 , (1)

where the field strength F a
µν = ∂µA

a
ν − ∂νA

a
µ +

gfabcAb
µA

c
ν , z = y− x and P denotes path order-

ing of the exponential. In general, the gauge in-

variant field strength correlator could be defined

with an arbitrary gauge string connecting the end

points x and y, but in this work we shall restrict

ourselves to a straight line.

It is the basic ingredient in the stochastic model

of the QCD vacuum [1,2] and in the description

of high energy hadron-hadron scattering [3–6]. In

the spectrum of heavy quark bound states it gov-

erns the effect of the gluon condensate on the level

splittings [7–10] and it is useful for the determi-

nation of the spin dependent parts in the heavy

quark potential [11,12].

The correlator can be related to a correlator of

a colour singlet current composed of a (fictitious)

infinitely heavy octet quark and the gluon field
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strength tensor. This fact has already been em-

ployed in ref. [13] in order to calculate the per-

turbative corrections by means of Heavy Quark

Effective Theory (HQET). In this work we again

use this relation to estimate the correlation length

from QCD sum rules [14] using as ingredients the

value of the gluon condensate and the results for

the perturbative calculation.

2. The field strength correlator

Instead of dealing with the non–local string op-

erator which makes a calculation rather tedious

one can replace the string by local heavy quark

fields and use the methods developed in HQET.

To this aim, we introduce an infinitely heavy

quark field in the octett representation, ha(x),

which is constructed from the field Qa(x) analo-

gous to HQET by

ha(x) = lim
mQ→∞

1

2
(1+6v) eimQvxQa(x) , (2)

v is the four–velocity of the heavy quark. The

propagator of the free heavy quark field in coor-

dinate space is given by

S(z) = 〈0|T {ha(y)h̄b(x)}|0〉

= δab
1

v0
θ(z0) δ

(
z−

z0

v0
v
)
, (3)
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where v0 is the zero–component of the velocity.

The δ–function constrains the heavy quark on a

straight line. With the effective HQET action

Seff =
∫
dx h̄ ivµDµh , the following equation

can be shown analytically [15]:

〈0|T {ha(y)h̄b(x) eiSeff }|0〉

= S(z) 〈0|Pe
gfabczτ

∫
1

0

dtAc
τ(x+tz)

|0〉 . (4)

The physical picture of this result is a heavy

quark moving from point x to y with a four–

velocity v, acquiring a phase proportional to the

path–ordered exponential. The limit of mQ → ∞

is necessary in order to constrain the heavy quark

on a straight line and in order to decouple the spin

interactions which are suppressed by a power of

1/mQ and can therefore be neglected. By intro-

ducing a new correlator D̃(z), we can now express

our correlator (1) in terms of heavy quark fields

D̃µνρσ(z)

≡ 〈0|T {g2sF
a
µν(y)h

a(y)F b
ρσ(x)h̄

b(x)eiSeff }|0〉

= S(z)Dµνρσ(z) , (5)

which establishes the relation between the field

strength correlator and HQET.

3. The sum rules

Our next aim is to evaluate this correlator in

the framework of QCD sum rules [14] and in that

way obtain information on the correlation length

of the field strength correlator. We may view the

composite operator (gsh
aF a

µν)(x) as an interpo-

lating field of colourless quark gluon hybrids and

evaluate D̃µνρσ(z) by introducing these as inter-

mediate states in the absorption part of D̃µνρσ(z).

The lowest lying state will govern the long–range

behaviour and hence the inverse of its energy is

the correlation length.

For the sum rule analysis it is preferable to

work with the correlator in momentum space.

Thus we define

D̃µνρσ(w) = i

∫
dz eiqz〈0|T {g2sF

a
µν(y)h

a(y)

×F b
ρσ(x)h̄

b(x)}|0〉 , (6)

where w = vq is the residual heavy quark mo-

mentum.

For a sum rule analysis the states have to be

classified according to different quantum num-

bers. The projections onto the two independent

subspaces is done with

D̃−(w) ≡ gµρvνvσ D̃µνρσ(w)

D̃+(w) ≡ (gµρgνσ − 2 gµρvνvσ) D̃µνρσ(w) , (7)

where D̃− contains a vector and D̃+ an axialvec-

tor intermediate state.

We model the correlators by a contribution

from the lowest lying resonance plus the pertur-

bative continuum above a threshold s0. Inserting

the matrix elements and performing the heavy

quark phase space integrals one obtains

D̃∓(w) =
κ∓ |f∓|2

w − E∓ + iǫ
+

∞∫

s∓
0

dλ
ρ∓(λ)

λ− w − iǫ
, (8)

where E represents the energy of the glue around

the heavy quark, f∓ are the hadronic matrix el-

ements and κ∓ are constants. The spectral den-

sities are defined by ρ∓(λ) ≡ 1/π Im D̃∓(λ + iǫ)

and are known at the next–to–leading order [13].

After Fourier transformation to coordinate

space the above representation reads:

D̃(z) = S(z)

{
−κ |f |2e−iE|z|

+

∫ ∞

s0

dλ ρ(λ) e−iλ|z|

}
. (9)

Since the heavy quark propagator factorises, we

identify the expression inside the brackets with

our original correlator D(z). The long–range be-

haviour will be dominated by the term containing



the exponential with the energy E. Therefore the

correlator decays exponentially and the correla-

tion length is given by 1/E.

Now we turn to the theoretical side of the sum

rules which is obtained by calculating the corre-

lator of eq. (6) in the framework of the operator

product expansion [14,16].

The perturbative contributions in momentum

space have the form

D̃∓
PT (w) = (−w)3 a

[
p∓10 + p∓11L

+a (p∓20 + p∓21L+ p∓22L
2)
]
, (10)

where a ≡ αs/π, L = ln(−2w/µ) and the coeffi-

cients p∓ij can be found in ref. [17].

Essential for the sum rule analysis are the con-

tributions coming from the condensates. In our

case the dimension three condensate 〈h̄h〉 van-

ishes since the quark mass is infinite. The lowest

nonvanishing term is the gluon condensate of di-

mension four:

D̃−
FF (w) =

1

2
D̃+

FF (w) = −
π2

w
〈aFF 〉 . (11)

The next condensate contribution would be of di-

mension six, but we shall neglect all higher con-

densate contributions in this work and restrict

ourselves to the gluon condensate.

The correlators satisfy homogeneous renormal-

isation group equations. Thus we can improve the

perturbative expressions by resumming the loga-

rithmic contributions. Calculation of the first co-

efficients γ∓
1 for the anomalous dimensions from

eq. (10) leads to

γ−
1 = 0 , γ+

1 = 3 . (12)

The correlator D̃−(w) which corresponds to the

vector intermediate state does not depend on the

renormalisation scale µ at this order.

In order to suppress contributions in the disper-

sion integral coming from higher exited states and

from higher dimensional condensates, it is conve-

nient to apply a Borel transformation B̂T with T

being the Borel variable. After renormalisation

group improvement and Borel transformation all

the ingredients needed for a sum rule analysis are

known. Explicit formulas for the expressions can

be found in ref. [17]. Now we turn to the numer-

ical analysis.

4. Numerical analysis

Let us denote by χ(T, s0) the Borel transformed

expression for the continuum part χ(T, s0) ≡

B̂T

∫∞

s0
dλ ρ(λ)/(λ − ω − iǫ) . After equating the

phenomenological and the theoretical part we end

up with the sum rule

−κ∓|f∓|2e−E∓/T

= D̂∓
FF + D̂∓

PT (T )− χ∓(T, s0) . (13)

By taking the logarithmic derivative we get an

equation for the energy E.

The analysis shows that the different sign of

the perturbative and non–perturbative term in

the 1− state leads to a stabilisation for the energy

sum rule, whereas the equal sign in the 1+ state

destabilises.

As our input parameters for the case of three

light quark flavours we use < aFF >= 0.024 ±

0.012 GeV4, Λ3fl = 0.323 GeV and µ = 2 GeV.

To estimate the errors we have varied the scale

µ, the continuum threshold s0 and the gluon con-

densate. In Fig. 1 we have displayed the energy

E− as a function of the Borel parameter T for

different values of µ and s0. A good balance be-

tween stability for the energy and sensitivity for

the resonance is found around E− = 1.5 GeV.

Including the errors we get for the energy and

correlation length

E−
3fl = 1.5± 0.4 GeV, a−3fl = 0.13+0.05

−0.02 fm. (14)

In a world without light quarks, i.e. nf = 0,
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Figure 1. The energy as a function of the Borel-

parameter T. Dashed curves µ = 1GeV: low-

est s0 = 1.3GeV, middle s0 = 1.5GeV, upper

s0=1.7GeV. Solid curves µ=2GeV: lowest s0=

1.5GeV, middle s0=1.7GeV, upper s0=1.9GeV.

Dotted curves µ = 4GeV: lowest s0 = 1.7GeV,

middle s0=1.9GeV, upper s0=2.1GeV.

the main influence is the expected change of the

gluon condensate which might increase by a factor

two to three [23]. If we perform an analysis as

above, we get for Λ0fl = 0.250 GeV, < aFF >=

0.048± 0.024 GeV4 and s0 = 2.3 GeV an energy

and correlation length of

E−
0fl = 1.9± 0.5 GeV , a−0fl = 0.11+0.04

−0.02 fm. (15)

For E+, the energy of the axial vector, we obtain

no stable sum rule. The expressions for E− and

E+ are equal in lowest order perturbation the-

ory, higher order perturbative contributions and

the gluon condensate lead to a splitting in such

a way that for the same values of s0 and T the

expression for E− is higher than that for E+.

5. Summary and conclusions

The analysis of the gauge invariant gluon field

strength correlator by QCD sum rules allows to

establish a relation between the gluon condensate

and the correlation length. In order to apply the

sum rule technique which consists in the compar-

ison of a phenomenological ansatz with a theo-

retical expression obtained from operator prod-

uct expansion we interpret the gluon correlator as

the correlator of two colour neutral hybrid states

composed of a (fictitious) heavy quark transform-

ing under the adjoint representation and a gluon

field. The former serves as the source for the

gauge string in the correlator.

The value of the lowest intermediate 1− state

(the inverse correlation length of the correlator)

with three flavours can be determined to E−
3fl =

1/a−3fl ≈ 1.5 ± 0.4 GeV and with zero flavours

to E−
0fl = 1/a−0fl ≈ 1.9 ± 0.5 GeV. The main

sources of uncertainty are the choice of the con-

tinuum threshold s0 and the value of the gluon

condensate.

Though we find no stable sum rule for the axial

vector state we have from the difference of the ex-

pressions for the 1− and 1+ state strong evidence

for the counterintuitive result that the 1+ state is

lighter than the vector state.

The field strength correlator has been calcu-

lated on the lattice using the cooling technique

[18,19] and field insertions into a Wilson loop [20].

For a discussion see ref. [17]. Recently in an

analysis of heavy quarkonium in the framework

of NRQCD [21] a splitting between the vector

and the axialvector part has been observed in the

same direction as proposed by the sum rules.

The sum rule analysis shows that the state in-

vestigated here namely a gluon confined by an

octet source has a much higher energy than a cor-

responding state in HQET. A similar analysis of

a light quark bound by a source in the fundamen-

tal representation [22] yielded an energy which is

by a factor 2 to 4 smaller. This is to be expected

from general grounds [23] since the case treated

here is nearer to a glueball than to a heavy meson.
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