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ABSTRACT

Scattering of fundamental states of type IIB supergravity and superstring theory is discussed at

low orders in perturbation theory in the background of a D-instanton. The integration over fermionic

zero modes in both the low energy supergravity and in the string theory leads to explicit nonperturbative

terms in the effective action. These include a single instanton correction to the known tree-level and

one-loop R4 interactions. The ‘spectrum’ of multiply-charged D-instantons is deduced by T-duality in

nine dimensions from multiply-wound world-lines of marginally-bound D-particles. This, and other clues,

lead to a conjectured SL(2,Z) completion of the R4 terms which suggests that they are not renormalized

by perturbative corrections in the zero-instanton sector beyond one loop. The string theory unit-charged

D-instanton gives rise to point-like effects in fixed-angle scattering, raising unresolved issues concerning

distance scales in superstring theory.
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1 Introduction

The dualities that relate superstring perturbation expansions (and M-theory) involve the interchange of

fundamental string excitations and solitons. In compactified theories these symmetries relate the different

states obtained by wrapping both the strings and their solitons around compact dimensions, but already in

ten dimensions there are interesting inter-relationships between theories. Notably, the type IIB theory is

self-dual in the sense that it transforms into itself under SL(2, Z) transformations which act on the various

species of solitons – the SL(2, Z) multiplet of strings, the self-dual three-brane, the SL(2, Z) multiplet of

fivebranes and the seven-brane. However, the type IIB theory also possesses an instanton solution which

couples to the Ramond–Ramond (R ⊗ R ) charge associated with the pseudoscalar, C(0).3 This leads to

little-studied non-perturbative effects in the ten-dimensional theory – effects that are intimately related

to the SL(2, Z) symmetry of the theory.

After compactification there are other instantons, namely, BPS ‘(p+ 1)-instantons’ that arise from

wrapping the (p + 1)-dimensional euclidean world-volumes of p-branes around compact dimensions in

a supersymmetric manner [1, 2, 3]. All such instantons, which are related to each other by T-duality,

have infinite actions in the limit of flat ten-dimensional space-time apart from the D-instanton (p = −1),

which has a zero-dimensional world-volume. Such euclidean configurations may be treated in a unified

manner, for example, using the formalism of [4].

Although some properties of these (p+1)-instantons have been studied and their duality properties

have been explored, relatively little is known about correlation functions in the instanton backgrounds and

even less about the effect of the D-instanton on ten-dimensional type IIB theory. It would, for example,

be interesting to study the SL(2, Z) extension of the perturbative effective action, which might reveal

connections with more fundamental underlying principles. It is particularly fascinating that D-instantons

appear to give rise to point-like behaviour of short-distance correlation functions of fundamental strings.

Indeed the point-like nature of Dirichlet boundary conditions has for some time been linked to power

behaviour of fixed-angle scattering in the bosonic string theory [5, 6, 7]. This is in marked contrast to

the exponential decrease of fixed-angle cross sections that is characteristic of conventional fundamental

string processes [8, 9, 10].

This paper is concerned with effects of D-instantons in IIB supergravity and superstring theory in

ten uncompactified dimensions. Much of the analysis also applies to any of the (p + 1)-instantons that

arise in compactifications to lower dimensions. We will begin by reviewing the D-instanton solution of IIB

supergravity in section 2. An expanded discussion of the instanton action will be given in the appendix.

Just as in the case of D-branes with p > −1 the classical supergravity solution [11] is singular at the

origin, but the string theory description is expected to be well-defined at short distances [12, 13, 14, 15].

The fermionic zero modes of the IIB supergravity field theory in this background are obtained in section

3 by applying the generators of the sixteen broken supersymmetries to the instanton field configuration.

The counterpart of these modes in the IIB superstring will be obtained in section 4 where the fermionic

zero modes are given by attaching fermionic open string vertex operators to the boundary of world sheets.

Integration over the sixteen fermionic moduli induces new interactions, just such as it does in conventional

3We are using the convention that the R ⊗ R q-form potentials are denoted C(q).
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field theory [16].

In section 5 we will discuss interactions that are induced at leading order in an instanton background

in both the supergravity and the string descriptions. These include a λ16 term and a R4 term (where R

is the Riemann curvature). The latter is a one-instanton correction to the tree level [17, 18] and one loop

[19] R4 terms with the same tensor structure. These particular terms are non-stringy in origin since they

can be deduced from IIB supergravity alone.

The explicit calculations of this paper are limited to a single unit-charged D-instanton background

since little is known about multiply-charged D-instantons beyond the classical solutions of IIB supergrav-

ity. However, T-duality provides more detailed information. Thus, T-duality in nine dimensions (with

euclidean time, X0, compactified on a circle of circumference l) transforms the euclidean world-lines of

D-particles to D-instantons. It is strongly believed that there are threshold bound states of n D-particles

for any integer n. The configuration in which the world-line of such a state is wrapped m times has an

action that is given by,
∫ 2π

0

dt

(

|n|e−φ√g00 + in(α′)−1/2C(1) dX
0

dt

)

, (1)

where C(1) is the R ⊗ R one-form potential (0 ≤ C(1) ≤ 2π) and g00 = l2(dX0/dt)2(α′)−1 (where

l is the circumference of the compact euclidean time dimension). For the m-wrapped world-line

(α′)−1/2
∫

dt (dX0/dt) = 2πm and
∫

dt(g00)
1/2 = 2π|m|lα′−1/2

. Under T-duality C(1) → C(0) and

le−φα′−1/2 → e−φ. Thus, the action S(mn) for the D-instanton with charge p = mn is,

S(mn) = −2πi(mnC(0) + i|mn|e−φ), (2)

which is equal to −2πi|mn|τ for positive mn (which we shall refer to as an instanton) and 2πi|mn|τ̄ for

negative mn (which we shall refer to as an anti-instanton), where τ = C(0) + ie−φ.4 Therefore there

are multiply-charged D-instantons of charge p = mn with degeneracy given by the number of partitions

of p into two integers. In section 6 we will use this information, together with known results of string

perturbation theory, to motivate an SL(2, Z) completion of the effective R4 interaction of section 5. We

will see that for this to be correct there must be an interesting non-renormalization theorem that forbids

perturbative corrections to this term beyond one loop in the zero-instanton sector – a property that has

a plausible heuristic origin.

In section 7 we will consider an intrinsically stringy effect that arises from a world-sheet which is

a disk with four massless closed-string tensor states attached. The fixed-angle scattering of gravitons on

such a world-sheet is power behaved at high energy. This point-like behaviour arises, as in the bosonic

theory, from the presence of massive closed-string states that couple to the boundary. However, although

this is intriguing, its precise interpretation is unclear since integration over fermionic modes causes this

process to vanish unless there are more external particles that are sources for the sixteen fermionic moduli.

Furthermore, we have not taken into account possible effects of instantons with multiple charges that are

required by the T-duality argument given above.

Beyond lowest order in the coupling constant scattering processes generically include connected

world-sheets with more than one boundary, such as the annulus with both boundaries fixed at the same

4Thus, a D-particle wrapped in a positive direction is equivalent to an anti D-particle wrapped in a negative sense.
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space-time point. This is a loop of closed string – a loop correction to the D-instanton. The systematics of

this perturbation theory involve cancellations between the Dirichlet theory divergences that are associated

with the presence of the bosonic translation zero modes [20, 21]. These will also be outlined in section 7.

The boundary of moduli space that gives point-like scattering is not contained within the region that gives

these cancelling divergences so that the puzzling point-like behaviour is not eliminated by cancellation of

the Dirichlet divergences.

2 Type IIB supergravity and the D-instanton

The bosonic terms in the low-energy IIB supergravity are expressed in a manifestly SL(2, R)-invariant

form in the Einstein frame,

S =
−1

2κ2
0

∫

d10x
√−g

{

R− 1

2τ2
2

∂µτ∂
µτ̄ − 1

12τ2
(τHNS +HR)µνρ(τ̄HNS +HR)µνρ

}

+ · · · , (3)

where the fifth-rank field strength has been set to zero and we will set the arbitrary constant coupling

to the value κ0 = 1 for convenience. The terms represented by · · · in (3) include kinetic terms for the

spin-1/2 complex Weyl fermion, λ, and the complex Weyl gravitino, ψµ (the 16-component spinor index

is suppressed) and furthermore include an infinite series of terms of higher order in derivatives and higher

fermion terms. The scalar and antisymmetric tensor fields arise in (3) in the combinations,

τ ≡ τ1 + iτ2 = C(0) + ie−φ, H =

(

HNS

HR

)

, (4)

and HNS = dBNS , HR = dC(2). The scalar fields parameterize the coset space, SL(2, R)/U(1), in which

the U(1) represents a local symmetry acting on the fermions. Before choosing a gauge there are three

scalar fields which enter the zweibein V ±
α ,

V =
1√

−2iτ2

(

τ̄ e−iφ τeiφ

e−iφ eiφ

)

, (5)

where 0 ≤ φ ≤ 2π. The local U(1) rotations act from the right so that V transforms into V U(α) (where

U = diag(eiα, e−iα)) which induces the shift, φ → φ − α. The global group SL(2, R) acts from the left.

Following the notation in [22] it is useful to define,

Pµ ≡ −ǫαβV
α
+ ∂µV

β
+ = ie2iφ ∂µτ̄

2τ2
, Qµ ≡ −iǫαβV

α
+ ∂µV

β
− = ∂φ− ∂µτ1

2τ2
, (6)

where Qµ is a composite U(1) potential that couples minimally to the fermions. The gravitino ψµ has

U(1) charge 1/2 and the dialtino λ has U(1) charge 3/2. The definitions (5) and (6) correspond to those

given in [22] after performing the SL(2, C) transformation that takes the IIB theory with the scalars living

SU(1, 1)/U(1) coset to the one where the scalars parameterize a SL(2, R)/U(1) coset. The gauge may be

fixed by, for example, setting φ = 0, which will be used from here on. This means that generic SL(2, R)

transformations on the fields charged under U(1) are associated with compensating U(1) transformations

and the global symmetry is nonlinearly realized.
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Perturbation theory in the zero-instanton sector is an expansion in fluctuations around constant

values of the scalar fields, χ = 〈C(0)〉 and κ = e−〈φ〉. Defining a complex coupling constant by,

τ0 = χ+
i

κ
, (7)

the fluctuating scalar fields can be expressed in a power series in κ as,

τ ≡ C(0) + ie−φ = C(0) +
i

κ
e−κφ̃ = τ0 + C̃(0) − iφ̃+

i

2
κφ̃2 + · · · . (8)

where ˜ denotes a quantum fluctuation of a field.

The N = 2 supersymmetries are QA
I (I = 1, 2), where QA

1 and QA
2 are Majorana-Weyl spinors

(A = 1, · · · , 16) satisfying,
{

Q̄I , QJ

}

= δIJγ · p. (9)

In describing the instanton we will consider the complex combinations

Q± = 1
2 (Q1 ± iQ2). (10)

Defining θA = Q−A it follows that Q+A = (γ ·p∂/∂θ)A. The euclidean continuation of Q+ annihilates the

instanton solution. The supersymmetry transformations of the fields can be found in [22]. In particular,

the fermion transformations have the form,

δλ = iγµPµǫ
∗ + .., δψµ = Dµǫ+ .. (11)

where the spinor ǫ is a complex Weyl Grassmann variable so that ǭ = ǫ∗γ0.

The instanton is a euclidean saddle point of the bosonic part of type IIB supergravity in which the

two scalar fields have a nontrivial profile (and H = 0). The solution [11] is one in which the non-constant

part of the R ⊗ R scalar field C(0) is imaginary so that,5

τ̂1 = Ĉ(0) = χ+ if(r), (12)

where r = |x− y|, yµ is the position of the instanton, χ and f are real and f(r = ∞) = 0. The fact that

the instanton is a euclidean solution of the BPS type is particularly clear if the theory is reexpressed in

terms of an eight-form potential C(8) by means of a duality transformation. This procedure, which is

implicit in [11], is described in detail in the appendix.

As usual, the BPS condition implies that half of the euclidean supersymmetries, Q+, annihilate the

fields. In other words, setting ǫ∗ = 0 in (11) it turns out that δλ∗ = 0 and δψ = 0. The first of these

conditions follows directly from,

dτ̂2 = idτ̂1, or de−φ̂ = −df. (13)

The instanton solution has the form, ĝµν = ηµν and ∂2eφ̂ = 0 for xµ 6= yµ so that

eφ̂ ≡ h(r) = κ+
c

r8
, (14)

5Classical values of fields will be denoted by aˆin the following.
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where κ = eφ̂(r=∞), and c = 3|q|/π3/2 which follows from the quantization condition for a D-instanton

of charge q and a euclidean seven-brane. It will later be useful to represent h in momentum space by its

Fourier transform,

h̃(p) = κδ(10)(p) +
c

p2
. (15)

Such an instanton has an action S(q) = 2π|q|/κ, as shown in the appendix.

The solution can be transformed to the string frame by replacing the flat Einstein-frame metric

by the string metric, g
(s)
µν = eφ/2ηµν . In the string frame the solution is a space-time Einstein–Rosen

wormhole [11] which joins two universes that are related by the interchange r → (c/κ)1/4/r. Since eφ̂

gets large in the neck the field theoretic solution is not valid and the string theory D-instanton will have

to be used to account for short-distance physics.

Substituting the solution in (12) gives,

τ̂1 = Ĉ(0) = χ+
i

κ
− ie−φ̂ = τ0 − iτ̂2, (16)

so that

¯̂τ = τ0 −
2i

h
, τ̂ = τ0, (17)

and τ̂ − ˆ̄τ = 2i/h.

In order to satisfy the second BPS condition, δψ = 0, the spinor ǫ must be covariantly constant,

which implies,

ǫ = j(r)ǫ0, (18)

where j(r) = (2/h)1/4 and ǫ0 is a constant sixteen-component chiral spinor. The broken supersymmetries

associated with the spinor ǫ∗ will generate the instanton solutions carrying fermionic zero modes.

The instanton has the Minkowski-space interpretation of a tunnelling process in which the initial

and final R ⊗ R scalar Noether charges differ by q units, qf − qi = q, where

qi = 1
2

∫

x0=−∞
d9xe2φ̂∂0Ĉ

(0), qf = 1
2

∫

x0=∞
d9xe2φ̂∂0Ĉ

(0). (19)

This uses the fact that the Noether current associated with the shift symmetry, C(0) → C(0) + b, is

jN
µ = e2φ∂µC

(0)/2. In general a charge q instanton amplitude will be accompanied by a phase factor

e2πiχq where 0 ≤ χ ≤ 2π (as with the θ term in the case of Yang–Mills instantons). This is equivalent to

introducing a surface term in the action,

iχ

∮

∂M∞

∗jN = iχ

∮

∂M∞

1
2e

2φ ∗ dC(0) = iχ

∮

∂M∞

1
2F9, (20)

which is an integral over the nine-sphere at r = ∞ (the last expression uses the dual potential described

in the appendix). Adding this term to the action gives a total action for a charge q > 0 instanton equal

to

S(q) = −2πi|q|τ0 = 2π|q|( 1

κ
− iχ), (21)
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and for a charge q < 0 anti-instanton equal to

S(q) = 2πi|q|τ̄0 = 2π|q|( 1

κ
+ iχ). (22)

With q = 1 this is precisely the same as the action obtained by expanding the theory in small

fluctuations around the constant τ = τ0 background in the presence of a source term in the action,

Ssource = −2πi

∫

d10xτ(x)δ(10)(x− y) = −2πiτ0. (23)

This is the D-instanton action that is the p = −1 case of the general D-brane action.

The classical values of the fields that enter into the supergravity are given by

P̂µ = −∂µh

h
, Q̂µ = − i

2

∂µh

h
, P̂ ∗

µ = 0, (24)

so that P̂ ∗ is not the complex conjugate of P̂µ since τ̂1 is complex in the solution (17). The momentum-

space expression for P̂µ has a pole,
˜̂
Pµ =

2i

κ

cpµ

p2
+ · · · , (25)

where the dots indicate non-pole terms. Only the pole term, which depends on long-range effects, will

enter the lowest-order on-shell amplitude calculations below.

As a simple example to illustrate the effect of the instanton background we will first consider the

terms quadratic in the antisymmetric tensor fields. In the vacuum of the zero instanton sector the scalar

field is constant, τ = τ0, and these terms have the form,

S
(0)
HH =

κ

24

∫

d10x(τ0HNS +HR)(τ̄0HNS +HR) =
κ

24

∫

d10xG0Ḡ0, (26)

where

G0 = τ0HNS +HR, Ḡ0 = τ̄0HNS +HR (27)

(these correspond to the G and Ḡ defined in [22] with the scalar fields equal to constant vacuum values).

In the one-instanton sector the quadratic terms in the fluctuations around the one-instanton back-

ground are obtained by substituting the expression for the instanton configuration of the scalar fields into

the action (3). For example, for the antisymmetric tensor fields the result of substituting the classical

solutions Ĉ(0) and φ̂ into (3) is

S
(1)
HH = −2πiτ0 + S

(0)
HH + S′

HH + · · · , (28)

where · · · indicates higher-order terms and terms involving fluctuations of the scalar fields, and

S′
HH =

1

24

∫

d10x
c

r8
(τ0HNS +HR)(τ0HNS +HR)

=
1

24

∫

d10x
c

r8
G0G0. (29)

The action (28) changes by 2πiα under real shifts τ0 → τ0 + α so that the effective action will have the

expected factor of e2iπτ0 which is invariant under integer shifts of the background Ĉ(0). The nonlocal term

(29) agrees precisely with the description of the D-instanton as the source, (23), which has a non-zero

contraction with the tree-level three-point couplings of two antisymmetric tensors.
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3 Zero modes in a SUGRA instanton background.

The bosonic zero modes are parameterized by the coordinates yµ corresponding to the position of the

D-instanton. Integration over yµ enforces momentum conservation and results in a factor of 1/κ5 (by a

very similar argument to the one that results in a factor of 1/g8 in the measure for the zero mode integral

in the background of a Yang–Mills instanton [16]).

The fermionic zero modes can be determined, as usual, by applying the broken supersymmetry

generators to the scalar solutions. The transformations in [22] can be adapted to the present problem

by making the identification ǫ∗ = j(x)ǫ0 (where j(x) is defined in (18)) and setting ǫ = 0. Since ǫ0 has

16 components this gives the possibility of 216 independent separate instanton configurations obtained

by applying the broken supersymmetries to the solution P̂µ. The following are the terms involving up to

eight powers of ǫ∗,

λ̂ = iγµP̂µǫ
∗, Ĝµνρ = 3D[µǭγνρ]λ̂

ψ̂µ =
1

96

(

γνρλ
µ Ĝνρλ − 9γρλĜµρλ

)

ǫ∗, F̂ 5
µνρλσ = 5D[µǭγνρλψ̂σ]

êr
µ = −iǭγrψ̂µ, ψ̂∗

µ = − 1

480
iγρ1···ρ5γµǫ

∗F̂ρ1···ρ5

Ĝ∗
µνρ = 12i∂[µǭγν ψ̂

∗
σ], λ̂∗ =

1

24
iγµνρǫ∗Ĝ∗

µνρ, P̂ ∗
µ = Dµǭ

∗λ̂∗ (30)

(recall ǭ = ǫ∗γ0). The successive terms are defined iteratively in terms of P̂µ. These zero modes are

functions with momentum-space poles that can be seen by using (25).

In making contact with string theory we will be interested in physical fields satisfying the free

equations of motion. In that case it is easy to see that terms with more than eight powers of ǫ∗ in will not

be needed. This is particularly clear in a light-cone parameterization in which the unphysical components

of the fields are related to the 28 physical components. The physical closed-string states can be packaged

together into a light-cone scalar superfield, Φ(x, θ), where θa (a = 1, · · · , 8) is an eight-component SO(8)

spinor, 8s, (and the inequivalent SO(8) spinor 8c will be represented by a dotted index). The equations

of motion are imposed by requiring ∂2Φ = 0. With this notation a 16-component chiral spinor has an

SO(8) decomposition,

ǫ∗A → (ηa, η̇ȧ) (31)

(A = 1, · · · , 16). The broken supersymmetries are generated by ηaQ−a + η̇ȧQ−ȧ, where Q−a and Q−ȧ

are the SO(8) components of the broken supercharges and act on Φ by

Q−aΦ =
√

p+θaΦ, Q−ȧΦ =

(

γipi

√

p+
θ

)ȧ

Φ, (32)

where i = 1, · · · , 8 labels the directions transverse to the light-cone. The classical fields, (30), are simply

fields satisfying (at the linearised level)

Φ̂ = (ηaQ−a + η̇ȧQ−ȧ)Φ̂ (33)

7



Since the components of Q− are linear in θa it is evident that a maximum of eight powers can be applied

to Φ, resulting in a maximum of eight powers of ǫ.

The equations (30) define non-vanishing one-point functions for all components of a supermultiplet

in the background of a single D-instanton. The Grassmann parameters are fermionic supermoduli corre-

sponding to zero modes of λ and must be integrated over together with the translational zero modes, yµ.

A general Green function is given by an expression of the form,

C

∫

d10yd16ǫ0〈Ψ1(x1)Ψ
2(x2) · · ·Ψn(xn)〉ǫ0,y

= C

∫

d10yd16ǫ0

∫

DΨ(x)Ψ1(x1)Ψ
2(x2) · · ·Ψn(xn)e−S(1)

, (34)

where Ψr represents any of the fields of the theory and S1 is the action in the one-instanton background

which depends on y through its dependence on the background τ̂ field configuration. We have not

determined the overall constant, C, which can depend on κ and will generalize to a function of τ and τ̄

when higher order fluctuations are considered. One way to pin down this dependence is to understand how

the full effective action (including the sum over all instanton configurations) is invariant under SL(2, Z).

This will be discussed further in section 6.

Since we will want to make comparisons with string theory we will define on-shell scattering am-

plitudes by the LSZ reduction that cancels the poles on the external legs in (34). In particular, the zero

modes (30) define on-shell tadpoles in the presence of s supermoduli,

〈Ψ〉s = ζΨ∆−1Ψ̂s, (35)

where ζΨ is the wave function for the on-shell closed-string state and ∆ is its inverse propagator.

The leading contribution to the amplitude that follows from (34) is of the form

e2πiτ0

∫

d10yd16ǫ0〈Ψ〉s1 . . . 〈Ψ〉sn
, (36)

where
∑n

i=1 si = 16.

4 Zero modes in the stringy D-instanton background.

The simplest open-string world-sheet that arises in a D-brane process is the disk diagram. In the case of

the D-instanton the boundary satisfies Dirichlet conditions in all ten space-time directions. This means

that there are no physical propagating open strings but there is an isolated open string supermultiplet

consisting of a vector together with its spinor superpartner ([23] and references therein). These remnants

of the open-string sector are the zero-dimensional reduction of the ten-dimensional massless Yang–Mills

supermultiplet. The vector field corresponds to the collective coordinate given by the instanton position,

yµ. Any world-sheet with vertex operators attached carrying momenta, kµ
i has an overall factor of

exp(i
√
κ
∑

i ki · y) and integration over yµ leads to momentum conservation. The factors of
√
κ in the

open-string vertex lead to the factor of κ−5 in the measure for the yµ integration, as in the field theory.

The open-string fermions give rise to the zero modes in the instanton background. Integration over the
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sixteen supermoduli leads to an overall factor of κ8. In the complete string theory such factors of κ will

arise from powers of τ−1
2 and include the effects of dilaton couplings to the disk.

The disk with no states attached is defined by a functional integral that is simply a constant and

is identified with the source term in the action, (23), and is equal to the action for a single D-instanton.

1

2

s

Ψ

<Ψ>s =

Fig. 1: An on-shell closed-string state, Ψ, coupling to s open-string fermions on a disk
with Dirichlet boundary conditions.

An instanton carrying some zero modes corresponds, at lowest order, to a disk world-sheet with

open-string states attached to the boundary (as in fig. 1). The functional integration over the disk can be

represented in an operator approach by transforming to a parameterization in which the world-sheet is a

semi-infinite cylinder with a boundary end-state, |B〉. This state was constructed in [23] to preserve one

half of the supersymmetries – both the world-sheet supersymmetries and the space-time supersymmetries.

The formalism with manifest world-sheet supersymmetry requires two kinds of boundary state – |B〉NSNS

and |B〉RR – in the NS ⊗ NS and R ⊗ R sectors, respectively. These are related by the requirement that

the boundary state preserve space-time supersymmetry. This is manifest in the formalism with manifest

space-time supersymmetry formulated in a light-cone frame defined by choosing the axis of the cylinder

to be the light-cone time, X+. In that case there is a single boundary state that is annihilated by a

complex combination of left-moving and right-moving space-time supercharges,

Q+|B〉 ≡ (Q+ iQ̃)|B〉 = 0. (37)

Enforcing this condition for all sixteen components of Q+ determines the boundary state, not just in

the case of the D-instanton, but also for all the other (p + 1)-instantons [4]. The other combination,

Q− = Q − iQ̃, which does not annihilate the boundary state is the broken supersymmetry. This light-

cone gauge formalism should be derivable from a covariant supersymmetric formalism with world-volume

κ-symmetry, such as in [24, 25, 26].

Applying a broken supersymmetry transformation s times defines a state,

|B〉s ≡ ǭA1
0 Q−A1 · · · ǭAs

0 Q−As |B〉, (38)

which applies in either the covariant formalism or the light-cone formalism In this notation a disk with

one physical on-shell closed-string state attached to the interior and s fermionic open strings attached to

9



the boundary can be represented by

〈Ψ〉s = 〈Ψ|B〉s = 〈δsΨ|B〉, (39)

where δsΨ is the variation of Ψ obtained by applying Q− s times. Such tadpoles should be equal to the

LSZ truncated fields of the supergravity theory (35). This is confirmed by direct calculation of the disk

amplitudes, as follows.

In the light-cone gauge formalism the Grassmann spinor ǫ0 is written in terms of the SO(8) spinors

ηa and η̇ȧ. The closed-string tadpoles are then given simply by the matrix elements,

〈Ψ〉s = 〈Ψ|ηa1Q−a1 · · · ηasQ−as |B〉 (40)

where each index a1, . . . , as may be either undotted or dotted and contracted into the corresponding

SO(8) supercharge. It is easy to see that the resulting expressions are precisely those obtained from the

field theory after LSZ reduction. The terms with purely undotted spinors package together into an SO(8)

superfield with components that are the SO(8) physical light-cone gauge components of the 〈Ψ〉s of (35).

The ground state of this supermultiplet is the complex scalar, (iζφ + ζC(0)), the linearized version of 〈τ〉.
The next state is ζa

λη
a, where ζa

λ is the complex wave function of the SO(8) components of the spin-1/2

field, λa = λa
1 + iλa

2 . Continuing in this manner, all the components of the supermultiplet in (30) are

reproduced.

These expressions can also be obtained covariantly by attaching a single closed-string vertex op-

erator to the interior of the disk (which will be parameterized as the upper-half plane) together with

fermionic open-string states attached to the boundary (the real axis). This may also be identified as the

boundary state with s fermionic open strings attached where the fermion vertex operator is given by,

F− 1
2
(x) = ǭ0S(x)e−1/2φ(x) , F 1

2
(x) = ǭ0γµS(x)∂Xµ(x)e1/2φ(x), (41)

in the superghost number −1/2 and 1/2 pictures, respectively. The components of ǫ0 are the 16-

component spinor supermoduli that must be integrated in obtaining amplitudes. The total left-moving

and right-moving superghost numbers on the disk must add up to −2, which can be achieved by using

combinations of vertices in appropriately chosen pictures.

With an even number of fermion open-string states attached to boundary the disk couples to closed-

string bosons. The vertex operators in the −2 picture are

V NN = ζNN
µν e−φψµ(z)e−φ̃ψ̃ν(z̄)eikX (42)

V RR
(n) = ζRR

(n)[µ1···µn]e
−φ/2S̄(z)Γµ1...µn S̃(z̄)e−3φ̃/2eikX . (43)

Here, ζNN is the wave function for the physical on-shell states in the NS⊗NS sector, φ, BNS or G. The

wave functions in the R⊗R sector, ζRR
(n) , are n-form potentials describing C(0), C(2) and C(4). With this

choice of pictures an even number of open-string operators can be coupled to the boundary of the disk

with an equal number of F+1/2 and F−1/2 vertices.

The disk with an odd number of fermion states attached to the boundary couples to the closed-string

fermionic states which are described by the vertex operators in the −3/2 picture,

V RN = ζRN
µa e−φ/2Sa(z2)e

−φ̃ψ̃µ(z̄2)e
ikX (44)

Ṽ NR = ζ̃NR
µa e−φψµ(z2)e

−φ̃/2S̃a(z̄2)e
ikX . (45)
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Evidently, in order to give a total superghost number of −2 there must be a net superghost number of

−1/2 from the open-string fermionic states attached to the boundary.

It is easy to evaluate the expectation values of a single closed-string vertex attached to the interior

of a world-sheet with s fermionic states attached to the boundary using standard techniques. Thus, for

s = 0 the only non-zero expectation values arise for the combination 〈iVφ + VC(0)〉, which is equal to

〈τ〉 ∼ (iζφ + ζC(0)) as before.

The zero modes of the other fields in the supermultiplet are obtained by attaching fermionic open-

string vertex operators (41) to the boundary. The expression for the disk with one fermionic open-string

mode on the boundary and one closed-string fermion attached to the interior is given by

〈cF− 1
2
(x)cc̃V RN (z, z̄)〉. (46)

This is evaluated making use of the boundary condition that reflects S̃ into S and standard product

expansions, giving,

〈λ〉1 = (ζRN
aµ + iζNR

aµ )γµ
abǫ

b
0e

iky = ζ̄λǫ0e
iky . (47)

Where ζa
λ = γµ

ab(ζ
b RN
µ + iζb NR

µ ) is the holomorphic combination of the two dilatinos. Attaching two

fermionic zero modes to the boundary likewise gives non-vanishing one-point functions for a complex

combination of the NS ⊗ NS and R ⊗ R two-forms, B = BNS + iC(2). This comes from the correlation

function,

〈B〉2 = 〈cF 1
2
(x1)

∫

dx2F− 1
2
(x2)cc̃

(

V NN (z, z̄) + iV RR
(2) (z, z̄

)

〉

= ǭ0γ
µνρǫ0k[µ(ζNN

νρ] + iζRR
νρ] ). (48)

With three fermionic zero modes attached the expression for the non-vanishing, holomorphic grav-

itino tadpole is

〈ψ〉3 = 〈cF 1
2
(x)

∫

dx2dx3F− 1
2
(x2)F− 1

2
(x3)cc̄V

RN (z, z̄)〉

= ǭ0γ
µνρǫ0ζ̄

NR
ρ γµǫ0kν . (49)

The disk with four fermion zero modes couples to the graviton and the self dual fourth-rank anti-

symmetric tensor with are both invariant under SL(2, Z) S-duality of type IIB. The choice of pictures for

the closed-string bosonic vertices in (43) requires that half the open-string fermions be in the 1/2 picture

and half in the −1/2 so that the tadpole is given by,

〈h〉4 = 〈cF1/2(x1)

∫

dx2F (x2)1/2

∫

dx3F−1/2(x3)

∫

dx4F−1/2(x4)cc̃V
NN(z, z̄)〉

= ǭ0γ
ρµτ ǫ0 ǭ0γ

λντ ǫ0 ζµνkρkλ, (50)

which is the only covariant combination of four ǫ0’s, two physical momenta and the physical polarization

tensor.

Continuing in this manner it is clear that adding fermionic open-string states reconstructs the one-

point functions of the field theory in (30). All the terms with even numbers of fermionic moduli are
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formed from powers of the matrix,

Mµν = ǭ0γ
µνρǫ0kρ, (51)

which is the most general bilinear in two spinors and linear in the momentum. The fermionic terms, such

as (49), have an extra factor of ǫ0.

5 Lowest-order effective interactions

The one-instanton terms in the field theory effective action can be deduced by considering on-shell

amplitudes in the instanton background. The integration over the fermionic moduli soak up the sixteen

independent fermionic zero modes. The contributions that arise at leading order in κ are of the form

(36) which is a product of the ‘classical’ fields, Ψ̂r in (30) with a total of sixteen powers of ǫ0. This is

the analogue of the leading term in the amplitude for gauge bosons in the Higgs-Yang–Mills instanton

calculation in [27], which is again determined by the classical profile of the field.6 In that case this

particular kind of contact interaction is the first term in a series that reproduces an exponentially falling

fixed-angle cross section with a scale that is symptomatic of the presence of solitonic states in the theory.

An analogous interpretation of the contact term in IIB supergravity is to be expected.

The most obvious contact term is the one proportional to λ16, which arises in IIB supergravity from

the nonlocal Green function, defining rm =| xm − y |

Gλ16 ({rm}) ∼ e2πiτ0

∫

d10y

∫

d16ǫ0

16
∏

m=1

(

γµP̂
µ(rm)j(rm)ǫ0

)

. (52)

where we have not kept track of overall constant factors. This integral is well-defined because the function

Pµ(rm)j(rm) is highly suppressed by the phase space volume at the origin and well-behaved at infinity.

At long distances (52) looks like a λ16 contact term. This is the term that can be obtained by use of

the LSZ procedure described earlier and leads to a momentum-independent term in the S-matrix with

sixteen external on-shell λ particles proportional to,

e2πiτ0ǫA1···A16λA1 . . . λA16 . (53)

From the earlier discussion of the correspondence between the string theory and field theory zero

modes it is evident that the same result is also obtained in string theory from diagrams with sixteen

disconnected disks with a single λ vertex operator and a single open-string fermion state attached to each

one. The overall factor of e2πiτ0 , which is characteristic of the stringy D-instanton [20, 21], is evaluated

at χ = Reτ0 = 0 in the string calculation. In a more complete treatment the exponent should become

2πiτ , which would include interactions due to fluctuations of φ and C(0). These should be deduced in

a systematic manner by attaching vertex operators for these fields to further disconnected disks. String

theory also contains further diagrams that have no direct analogue in field theory, in which more than

one closed-string state is attached to each disk. Such diagrams contain the field theory contributions due

to tree-level interactions in the instanton background but also contain intrinsically stringy effects, some

of which will be described later.
6We are very grateful to Steven Shenker for pointing out this reference.
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We now turn to consider amplitudes with four external gravitons. The leading term in the field

theory is again one in which each graviton is associated with four fermionic zero modes, which gives a

Green function,

Gh4({rm}) ∼ e2πiτ0

∫

d10y

∫

d16ǫ0

4
∏

r=1

(

ǭ0γ
µrσrρǫ0 ǭ0γ

νrτr

ρ ǫ0 k
(σr

r P̂ τr)
r j4(rr)

)

. (54)

Fig. 2: The leading contribution to the scattering of four gravitons in the D-instanton
background. The sixteen fermionic open strings represent the supermoduli that must be
integrated. All disks have boundaries fixed at the same space-time point.

Integration over yµ generates a nonlocal four-graviton interaction. Again, contact with the string

calculation is made by considering the on-shell amplitude obtained by lopping off the external poles in

momentum space, making use of (25), and contracting the free indices with the on-shell wave functions,

ζ
(r)
h (kr) which satisfy krµζ

(r)µν = krνζ
(r)µν = 0 = k2

r . This corresponds to the string calculation in which

the world-sheet (illustrated in fig. 2) consists of four disconnected disks to each of which is attached a

single closed-string graviton vertex and four fermionic open-string vertices.

In both the string theory and the field theory the result is given as an integral of the product of

four factors of 〈h〉4 defined by (50),

A4({ζ(r)
h }) = C

∫

d10yd16ǫ0〈h(1)〉4〈h(2)〉4〈h(3)〉4〈h(4)〉4ei
√

κkr ·y

= C

∫

d10yd16ǫ0

4
∏

r=1

(

ǭ0γ
µrσrρǫ0 ǭ0γ

νrτrρǫ0ζ
(µr ζ̃νr) kσr

r kτr

r ei
√

κkr ·y
)

, (55)

where the polarization tensor have been written as ζµrνr = ζ(µr ζ̃νr), which is sufficiently general for our

purposes (and overall constants, including possible factors of κ, have been absorbed into C).

In order to evaluate the fermionic integrals we will choose a special frame in which k+
r = k−r = 0

and kr · ζ(r) = kr · kr = ζ(r) · ζ̃(r) = 0 (which is possible for complexified momenta and polarizations).
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The spinor ǫ0 is naturally expressed in terms of its SO(8) components so that

〈h〉4 =
(

−ηaγ
ij
abηb η̇ȧγ

mn
ȧḃ
η̇ḃ + ηaγ

kij

aḃ
η̇ḃ η̇ȧγ

kmn
ȧb ηb

)

Rijmn

= −1

2
ηaγ

ij
abηb η̇ȧγ

mn
ȧḃ
η̇ḃRijmn (56)

where Rijmn ≡ kikmζ(j ζ̃n) is the linearized curvature and the second line follows from the first after a

Fierz transformation.

The integral over the dotted and undotted spinors in (55) now factorizes and can be evaluated by

using,
∫

d8ηaηa1 · · · ηa8 = ǫa1···a8 ,

∫

d8η̇ȧη̇ȧ1 · · · η̇ȧ8 = ǫȧ1···ȧ8 . (57)

Substituting in (55) the following tensors appear

ǫa1a2···a8γ
i1j1
a1a2

· · · γi4j4
a7a8

= ti1j1···i4j4 = t̂i1j1···i4j4 +
1

2
ǫi1j1···j4j4 (58)

ǫȧ1ȧ2···ȧ8γ
i1j1
ȧ1ȧ2

· · · γi4j4
ȧ7ȧ8

= ti1j1···i4j4 = t̂i1j1···i4j4 − 1

2
ǫi1j1···j4j4 , (59)

(where the notation follows [28]). There is an important sign difference between the eight-dimensional

Levi–Cevita symbol in (58) and (59) which can be seen by a careful decomposition of SO(9, 1) into the

two inequivalent spinor representations 8c and 8s of SO(8). The result therefore contains two parity-

conserving terms

A4({ζ(r)
h }) = Ce2iπτ0

∫

d10yei
∑

r
kr ·y

(

t̂i1j1···i4j4 t̂m1n1···m4n4 −
1

4
ǫi1j1···j4j4ǫm1n1···m4n4

)

Rm1n1

i1j1
Rm2n2

i2j2
Rm3n3

i3j3
Rm4n4

i4j4
. (60)

It is notable that a parity-violating term, proportional to a single ǫi1j1···j4j4 tensor does not contribute.

Although obtained in a manner that is not manifestly covariant these terms are easily covariantized by

extending the indices to the ten-dimensional range. The term bilinear in the eight-dimensional Levi–

Cevita tensor is the eight-dimensional Gauss–Bonnet term, which vanishes when the overall momentum

is conserved. Since momentum conservation is only imposed in the one-instanton sector after integration

over yµ this term is non-zero for a fixed position of the instanton.

6 An SL(2, Z)-invariant R4 term and T-duality.

The term in (60) bilinear in the tensor t̂ has precisely the same form as terms that arise in the zero

instanton sector that come both from the one-loop four-graviton amplitude [19] and from an (α′)3 effect

at tree level [18]. Collecting these three different contributions together in the Einstein frame gives an

expression for the complete effective R4 action that can be expressed in the form,

SR4 = (α′)−1
[

aζ(3)τ
3/2
2 + bτ

−1/2
2 + ce2πiτ + · · ·

]

R4 ≡ (α′)−1f(τ, τ̄ )R4, (61)
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where R4 denotes the contractions t̂t̂R4 in (60) and · · · indicates possible perturbative and nonpertur-

bative corrections to the coefficient of R4. The constants a and b given in the literature depend on the

normalization conventions (such as the value of κ0 in the action (3)), although their dependence on τ2 is

as shown. For example, in the normalization given in [28], a = 3 · 2−12 and b = 3 · 2−18π−5. Since we

have not kept track of the factors of κ the ‘constant’ c has not been determined – it could, in principle,

be a function of τ and τ̄ .

However, the complete expression for SR4 must be invariant under SL(2, Z) transformations, τ →
(aτ + b)(cτ + d)−1 (with integer a, b, c, d, satisfying ad− bc = 1), which provides very strong constraints

on its structure. Since the R4 factor is separately invariant the function f(τ, τ̄) in (61), must transform

as a scalar under the SL(2, Z) transformations. Such an expression necessarily involves a sum over all

instanton and anti-instanton sectors. Although we have not derived the form of this sum there are some

strong constraints which this term must satisfy:

• The tree-level perturbative contribution has the striking coefficient ζ(3) =
∑

m>0(1/m)3.

• The one-loop perturbative term is of order τ−2
2 relative to this tree-level term. The non-vanishing

of this one-loop term is possible only because the four external gravitons are just sufficient to soak

up the eight fermionic zero modes on a toroidal world-sheet. Heuristically, the perturbative R4

terms beyond one loop should vanish since extra fermionic zero modes on a higher genus surface

require additional external states to give a non-vanishing contribution. Such a non-renormalization

theorem has not appeared explicitly in the literature (as far as we know) and deserves further study.

• The multi-instanton contributions to the R4 term can only come from a single instanton carrying

multiple charge. Separated instantons carry extra fermionic zero modes [29] that lead to higher

order derivative interactions.

• Such multiply-charged single D-instanton configurations are related by T-duality in nine euclidean

dimensions to configurations in the type IIA theory in which the world-line of a single D-particle

wraps m times around the compact euclidean time dimension, X0. This was shown in the in-

troduction where it was argued that these instanton contributions are associated with a weight

e−S(mn)

= e2πi|mn|τ (and, correspondingly, e−2πi|mn|τ̄ for an anti-instanton). Furthermore, T-

duality on a compactified X9 direction relates the D-particle to the D-string. It then follows that

these D-instanton configurations can be related by T-duality in eight euclidean dimensions to con-

figurations of euclidean M-theory on T 3.

Rather tantalizingly, there is a simple function that satisfies all these criteria, namely,

f(τ, τ̄ ) = T−3
pn ≡

∑

(p,n) 6=(0,0)

τ
3/2
2

|p+ nτ |3 , (62)

where
∑

(p,n) 6=(0,0) indicates the sum is over all positive and negative values of p, n except p = n = 0.

It is easy to see that this function is invariant under SL(2, Z) transformations. The expansion of this

function for small τ−1
2 is given by first separating terms in the sum with n = 0 and representing the rest
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as an integral,

f = 2ζ(3)τ
3/2
2 +

τ
3/2
2

Γ(3/2)

∑

n6=0,p

∫ ∞

0

dyy1/2 exp {−y(p+ nτ)(p+ nτ̄ )} (63)

Now the sum over p should be reexpressed using the Poisson resummation formula,

∞
∑

p=−∞
exp(−πA(p+ x)2) = A−1/2

∞
∑

m=−∞
exp

(

−πm
2

A
+ 2πimx

)

, (64)

which gives,

f = 2ζ(3)τ
3/2
2 +

2π2

3
τ
−1/2
2 + 2τ

3/2
2

∑

m,n6=0

∫ ∞

0

dy exp

(

−π
2m2

y
+ 2πimnτ1 − yn2τ2

2

)

, (65)

where the second term accounts for the m = 0 terms and we have used
∑

n n
−2 = π2/6. The rest of the

integral can either be evaluated by using a saddle point method or simply related to a K1 Bessel function

so that,

f(τ, τ̄ ) = 2ζ(3)τ
3/2
2 +

2π2

3
τ
−1/2
2 + 8πτ

1/2
2

∑

m 6=0n≥1

∣

∣

∣

m

n

∣

∣

∣
e2πimnτ1K1(2π|mn|τ2)

= 2ζ(3)τ
3/2
2 +

2π2

3
τ
−1/2
2

+4π3/2
∑

m,n≥1

(m

n3

)1/2

(e2πimnτ + e−2πimnτ̄ )

(

1 +

∞
∑

k=1

(4πmnτ2)
−k Γ(k − 1/2)

Γ(−k − 1/2)

)

, (66)

where we have used the asymptotic expansion for K1(z) for large z in the second equation.

This expression incorporates all the points itemized earlier. It is an expansion with the appropriate

perturbative terms (whose relative normalization differs from that in [28] where the definition of τ2 was

different). The perturbative terms terminate after the one-loop term as suggested earlier. The non-

perturbative terms have the form of a sum over single multiply-charged instantons and anti-instantons

with action proportional to |mn|. If the original integer p in (62) is identified with the discrete momentum

(euclidean energy) of a compactified D-particle of charge n then the Poisson resummation exchanges it for

the winding number of the world-line and the result is that expected by T-duality from type IIA in nine

dimensions. The terms in parenthesis in (66) represent the infinite sequence of perturbative corrections

around the instantons of charge mn. Such corrections, beginning with the τ2-independent term, ought

to be obtainable directly from the D-instanton calculation which would give an important check of the

form of f . Thus, although we have by no means proven that the conjectured expression for f in (62) is

the SL(2, Z)-invariant coefficient of the R4 term it satisfies several stringent constraints.

In pursuing possible connections with M-theory it should be of significance that the function f is

the s = 3/2 case of an expression of the form

fs(τ, τ̄ ) = ζ∆(s) =
∑

(p,n) 6=(0,0)

(λp,n)−s (67)
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where λp,n are the eigenvalues of the laplacian on a two-torus. Explicitly, the laplacian on a two-torus

with modular parameters τ1 and τ2 has eigenfunctions

ψp,n(x, y) = exp

{

2πinx+ 2πiy(
p

τ2
+
nτ1
τ2

)

}

, (68)

which satisfy the eigenvalue equation,

∆ψp,n = (∂2
x + ∂2

y)ψp,n = −4π2

τ2
2

|p+ nτ |2ψp,n ≡ λp,nψp,n. (69)

The integers, p and n, are Kaluza–Klein momenta which are interpreted as the discrete energy and charge

of a D-particle compactified to nine euclidean dimensions. The function fs is a generalized Eisenstein

series defined in [30, 31]7 by

E∗(τ, τ̄ , s) = 1
2π

−sΓ(s)fs(τ, τ̄ ) (70)

= 1
2π

−sΓ(s)
∑

(p,n) 6=(0,0)

(

τ2
|p+ nτ |2

)s

= π−sΓ(s)ζ(2s)E(τ, τ̄ , s), (71)

where ζ(s) is Riemann’s zeta function,

E(τ, τ̄ , s) = 1
2

∑

(l1|l2)=1

(

τ2
|l1τ + l2|2

)s

, (72)

and l1 and l2 are relatively prime. One possibly significant property of these functions is that they satisfy

the eigenvalue equation,

τ2
2 (∂2

τ1
+ ∂2

τ2
)E∗(τ, τ̄ , s) = s(s− 1)E∗(τ, τ̄ , s). (73)

7 Fixed-angle scattering.

The leading contribution to the scattering amplitude for four closed-string states in the one-instanton

sector is the term considered above in which each external graviton is attached to a separate disk (fig. 2),

thereby generating the R4 contact term. As we saw, the presence of this term can also be deduced within

type IIB supergravity and there is nothing intrinsically stringy about it. This contact term grows like a

positive power of the energy and should not be interpreted as a sign of fundamental point-like structure.

Such terms arise also in the analogous calculation of high energy scattering in the presence of Yang–Mills

instantons [27]. There they are the leading terms term in a power series expansion of a function that

decreases exponentially with energy at fixed angle.

In this section we will consider higher-order processes, in which two or more closed-string states are

attached to a disk but, for simplicity, we will not attach fermionic open-string states to the boundary.

Such processes would obviously vanish after integration over the fermionic modes unless there are other

7We are grateful to Greg Moore and Richard Borcherds for pointing these references out to us.
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external states to act as sources for the sixteen fermionic moduli, so they should really be considered to

be sub-processes in amplitudes with more external states (the analogues of terms in the action in a one-

instanton background). We will here simply evaluate such diagrams without performing the integrations

over the fermionic moduli.

Diagrams in which there are two vertex operators attached to a single disk lead to contributions

that are of order κ. For example, the coupling of two massless tensor states to a single disk with no

external fermions is easily evaluated by considering 〈V NNV NN 〉, 〈V RRV RR〉 and 〈V NNV RR〉. These

quantities are readily evaluated and the result is that the two-graviton diagram vanishes [32] (as it does

in the bosonic theory [21]). However, the process with two antisymmetric tensors is precisely the same

as that deduced from the action (29).

Fig. 3: Four closed-string states attached to a disk with Dirichlet boundary conditions.
Since there are no fermionic moduli this diagram is a sub-process in a complete amplitude.

The diagram in fig. 3, is the lowest-order diagram with four gravitons that has no open-string states

attached. Even though this only gives a non-zero contribution to the S-matrix in the presence of sources

for the fermionic moduli it is instructive to analyze its behaviour in isolation since it illustrates explicitly

the point-like effects of Dirichlet boundary conditions. Furthermore, with general external states this

diagram also contains the open-string divergences characteristic of Dirichlet boundary conditions. These

arise when a bosonic intermediate open string degenerates [6] and are guaranteed to cancel when all

diagrams of a given order in κ – including disconnected diagrams – are added correctly [20], as we will

review below.

In evaluating the diagram in fig. 3 there are many equivalent ways of assigning ghost numbers to

the vertices in order to ensure that the total superghost number on the disk is −2 but it will be simplest

to choose all the vertices to be in the (0, 0) picture apart from the vertex at z1 = i, which will be taken

to be in the (−1,−1) picture.8 The amplitude is given by,

A4h =

∫

dy2d
2z3d

2z4

〈

cc̄V NN (ζ(1), z1)(c+ c̄)V NN
(0,0)(ζ

(2), iy2)V
NN
(0,0)(ζ

(3), z3)V
NN
(0,0)(ζ

(4), z4)
〉

, (74)

where the coordinates of the vertices, zr = xr + iyr, span the upper-half plane and we have fixed the

Möbius symmetry by locating one vertex at z1 = i and a second on the imaginary axis so that z2 = iy2

(0 ≤ y ≤ 1). The vertex in the (−1,−1) picture is given by (42) and the vertex in the (0, 0) picture is

given by

V NN
(0,0) = ζµν(∂Xµ + ikρψ

ρψµ)(∂̄Xν + ikλψ̄
λψ̄ν)eikX(z) (75)

8In fact, it is interesting to see how the picture changing symmetry is preserved in this situation by the presence of
boundary terms that are required in order to ensure the antisymmetric tensor gauge invariance [33].
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Recall that we are considering this diagram to be a sub-process in which other external physical

states may provide a total momentum q (which could also be taken to vanish). After integrating over the

position of the instanton the total momentum is conserved,
∑4

r=1 k
µ
r + qµ = 0, so that s+ t+ u+ q2 = 0,

where s = −(k1 + k2)
2, t = −(k1 + k4)

2 and u = (k1 + k3)
2. We shall consider a limit in which s, t and

u are all large, which includes the ‘fixed-angle’ limit in which q2 is small and

s→ ∞, t→ −∞,
t

s
=

1

2
(cos θ − 1), (76)

where the scattering angle, θ, is fixed. In open-string theories with Neumann boundary conditions as well

as conventional closed-string theories the behaviour of the string amplitude in this limit is extremely soft

[8, 9, 10] – the amplitude falls off exponentially as a function of s, A(s, θ) ∼ exp(−Cs) where the constant

C depends on θ and on the genus of the world-sheet but not on the details of the string theory considered.

This stringy behavior is also characteristic of scattering from D-branes with p ≥ 0 in perturbation theory

[32, 34] where the process is dominated by the cloud of open strings surrounding the brane. The presence

of a Dirichlet boundary condition in the time direction leads to point-like scattering in the bosonic theory

[5]. We will see that this is also true for the D-instanton of the type IIB superstring. The same is true

for any of the (p+ 1)-instantons no matter how many compactified Neumann directions there are.

The amplitude (74) has an integrand that is the product of an assortment of prefactors that multiply

a universal momentum-dependent factor,

exp(E) = exp







∑

i6=j

ki · kj ln

∣

∣

∣

∣

zi − zj

zi − z̄j

∣

∣

∣

∣







, (77)

that depends on the scalar Green function on the half plane, with coordinates satisfying Dirichlet bound-

ary conditions. The fact that amplitudes decrease as a power of the invariants in the asymptotic limits

such as (76) is determined by the form of (77) although the prefactors will need to be considered in

order to determine the precise power. The factor eE is exponentially suppressed at high energy and fixed

angle unless the all but one of the zi approach the boundary of the disk. In that case the exponent

vanishes. Using Möbius symmetry to fix one vertex at the origin this means that high-energy fixed-angle

behaviour is dominated by the boundary of moduli space in which the other three vertex operators ap-

proach the boundary. In the case of Neumann boundary conditions the exponent in (77) is replaced

by
∑

i6=j k
i · kj ln |(zi − zj)(zi − z̄j)| which never vanishes so that the amplitude is always exponentially

suppressed.

The relevant boundary of moduli space that dominates in the fixed-angle limit is yi → 0. Expanding

the terms in (77) around yi = 0 gives

ln

∣

∣

∣

∣

z1 − zi

z1 − z̄i

∣

∣

∣

∣

2

= − 4yi

1 + x2
i

+O(y2
i ); i = 2, 3, 4 (78)

ln

∣

∣

∣

∣

zi − zj

zi − z̄j

∣

∣

∣

∣

2

= O(y2
i ); i, j = 2, 3, 4, (79)

where it has been assumed that yi ≪ |xi − xj |. Hence the factor eE behaves as

exp
(

E(s, t, q2; y2, y3, y4, x3, x4)
)

∼ exp{4sy2 +
4u

x2
3 + 1

y3 +
4t

x2
4 + 1

y4 +O(y2
i )}. (80)

19



It is easiest to analyse the asymptotic behaviour in the ‘deep euclidean’ limit in which s, t and

u → −∞ (so that q2 → +∞) since the exponent is positive definite in this kinematical region. In that

case the integral is dominated by the region in which y2 ∼ s−1, y3 ∼ u−1 and y4 ∼ t−1. Thus, integrating

with constant measure gives a behaviour ∼ (stu)−1.

This power behaviour should also be recovered in any limit with large |s|, |t| and |u|. These more

general asymptotic limits can be analyzed explicitly by analytically continuing the s, t, u invariants from

a region in which the expression (80) is well-defined. We shall consider the example of the limit in (76)

where q2 is fixed. It is convenient to use the conformal transformation,

eτ+iσ =
i− z

i+ z
, (81)

to map the upper-half plane onto the semi-infinite cylinder with the boundary at τ = 0. The factor (77)

reduces to

exp{−sτ2 − tτ3 − uτ4 +O(τ2)}, (82)

where −∞ < τi < 0. If we now continue s, t→ −∞ (implicitly letting u→ +∞) the exponent becomes

exp{−s(τ2 − τ4) − t(τ3 − τ4) + q2τ4 +O(τ2)}, (83)

which is convergent if τ2 < τ4 and τ3 < τ3. Since τ corresponds to the proper time along the cylinder

this picks out a specific ordering of the three vertex operators along the cylinder, where τ4 is closest to

the boundary. If the integration over τi is carried out ignoring the fact that there are other prefactors

in the full expression for the amplitude this ordering gives a contribution of (stq2)−1. The higher terms

in the expansion are exponentially suppressed in this limit. For other τ orderings the integral is defined

by taking other limits of s, t and u. These are the orderings in which the vertex operators 2 and 3

are closest to the boundary which corresponds to u, t → −∞ (with s → ∞) and s, u → −∞ (with

t → ∞), respectively. Adding all three contributions together (still ignoring the effect of prefactors in

the integrand) gives a total factor proportional to

1

q2
(

1

st
+

1

tu
+

1

su
) =

s+ t+ u

q2stu
= − 1

stu
. (84)

As anticipated, this is the same asymptotic behaviour as in the limit s, t, u→ −∞.

This is the essence of the analysis of the fixed-angle behaviour but the prefactors in (74) con-

tribute powers of the invariants which depend on which particular particles are scattered and upon

their helicity states. To begin with we will consider terms in the amplitude that involve contractions

between all the external polarization tensors in a cyclic order, i.e., terms with prefactors of the form

ζ
(1)
µ1µ2ζ

(2)µ2µ3ζ
(3)
µ3µ4ζ

(4)µ4µ1 . It has previously been argued [6, 7] that such terms are particularly simple

because the divergences associated with degenerations of intermediate open-string world-sheets do not

contribute. Terms of this form will be referred to as ‘cyclic’ contractions. Obviously, other kinds of terms,

such as those in which momenta contract into the polarization tensors arise in the complete process and

will be considered later.
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7.1 Cyclic contractions.

In addition to the fact that there are three inequivalent cyclic contractions corresponding to the cyclically

inequivalent permutations of the external states each of these consists of sixteen different terms since each

polarization tensor can be contracted into its neighbour on either of two indices. Writing ζ
(r)
µν = ζ

(r)
µ ζ̃

(r)
ν

the terms contributing to the (1, 2, 3, 4) cycle have kinematic prefactors of the form,

K(1, 2̄; 2, 3̄; 3, 4̄; 4, 1̄) = ζ(1) · ζ̃(2) ζ(2) · ζ̃(3) ζ(3) · ζ̃(4) ζ(4) · ζ̃(1),

K(1, 2; 2̄, 3̄; 3, 4; 4̄, 1̄) = ζ(1) · ζ(2) ζ̃(2) · ζ̃(3) ζ(3) · ζ(4) ζ̃(4) · ζ̃(1), ,

K(1, 2̄; 2, 3; 3̄, 4̄; 4, 1̄) = ζ(1) · ζ̃(2) ζ(2) · ζ(3) ζ̃(3) · ζ̃(4) ζ(4) · ζ̃(1),

· · · · · · (85)

If the external wave functions have no particular symmetry each of these prefactors multiplies an inde-

pendent amplitude. However, if the rth external particle is a graviton then the amplitude is symmetric

under the interchange r ↔ r̄ while the amplitude is antisymmetric under this interchange if the rth

particle is an antisymmetric tensor state. The resulting term in the amplitude with a prefactor of the

form of the first line in (85) is proportional to

∫

dy2d
2z3d

2z4
K(1, 2̄; 2, 3̄; 3, 4̄; 4, 1̄)k2.k4(1 − y2

2)

(iy2 + z4)(i+ iy2)(iy2 − z̄3)2(z3 − z̄4)2(z4 + i)
eE . (86)

The presence of inverse powers of world-sheet coordinates in the integrand alters the asymptotic

fixed-angle behaviour that was deduced from the integral of eE with constant measure. The integral is still

dominated by the end-point of the integration in which three vertex operators approach the boundary:

y2, y3, y4 ∼ 0. In this limit the denominators in (86) are finite at generic values of x3 and x4 and the

power behaviour of the amplitude is enhanced from (84) to (st)−1 by the factor of k2 · k4 = −u/2 in

the numerator. The end-points in moduli space at which two vertices approach each other on the world-

sheet boundary (such as z3 → z̄4) require special consideration because these are the regions in which the

denominators in (86) vanish. It is precisely these boundaries of the integration region that can give rise to

the novel Dirichlet logarithmic divergences illustrated in [20, 21] which should cancel with corresponding

divergences arising from the degeneration limit of the annulus. However, these divergences only couple

in channels with scalar quantum numbers so they do not arise for the parts of the amplitude involving

cyclic contractions, which is the main reason for choosing to analyze these terms first.

If all the external states are gravitons the Dirichlet divergences are, in fact, absent from the non-

cyclic, as well as the cyclic, contractions. The behaviour of the full amplitude can be deduced from the

term (86) together with Bose symmetrization and gauge invariance. For this reason the four-graviton

amplitude will be considered first.

Four external gravitons

The amplitude with external gravitons is obtained by identifying ζ̃(r) with ζ(r) so that all sixteen terms

for the ordering (1, 2, 3, 4) must be added with equal weight. This symmetrization leads to cancellations

so that the leading power behaviour of the process is suppressed.
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These cancellations are well illustrated by comparing the contractions,

ζ(1)
µ1
ζ(2)
µ2
ζ̃(2)
ν2
ζ̃(3)
ν3
k2

ρ2
k4

ρ4
〈ψµ1 (z1)ψ̃

ν2(z̃2)〉〈∂Xµ2(z2)∂̄X
ν3(z̄3)〉〈ψ̃ρ2 (z̄2)ψ

ρ4 (z4)〉, (87)

that arise in the calculation of the amplitude with the factor obtained by interchanging ζ
(2)
µ2 with ζ̃

(2)
ν2

and z2 with z̄2

ζ(1)
µ1
ζ(2)
µ2
ζ̃(2)
ν2
ζ̃(3)
ν3
k2

ρ2
k4

ρ4
〈ψµ1 (z1)ψ

µ2(z2)〉〈∂̄Xν2(z̄2)∂̄X
ν3(z̄3)〉〈ψρ2 (z2)ψ

ρ4 (z4)〉. (88)

With ζ̃(2) = ζ(2) then both these terms contribute a factor of k2 ·k4 ζ(1) ·ζ̃(2) ζ(2) ·ζ̃(3) – but the interchange

of arguments leads to a change of sign in the limit that z2 is real. Thus, the leading behaviour derived from

summing terms in the full amplitude that include these factors is suppressed relative to the individual

terms.

Cancellations of this type and others that depend on the relative order of fermions must be sys-

tematically taken into account in adding the sixteen terms that make up one cyclic order. Summing the

integrands of all sixteen terms of the form (86) in the limit of small y2, y3 and y4 gives

y2y4(1 + x3x4)

(1 + x2
4)

2(x4 − x3)3x3
3

exp(E) +O(y3
i ), (89)

which vanishes quadratically in the yi’s. This implies that the dominant contribution to the (1, 2, 3, 4)

cyclic four graviton amplitude in the high-energy fixed-angle limit is proportional to

ζ(1) · ζ̃(2) ζ(2) · ζ̃(3) ζ(3) · ζ̃(4) ζ(4) · ζ̃(1) 1

s2t2
, (90)

where the u−1 coming from (84) has cancelled the k2 ·k4 in (86) and the extra inverse powers of invariants

are produced by the y2y4 factor in (89). The other cyclically distinct contractions gives terms proportional

to s−2u−2 and t−2u−2 respectively. There are many other terms that are suppressed by higher inverse

powers of s, t or u.

There is an apparent divergence in the coefficient of the leading power behaviour at the end-

point x3 = x4 in (89). However, this is an illusion. The approximation used in (79) assumed that

|xi − xj | ≫ yi which is not true in the region that the vertices i and j approach each other and the

boundary simultaneously. This is the boundary of moduli space in which an open-string strip pinches

which may result in a logarithmic singularity associated with the level-one intermediate open-string

states described earlier. But a simple scaling argument shows that there cannot be any divergences for

the cyclic contractions with external gravitons. This may be seen by considering the limit in which

the vertex operators 3 and 4 are close to each other and the boundary using the appropriately rescaled

complex variable, ρ4, defined by,

z4 = x3 + y3ρ4. (91)

The potential divergence arises as y3 → 0. The measure d2z4 →
∫

y2
3d

2ρ4 so that divergences at the

boundary come from terms which have y−k
3 with k ≤ 3. It is easy to see that the prefactor in (86) scales

like ǫ−2 and hence there is no divergence in that limit.

When some or all of the external states are NS ⊗ NS antisymmetric tensors there are extra con-

tributions to the amplitude. The leading term, of order κ2, is now associated with a world-sheet that is
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the product of two disks with a pair of closed-string states attached to each. This contributes a term

proportional to
∫

d10ye−2π/κA2B(k1, k2; y)A2B(k3, k4; y)e
iq·y, (92)

whereA2B(k1, k2, y) is the antisymmetric tensor two-point function and the yµ integral gives δ(10)(
∑

r k
µ
r +

qµ), where qµ is again the momentum arising from other particles in the process that soak up the sixteen

fermionic zero modes. When the four antisymmetric tensors are attached to a single disk there are new

issues related to the Dirichlet divergences that arise with non-cyclic contractions.

7.2 Dirichlet divergences.

Unlike with cyclic contractions, there are contributions to non-cyclic contractions in which there are scalar

intermediate states present in some closed-string channels. For example, the contribution with kinematic

coefficient ζ(1) · ζ̃(2) ζ(2) · ζ̃(1) ζ(3) · ζ̃(4) ζ(4) · ζ̃(3) involves a set of of contractions analogous to (74) but the

structure of the prefactors is such that there is a logarithmic singularity from the integration region at

which z3 and z4 approach each other and the world-sheet boundary simultaneously (this is made explicit

by the rescaling in (91)). Such divergences, which are generic in D-instanton processes are guaranteed to

cancel [20].

~

~

(a)

(b)

Fig. 4: World-sheets of order κ3 with Dirichlet divergences due to open-string degen-
erations, indicated by dashed lines. (a) The divergence arising from the degeneration
of the disk which is cancelled by (b), a single degeneration of the annulus. The double
degeneration of the annulus is cancelled by other diagrams. All boundaries are mapped
to the same space-time point.

For example, the divergence illustrated in fig. 4(a) corresponds to a factorization of the four-point

function on the open string state and has the form

(k3 + k4) · (k1 + k2)

∫ L

a

dq

q
A2(k1, k2; y)A2(k3, k4; y)

= ln(L/a)
∂

∂yµ
A2(k1, k2; y)

∂

∂yµ
A2(k3, k4; y), (93)
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where a is an arbitrary constant and A2 is the two-point function on a disk for any of the massless

closed-string states.

As expected [20, 21], the divergence cancels when account is taken of other (disconnected) diagrams

of the same order in κ but with more boundaries. In this example the relevant diagram is the product of

an annulus and a disk with two states attached to each and all three boundaries mapped to the same point

in the target space, yµ. The limit in which one open-string strip of the annulus degenerates again leads

to a logarithmic divergence due to the intermediate level-one open-string vector state. This divergent

term has the form,

1

2
ln(L/b)

{

∂2

∂y2
A2(k1, k2; y)A2(k3, k4; y) +A2(k1, k2, y)

∂2

∂y2
A2(k3, k4; y)

}

, (94)

where b is an arbitrary constant (which need not necessarily be equal to a). Adding (93) and (94) give

a total derivative in y so the L-dependence cancels after integration over the collective coordinates and

hence the sum of the terms is finite.

Fig. 5: The disconnected world-sheet in fig. 4(b) (a disk and an annulus with coincident
boundaries) as seen from the space-time point of view and has the structure of a loop
diagram correction to the instanton process.

It is noteworthy that the annular world-sheet in fig. 4(b) is really a kind of closed-string loop diagram

from the target space point of view since all three boundaries coincide. The disconnected world-sheet of

fig. 4(b) is shown from the space-time point of view in fig. 5, where it looks like a loop correction that

is expected in the background of an instanton in field theory. Of course, from the field theoretic point

of view such loops are ill-defined in ten dimensions. The cancellation of these divergences persists to all

orders

The coefficient of ln a in (93) is of the same form as (92) apart from an overall factor of κs. This

suggests that in some more systematic treatment of the sum of diagrams these contributions could come

be the first two terms in an expansion of

e−2π/κe2πκs ln(b/a), (95)

which is an exponentially suppressed contribution to the one-instanton amplitude.

These Dirichlet divergences arise from a boundary of moduli space that only includes part of the

region which dominated in the fixed-angle limit. In other words, cancellation of the divergences does not

eliminate the point-like behaviour. This is seen most clearly by considering the scattering process in a

physical light-cone gauge, as follows.

Point-like scattering in the light-cone gauge

The point-like behaviour of scattering amplitudes on a disk is described in the light-cone gauge following
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the analysis in the bosonic string theory in [5]. Recall that tree-level elastic scattering of fundamental

closed-string states can be described in a physical light-cone frame in which τ = X+, where X+ is time in

the infinite momentum frame. In this parameterization the independent variables are, X i (i = 1, · · · , 8),

the transverse coordinates. The scattering process may be mapped to the configuration in which the

closed-string world-sheet has width in σ equal to the total p+ carried by the incoming states, which is

conserved throughout the process [35].

σ

(b)

τ
→

τ=τ0

B'

C

D

A'

B

A1

1'

2
3

4'

4

σ↑

(a)

↑

A

B'

τ
→

C D
A'

B

1

2

1'

4

3

4'

Fig. 6: The light-cone gauge parameterization of the world-sheets describing the scat-
tering of four closed strings with (a) a Neumann boundary and (b) a Dirichlet boundary.
Dashed horizontal lines are identified periodically to form closed strings.

In the original open-string theory (in which open strings had Neumann boundary conditions in

all directions) the insertion of a single boundary in the world-sheet is a unitarity correction (fig. 5(a)),

which is represented by the insertion of a boundary at fixed σ, on which the coordinates satisfy ∂nX
i = 0

(where ∂n indicates the normal derivative). The length of the boundary and its (complex) position

are the moduli that are to be integrated. This describes an intermediate open string propagating in a

closed-string process.

By contrast, the lowest-order contribution to the process in the presence of a D-instanton is repre-

sented by the insertion of a boundary with Dirichlet boundary conditions in all directions. This is mapped

to a boundary at fixed τ = y+ in the light-cone parameterization (fig. 5(b)). The boundary condition is

now ∂tX
i = 0, or X i(σ, τ = y+) = yi. The length of this boundary and its (complex) position are again

the three world-sheet moduli that are to be integrated over. Furthermore, the space-time position of the

boundary, yµ, defines the translational zero modes of the instanton that form the bosonic moduli that

are to be integrated over in performing the sum over all instanton configurations. The precise mapping

involved is described in [5]. It applies equally well to any of the instantons that correspond to wrapping

the euclidean world-volumes of p-branes around compactified directions. The difference in those cases

is that (p + 1) of the X i satisfy Neumann conditions on the boundary and and there are only (7 − p)

components to yi.

This distinction between a unitarity correction and a D-instanton correction changes the high energy

behaviour of scattering amplitudes. The fixed τ boundary in the case of the D-instanton represents a

condition imposed on the sum over string histories that projects onto those histories which have a point-

like component at transverse position yi at the ‘time’ τ = y+ . Fixed-angle scattering is dominated by

those histories in which a finite fraction of the energy on the incoming strings is concentrated at a point

at the moment that the strings scatter, leading to power-behaved amplitudes. The point-like fixed-angle
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behaviour comes from the integration region in which the points A and B in fig. 5(b) approach the vertical

slit. This is independent of the Dirichlet divergence, described earlier, which arises from the end-point

at which the vertical slit in fig. 5(b) spans the whole string so that the points C and D touch.

The point-like effects arising from the disk diagram are presumably resolved by accounting for

other contributions to the amplitude. For example, in the calculation of a full amplitude there must be

fermionic moduli provided by external sources. Furthermore, as we saw earlier, the presence of multiply-

charged D-instantons is essential for the consistency of the theory. We have not considered how fixed-angle

scattering might be affected by such contributions. Whereas the physics of D-particles is controlled by the

eleven-dimensional Planck scale [13, 14, 15], the only scale that enters in the multi D-instanton moduli

space is the ten-dimensional Planck scale [29] which is larger at weak coupling. It would be interesting

to understand how this apparent distinction in scales is reflected in the physical properties of the theory.

Note: While this paper was being prepared several papers [36, 37, 38, 39] appeared in which related

interesting issues concerning D-instantons are discussed.
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APPENDIX: The SUGRA instanton action

The strategy is to transform the R ⊗ R scalar, C(0), to an eight-form potential, C(8), with field

strength F9. There are several arguments for using such a formulation of the IIB theory.9 Firstly, the

continuation from minkowskian to euclidian signature is very simple since the Maxwell-type lagrangian

density, F 2
9 , does not transform. Furthermore, the euclidean action is manifestly positive in this dual

formulation, without the introduction of a boundary term. We will see that this implies the presence of

a boundary term in the scalar field part of the usual type IIB euclidean action, which makes it positive.

In order to motivate the form of the dual action we start by considering the first-order minkowskian

action (it will be sufficient to consider the scalar field part of the action with a flat metric since the metric

is trivial in the instanton solution in the Einstein frame [11]),

S(P (9), C(0)) = 1
4

∫

(

dφ ∧ ∗dφ+ e−2φP (9) ∧ ∗P (9) − 2C(0) ∧ dP (9)
)

, (96)

where P (9) is a nine-form field. The functional integral is of the form
∫

DP (9)DC(0)eiS and we will write

S = SM when the signature is minkowskian and S = iSE when it is euclidean.

Later we will see that performing the integration over P (9) first gives rise to the C(0) kinetic terms

in the IIB action together with a specific surface term. But to begin with we will consider integrating

over C(0) first, which imposes the constraint dP (9) = 0 that is solved by P (9) = dC(8) (ignoring global

9Much of this appendix is based on discussions with Gary Gibbons
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issues). Substituting this in the action (96) gives,

S(C(8)) = 1
4

∫

(

dφ ∧ ∗dφ+ e−2φdC(8) ∧ ∗dC(8)
)

. (97)

With Minkowski signature this can be expressed as

SM (C(8)) = 1
4

∫

(

dφ− e−φ ∗ dC(8)
)

∧ ∗
(

dφ+ e−φ ∗ dC(8)
)

(98)

where we have made use of the properties of a p-form, a(p), under Poincaré duality in ten dimensions,

∗ ∗a(p) = (−1)p+1a(p). (99)

With Euclidean signature Poincaré duality implies,

∗ ∗a(p) = (−1)pa(p), (100)

and the action (97) becomes

SE(C(8)) = 1
4

∫

(

dφ± e−φ ∗ dC(8)
)

∧ ∗
(

dφ± e−φ ∗ dC(8)
)

± 1
2

∫

e−φdφ ∧ dC(8). (101)

The first term on the right-hand side is positive semi-definite while the second term is a total derivative

that can be written as,

∫

e−φdφ ∧ dC(8) = −
∫

d
(

e−φdC(8)
)

= −
∮

∂M

e−φF9, (102)

where F9 = dC(8) and ∂M = ∂M∞ + ∂M0 denotes the boundary of space-time which consists of the S9

at r = ∞ (∂M∞) and the S9 around r = 0 (∂M0). From this it follows that the euclidean action satisfies

a Bogomol’nyi bound,

SE(C(8)) ≥ 1
2

∣

∣

∣

∣

∮

∂M

e−φF9

∣

∣

∣

∣

. (103)

The action is minimized and the bound saturated when the first term in (101) vanishes, so that

dφ ± e−φ ∗ dC(8) = 0, (104)

are satisfied by the BPS and anti-BPS solutions. This is the dual form of (13). The ‘electric’ charge on

the instanton is given by the topological integral
∮

∂M∞

F9/2 = 2πq, whereas in the original formulation

it is equal to the integral of the Noether charge for the C(0) shift symmetry. This gives the instanton

action,

S(q) =
2π

κ
|q|. (105)

The parameter q becomes quantized in integer units by the Dirac–Nepomechie–Teitelboim argument for

a instanton in the presence of a euclidean seven-brane.
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In order to see how the euclidean IIB action arises from (96) we will now consider performing the

P (9) integration first. This is obtained by writing the action as the quadratic form,

SE(P (9), C(0)) = 1
4

∫

(

dφ ∧ ∗dφ+ e−2φ
(

P (9) + ie2φ ∗ dC(0)
)

∧ ∗
(

P (9) + ie2φ ∗ dC(0)
)

+e2φdC(0) ∧ ∗dC(0) − 2d
(

iC(0)P (9)
))

, (106)

where the factors of i arise from the Wick rotation of the first two terms on the right-hand side of (96)

together with the fact that SE = −iS. Shifting variables to P
′(9) = (P (9) + ie2φ ∗ dC(0)) and performing

the P
′(9) integration in the functional integral gives the scalar field part of the IIB supergravity action

together with a surface term,
∮

∂M d(e2φC(0)∧∗dC(0)). This shift of variables is only possible if dC(0) = idf

is imaginary, as anticipated earlier, in which case the action is given by,

SE(f) = 1
4

∫

((

dφ ∧ ∗dφ− e2φdf ∧ ∗df
)

− 2d
(

e2φf ∧ ∗df
))

, (107)

which gives rise to equations of motion (13) with instanton solutions (14) [11] in which f = A + e−φ,

where A is an arbitrary constant. The action for a charge q instanton, obtained by substituting the

solution into (107), comes entirely from the surface term which gets contributions from ∂M∞ and ∂M0.

Using the explicit solution for eφ the boundary term at r = 0 can be shown to equal 2π(A− 1/κ)q while

that at r = ∞ is equal to 2πAq so that the action is again given by (105). If we choose A = 0 the action

comes entirely from the surface at r = ∞.

The presence of the boundary term in the scalar action affects the functional integral in that it

restricts the class of functions, f , to those that have continuous derivatives (in other words, the action is

only additive for this class of functions). From the duality relation F9 ∼ eφdf this is consistent with the

fact that F9 is continuous in the absence of seven-brane sources.
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