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Abstract

A general group element for the fundamental representation of SU (3) can always be expressed as a second

order polynomial in a hermitian generating matrix H , with coefficients consisting of elementary trigonometric

functions dependent on the sole invariant det (H), in addition to the group parameter.

In memoriam Yoichiro Nambu (1921-2015)

Consider an arbitrary 3× 3 traceless hermitian matrix H . The Cayley-Hamilton theorem [1] gives

H3 = I det (H) + 1
2 H tr

(
H2
)
, (1)

and therefore det (H) = tr
(
H3
)
/3. Note that an H2 term is absent in the polynomial expansion of H3 because

of the trace condition, tr (H) = 0. Also note, since tr
(
H2
)
> 0 for any nonzero hermitian H , this bilinear trace

factor may be absorbed into the normalization of H , thereby setting the scale of the group parameter space.
We may now write the exponential of H as a matrix polynomial [2, 3]. As a consequence of (1) any such

exponential can be expressed as a matrix polynomial second-order in H , with polynomial coefficients that depend
on the displacement from the group origin as a “rotation angle” θ.

Moreover, the polynomial coefficients will also depend on invariants of the matrix H . These invariants can
be expressed in terms of the eigenvalues of H , of course [2, 3, 4, 5, 6, 7]. Nevertheless, while the eigenvalues of
H will be manifest in the final result given below, a deliberate diagonalization of H is not necessary. This is
true for SU (3), for a normalized H , since there is effectively only one invariant: det (H). This invariant may
be encoded cyclometrically as another angle. Define

φ = 1
3

(
arccos

(
3
2

√
3 det (H)

)
− π

2

)
, (2)

whose geometrical interpretation will soon be clear. Inversely,

det (H) = − 2
3
√
3

sin (3φ) . (3)

The result for any SU (3) group element generated by a traceless 3× 3 hermitian matrix H is then

exp (iθH) =
∑

k=0,1,2

[
H2 + 2√

3
H sin

(
φ+ 2πk

3

)
− 1

3 I
(
1 + 2 cos

(
2
(
φ+ 2πk

3

)))] exp
(

2√
3
iθ sin

(
φ+ 2πk

3

))

1− 2 cos
(
2
(
φ+ 2πk

3

)) (4)

where we have set the scale for the θ parameter space by choosing the normalization

tr
(
H2
)
= 2 . (5)

With this choice, the Cayley-Hamilton result (1) is just [9]

H3 = H + I det (H) . (6)

The normalization (5) and the identity (6) are consistent with the Gell-Mann λ-matrices [8].
So expressed as a matrix polynomial, the group element depends on the sole invariant det (H) in addition to

the group rotation angle θ. Both dependencies are in terms of elementary trigonometric functions when det (H)
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is expressed as the angle φ, whose geometrical interpretation follows immediately from the three eigenvalues of
H exhibited in the exponentials of (4). Those eigenvalues are the projections onto three mutually perpendicular
axes of a single point on a circle formed by the intersection of the 0 = tr (H) eigenvalue plane with the 2 = tr

(
H2
)

eigenvalue 2-sphere. The angle φ parameterizes that circle. Equivalently, the eigenvalues are the projections
onto a single axis of three points equally spaced on a circle [10].

Two cases deserve special mention. On the one hand, the Rodrigues formula for SO (3) rotations about an
axis n̂, as generated by j = 1 spin matrices, is obtained for φ = 0 = det (H). Thus

exp (iθH)|φ=0 = I + iH sin θ +H2 (cos θ − 1) . (7)

This is the Euler-Rodrigues result, upon identifying H = n̂ · −→J (see [11, 12]). It provides an explicit embedding
SO (3) ⊂ SU (3). In fact, (7) is true if H is any one of the first seven Gell-Mann λ-matrices [8], or if H is a
normalized linear combination of λ1−3, or of λ4−7. However, for generic linear combinations of λ1−7, det (H)
will not necessarily vanish, and the general result (4) must be used.

On the other hand,

λ8 =
1√
3




1 0 0
0 1 0
0 0 −2


 (8)

is the only one among Gell-Mann’s choices for the 3× 3 representation matrices for which φ 6= 0, and for which
two eigenvalues are degenerate. Obviously, det (λ8) =

−2
3
√
3
, so φ = π/6. In addition,

λ2
8 =

2

3
I − 1√

3
λ8 . (9)

Thus, directly from (4),

exp (iθλ8) =
1
3

(
2I +

√
3λ8

)
e

1

3
i
√
3θ+ 1

3

(
I −

√
3λ8

)
e
−i 2

√

3
θ
=




exp
(
iθ/

√
3
)

0 0

0 exp
(
iθ/

√
3
)

0

0 0 exp
(
−2iθ/

√
3
)


 ,

(10)
as it should. Note that this particular example followed from (4) by carefully taking the limit as φ → π/6 of
the k = 0 and k = 1 terms in that general expression (as necessitated by the degeneracy of the corresponding
eigenvalues of λ8) combined with the straightforward limit of the k = 2 term. That is to say,

lim
φ→π/6

([
λ2
8 +

2√
3
λ8 sin

(
φ+ 2π

3

)
− 1

3 I
(
1 + 2 cos

(
2
(
φ+ 2π

3

)))] exp
(

2
√

3
iθ sin

(

φ+
2π
3

))

1−2 cos(2(φ+ 2π

3 ))

)

= lim
φ→π/6

([
λ2
8 +

2√
3
λ8 sin (φ)− 1

3 I (1 + 2 cos (2φ))
] exp

(

2
√

3
iθ sinφ

)

1−2 cos(2φ)

)
=
(

1
3 I + 1

2
√
3
λ8

)
eiθ/

√
3 . (11)

Finally, one readily verifies that the Laplace transform of (4) gives the resolvent in the standard form as a
matrix polynomial [13, 14, 15],

∫ ∞

0

e−t exp (itsH) dt =
1

I − isH
=

1

det (I − isH)

rank(H)−1∑

n=0

(isH)
n

Trunc
rank(H)−1−n

[det (I − isH)] , (12)

where the truncation (as defined in [11]) is in powers of s. For the case at hand rank (H) = 3, again with
tr (H) = 0 and tr

(
H2
)
= 2, so

1

I − isH
=

1

1 + s2 + is3 det (H)

((
1 + s2

)
I + isH − s2H2

)
. (13)

From this resolvent one immediately obtains a matrix polynomial for the simple Cayley transform representation
[1] of the corresponding SU (3) group elements [4],

I + isH

I − isH
=

1

1 + s2 + is3 det (H)

((
1 + s2 − is3 det (H)

)
I + 2isH − 2s2H2

)
. (14)
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The Laplace transform (12) can be inverted, in standard fashion [16], to obtain (4) in terms of the impulse
response of the transfer function given by the prefactor in (13). Explicitly,

exp (iθH) =

(
H2 − iH

d

dθ
− I

(
1 +

d2

dθ2

)) ∑

k=0,1,2

exp
(

2√
3
iθ sin (φ+ 2πk/3)

)

1− 2 cos 2 (φ+ 2πk/3)
. (15)
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