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ABSTRACT 

We present in a unifying framework the principles of the IllCAD (Intelligent, 
Integrated, and Interactive Computer-Aided Design) system. IIICAD is a gen­
eric design apprentice currently under development at CWI. IllCAD incor­
porates three kinds of design knowledge. First, it has general knowledge about 
the stepwise nature of design based on a set-theoretic design theory. Second, it 
has domain-dependent knowledge belonging to the specific design areas where it 
may actually be used. Finally, it maintains knowledge about the previously 
designed objects; this is · somewhat similar to software reuse. Furthermore, 
IllCAD uses AI techniques in the following areas: (i) formalisation of design 
processes; extensional vs. intensional descriptions; modal and other nonstandard 
logics as knowledge representation tools, (ii) common sense reasoning about the 
physical world (naive physics); coupling symbolic and numerical computation, 
(iii) integration of object-oriented and logic programming paradigms; develop­
ment of a common base language for design. 
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"In this paper, I have tried to argue that there is an important class of problems in knowledge represen­
tation and commonsense reasoning, involving incomplete knowledge of a problem situation, that so far 
have been addressed only by systems based on formal logic and deductive inference, and that, in some 
sense, probably can be dealt with only by systems based on logic and deduction." (22] 

1. Introduction 
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Recent research in Computer-Aided Design (CAD) (cf. [36, 9, 8, 28] for some representa­
tive articles and [17] for a good, nontechnical review) has shown a visible interest in the intellec­
tualisation of design. We find this a healthy trend since we believe that the ultimate aim of CAD 
is the automation of the several knowledge-intensive activities performed today solely by 
highly-specialised, hard to come by, expensive, and unfortunately error-prone human experts. In 
fact, it is not too early to claim that manufacturers are already very interested in ''intelligent 
CAD" since several useful research efforts have been made, e.g. Briggs & Stratton's Engineer­
ing Design Assistant [25]. A common view goes like this: "Right now there are several 
designers who know a little about all facets of engine design, but there is no individual who 
could effectively design an entire engine. Eventually, however, it may be possible for one per­
son, using a collection of expert systems, to do a considerable amount of the engine design pro­
cess." [ibid.] 

Intelligent CAD is practiced mainly by applying the already existing ideas of Artificial 
Intelligence (AI) and Knowledge Engineering (KE) in several aspects of the design 
process/object modeling. In addition to making CAD more intelligent, this approach has the 
advantage that while studying the appropriate AI and KE techniques, CAD researchers contri­
bute to the existing body of knowledge in these areas. 

The need to make CAD more sophisticated is real and being felt today especially in the 
J;righ-tech domains. As technologies advance, the management of the complexity as a result of 
the amount and variety of information to be handled by design systems is becoming a gigantic 
task. It is hoped that advances in AI will be a keystone in bringing promising long-term solutions 
to structuring this potentially explosive domain of knowledge. The weaknesses of the existing 
CAD systems today are basically due to the facts that (i) they have no task-domain knowledge to 
reflect the thinking processes, terminology, and intentions of designers, and (ii) the system 
software is written in an unstructured, ad hoe, and hard to maintain/upgrade way, with no sound 
basis (in terms of a formal design theory). 

We see intelligent CAD as a theory resting on a triad: a theory of knowledge, a theory of 
design processes, and a theory of design entities (objects). Our work at CWI is aimed at contri­
buting to these theories and evaluating their usefulness through prototype implementations treat­
ing real design problems. We should immediately add that we are not interested in ''expert sys­
tems for design" per se although we consider them as a part of the grand picture [2]. 

Clearly, the proposition that one has a "theory" to deal with design is rather pretentious 
and even dangerous. We are aware of the fact that design is a ''mysterious'' activity which is 
currently done in its entirety only by intelligent human designers. Yet, to quote Lansdown [17]: 

"[I]n broad terms, most people would accept that designing is a cyclical process in 
which concepts are devised and then tested against some criteria of performance, cost, 
or aJ1pearance. The tests: logical, physical, or just intuitive, lead to the concepts either 
being incorporated into the design or being rejected. In any event, the testing process 
gives rise to the formulation of new concepts and, importantly, then to new criteria for 



Aleman et al. Knowledge Engineering in Design 

testing. The whole of designing thus is governed by what Ernst Gombrich calls 

"schema and correction" - almost a trial and error process where experimentation 

precedes correction which in tum leads to further experimentation." 
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We appreciate the difficulty of identifying and incorporating all the planning, heuristic, and 

inventive knowledge that good designers tend to have. (Cf. [3, 21, 7] for several researchers' 

views on the various aspects of design.) Nevertheless, the issue here is mainly that of a formal 

language to ''communicate'' our results to the outside world. We believe that even in the vague 

domain of design where any kind of formalisation would probably look superficial, a formal 

outlook is the only way to do scientific research. We see logic as the essential framework of this 

formal outlook. First, logic is precise and unambiguous with a well-understood semantics that 

connects the formulas of logic and the real world that they talk about. Second, in its purity, logic 

provides a high level abstraction since it is entirely nonprocedural. It also acts as a formal 

specification since the knowledge is not buried in procedures. This issue is of substantial help in 

writing software engineered CAD code. 

The organisation of this paper is as follows. In §2, we briefly look at a logical formalisation 

of the design processes. In §3, knowledge representation issues in design are reviewed from the 

angle of intensional vs. extensional descriptions. A theory of design entities based on naive phy­

sics and coupled systems is summ,arised in §4. Combining object-oriented and logic program­

ming styles to arrive at a design base language is studied in §5. Finally, §6 summarises the key 

propositions of our approach and suggests future directions. 

: This paper is a partial overview of our research. The reader is referred, in addition to 

several other foundational articles by Tomiyama and Yoshikawa to be referenced later, to 

[33, 34, 35, 29, 30, 32] for a detailed exposition of our work. 

z. A Logical Formalisation of Design Processes 

2.l. The Stepwise Nature of Design 

We use General Design Theory [31] as a basis for formalising design processes and design 

knowledge. The theory is based on axiomatic set theory and models design as a mapping from 

the function space where the specifications are described in terms of functions, onto the attribute 

space where the design solutions are described in terms of attributes. Roughly speaking, one 

starts with a functional specification of the design object and ends with a manufacturable 

description encompassing all its attributes. 

The basic ideas behind a logical formalisation of design processes are as follows: 

• From the given functional specifications a candidate is selected and refined in a stepwise 

manner until the solution is reached, rather than trying to get the solution directly from the 

specifications. 

• Hence design can be regarded as an evolutionary process which transfers the model of the 

design object from one state to another. We call this model, being a set of attributive 

descriptions, a metamodel. (This rather confusing and uninformative name is kept for his­

torical reasons.) 

• Duril}g the design process new attributive descriptions will be added (and some existing 

ones will be modified) and the metamodel will hopefully converge to the solution. Since 

dead ends are natural occurrences in design, a technique to step back and select more 
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promising paths at any time is also required. 

• To evaluate the current state of the design object (i.e. the metamodel), various kinds of 
models of the design object need to be derived from the metamodel in order to see whether 
the object satisfies the specifications or not. We call those models of the design object 
worlds and they can be regarded as interpretations of the design object seen from certain 
points of view - the concept of "multi-worlds." (In machine design, one such model 
would be the finite element model of the design object, for instance.) 

Considering the metamodel evolution model, the system starts from the specifications, s , of 
the design object and continues with the design process until the goal, g , is reached. We define 
qj as the set of propositions at the state of metamodel Mi with an interpretation in world w j . In 
other words, if we have m worlds then q\, ... , qfn constitute the current state of knowledge 
about the design object. There are two possibilities: either the current state of knowledge is com­
plete and consistent or there is an incompleteness/inconsistency. In the first case, g has been 
reached and we have finished the design process. In the latter case, there is a need to proceed to 
the next metamodel Mi+l in order to resolve the incompleteness or inconsistency. (Note that we 
don't care about the inconsistency of a particular world.) 

The nature of design then, understood in the above sense, is to modify /add properties about 
the design object. This means that we need language constructs to evaluate a metamodel by 
creating worlds and to derive new properties or to update uncertain/unknown properties in such a 
world in order to get more detailed knowledge about the design object. The crucial point is how 
to ·proceed from Mi to Mi+l. Alternatively, we can pose the following questions. How do we 
define qj? How do we derive new information from the current world and compare different 
worlds? It has to be realised that we are not aiming at an automated design environment; our 
system is meant to be a designer's apprentice. The designer should take the initiative for direct­
ing the design process. This is where the interactive nature of design comes into play. Accord­
ingly, the designer, regarding a certain world, can modify/add attributes about the design object. 
The system evaluates the metamodel after these updates and checks it for consistency. 

The reader may notice that it seems natural to choose modal logic as a representational 
language since modal logic deals with interpretations of a model (understood in the "logical" 
sense) in multiple worlds (again understood in the logical sense). We don't elaborate on the rela­
tionship between the meanings we attach to "model," "world" and the usual interpretation of 
these words as employed in modal logic, cf. [12] for details. 

Design, at the highest level, is accomplished in IIICAD by interacting with the so called 
scenarios which are (conceptually) frame-like structures describing standard design procedures. 
The classical definition of frames is " ... a data structure for representing a stereotypical situation 
like being in a certain kind of living room or going to a child's birthday party" [20]. Just like 
frames, scenarios have information about the design objects/processes that play a role in stereo­
typical design situations as well as the various relationships between these stored information. 
Each scenario tells something about the way it is to be used and gives clues as to what to do if 
something goes wrong with the current design while it is active. The notion of default values for 
slots has the counterpart ''assumed'' attribute values for design entities. A scenario base is then 
a collection of scenarios structured in terms of some organisational principles. The following 
principle~ are well-known [23]: 

• Classification/Generalisation: One can associate a scenario with its generic type. Thus a 
scenario to design e.g. a bicycle lock belongs to the generic type "locks." The 
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generalisation relation between types is a partial order (lattice) and structures types into an 
isa-hierarchy. An isa-hierarchy provides the means for the overall organisation and 
management of a large scenario base. Additionally and more technically, isa-hierarchies 
reduce the storage requirements by allowing properties associated with general objects to 
be passed to more specialised ones. 

• Aggregation: This relates a scenario to its components (parts). Aggregation can be applied 
recursively to represent the parts of the parts. For example, the parts of a bridge are its toll 
booths, supports, traffic lights, pavements, etc. In this case, different "subscenarios" 
would be used to design the overall bridge; they would, most conveniently, be activated by 
their mother scenario. Notice that, a bridge can also be viewed as an abstract object with 
an address, a state highway classification number, an architectural style, a maintenance 
cost-per-year, etc. Regarding design chiefly as a geometric activity has been the classical 
pitfall of the CAD systems and we want to take heed of that. 

Scenarios, like frames, allow other looser principles such as the notion of "similarity" 
between two scenarios. The easiest way to do this would be pattern matching, cf. [20] for a 
detailed exposition of frame similarity and additional techniques to achieve it. 

2.2. Modal and Other Nonstandard Logics for Design 

Modal logic can be seen as the logic of necessity and possibility[l2]. We will show the 
basic notions that a system of modal logic is intended to express. We use the conventional nota­
tion for the modal operators, necessary and possible, and introduce new notation for the default 
and unknown operators. 

Among true propositions we can distinguish between those which are merely true and 
which are bound to be true. Similarly, we can distinguish among false propositions between 
those which are bound to be false and those which are merely false. A proposition which is 
bound to be true is called a necessary proposition (Np , it is necessary that p ); one which is 
bound to be false is called an impossible proposition (N-,p , it is impossible that p ). If a proposi­
tion is not impossible we call it a possible proposition (Pp, it is possible that p ). We have now 
informally introduced the monadic proposition forming operators N and P. These operators are 
not truth-functional, i.e. the truth value of the proposition cannot be deduced even when the truth 
value of the argument is given. However, a strategy exists to determine the validity of a neces­
sary or possible proposition. We won't give the exact definition of this validity checking but 
describe it informally. 

A necessary proposition, Np, is valid in a certain world iff p is valid in all worlds accessi­
ble to that world. A possible proposition, Pp , is valid in a certain world iff p is valid in one or 
more world(s) accessible to that world. Briefly, a world W 2 is accessible to a world W 1 if W 2 is 
conceivable by someone living in W 1. Consider the following example. We can conceive a 
world without telephones but if there had been no telephones, it would be the case that in such a 
world no one would know about what a telephone was and so no one would conceive of a world 
(e.g. ours) in which there are telephones [12]. More technically, suppose that we have a set of 
propositions. We can specify what the state of a world is by giving a list of which propositions 
are true and which are false according to this world. Let 0 be a dyadic reflexive relation over the 
worlds. 'Qien 0 is called the accessibility relation, i.e. world Wi is accessible by Wj iff Wi 0 Wj. 

We use a different operator D to express default values. Thus, Dp means that p is con­
sistent with the theory. A proposition is consistent if its negation cannot be derived within the 
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theory. A default proposition, Dp, is considered to be valid if -,p cannot be proved. With this 
mechanism, we have the possibility to deal with nonrnonotonicity [19]. During the design pro­
cess, some properties about the design object may not yet be known; so we can assume some 
default values. But as soon as contradictory information is derived, we discard the default pro­
perty and base things on the newly obtained information. Notice that this is nothing but the 
well-known truth-maintenance problem [6]. 

The modal operator U is used to denote uncertainty. A proposition is unknown if neither its 
truth nor its falsity can be derived. An unknown proposition, Up , is considered to be valid if nei­
ther p nor -,p can be found. Note that we now actually have introduced a third truth value (i.e. 
unknown). The reason we avoid explicitly introducing a third truth value is that we want to keep 
our logic as simple as possible. This further implies that we have the open world assumption 
(23]. Nevertheless, if we request p the knowledge base must return false if it finds -,p or cannot 
find p. Therefore, Up is required to know about the uncertainty of p. 

2.3. Incomplete Information and Null Values 

Several ideas to be mentioned in this subsection owe their origin to recent research in data­
bases. We'll follow especially (18, 24] closely, for they too insist on using logic as a framework 
for databases. 

Since our envisioned design system will be based on KE principles, the existence of a 
knowledge base (KB) is implicit as an integral part. Whatever supervisory mechanism (SPY) 
we'll have in the system, it would like to query the KB about a particular design application. In 
design, any KB would be incomplete since it is impossible to identify and store all the informa­
tion necessary to answer a query. In this case, we should distinguish between what the KB 
knows and what the truths are in the design domain. A KB may know that a shaft is attached to a 
motor without knowing the motor's power rating; it may know that one of the cylinders of the 
motor is faulty without knowing which one. Thus, one cannot treat a design KB as a realistic 
replica of the application domain. Since design is an open-ended activity, it may turn out that 
design KBs will never stabilise and one should find ways to deal with this ever-changing charac­
ter of them. 

Assuming that logic is the underlying formalism, for each query K: there are four possibili­
ties: (i) true when K: can be inferred from the KB, (ii) false when -,K: can be inferred from the 
KB, (iii) unknown when neither (i) nor (ii) holds, and (iv) contradiction when both (i) and (ii) 
hold. We call a KB consistent if it contains no contradictory information. In an incomplete KB, 
on the other hand, we may pose queries which have unknown as answer. Unknown information 
may be in several disguises. Consider the following example. We know that "Door D 0023 has a 
type L 0003 or L 0014 lock," but don't know which. A straightforward way to represent this fact 
is to have two interpretations of D0023: one with £0003, the other with £0014. This type of 
unknown is known in the database area as disjunctive information. Another common and more 
challenging unknown is the null value, meaning "value at present unknown." Now, if we 
accept the closed world assumption (viz. the negation of any atomic formula can be inferred 
from the inability to infer the atomic formula, a.k.a. negation-by-failure in Prolog) then solving 
the null value problem is easy since it reduces to the disjunctive information problem with the 
disjuncts ~xpressing all the possible values (collected from the KB). However, under the open 
world assumption the value will not necessarily be one of the some finite set of known possible 
values. Consider the following. We know that "Pipe P 0254 feeds an oil tank" but don't know 
which. Moreover, this tank may or may not be one of the known tanks T OOO 1 and T 0002. In first 
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order theory, we would express this as 

3X, oil-tank(X) A fed-by(X, P0254), 

then choose a name, ro, for this object and rewrite the preceding as 

oil-tank(ro) "fed-by (ro, P 0254). 

-7-

In fact, ro has long been known in the logic terminology as a Skolem constant and provides a 

way to eliminate the 3 sign in proof theory; databases introduced the more suggestive name null 

values. It is important to observe that each time a new null value is introduced to the KB, it 

should be denoted by a new name (distinct from all other names). Thus, the switch below to ro is 
compulsory to express "Some tank (maybe the same one as TOOOl and T0002) is fed by pipe 

P0789": 

oil-tank(ro) "fed-by(ro, P0789). 

In addition, the KB should be made aware of the existence of a null value in general. This means 

that the allowable entities (e.g. the universe made of P 0254, TOOOl, T0002 in the first example) 

must be expanded by introducing ro and the axioms should be revised as 

';/ X, [oil-tank(X) ::> X :::TOOOl v X ::T0002 v X :::ro] 

and 

'if X , Y, ff ed -by (X , Y) ::> 

(X = T OOO 1 " Y = P 0254) v (X = T 0002 " Y = P 0254) v (X = ro " Y = P 0254)]. 

2.4. Other Nonstandard Logics 

Predicate calculus of higher order is useful to talk about inheritance. The following is prov­

able in the second order predicate logic: ';/ F , [F (x) ::> G (x)]. (If an individual x has every pro­

perty then x has any property G . ) In third order predicate logic, we can prove that 

';/ F , [V (F) ::> V ( G ) ] . (Whatever is true of all functions of individuals is true of any function of 

individuals G.) While they are, theoretically speaking, well-understood, the real challenge of 

higher order logics lies in their implementation. 

For temporal logic, we can use the following notation. Let t a. p denote that p holds after 

time t and t 13 p denote that p holds before time t; [t i. t2] denotes a time interval. Several use­

ful equalities can be written: 

t a. op = -, (t a. p ), 

t a. (p " q) = (t a. p) " (t a q ), 

[t1, t2] a.p = (t1 a.p) /\ (t2 l3 p) /\ (t1<t2). 

Using temporal logic, we can describe inference control for our system in a more explicit 

way. For instance, in Prolog the order of rules matter [l]. In general, this knowledge is embed­

ded in the interpreter of this language. By disclosing this control we may introduce suppler con­

trol. As~ example, "detailing" knowledge for a design object may be a set of rules of the sort 

(t1 a. qi) A (t2 a. qz) "(t1<t2) ::> t2 a. q3, 
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(t1 a. q1) "(t2 a. qz)" (t2<t1) ::> t2 a. q4. 

where qi 's are understood in the sense of §2.1. 
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Intuitionistic logic can also be incorporated into temporal logic. Let tp be the time when 
proposition p is proved. By definition, we have tp a. p =true. Now, using the logical symbol 
unknown we can formalise intuitionism in terms of temporality: 

tp (3 (p v -,p) = unknown, tP a. (p v -,p) = true. 

We note that incorporating the complete functionalities of these assorted logics may very 
well result in high (even intractable) computational complexity. To avoid this, we must include 
only those functionalities which are relevant to our design requirements. For example, in case of 
temporality we may be satisfied with only a. and (3 although there is surely more to temporal 
logic than these simple operators. 

Once we extend the first order predicate logic with these operators, we have a powerful 
notation to describe design knowledge in a flexible manner. Since a design object is constantly 
updated during the design process, we need to describe it in a dynamic way. The constructs we 
have envisioned above work with a multiworld mechanism realised in modal logic. This 
mechanism helps the designer describe a design object seen from several viewpoints and express 
default and uncertain information about a design object. 

3. The Method of Extensions/lntensions 

3. l. Philosophical Origins 

We begin with a philosophical discussion about knowledge representation and then move 
to more concrete issues. We'll start with a definition of L-truth, a notion also known as logical 
truth, necessary truth [Leibniz], and analytic truth [Kant]. The subject matter is historical and 
treated in great detail in [4]. Call a sentence, cr, L-true in a system, l:, iff cr is true in E in such a 
way that its truth can be established on the basis of the rules of the system E alone, without refer­
ence to (extra-linguistic) facts. This is, in a sense, what Leibniz meant when he stated "A neces­
sary truth must hold in all possible worlds." 

It is customary to regard two classes, say those corresponding to the predicates p and q, 
identical if they have the same elements (e.g. p and q are equivalent). By the intension of the 
predicate p we mean the property p ; by its extension we mean the corresponding class. The term 
property is understood in an objective (physical) sense, not in a subjective, mental sense. Thus 
"red" table should mean that the colour of the table (as understood, in the final analysis, as a 
physical property) is red, not that the person who is looking at it perceives it (for some e.g. 
psychological reason) as red. Thus, one may state that the table has the character Red whereas 
the observer has the character Red-Seeing. An good account of intensions and extensions is 
given in the following passage: 

"Class may be defined either extensionally or intensionally. That is to say, we may 
define the kind of object which is a class, or the kind of concept which denotes a class: 
this is the precise meaning of the opposition of extension and intension in this connec­
tion.~But although the general notion can be defined in this two-fold manner, particu­
lar classes, except when they happen to be finite, can only be defined intensionally, i.e. 
as the objects denoted by such and such concepts. I believe this distinction to be 
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purely psychological: logically, the extensional definition appears to be equally appli­
cable to infinite classes, but practically, if we were to attempt it, Death would cut short 
our laudable endeavour before it had attained its goal. Logically, therefore, extension 
and intension seem to be on a par" [Bertrand Russell]. 

-9-

For example, let S denote that something is a shaft and let L denote that something is two miles 
long. The conjunction SAL would mean that something is a shaft and two miles long- denot­
ing an empty yet not meaningless class. On the other hand, S A -8 would mean shaft and at the 
same time not shaft - an L-empty statement. No factual knowledge is required for recognising 
the fact that the last conjunction cannot be exemplified. 

The method of intensions/extensions has its roots in the work of Frege who studied it in a 
less rigorous way and called it the method of name-relation. This consists of regarding expres­
sions as names of (concrete or abstract) entities in accordance with the following principles: 

• Every name has exactly one entity named by it, i.e. its nominatum. 

• Any sentence speaks about the nominata of the names occurring in it. 

• If a name occurring in a true sentence is replaced by another name with the same nomina-
tum, the sentence remains true. 

If the last principle is applied without restriction, contradictions may arise. Frege 's solution was 
to draw a distinction between the nominatum and the ''sense'' of an expression. A classical 
example is the two expressions "the morning star" and "the evening star." Although these 
expressions have the same nominatum they certainly don't have the same sense. It will be seen 
that nominatum resembles to extension and sense resembles to intension. (In fact, John Stuart 
Mill used the more descriptive terms denotation and connotation, respectively, for the above 
concepts.) 

3.2. Describing Design Entities 

We find the main use of intensions/extensions in describing design objects. Suppose that 
we are trying to describe a pressure regulator. Normally, we would have a "method" which 
knows about a certain type of pressure regulator, possibly parametrised so that one can create 
(i.e. design) instances of it by changing the parameters. Thus, e.g. 

pres-reg(max-pressure, max-deviation, input-area, output-area, valve-type, · · ·) 

would be the way this method can be invoked. The suggestion is to visualise this as an inten­
sional description. The method pres-reg comprises all the information one would require to deal 
with this kind of regulator. In that sense, it embodies the concept of a regulator. This makes it 
efficient in terms of design time since all the knowledge is there and one simply has to make the 
right invocation of this method. On the other hand this intensional description is inflexible since 
if one now wants to add a new "parameter," e.g. max-fluid-viscosity, one would face the prob­
lem of studying and changing the whole method. 

An extensional description of the same regulator is a collection of facts of the sort: 

pres-reg(PR) 

input-area (PR, areain) 

output-area (PR, area0111 ) 
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max-deviation (PR, max-dev) 

max-pressure (PR , max-pres) 

valve -type (PR , v -type ) 

-10-

and some procedural knowledge to structure these. Now, adding the new fact would be just the 
addition of the new piece of information max-fluid-viscosity(PR, max-vis). Obviously, the pro­
cedural parts should also change but this change is thought to be less and much more ''local.'' It 
is not difficult to see, on the other hand, that this new method of describing the regulator suffers 
from inefficiency since there are several facts which should be combined in some way, viz. the 
available information is in bits and pieces and should be put together. 

For design, the advantage of extensional descriptions should be clear. In design, we need an 
integrated set of models each of which represents a different facet of the design object and possi­
bly changes during the design process. From this viewpoint, intensional descriptions are very 
rigid and data exchange between two different say, solid modeling systems based on these 
description methods may suffer from loss of information or twist of meaning. 

4. Naive Physics: A Theory of Design Objects? 

We'll keep this section short since we are in the process of preparing a longer reply to the ques­
tion posed in the section title. 

4. l. Expressing Naive Physics Knowledge 

Since its inception by Patrick Hayes a decade ago [11], Naive Physics (NP) has established 
itself as an exciting branch of Al. The aim of NP is to represent and simulate the knowledge and 
thought processes humans have about the physical world. A good example is attributed to Mar­
vin Minsky: "You can pull with a string but not push with it." While we possess such trivial 
knowledge it is exceedingly difficult to have computers appreciate and use it. Giving such com­
mon sense physical knowledge to computers is essentially the aim of NP. 

An integral part of NP is Qualitative Reasoning (QR) about the physical processes. This 
can best be explained with an example. Consider a sealed container full of water. If it is sub­
jected to heat, it will eventually explode. The process that gives rise to this is the transformation 
of water into steam which applies huge forces. In this style of reasoning we are not really 
interested in the nuts and bolts of what is going on, i.e. we are hardly interested the ''exact'' 
physical relationships, equations, constants, etc. ultimately leading to this explosion. Qualitative 
Physics (we prefer NP to this term) is a special kind of physics where we use QR instead of deal­
ing with exact mathematical relationships. The main reason for this is that exact mathematical 
analysis is not what human beings are thought to perform in ordinary circumstances. A more 
technical reason is that exact analysis is sometimes exceedingly difficult and even impossible 
(e.g. nonlinear differential equations). 

Why are NP notions such as solids, liquids, force, time, etc. useful in design? The answer 
is that design objects will, when manufactured, exist in the physical world where the above 
notions will be in effect. Why do we need QR? There may be several answers but one good rea­
son is that we want to determine the impact of unanticipated changes on an object in its destined 
environment. The common example here is an event such as the Three-Mile Island where it is 
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now believed that a simple, clear way of reasoning qualitatively about the physical processes and 
changes leading to the catastrophe would possibly prevent the accident. 

Long time ago Hayes [ 11] proposed that one should use logic in describing NP knowledge. 
We plan to take this route. For example, we have good examples which demonstrate the suitabil­
ity of modal logic in encoding situational calculus. (Imagine e.g. modeling the possible out­
comes of envisionment [15] with the help of the possible worlds of modal logic.) As an addi­
tional tool, we want to use the "chunking" of knowledge - as done, for example, by de Kleer 
[14] in his Restricted Access Local Consequent Methods (RALCM's) - to collect together and 
use intelligently physical formulas. (Note that this can be done by using a class for each chunk.) 
For QR, the need for a symbolic algebra based on confluences is immediate [15]. 

While in QR we have a reasonably complete mathematical model of a situation, this itself 
is never sufficient for many tasks. QR is expected to interpret the numerical values of several 
problem variables. Assume that p is a quantity directly proportional to the quotient r It. If r 
increases while t stays constant or decreases, a QR system can draw the useful conclusion that p 
increases. However, consider the case of both r and t increasing, albeit with unknown rates. In 
this case, a QR system is helpless unless it can read the values from some measuring device and 
do numerical computation. This need to switch back and forth between traditional computing 
and qualitative analysis has paved the way to coupled systems. 

4.2. Coupled Systems for Expert Computation 

One of the main uses of computers since their invention (and in fact, one of the reasons for 
their invention) has been ''numerical'' computation. It is difficult to define what is exactly 
numerical (as opposed to symbolic) but it may suffice to point out that most of the numerical 
analysis libraries such as IMSL™ are full of numerical code - code that computes integrals, 
multiplies or inverts matrices, solves differential equations, etc. One unifying property of these 
libraries is that they work on numbers and they produce numbers. Symbolic computation sys­
tems such as MACSYMA ™, on the other hand, work on symbols and produce symbols. 

If "the aim of computing is insight, not numbers," as Richard Hamming has been quoted to 
advise, then numerical code provides little help to give insights to what is going on, especially in 
huge computational tasks. More often than not, one gets, after hours of computation, a long list 
of numbers which hardly say anything explicitly (thus necessitating a post-computational period 
when the results are "analyzed") or quite disturbingly, messages like "underflow while comput­
ing M-1." 

Traditionally, numerical computing has been used in data processing, simulation, statistics, 
etc. whereas symbolic computing was employed in data interpretation, cognitive modeling, 
search and heuristics, and nondeterministic problem solving. It should be added that by using 
the term symbolic computing we do not confine ourselves to symbolic algebra systems. Many 
familiar expert systems (e.g. Mycin, Prospector, Dendral) have symbolic computation facilities 
while they wouldn't be regarded as computer algebra systems: An informal definition would 
then equate numerical computing with "number crunching" intensive processes while symbolic 
computing is understood as logic, heuristic, and reason intensive. 

A coupled system "must have some knowledge of the numerical processes embedded 
within them and reason about the application or results of those numerical processes" [13]. It is 
natural to assume that in a coupled system a symbolic supervisor is at the top level, scheduling 
the numerical processes. Such a supervisor would have knowledge about the process's aim, 
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input/output behaviour, run-time limitations (e.g. the smallest and largest numbers it can deal 
with; truncation characteristics), and so on. 

We close this subsection with a general remark about the necessity of coupled systems. 
Consider the design of a complex artifact such as a nuclear reactor or a space shuttle. On the 
symbolic side there is a need for database management, truth maintenance, computing with con­
straint equations, answering "what-if" questions (possibly for testing and fault simulation), etc. 
On the numerical side, there is a need to have expert knowledge about computational mechanics, 
fluid dynamics, earthquake engineering, materials science, Monte-Carlo techniques, etc. Human 
designers solve problems of this scale with a careful mix of symbolic and numerical techniques. 
Without a strong coupling of symbolic and numerical code, the automation of these complex 
tasks cannot be expected. 

5. Combining Object Oriented and Logic Programming 

5. l.· Why Are We Doing This? 

Logic languages such as Prolog provide the means to deal with a KB of facts; they espe­
cially come up with a uniform computational mechanism such as unification to execute logic 
formulas. Object-oriented languages such as Smalltalk [10] use encapsulation to structure data 
and employ message-passing as the underlying computational principle [26] 

An obvious shortcoming of existing logic languages is the overhead of an extensive data­
base which is physically homogeneous. This has the result that without some metalevel control, 
query evaluation may become hopelessly inefficient when the database is bulky. Another weak­
ness is the lack of abstract data types. For existing object-oriented languages a major symptom 
of unsuitability for CAD has been the fixed (run-time) structure of the inheritance lattice. It is 
normally impossible to declare new objects which reside somewhere between the already exist­
ing parents and children. This normally takes us to issues such as inheritance vs. delegation 
which we want to avoid presently, despite their importance. 

We hope that our draft proposal of a language to overcome these difficulties is pointing 
more or less in the right direction to combine the paradigms of logic and object-orientation. We 
have enumerated the requirements (originating from our desire to use it to code design 
knowledge) for this language in [33] and, for brevity, won't repeat them here. For another 
account of how to combine programming paradigms (the story of Loops) we refer the reader to 
[27]. 

5.2. IDDL, a Design Base Language 

In IDDL, constants and variables denote entities. They are both called objects. A predicate 
denotes a relationship among entities and attributes which are expressed by functions. A func­
tion represents an attribute of an entity. Note that it is possible to define a function even on a set 
of predicates. Function definition can be done by procedures. 

Logical implication and equivalence are literally so and work as a watch-dog in the KB. 
Suppose that there is a clause p (X) -7 q (X) denoting the transformation rule that as soon as e.g. 
p (a) is found, q (a) must be added to the KB. (Logical equivalence performs this bidirection­
ally.) Note that, since we employ intuitionistic logic, we don't assume -ip (a) even when -,q (a) 
is asserted. In the same way, deleting p (a) does not imply deleting q (a) or any other fact 
derived from p (a). 
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There are two temporal connectives: before and after. There will be no two facts asserted 
at the same time. Therefore, these connectives form a fact set with complete ordering. Every 
object, well-formed formula, etc. has a set of information about its origin, destination, and time 
stamp. These are used by the SPV for controlling the inference. 

Modal operators based on the system T [12] are available, i.e. #N (necessity) and #P (pos­
sibility). Since these two are based on the system T, they precede only predicates. There is an 
unknown operator, %, which can precede only atomic predicates. The #D default operator is 
another modal operator and can precede only atomic predicates. The necessity and possibility 
operators deal with different worlds whereas the default operator deals with nonmonotonocity or 
truth-maintenance within one world. 

Two quantifiers are available: #A for the universal quantifier "if and #E for the existential 
quantifier 3. A clause is defined by a list of predicates combined by connectives. Clauses and 
rules can be quantified. 

IDDL is based on intuitionistic logic which implies further the open world assumption. 
Thus, IDDL uses, deep in its heart, three-valued logic including the unknown truth value rather 
than the conventional two-valued logic. Intuitionism means that, to check a fact, unless one has 
positive evidence, one is not able to say yes. The open world assumption is considered in terms 
of the unknown modal operator on the level of IDDL programs. Three-valued logic including 
unknown besides true and false is employed only internally. This means that the KB and the 
SPV distinguish false and unknown but logically these two values are treated the same. The 
unknown truth value is explicitly handled by the unknown modal operator. Thus, %p (a) returns 
true when there is no p (a) and --.p (a). 

IDDL has the concept of a world. It is defined as a partition of the KB such that worlds are 
independent from each other but can be linked so that changes in one world can propagate to 
others. There must always be at least one currently active world in the KB. Worlds are subject 
to manipulation. A world consists of (i) objects, (ii) facts, and (iii) available functions. A world 
is created or declared with these elements. There are global worlds and local worlds. Local 
worlds are defined as those belonging to scenarios. Global worlds persist in the KB forever until 
explicitly removed, while local worlds automatically disappear after the execution of scenarios. 

Two types of action are possible: pure inquiries and assertions. Suppose that we want to 
ask the KB p (X ). If there is p (a) and p (b) then X is instantiated to the set {a, b } and true is 
returned. If there are no such facts in the KB, X remains uninstantiated and false is returned. 
Consider now the inquiry -,p (a, b ). If -,p (a, b) is found, true is returned; however, if p (a, b) 
is found, false is returned. If neither --.p (a , b) nor p (a , b ) is found, unknown is returned. 

#N and #P are used to deal with different (currently active) worlds. #Np(a) returns true 
when all the currently active worlds have p (a ); if there are some worlds where --.p (a ) is found, 
false is returned. If some or all of the active worlds do not have p (a ), unknown is returned. 
#Pp (a ) returns true when there is at least one active world which has p (a); false is returned 
when all of the active worlds have --.p (a). If there is neither p (a) nor --.p (a) in the active 
worlds then unknown is returned. 

A fact such as #Dp (a), matches #Dp (a) and returns true. Otherwise, it returns false 
(because the problem is whether p (a) is qualified by #D or not). Assertions, on the other hand, 
are assoc;iated with modifying the KB. Again consider asking p (X ). If there exist p (a) and 
p (b ), X is instantiated to the set {a, b } and true is returned. In this case the assertion suc­

ceeded. If there is no such fact in the current worlds, an object which is referred by X is created 
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and this fact is added to the current worlds. Finally, true is returned as the logical value of this 
assertion to indicate that it succeeded. By assertion one may create new objects. The assertion 
p (a ) fails when there is already -,p (a) in the current worlds. We note that & (logical and) and 
I (logical or) operators are different in terms of assertion. For example, consider the assertions 
of p (a) & q (a) and p (a) I q (a). The and operator puts both p (a) and q (a) in the currently 
active worlds. If either of them fails, the whole assertion fails. On the other hand, the or opera­
tor creates a copy of the currently active world and puts p (a) and q (a) separately into the origi­
nal world and the copied world. Having an or operator on the right hand side (RHS) of a rule, 
one implicitly creates a new world. If both of those assertions fail, the whole assertion fails. 

There is a built-in predicate assert which explicitly does an assertion. This predicate is, by 
definition, a higher order predicate. Inquiries are specified by the built-in predicate inquire. The 
opposite of assert is remove which retracts a fact from the KB. In case there is an equivalence 
definition in the KB, by asserting a fact an equivalent fact might be added to the KB automati­
cally. However, this will not happen when a fact is removed. 

By asserting #Np (a), all currently active worlds will have p (a) and the assertion will 
succeed. If there are some worlds where -,p (a) is found, the assertion fails. By asserting 
#Pp (a), all the active worlds will have either p (a ) or #Dp (a ). Worlds which already have 
-,p (a) are not touched. However, if all the active worlds already have -,p (a), the assertion 
fails. When a fact qualified by the default modal operator #Dp (a ) is asserted, p (a ) is put into 
the current worlds and labeled as default. Facts which are derived from those default facts will 
be labeled as derived facts (fromp(a)). Sometime in the future, if p(a) is asserted then these 
labels will be removed. If -,p (a) is asserted in the future, all the assumed facts and derived facts 
will be removed from the current worlds and -,p (a ) is asserted instead. 

A rule has the well-known if-then syntax. Note that there is no logical implication in a 
rule; this is completely different from the~ operator. Rules will be purely procedurally inter­
preted by the SPY. A rule is interpreted as "if clause-I is true, then clause-2 must hold." Thus, 
unless specified, the following is expected by default. If clause-I is found, then clause-2 is 
asserted. For the left hand side (LHS) part of rules, normally clauses are regarded as inquiries. 
For the right hand side part, assertions are assumed unless explicitly specified (such as just an 
inquiry). If it is impossible to assert the entire clause, the assertion fails. If, for one reason or 
another, the assertion on the RHS fails, it is taken that the rule failed. 

An instantiation list is used to keep track of "once matched facts" so that they won't fire 
again. Quantifiers are used to talk about objects instantiated to variables. Consider an inquiry 
p(X) ~ q(X) and facts p(a), p(b), p(c), q(a), and q(b) in the KB. #A[X] p(X) ~ q(X) 
returns unknown since there is no p(c). On the other hand, #E[X] p(X) ~ q(X) returns true 
and its instantiation list in this case is {a , b } . In IDDL quantifiers can also quantify rules. 

If on the LHS there are facts labeled default or derived-from, the facts on the RHS will be 
asserted with the label derived-from the fact in the LHS. By doing so, one keeps track of 
assumed facts (viz. truth maintenance). · 

A scenario is defined as a set of rules. A scenario set (or a scenario base) is a set of 
scenarios. A scenario has the following elements: 

e Scenario name (List-of-Worlds) 

• Flowdeclaration reference (to resolve the destination references) 
• World declaration reference, which further consists of: 
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• Object declaration reference 

• Function declaration reference 

• Object declaration reference 

• Function declaration reference 

• Rules 

A scenario is active when the control is passed to it by the SPV or another scenario. The 
argument List-of-Worlds defines worlds passed by the caller. A scenario can have those 
imported worlds as well as local worlds declared in the world declaration references. There is a 
world called default-world which can be used without declaration and is local only to that 
scenario. Object and function declarations on the same level as the world declaration belong to 
this local world, default-world. The object declaration in a world defines local objects which can 
be used only in that world. Global objects are declared as local objects of a global world. From 
scenarios there must be a reference to those global objects. Local objects will never be seen 
from upper level scenarios. The idea of object declaration almost corresponds to the idea of 
"typing" in conventional languages. 

Worlds cannot be accessed from scenarios which have no declarations referring to them. In 
case a scenario has more than two worlds, which world is to be considered is specified by the 
enter built-in predicate. (The opposite is exit predicate.) Note that one cannot switch worlds that 
are created by an I operator. These copied worlds are equally treated as the original worlds. By 
declaring objects in the object declaration part, the current world contains only those declared 
objects. Two or more worlds can share objects by referring or by importing/exporting. This 
takes place in such a way that a declared object and its relevant clauses and functions associated 
with objects are automatically collected and put into the current world. 

A world can be created by the enclose(World, List-of-Objects) built-in predicate. This 
predicate creates a new world called World with List-of-Objects. This is an enclosure mechan­
ism. After the enclosure, the enclosed world will be treated as an object. The type of World is 
defined by its object declaration. Whether World is global or local is dependent on that. After 
enclosure, the contents of the world can be accessed only by functions. The enclosure mechan­
ism can be, therefore, perceived as "intensionalising extensions," and functions are used to 
"find the anatomy" of an enclosed world. Similarly, it is not far-fetched to regard functions as 
equivalent to messages. 

A scenario will be executed in the following way. Examining the rules from the top, the 
first rule whose LHS is satisfied is selected. Then the RHS of this rule is asserted. If the asser­
tion was successful, search for the next matching rule starts with the rule following the previ­
ously executed rule. If the assertion failed, once again search starts and another rule will be 
selected. In case the execution terminates successfully, all the results will be preserved. In case 
of failure, all the results will be removed. If the search for the next applicable rule comes back 
to the most recently executed rule because the search "wraps around," it is judged that there are 
no applicable rules and the execution of the entire scenario stops (i.e. no-more-rule situation). 
The execution of a scenario can also be stopped by the execution of either success or fail built-in 
predicates. When a scenario terminates successfully, worlds related to that scenario are 
preserved. When a scenario terminates unsuccessfully, related worlds are removed from the KB. 
When a rUle is selected, an instantiation list is created. This list is preserved until the end of the 
execution of the entire scenario so that the same rule will not be applied to the identical objects 
in the same situation. 
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One can "open" an object andregard it as a world (called by the name of the object). This 
is done by the open built-in predicate. To leave that world, one can use the close built-in predi­
cate. The former assumes the enter predicate, and the latter assumes exit as prerequisites. A 
select predicate changes the active scenario to a new one and restricts the active objects used in 
that scenario to List-ofObjects. In case this list is empty, the active objects are not restricted. 
On the other hand, a use predicate adds the new scenario name to the active scenario and res­
tricts the active objects used to List-of-Objects. This predicate, therefore, enlarges the set of 
available rules. The last two predicates can be true when the subscenario is finished by the exe­
cution of a success built-in predicate or by the no-more-rule situation. They can be false when 
the subscenario is explicitly terminated by the execution of a fail. This means "selection" 
switches active scenarios while ''using'' shows details of the presently manipulated objects via 
more dedicated rules. These two predicates are important to realise the so-called "multiworld 
mechanism" of §2.1. Finally, in order to restrict active objects without changing scenarios, one 
can use the predicates consider( List-of-Objects) and unconsider(List-of-Objects). 

6. Summary and Future Directions 

The aim of our work is to develop an integrated, interactive, and intelligent computer-aided 
design system. IDCAD will be a generic system which may be used in any design domain and 
will incorporate three types of design knowledge. First, the system has general knowledge about 
the design processes based on a set-theoretic design theory. Second, it has domain-dependent 
knowledge belonging to a specific area (e.g. VLSI) where it is actually used. Third, the system 
maintains knowledge about previously designed entities. This kind of history mechanism enables 
the system to reuse its knowledge in the forthcoming design activities. It is useful to imagine 
this as a variant of software reuse. 

The work on IIICAD is divided into several areas of interest in which different AI tech­
niques are used: 

• Formalisation of general design theory; modal and other nonstandard logics as a knowledge 
representation language. 

• Common sense reasoning about the physical world (naive physics) and coupled systems. 

• Integration of object oriented and logic programming paradigms. 

As a result, a formal definition of a kernel language for design will be generated. This 
language for integrated data description (called IDDL) will be used to implement the IDCAD 
system. IDDL, equipped with nonstandard logics, enables the IDCAD system to describe design 
knowledge and to control the design process in a highly expressive and robust manner. In §5.2, 
we gave a taste of IDDL, cf. [35] for full draft specifications. Formalisation of the design theory 
will take place by means of frame-like structures called scenarios. We use General Design 
Theory [31] as a basis for formalising design processes and knowledge. 

The NP and QR knowledge which will be used during the design process, performs com­
mon sense reasoning about the physical world. Depending on the phase of the design process, 
the declaration of the physical qualities of a design object takes place in logic and by means of 
references to physics laws. Interface between the IIICAD system and already existing qualita­
tive reasoning systems (such as ENVISION [15] and QSIM [16]) should also be studied. 

Declaration of knowledge about a design object may be done by logically manipulating the 
object's attributes. At the same time, the knowledge itself refers to the specific behaviour of the 
object. These two characteristics lead to a need to integrate object oriented and logic 
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programming styles into one language. One of the major areas of interest within illCAD, there­

fore, is to find out how this integration to be achieved (i.e. multi-paradigm languages) and what 

additional properties our draft proposal, IDDL, should have. We use the Smalltalk-80™ [10] 

programming environment to implement IDDL (and IlICAD) and regard Smalltalk's excellent 

user interface and debugging tools as major aids for software development in this scale. 

"What has happened to the design ''guru''? Didn't every design and development engineering depart­

ment once have one? At one of my first jobs the department manager and his assistant sat in their 

glassed-in offices in one corner of our lab. The rest of us each had our 8-foot section of bench. Except 

for our guru. He sat outside the bosses' offices at a desk of his very own. And while we toiled at' scopes 

and breadboards, he didn't do anything. Nothing, that is, except answer questions the rest of us could 

not." [5] 
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