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1. Introduction

The discovery of high temperature superconductivity [1] has determined an in-
creasing interest in the study of strongly correlated electron systems, and in particular
of the Hubbard model [2] and the t-J model [3]. The Hubbard model describes the
dynamics of non-relativistic electrons moving on a lattice. Its Hamiltonian consists of
a kinetic hopping term of strength t, and an on-site repulsion between up and down
spins of strength U modeling the Coulomb interaction. At infinite U , one must pay
infinite energy to put two electrons of opposite spins in the same point. Hence, double
occupancy is strictly forbidden, and the electrons can move in the lattice only if some
sites are vacant. Consequently, at half-filling, i.e. when the number of electrons equals
the number of lattice points, the infinite U Hubbard model describes an insulator (of
the Mott type) [4]. Notice that this insulating behavior occurs at half-filling, while
ordinary insulators are always characterized by completely filled bands.

The Hubbard model at half-filling is known to describe a Mott insulator also
when U is large but finite, i.e. in the strong-coupling limit [4]. In this case one can
develop (degenerate) perturbation theory in the small parameter t2/U and still use
states with no double electron occupancy. To leading order the Hubbard interaction
transforms into an antiferromagnetic Heisenberg interaction with a coupling constant
J ∝ t2/U . Thus, to this order the Hubbard system can be effectively described by a
Hamiltonian with a kinetic hopping of strength t and an antiferromagnetic Heisenberg
spin-exchange interaction of strength J , both acting on states without double electron
occupancy. This is the so-called t-J model. Of course, at half-filling the t-J model
reduces to the Heisenberg model since the hopping term becomes ineffective, and
describes a Mott insulator with an antiferromagnetic Néel order. If the band filling
factor is lowered below 1/2 by the introduction of holes (i.e. by doping), the system
becomes a conductor, and eventually the Néel order gives way to superconductivity.
Thus we can say that the t-J model below half-filling represents a conducting doped
antiferromagnet which may become a superconductor [3].

In one space dimension, both the Hubbard model and the t-J model (with J =
±2 t or with J/t → 0) can be exactly solved by the Bethe Ansatz [5,6,7], and the
spectrum of their collective excitations can be completely determined. In particular
for the t-J model below half-filling, two kinds of quasi-particle gapless excitations
are identified above the anti-ferromagnetic ground state: one carries only charge
and no spin and is called holon, the other carries only spin and no charge and is
called spinon. In other words there is a separation between the spin and charge
degrees of freedom. Even though this phenomenon can be rigorously established only
using the exact solution provided by the Bethe Ansatz, it is believed that the spin-
charge separation actually occurs also in non-exactly solvable models (like for example
the one-dimensional t-J model with J 6= ±2 t) and even in higher dimensions [8,9].
Therefore, in order to understand better the mechanism of the spin-charge separation,
it would be desirable to develop techniques and formalisms that capture the essential
dynamical features of strongly correlated electron systems without insisting on their
exact solvability.
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One way of implementing the spin-charge separation is to use the formalism of
the slave operators [10] and write the electrons as products of one spinless antiholon
and one neutral spinon of spin 1/2. This formalism is very useful since it allows the
application to electron systems below half-filling of several standard techniques that
would be otherwise inapplicable, such as path-integrals, mean field approximations,
large N expansions and so on. The primary reason for this is that the anholonomic
constraint which characterizes an electron system below half-filling, is transformed
into a holonomic constraint on the slave operators (see for instance (2.1) and (2.9)
below). Another fundamental property of this formalism is that from the outset it
introduces the local freedom of choosing arbitrarily the phase of holons and spinons
which therefore are naturally related to abelian gauge theories. On the basis of
this very general observation, one expects that the effective action describing the
low-energy dynamics of holons and spinons should be invariant under local gauge
transformations. This is indeed what happens in many cases, like for example in the
t-J model at half-filling, i.e. in the Heisenberg model [11,12].

In this paper we show that this happens also in the t-J model below half-filling,
when both spin and charge degrees of freedom can be excited. In particular, by
using the slave operators in the so-called CP1 representation [13,14] we prove that
the Hamiltonian of the one-dimensional t-J model in the continuum limit gives rise to
an Euclidean field theory in two dimensions that is explicitly invariant under abelian
gauge transformations. More precisely, this theory is a CP1 model with topological
term [15,16,17] for the spin degrees of freedom minimally coupled to a massless Dirac
fermion describing the charge excitations.

Our results are similar to those of previous investigations on the dynamics of
doped antiferromagnets in one or two dimensions [18,19,20,21]. However, a more
detailed comparison with the existing literature (and specifically with [18]) shows
several significant differences. Firstly, we use from the beginning the slave operator
formalism in the CP1 representation, and deduce everything from the Hamiltonian
of the t-J model in such representation. Thus, the coupling between holons and
spinons is not imposed by hand, but it is derived directly from the hopping term of
the Hamiltonian of the t-J model. Secondly, we introduce only one type of holons
(like it happens in the exact solution of the Bethe Ansatz), and do not have the need
of distinguishing between two types of holons with opposite charges as in [18,19,20].
This is an explicit consequence of using the CP1 representation, as we will see in detail.
Finally, in our end result we find a four-fermion interaction for the holon field that
previously was not emphasized. However, the general structure of our approach as
well as some motivations are in agreement with what already exists in the literature.

This paper is organized as follows: In section 2 we introduce the CP1 represen-
tation for the t-J model in any dimension and write the Hamiltonian explicitly in
terms of holons and spinons. In Section 3 we study the low-energy effective action
for the charge and spin degrees of freedom in one dimension, and show that in the
continuum limit this action becomes that of a CP1 model with a topological term
minimally coupled to a massless Dirac fermion. The bosonic field of the CP1 model
describes the dynamics of the spin waves produced by the spinons, while the fermionic
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field represents the low-energy holon excitations. Finally in Section 4 we rewrite the
effective action by introducing an abelian gauge field to exhibit explicitly the local
gauge invariance of the model, and then present our conclusions.

2. The CP1 Representation of the t-J Model

The cuprate oxides which some years ago allowed the discovery of high tempera-
ture superconductivity [1], share a common structural feature: the presence of layers
made of copper and oxigen ions where all electric transport phenomena (and even-
tually superconductivity) seem to take place [8]. Each of these Cu-O layers can be
represented as a lattice with the copper ions sitting on the sites and the oxigen ions
on the bonds. In undoped materials every copper ion has one unpaired electron in its
outer 3d shell, whilst all electrons in the outer 2p shell of the oxigen ions are paired.
Therefore the Cu-O layer of an undoped oxide can be regarded as a lattice with exactly
one electron per site, i.e. at half-filling. Clearly, in this case no electric current can
flow and the system is an insulator. Spectroscopic experiments reveal that the spins
of the unpaired electrons are antiferromagnetically ordered at low temperatures [22],
and only spin-exchange interactions can occur. Thus, the physics of these undoped
materials can be effectively described by an antiferromagnetic Heisenberg model [8].

Upon doping, some oxigen ions of the Cu-O layers lose one electron from their
outer 2p shells so that new unpaired spins show up. However the hybridization be-
tween the 2p oxigen orbitals and the 3d copper orbitals strongly binds each one of
these unpaired O electrons to one of the unpaired Cu electrons already present, in
such a way that a spin singlet is formed [3]. Therefore the Cu-O layer of a doped oxide
can be represented as a lattice where most of the sites are occupied by one electron
and the remaining few sites are occupied by a (charged) spin singlet. The unpaired
O electrons introduced by doping can actually move in the lattice and couple to dif-
ferent Cu electrons. Thus an electric current is generated and the material becomes
a conductor and eventually a superconductor below a high critical temperature.

The electron dynamics in these doped cuprate oxides can be effectively described
by the so-called t-J model which was originally proposed by Zhang and Rice [3];
together with the Hubbard model [2], it has become one of the most studied examples
of strongly correlated electron systems. Let us denote by ĉ†α(i) and ĉα(i) the fermionic
operators which create and destroy an electron at site i with z-component of the spin
α/2 (α = ±1). Since each site can accomodate at most one electron, we must require
that

n(i) ≡
∑

α=±1

ĉ†α(i) ĉα(i) ≤ 1 , (2.1)

i.e. we must exclude double occupancy of any lattice point. The spin-1/2 operators
which generate local rotations on the electron spins, can be represented à la Schwinger
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by

Ŝa(i) =
1

2

∑

α,β=±1

ĉ†α(i) σ
a
αβ ĉβ(i) , a = 1, 2, 3 , (2.2)

(σa being the Pauli matrices). It can be easily checked that the Ŝa(i)’s satisfy the
standard SU(2) algebra. In terms of these operators, the Hamiltonian of the t-J
model with chemical potential µ can be written as

HtJ = P



−t
∑

<i,j>

∑

α=±1

(

ĉ†α(i) ĉα(j) + h. c.
)

+J
∑

<i,j>

(

Ŝ(i) · Ŝ(j)− 1

4
n(i)n(j)

)

+ µ
∑

i

n(i)



P ,

(2.3)

where P is the Gutzwiller projection operator [23] enforcing the constraint (2.1) and
the symbol < i, j > denotes a pair of nearest-neighbor lattice sites. The parameters
t and J are coupling constants which we take to be positive: t is the strength of the
kinetic hopping term, and J is the strength of the spin-exchange antiferromagnetic
interaction. The chemical potential µ in (2.3) must be fixed in such a way that

〈

n(i)
〉

= 1− δ , (2.4)

where the doping concentration δ is defined by

δ =
N −Nel

N
(2.5)

with Nel representing the number of unpaired electrons and N the number of lattice
sites. At half-filling when δ = 0, the t term of (2.3) becomes ineffective and only
the J term survives, so that in the absence of doping the t-J model reduces to the
(antiferromagnetic) Heisenberg model. The situation is clearly different below half-
filling, where also the t term gives a non-trivial contribution to the electron dynamics.
However, it should be emphasized that because of the Gutzwiller projection, the t and
J terms of the Hamiltonian (2.3) always act disjointedly. In fact, given a couple of
nearest-neighbor points, when both of them are occupied by one electron only the J
term acts; on the other hand, when one of the two sites is empty the J term vanishes
while the hopping term t is effective; finally when both sites are empty the t and J
terms are both vanishing.

Several authors suggested that at small doping (i.e. δ ≃ 0.1 − 0.2) a very in-
teresting phenomenon should occur: the spin and charge degrees of freedom should
separate, indicating that the whole system behaves as a Luttinger liquid [24]. In other
words, the spectrum of the lowest lying excitations of the t-J model should consist
of holons, which carry only charge and no spin, and spinons, which carry only spin
and no charge [8,9]. Actually, a rigorous proof of the occurrence of this spin-charge
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separation exists only for the one-dimensional t-J model since this can be exactly
solved by Bethe Ansatz, at least when J = ±2 t (supersymmetric point) [6] or when
J/t → 0 [7]. For arbitrary values of t and J or for the two-dimensional model, there
are no exact results available, but some approximate solutions [25] as well as recent
numerical calculations [26] seem to support the conjecture that the spin-charge sep-
aration always occurs, and also that the peculiar Luttinger liquid properties of the
one-dimensional model survive in higher dimensions.

One common way to formally implement the spin-charge separation is to use
slave operators [10] and factorize the electron oscillators, which obviously carry both
spin and charge, into products of holons and spinons. Specifically one writes

ĉα(i) = ŝα(i) ĥ
†(i) , ĉ†α(i) = ĥ(i) ŝ†α(i) , (2.6)

where ĥ†(i) and ĥ(i) are respectively the creation and annihilation operators for
charged spinless holons, and ŝ†α(i) and ŝα(i) are the creation and annihilation op-
erators for neutral spinons of spin α/2.

The statistics of holons and spinons is not a priori determined. However, since
the electron oscillators must be fermionic, there are in general only two possibilities:
one is to take fermionic holons and bosonic spinons, the other is to take bosonic
holons and fermionic spinons. In either case, the products of one holon and one
spinon (like those in (2.6)) are always fermionic. Actually, in two dimensions where
the statistics may be anything [27], it can be shown that holons and spinons may be
anyons of arbitrary complementary statistics [28]. In this paper we choose to work
with fermionic holons and bosonic spinons that obey the following (anti)commutation
relations

{

ĥ(i) , ĥ†(j)
}

= δ(i, j) ,
[

ŝα(i) , ŝ
†
β(j)

]

= δαβ δ(i, j) , (2.7)

where δ(i, j) is the lattice δ-function. The reason for this choice is that, with fermionic
holons,

ĉα(i) ĉβ(i) = ĉ†α(i) ĉ
†
β(i) = 0 (2.8)

for all α and β. Thus, double occupancy is always automatically forbidden at any
lattice site as required by (2.1).

Another important point to emphasize is that holons and spinons are not com-
pletely independent but must be constrained if one wants to recover the correct elec-
tronic configurations. One possibility to achieve this goal is to impose that

ĥ†(i) ĥ(i) + ŝ†α(i) ŝα(i) = 1 . (2.9)

(From now on, the summation symbol over repeated spin indices will be understood.)
The holon and spinon operators subject to this relation form the so-called slave
fermion representation 1. Notice that (2.9) implies that each lattice site is always

1 When (2.9) is imposed on bosonic holons and fermionic spinons one realizes the
so-called slave boson representation.
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occupied either by a holon or by a spinon of spin up or down, and consequently at
each point there are only three possible states, just as required by (2.1). Thus, in
this slave operator formalism the anholonomic constraint (2.1) is transformed into the
equality constraint (2.9). This is certainly a remarkable improvement.

In this representation the spin operators Ŝa(i) can be written only in terms of
spinon oscillators as follows (see e.g. [28])

Ŝa(i) =
1

2
ŝ†α(i) σ

a
αβ ŝβ(i) , a = 1, 2, 3 . (2.10)

Upon using (2.6) and (2.10), and taking into account the constraint (2.9), the Hamil-
tonian of the t-J model in the slave fermion representation is

HtJ = Ht +HJ + µ
∑

i

(

1− ĥ(i)† ĥ(i)
)

, (2.11)

where
Ht = −t

∑

<i,j>

(

ĥ(i) ŝ†α(i) ŝα(j) ĥ
†(j) + h. c.

)

, (2.12)

and

HJ =
J

4

∑

<i,j>

[

3
∑

a=1

(

ŝ†α(i) σ
a
αβ ŝβ(i) ŝ

†
α′(j) σ

a
α′β′ ŝβ′(j)

)

− ŝ†α(i) ŝα(i) ŝ
†
α′(j) ŝα′(j)

]

.

(2.13)

The theory described by (2.11), (2.12) and (2.13) can be studied in the mean field
approximation; however the reliability of this analysis is questionable and the results
obtained with this method are purely qualitative since it is very hard to treat the
local constraint (2.9) in a systematic and controllable way.

One possibility to overcome this problem is to partially liberate the slave holons
and spinons, and use the so-called CP1 representation [13,14] in which only the spinons
are constrained while the holons are left free. More precisely, the CP1 representation
is characterized by the constraint

ŝ†α(i) ŝα(i) = 1 , (2.14)

meaning that each lattice site is always occupied by a spinon; on the contrary, the
holons may or may not be present. The average of the holon occupation number is
directly related to the doping concentration δ; in fact

〈

n(i)
〉

=
〈

h(i) h†(i) s†α(i) sα(i)
〉

= 1−
〈

h†(i)h(i)
〉

, (2.15)

and by comparison with (2.4), we immediately deduce that

〈

h†(i)h(i)
〉

= δ . (2.16)

6



We want to stress that there is a crucial difference between the slave operator repre-
sentation considered earlier and the CP1 representation introduced now. Indeed, as
noted above, in the slave operator description the Hilbert space of holons and spinons
at each lattice point is three-dimensional like the original electron Hilbert space; in-
stead, in the CP1 representation holons and spinons form a four-dimensional space,
because each point must always have one spinon (up or down) but may or may not
have a holon. To remove this discrepancy, one should correct the CP1 representation
with a suitable projection operator P in such a way that the Hilbert space of holons
and spinons is reduced from four to three dimensions. Then, instead of (2.6) one
should write [29]

ĉα(i) = P ŝα(i) ĥ
†(i)P † , ĉ†α(i) = P ĥ(i) ŝ†α(i)P

† (2.17)

with the constraint (2.14). A systematic treatment of this operator P is cumbersome
and difficult. However, it has been recently shown [29] that even without the pro-
jection one can obtain very good results both from a qualitative and a quantitative
point of view. This is the same attitude that we take here, since we will not insert
P in any formulas. It is precisely the freedom we gain in this way that allows us to
make further progress.

In the CP1 representation the spin operators Ŝa(i)’s are realized with both holon
and spinon oscillators as follows

Ŝa(i) =
1

2

(

1− ĥ†(i) ĥ(i)
)

ŝ†α(i) σ
a
αβ ŝβ(i) , a = 1, 2, 3 . (2.18)

When no holon is present, Ŝa(i) receives a contribution only by the spinons, just
like in (2.10); on the contrary, due to the prefactor, the spin vanishes in all sites

occupied by holons 2. Then, whenever ĥ†(i) ĥ(i) = 1, the spinon configuration can
be arbitrarily chosen without changing the physical spin Ŝa(i) which remains zero;
in other words, when the holons are present the CP1 spinons are merely fictitious
degrees of freedom which can be used at ease. This fact will play a crucial role in the
following.

With this in mind, the Hamiltonian of the t-J model in the CP1 representation
can be written as in (2.11) with Ht given by (2.12) and HJ by

HJ =
J

4

∑

<i,j>

{

(

1− ĥ†(i) ĥ(i)
)(

1− ĥ†(j) ĥ(j)
)

·
[

3
∑

a=1

(

ŝ†α(i) σ
a
αβ ŝβ(i) ŝ

†
α′(j) σ

a
α′β′ ŝβ′(j)

)

− 1

]}

.

(2.19)

2 Despite the appearance, the same is true for the slave fermion representation
(2.10) if the constraint (2.9) is taken into account.
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and with the spinons subject to the relation (2.14). To implement systematically this
local constraint one may add to the Hamiltonian the following term

∑

i

λ(i)
(

ŝ†α(i) ŝα(i)− 1
)

, (2.20)

where λ(i) serves as a Lagrange multiplier over which we will integrate. However,
before this integration is done the spinons are not constrained, and thus we can use
the coherent state quantization method to analize the theory. The coherent states for
holons and spinons, |h〉 and |s〉, are defined in such a way that

ĥ(i) |h〉 = h(i) |h〉 , 〈h| ĥ†(i) = 〈h| h∗(i) ,

ŝα(i) |s〉 = sα(i) |s〉 , 〈s| ŝ†α(i) = 〈s| s∗α(i) ,
(2.21)

where h(i) and sα(i) are respectively anticommuting and commuting complex fields.
Then, the partition function of the d-dimensional t-J model at temperature 1/β

becomes an Euclidean path integral in d+ 1 dimensions

ZtJ =

∫

D2h D2s1 D2s2 Dλ e−StJ , (2.22)

where

StJ =

∫ β

0

dτ

[

∑

i

(

h∗(i, τ) ∂τh(i, τ)− s∗α(i, τ) ∂τsα(i, τ)
)

+HtJ

+
∑

i

λ(i, τ)
(

s∗α(i, τ) sα(i, τ)− 1
)

]

.

(2.23)

In this formula τ is an imaginary “time” parameter on which the fields h and s are
made dependent, HtJ is the functional obtained from HtJ in the CP1 representation
by replacing every occurrence of ĥ(i), ĥ†(i), ŝα(i) and ŝ†α(i) with h(i, τ), h∗(i, τ),
sα(i, τ) and s

∗
α(i, τ) respectively according to (2.21), and finally λ(i, τ) is the Lagrange

multiplier which is integrated along the imaginary axis from −i∞ to +i∞ to enforce
the local constraint

s∗α(i, τ) sα(i, τ) = 1 . (2.24)

This is nothing but the expectation value in a coherent state of the original operator
constraint (2.14), and also explains why (2.17) is called the CP1 representation.

We remark that the τ -derivative terms in the first line of (2.23) represent the
Berry phase for the holon and spinon fields which is usual in the coherent state
quantization method 3. Notice however that the spinon phase has a physical meaning
only in those points that are not occupied by holons, i.e. where there is a physical
spin to which the spinon is directly related. In the other points where holons are

3 The minus sign in the spinon term is the same that appears in [30].
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present, the spinon phase has no direct significance since it corresponds to a fictitious
spinon configuration. Finally, we recall that one has to impose periodic boundary
conditions in τ on the bosonic fields, and antiperiodic boundary conditions on the
fermionic ones in order to incorporate correctly the statistics effects.

At any site i, the spinon field sα(i) can be used to define a three-dimensional
unit vector n(i) with components

na(i) = s∗α(i) σ
a
αβ sβ(i) , a = 1, 2, 3 . (2.25)

If no holon is present at i, then n(i) points along the spin direction (cf (2.18)). Thus,
an antiferromagnetic arrangement of the spins corresponds to an antiferromagnetic
order for the vector field n(i); we call this a Néel configuration. We now assume that
the lattice where the model is defined is bipartite so that no frustration is present 4.
Then, we can distinguish between even and odd sites, which we denote by a and b
respectively. In a classical Néel configuration we have

n(b) = −n(a) . (2.26)

This can be realized in terms of the spinon field by choosing for instance

sα(b) = εαβ s
∗
β(a) e

iθ , (2.27)

where εαβ is the completely antisymmetric tensor of SU(2) and θ is an arbitrary
phase. We notice that (2.27) corresponds to the usual choice of placing a certain spin
representation on the even sites and its conjugate one on the odd sites [30].

Let us assume for a moment that (2.27) holds in the whole lattice, even in those
points where holons are present and the spin is vanishing. If this is the case, then
the holons are frozen and cannot move. This is most clearly seen by reinstating
temporarily the holon operators so that the hopping Hamiltonian Ht becomes

Ht = −t
∑

<a,b>

(

ĥ(a) s∗α(a) sα(b) ĥ
†(b) + h.c.

)

. (2.28)

If the spinons are arranged according to (2.27), then the hopping matrix elements
are obviously vanishing. Therefore, one can say that the holons cannot move in a
rigid Néel background and must distort the neighboring spinons in order to acquire
kinetic energy. This is a rather well known fact [31,14]. We point out that in the
gauge theory of [18,19,20] the hopping term (2.28) is substituted by hand with a
next-to-nearest neighbor hopping Hamiltonian which forces the holons to jump only
within one sublattice (even or odd) where the spinons are ferromagnetically ordered.
However, in such a case one loses contact with the original t-J model in which a
nearest-neighbor hopping term is the only one that is present to give kinetic energy
to the holons.

4 This choice is customary in the study of antiferromagnetism and moreover the
lattice representing the Cu-O layers of the cuprate oxides is in this class.
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This puzzle can be overcome if one recalls that at the holon sites the spinon
configuration is a priori not well defined. Therefore, assuming that (2.27) holds
everywhere on the lattice is a too strong statement that is not really justified. In
fact, an antiferromagnetic spinon arrangement is natural only for those links between
two occupied sites, but not for those bonds connecting (at least) one holon. For
example, let us consider the electron configuration represented in Fig. 1a. Using the
holon-spinon language in the CP1 representation we can describe Fig. 1a by saying
that the even site a is occupied by a spinon of spin up and no holon, while the odd
site b is occupied by a holon and a spinon. It seems that in principle there is no
preferred choice for the orientation of the latter spinon since the spin is vanishing at
b. However, if we consider the situation after the hole has hopped (Fig. 1b) we see
that an up-spin appears in b and thus the spinon in b should be chosen upwards (i.e.
in the same direction of the spinon in a). With this in mind, it is then clear that the
spinons must be chosen in a ferromagnetic order on every link involving one holon and
one spinon but must be in an antiferromagnetic configuration on those links without
holons. However, for ease of notation and later convenience, it would be better not
to distinguish between different kinds of links and, if possible, to deal only with one
uniform order (either ferromagnetic or antiferromagnetic).

We can achieve this goal by flipping the physical spins on all odd sites. (This is
customary in the study of antiferromagnetism.) After this is done, it is obvious that
the spinon configuration becomes ferromagnetic in all occupied sites, and then it is
no problem to choose the spinons on the empty sites as before in such a way that
the spinon configuration be uniformly ferromagnetic. This procedure corresponds to
making the following change of variable

sα(b) −→ εαβ s
∗
β(b)

(

1− ĥ†(b) ĥ(b)
)

+ sα(b) ĥ
†(b) ĥ(b) (2.29)

in the Hamiltonian. From the explicit expressions, one can easily see that the t term
of HtJ does not change under (2.29) while the J term picks up an overall minus sign.

Also the spinon Berry phase is modified by (2.29). Indeed, we have

−s∗α(b, τ)∂τsα(b, τ) −→− sα(b, τ)∂τs
∗
α(b, τ)

(

1− ĥ†(b) ĥ(b)
)

− s∗α(b, τ)∂τsα(b, τ) ĥ
†(b) ĥ(b) .

(2.30)

From the constraint (2.24) it follows that sα(b, τ)∂τs
∗
α(b, τ) = − s∗α(b, τ)∂τsα(b, τ),

and thus the contribution of the odd sites to the spinon Berry phase can be written
as

∑

b

(

1− 2h∗(b, τ) h(b, τ)
)

s∗α(b, τ)∂τsα(b, τ) . (2.31)

Since the even sites are not affected by the spin flips, their contribution to the spinon
phase remains as before.

Putting everything together, writing explicitly the sums over even and odd sites
whenever is necessary, restoring the functional notation also for the holons and drop-
ping the τ -dependence of the fields for ease of notation, we finally arrive at the
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following action

StJ =

∫ β

0

dτ

{

−
∑

a

s∗α(a)∂τsα(a) +
∑

b

(

1− 2h∗(b) h(b)
)

s∗α(b)∂τsα(b)

+
∑

i

[

h∗(i)∂τh(i) + λ(i)
(

s∗α(i) sα(i)− 1
)]

+HtJ

}

,

(2.32)

where
HtJ = Ht +HJ + µ

∑

i

(

1− h∗(i) h(i)
)

, (2.33)

with
Ht = −t

∑

<a,b>

(

h(a) s∗α(a) sα(b) h
∗(b) + c.c.

)

, (2.34)

and

HJ = −J
2

∑

<a,b>

(

1− h∗(a) h(a)
)(

1− h∗(b) h(b)
)

s∗α(a) sα(b) s
∗
β(b) sβ(a) . (2.35)

Notice the overall minus sign in HJ that, as noted above, originates directly from the
spin flip on the odd sites of the lattice realized by (2.29). Furthermore, in order to
obtain the explicit expression (2.35) we used standard identities on the Pauli matrices.
Finally, we remark again that in the action (2.32) the spinon fields are classically
ordered in a ferromagnetic way everywhere.

This is the CP1 representation of the t-J model. When no holes are present (i.e.
h∗(i) h(i) = 0 everywhere), (2.32) reduces to the well known CP1 representation of
the Heisenberg model [32]. In the next section we will study the action (2.32) in the
particular case of a one-dimensional lattice.

3. The Continuum Field Theory Description

of the t-J Model in One Dimension

The action (2.32) is a field theory description for the t-J model that is valid
in any dimension. However, to make further progress, from now on we will restrict
our considerations only to a one-dimensional lattice (i.e. a chain) where some exact
results can be obtained.

Let us begin our analysis by first setting J = 0 in (2.32) 5. If we reinstate

5 We recall that when J = 0 the t-J model is equivalent to a Hubbard model with
infinite on site repulsion.
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temporarily the holon operators, the Hamiltonian becomes

HJ=0
tJ = −t

∑

<a,b>

(

ĥ(a) s∗α(a) sα(b) ĥ
†(b) + h.c.

)

− µ
∑

i

ĥ†(i) ĥ(i) + µN , (3.1)

where N is the number of points in the chain. (Hereinafter we will drop the additive
constant µN of (3.1).) We can interpret HJ=0

tJ as the Hamiltonian for the hopping
of holons in a background given by the spinons, which, as explained in the previous
section, must be ferromagnetically ordered. If the spinons were constant classical
fields, this would mean that

sα(a) = sα(b) (3.2)

for any pair of nearest neighbor points a and b, and thus, because of (2.24) the
Hamiltonian (3.1) would reduce simply to

H ′J=0
tJ = −t

∑

<a,b>

(

ĥ(a) ĥ†(b) + h.c.
)

− µ
∑

i

ĥ†(i) ĥ(i) . (3.3)

This is the Hamiltonian of a fermionic tight-binding model which can be easily diag-
onalized by Fourier transform. After this is done, one can see that it describes free
fermions with dispersion relation

ǫ(k) = 2 t cos (k ℓ)− µ , (3.4)

where ℓ is the lattice spacing and the momentum k lies in the first Brillouin zone
between 0 and 2 π. If one requires that

〈

h†(i)h(i)
〉

= δ (3.5)

(cf (2.16)), the chemical potential at zero temperature must be fixed as

µ = −2 t cos (π δ) . (3.6)

Correspondingly, in the first Brillouin zone there exist two Fermi points given by

k±F =
1

ℓ
π (1± δ) (3.7)

around which the dispersion relation ǫ(k) is linear with a Fermi velocity

v±F = −2 t ℓ sin k±F = ±2 t ℓ sin(π δ) . (3.8)

These are the typical values for spinless fermions with concentration δ, and moreover
they are in full agreement with the exact Bethe Ansatz values of the one-dimensional
infinite-U Hubbard model to which the t-J model reduces at J = 0 .

In the theory described by (3.3) it is rather straightforward to compute the
correlation function

〈

h(a) h†(b)
〉

for any pair of nearest neighbor points a and b under

12



the assumption that it does not depend on the link (a, b) and is real. Indeed, by

computing the derivative with respect to t of the free energy associated to H ′J=0
tJ and

taking into account (3.6), one finds that at zero temperature

χ ≡
〈

h(a) h†(b)
〉

=
sin(π δ)

π
. (3.9)

We remark that this same result could be obtained in the more general case in which
the spinons are not constant by using the mean field approximation.

Since in physical processes one can excite only the particles whose momentum
is close to the Fermi surface, we linearize our theory near the Fermi points (3.7) (for
definiteness we choose k+F which from now on we denote simply by kF), and write the
holon operator as

ĥ(i) = e+ikFi ψ̂+(i) + e−ikFi ψ̂−(i) , (3.10)

where ψ̂±(i) are smoothly varying on the lattice since the Fermi factors e±ikFi have
been pulled out. Then, upon inserting (3.10) into (3.3), and using (3.6) and (3.8), we
get

H ′J=0
tJ = i

vF
ℓ

∑

b

[

ψ̂†
−(b) ψ̂−(b+ ℓ)− ψ̂†

+(b) ψ̂+(b+ ℓ)

− ψ̂†
−(b) ψ̂−(b− ℓ) + ψ̂†

+(b) ψ̂+(b− ℓ)
]

.

(3.11)

Notice that in deriving (3.11) we have dropped all terms with any rapidly oscillating
factor according to the standard procedure [4], and also that the sum over all odd
sites actually reproduces the sum over the whole lattice.

The Euclidean action that is equivalent to (3.11) in the functional formalism is,
in obvious notations,

S′J=0
tJ =

∫ β

0

dτ

{

∑

i

[

ψ∗
−(i, τ)∂τψ−(i, τ) + ψ∗

+(i, τ)∂τψ+(i, τ)
]

+ i
vF
ℓ

∑

b

[

ψ∗
−(b, τ)ψ−(b+ ℓ, τ)− ψ∗

+(b, τ)ψ+(b+ ℓ, τ)

− ψ∗
−(b, τ)ψ−(b− ℓ, τ) + ψ∗

+(b, τ)ψ+(b− ℓ, τ)
]

}

.

(3.12)

It is now possible to take the continuum limit of (3.12). In order to do this correctly,
we must remember that in one space dimension a fermionic field has engineering
dimension 1/2. Therefore, we first replace ψ± with

√
ℓ ψ± so that

1

ℓ
ψ∗
+(b, τ)ψ+(b± ℓ, τ) −→ ψ∗

+(b, τ)ψ+(b, τ)± ℓ ψ∗
+(b, τ)∂1ψ+(b, τ) . (3.13)

(A similar relation obviously holds for ψ−). Then, for notational convenience we write

∂τ as ∂0, and in the limit ℓ → 0 we replace

(

2 ℓ
β
∫

0

dτ
∑

b

)

with
∫

d2x. As a result we
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find

S′J=0
tJ =

∫

d2x
{

ψ̄(x)γ0∂0ψ(x) + vF ψ̄(x)γ
1∂1ψ(x)

}

, (3.14)

where we have introduced the notation

ψ(x) ≡
(

ψ−(x)
ψ+(x)

)

, ψ̄(x) ≡ ψ†(x) γ0 =
(

ψ∗
+(x) , ψ

∗
−(x)

)

(3.15)

with γ0 = σ1 and γ1 = σ2 being 2 × 2 Euclidean gamma matrices. Eq. (3.14)
represents the action of a “relativistic” massless Dirac fermion in two dimensions with
a characteristic velocity vF. We have given the details of this standard derivation [4]
so that it will be simpler to follow the later developements.

So far the spinons have been considered as a classical constant background in
which the holons move like free fermions. If we want to take into account the pres-
ence of the spinons at the quantum level, we must study the Hamiltonian (3.1) with
the spinons yielding a configuration that is not constant as in (3.2) but can fluctu-
ate. Thus, the spinons should become true dynamical degrees of freedom which can
take all possible values compatible with the constraint (2.24). However, in a sort of
semiclassical approximation, we assume that the spinons despite their fluctuations,
still define a ferromagnetic order in the lattice, which is broken only by (possibly
antiferromagnetic) deviations that are small and of the order of the lattice spacing ℓ.
Thus, following [11], for any site i we posit

sα(i) = zα(i)
√

1− ℓ2 ∆∗
β(i)∆β(i) + ℓ∆α(i) , (3.16)

where zα is a complex slowly varying field such that

z∗α(i) zα(i) = 1 , (3.17)

and
zα(i± ℓ) ≃ zα(i)± ℓ ∂1zα(i) , (3.18)

and ∆α is a small staggered fluctuation such that

z∗α(i)∆α(i) + ∆∗
α(i) zα(i) = 0 , (3.19)

and
∆α(i± ℓ) ≃ −∆α(i) . (3.20)

Notice that the square root factor in (3.16) together with (3.17) and (3.19), preserves
the normalization of sα to all orders in ℓ.

The meaning of these equations is quite straightforward. In fact, from (3.16) and
(3.18) one can see that to order ℓ0 that there is a ferromagnetic alignment among
the spinons because sα(a) ≃ sα(b). However to order ℓ1 the spinon alignment is
deformed both by the gradient of zα and by the small fluctuation ∆α which explicitly
introduces an antiferromagnetic short range distorsion due to the staggering sign
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of (3.20). Of course we must remember that in those sites that are not occupied
by holons, the ferromagnetic order of the zα’s actually corresponds to a physical
antiferromagnetic spin configuration, while the antiferromagnetic behavior of field
∆α actually corresponds to a physical ferromagnetic deviation from a local Néel state.
This is because we flipped the spinons on the odd sublattice (see (2.29)).

We now linearize the theory near the Fermi level of the holons and insert the
decomposition (3.10) into the Hamiltonian (3.1) (from now on we will work only in
the functional formalism, so that obvious change of notation should be made in these
formulas). A simple calculation leads to the following result

HJ=0
tJ = t

∑

b

{

[

e+ikFℓ ψ∗
+(b− ℓ)ψ+(b) s

∗
α(b) sα(b− ℓ)

+ e−ikFℓ ψ∗
+(b+ ℓ)ψ+(b) s

∗
α(b) sα(b+ ℓ) + c.c.

]

+
(

ψ+ ↔ ψ− , kF ↔ −kF
)

}

− µ

2

∑

b

{

[

ψ∗
+(b− ℓ)ψ+(b− ℓ) + ψ∗

+(b+ ℓ)ψ+(b+ ℓ)

+ 2ψ∗
+(b)ψ+(b)

]

+
(

ψ+ ↔ ψ−

)

}

.

(3.21)

Then, we decompose the spinon fields according to (3.16) and perform the continuum
limit along the lines we discussed before, by keeping at most terms of order ℓ2. Notice
that a bosonic field in one space dimension has zero engineering dimensions and thus
no redefinition of the spinons is necessary. On the contrary, as noted above, the
fermionic holons must be rescaled by a factor of

√
ℓ and therefore the square root

factors of (3.16) can be simply put to one since they would yield contributions of
higher order in ℓ. Taking this into account and using (3.18) and (3.20), it is possible
to show that inside the curly brackets of (3.21) all the terms involving the fluctuation
field ∆α exactly cancel and so do also the terms of order ℓ. Then, the final result can
be written in the continuum limit as

∫ β

0

dτ HJ=0
tJ = vF

∫

d2x
{

ψ̄(x)γ1
[

∂1 + i a1(x)
]

ψ(x)
}

, (3.22)

where we have used the notation (3.15) and defined

a1(x) = i z∗α(x) ∂1zα(x) . (3.23)

Because of the constraint (3.17), a1(x) is real and looks like the space component of
a gauge field to which the holons are minimally coupled. As we will see later this is
indeed the correct interpretation.
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Let us now consider the terms of the action SJ=0
tJ which involve τ derivatives.

From (2.32) we see that these can be distinguished into a spinon Berry phase

SB =

∫ β

0

dτ

{

∑

b

s∗α(b) ∂τsα(b)−
∑

a

s∗α(a) ∂τsα(a)

}

, (3.24)

which does not involve holons, and into the remainder

Sh =

∫ β

0

dτ
∑

b

{

1

2

[

h∗(b− ℓ) ∂τh(b− ℓ) + h∗(b+ ℓ) ∂τh(b+ ℓ)
]

+ h∗(b) ∂τh(b)

− 2h∗(b) h(b) s∗α(b) ∂τsα(b)

}

,

(3.25)
which instead contains the holon field. The continuum limit of Sh can be easily
performed as before and one gets

Sh =

∫

d2x
{

ψ̄(x)γ0
[

∂0 + i a0(x)
]

ψ(x)
}

, (3.26)

where
a0(x) = i z∗α(x) ∂0zα(x) . (3.27)

As expected, (3.26) is the natural completion of (3.22). Thus we can say that in the
continuum limit the action of the one-dimensional t-J model with J = 0 is given by
[33]

SJ=0
tJ = S̃B + Sψ = S̃B +

∫

d2x
{

ψ̄
(

/∂ + i /a
)

ψ
}

, (3.28)

where S̃B is the continuum limit of the spinon Berry phase (3.24) to which we will
return in a moment, and the “ / ” notation means

/∂ = γ0 ∂0 + vF γ
1 ∂1 , /a = γ0 a0 + vF γ

1 a1 . (3.29)

We remark that Sψ is invariant under the following (standard) gauge transformation

ψ(x) −→ ψ′(x) = e−iΛ(x) ψ(x)

aµ(x) −→ a′µ(x) = aµ(x) + ∂µΛ(x) , µ = 0, 1
(3.30)

for an arbitrary function Λ(x). Of course, in order to interpret (3.30) as a true local
symmetry of the full action SJ=0

tJ we need to examine in detail also the spinon Berry
phase. Actually, the properties of S̃B have already been investigated at length by
many authors following [11]. Thus, we simply recall the main results referring to the
original literature for their derivation [11,12,30,34]. If we substitute (3.16) into (3.24)
and use (3.18) and (3.20), we can easily obtain

S̃B = Stop + S′ ,
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where

S′ =

∫

d2x
{

∆∗
α(x) ∂0zα(x)− ∂0z

∗
α(x)∆α(x)

}

, (3.31)

and Stop is the continuum limit of

∫ β

0

dτ

{

∑

b

z∗α(b) ∂τzα(b)−
∑

a

z∗α(a) ∂τzα(a)

}

. (3.32)

At first sight it would seem that this expression vanishes; indeed since the zα’s are
ferromagnetically ordered, the contributions of the two sub-lattices seem to cancel
each other. However, this cancellation occurs only for the bulk of the lattice leaving
possible residual contributions at the boundaries. In fact, a careful analysis of (3.32)
in the continuum limit (see for example [18,30] for details) leads to

Stop =
i

2

∫

d2x
{

εµν ∂µaν

}

(3.33)

with aµ(x) defined by (3.27) and (3.23) for µ = 0, 1. Notice that the integrand of
(3.33) is a total derivative and thus Stop is a pure topological term which simply
represents the flux associated with the vector field aµ(x).

We summarize the results obtained so far by writing the full continuum action
SJ=0
tJ , namely

SJ=0
tJ = Stop +

∫

d2x
{

ψ̄
(

/∂ + i /a
)

ψ +∆∗
α ∂0zα − ∂0z

∗
α∆α

}

. (3.34)

To complete our analysis now we switch on the spin-exchange interaction (i.e.
the J term (2.35)). We assume for simplicity that J be small as compared to t.
(This is precisely the case of interest for the phenomenological applications of the
t-J model.) As we can see from (2.35), HJ is rather complicated: it contains quartic
terms both in the holon and in the spinon fields. Thus, to render it tractable, we must
make some approximations. To this aim, let us first observe that the presence of a
non zero spin-exchange interaction certainly modifies the hopping of the holons with
corrections of order J to the t term considered so far; but since J << t, this effect is
negligible. Another consequence of a non zero J term is the appearance of a nearest-
neighbor coupling between spinons which may induce spin exchanges in the chain. As
is clear from (2.35), if in two neighboring sites a and b no holon is present, then the
corresponding spinons interact and the spins in a and b can be exchanged. But, if a
or b or both are occupied by a holon, then the J term vanishes. This means that the
spinon dynamics is heavily influenced by the presence or the absence of the holons,
and since these are mobile, two neighboring spinons may interact at some times but
not at others. However, we must remember that t >> J , which means that the holon
motion is very quick as compared to the spinon dynamics. Therefore, to describe the
latter it is reasonable to average over all possible holon configurations and replace
HJ with an effective spinon interaction, in which the coupling constant is reduced
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with respect to J . In particular, this amounts to replace the holon factors of HJ with
the corresponding average values computed with the tight-binding Hamiltonian (3.3)
that is independent of the spinons. More precisely inside HJ we perform the following
substitution
(

1− h∗(a) h(a)
)(

1− h∗(b) h(b)
)

−→
〈(

1− h†(a) h(a)
)(

1− h†(b) h(b)
)〉

. (3.35)

Using Wick’s theorem and (3.5) and (3.9), the right hand side of (3.35) becomes

1− 2 δ + δ2 − sin2(π δ)

π2
.

Thus, within this approximation we can replace HJ with

H̃J = − J̃
2

∑

<a,b>

s∗α(a) sα(b) s
∗
β(b) sβ(a) , (3.36)

where the renormalized spin-exchange coupling constant J̃ is defined by

J̃ = J (1− δ)2
(

1− sin2(π δ)

π2 (1− δ)2

)

. (3.37)

Notice that J̃ is smaller than J (as expected), and, like J , is positive. We remark
that our approximation is different from the one that leads to the squeezed spin chain
considered in [14,29], even though there are some similarities in the final formulas.
In fact, in our case the effective Hamiltonian H̃J is still defined on the original chain
and not on a squeezed one like in [14,29]. This is because the spinons in the CP1

representation are defined everywhere, even where holons are present. However, the
differences between our approach and the squeezed spin chain approximation disap-
pear in the continuum limit.

To complete our analysis, we now insert into (3.36) the decomposition (3.16) and
keep all the terms up to order ℓ2. (The square root factors of (3.16) are now important
since they yield contributions of order ℓ2.) Upon expanding the products in (3.36),
we obviously produce terms quadratic in ∆, terms linear in ∆ and terms without ∆.
However, using (3.18), (3.19) and (3.20), after some elementary algebra we may show
that all the terms linear in ∆ exactly cancel each other, leaving us with the following
expression

H̃J =− J̃ ℓ

2

{

2ℓ
∑

b

[1

2
∂21z

∗
α(b) zα(b) + ∂1z

∗
α(b) zα(b) z

∗
β(b) ∂1zβ(b) +

1

2
z∗α(b) ∂

2
1zα(b)

+ 4∆∗
α(b)A

αβ(z, z∗)∆β(b)
]

}

− J̃ N ,

(3.38)
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where the matrix A is explicitly given by

A(z, z∗) =





−z∗2 z2 z∗2 z1

z∗1 z2 −z∗1 z1



 . (3.39)

It is amusing to observe that

1

2
∂21z

∗
α zα + ∂1z

∗
α zα z

∗
β ∂1zβ +

1

2
z∗α ∂

2
1zα = −

∣

∣

(

∂1 + i a1
)

z
∣

∣

2
, (3.40)

where in the right hand side we have introduced a standard vectorial notation for the
two-component vector

z =

(

z1
z2

)

. (3.41)

Let us define for convenience the quantity

c = J̃ ℓ (3.42)

which has the dimensions of a velocity. As we will see later, c can be interpreted as
the characteristic velocity of the spin-waves produced by the fluctuating spinons.

Dropping the irrelevant additive constant −J̃ N from (3.38) and taking the con-
tinuum limit, we find that the action associated to H̃J is

S̃J =
c

2

∫

d2x
∣

∣

(

∂1 + i a1
)

z
∣

∣

2 − 2 c

∫

d2x ∆∗
αA

αβ∆β . (3.43)

If we collect everything together, we can write the effective partition function of
the t-J model at small J as follows

ZtJ = N
∫

D2ψ D2z D2∆1 D2∆2 Dλ e−StJ , (3.44)

where N is a normalization factor and

StJ =Stop +

∫

d2x
{

ψ̄
(

/∂ + i /a
)

ψ +
c

2

∣

∣

(

∂1 + i a1
)

z
∣

∣

2
+ λ

(

|z|2 − 1
)

}

−
∫

d2x
{

2 c∆∗
αA

αβ∆β −
(

∆∗
α ∂0zα − ∂0z

∗
α∆α

)

}

.

(3.45)

We remark that since we have taken the continuum limit, the integration over both
the “background” z and the fluctuations ∆ in (3.44) does not over count the bosonic
degrees of freedom, just like it happens in the background field formalism of quantum
field theory. The ψ-term in StJ represents the low-energy effective action for the
charge degrees of freedom. On the contrary, the spinon terms contain both long and
short-distance effects, the former described by z and the latter by ∆. To remove
the short-distance effects and obtain the low-energy effective action also for the spin
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degrees of freedom, we must integrate out the fluctuations ∆. This integration is
feasible since (3.45) is simply a quadratic form in ∆; in fact what we have to compute
is

Ĩ =

∫

D2∆1 D2∆2 exp

[

∫

d2x
(

2 c∆∗
αA

αβ∆β −∆∗
α ∂0zα + ∂0z

∗
α∆α

)

]

. (3.46)

It is worth pointing out that the determinant of the matrix A is zero and its trace is
−1, as we can immediately see from (3.39). This means that its eigenvalues are 0 and
−1. Due to the overall positive sign in the exponent (3.46), the presence of a negative
eigenvalue is welcome, but the presence of a zero mode is disturbing since it may
render Ĩ divergent. However, a careful analysis shows that this is not a real problem
because the (divergent) integral over the zero mode turns out to be a constant that
can be reabsorbed into the normalization N of the partition function. To see this
explicitly, let us denote by

Λ0
α = zα , Λ−

α = −εαβ z∗β

the eigenvectors of A corresponding respectively to eigenvalues 0 and −1. Then, let
us decompose ∆α along these eigenvectors according to

∆α = Λ0 Λ
0
α +Λ− Λ−

α ,

where
Λ0 = z∗α∆α , Λ− = εαβ zα∆β . (3.47)

With straightforward algebra, we can rewrite the exponent of (3.46) as

∫

d2x
(

− 2 c |Λ−|2 − Λ∗
− εαβ zα ∂0zβ + εαβ z

∗
α ∂0z

∗
β Λ−

− Λ∗
0 z

∗
α ∂0zα + ∂0z

∗
α zα Λ0

)

.

(3.48)

Now, let us observe that the constraint (3.19) implies that

Λ0 = −Λ∗
0 ,

and thus the second line of (3.48) identically vanishes. Therefore, the zero mode Λ0

completely decouples from the dynamical fields and we find

Ĩ =
(

∫

D2Λ0

)

∫

D2Λ− exp

[

∫

d2x
(

− 2 c |Λ−|2 − Λ∗
− εαβ zα ∂0zβ + εαβ z

∗
α ∂0z

∗
β Λ−

)

]

= const · exp
[

− 1

2 c

∫

d2x
(

εαβ z
∗
α ∂0z

∗
β

) (

εαβ zα ∂0zβ

)

]

.

(3.49)
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It is straightforward to show that

(

εαβ z
∗
α ∂0z

∗
β

) (

εαβ zα ∂0zβ
)

=
∣

∣

(

∂0 + i a0
)

z
∣

∣

2

which is the natural completion of the terms we found before.
Following the standard procedure, let us introduce the spin-wave stiffness

ρ =
J̃ ℓ

4
(3.50)

which in one space dimension is simply related to the spin-wave velocity (cf (3.42)).
Then, if we collect everything together we can write the effective partition function
for the t-J model at small J in the following suggestive way

ZtJ = N ′

∫

D2ψ D2z Dλ e−S
eff

tJ , (3.51)

where N ′ is a new normalization factor and

Seff
tJ =Stop +

∫

d2x

{

ψ̄
(

/∂ + i /a
)

ψ + λ
(

|z|2 − 1
)

+ 2 ρ
[

∣

∣

(

∂1 + i a1
)

z
∣

∣

2
+

1

c2

∣

∣

(

∂0 + i a0
)

z
∣

∣

2
]

}

.

(3.52)

From this expression it is clear that c indeed represents the velocity of the spin-waves
described by the spinon field z as mentioned above. Of course, we are free to choose
our units in such a way that c = 1 and the last part of the action becomes formally
“Lorentz” invariant. Notice however that in doing this, the Fermi velocity of the
holons which is used in the “/” notation becomes

vF =
2 t

J̃
sin(π δ) (3.53)

that in general differs from one. Therefore, our statement about the “Lorentz” invari-
ance of (3.52) must be suitably interpreted. Of course this is not unexpected, because
in our problem there are two different characteristic fundamental velocities: one for
the charge degrees of freedom and one for the spin degrees of freedom.

The action (3.52) is manifestly invariant under the local gauge transformation
(3.30) supplemented by

zα(x) −→ z′α(x) = e−iΛ(x) zα(x) . (3.54)

Of course, (3.54) is compatible with (3.30), (3.27) and (3.23) as one can immediately
verify. This local gauge invariance is not at all unexpected. Indeed, it has its roots
in the fact that the original factorization of the electron operators in (2.6) leaves the
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freedom of choosing arbitrarily the phase of holons and spinons in any point of the
lattice. This freedom then translates into the gauge transformations (3.54) and (3.30)
of the effective continuum field theory.

It is interesting to remark that (3.52) is nothing but the action of a CP1 model
[15,16,17] with a coupling constant proportional to 1/ρ and minimally coupled to a
fermionic field. Therefore, we can formulate our results by saying that the effective
dynamics of the one-dimensional t-J model at small J in the CP1 representation is
described by a CP1 model for the spin degrees of freedom minimally coupled to a
massless fermionic field representing the low-energy charge excitations.

4. Conclusions and Outlook

In the previous section we managed to represent the effective dynamics of the
one-dimensional t-J model at small J by means of a continuum field theory with an
explicit Abelian gauge invariance. However, as we can see from (3.27) and (3.23), the
vector potential aµ appearing in the action is not an independent field as is customary
in gauge theories. On the contrary, it is a functional entirely determined by other
fields, viz. by the slowly varying spinons. A similar situation occured also in the
original formulation of the CP1 model and its large-N generalizations [16]; but there,
with a suitable reinterpretation, it was possible to introduce the gauge potential as
an independent degree of freedom, and then study its dynamics, for example using a
large-N expansion. We recall that within the framework of quantum field theory the
CP1 model and its generalizations attracted a lot of attention as interesting exam-
ples of non trivial renormalizable gauge theories exhibiting confinement, dimensional
transmutation and topological effects (for reviews see e.g. [17]). It would be very
interesting to explore these issues and study the role of these models also in the con-
text of the strongly correlated electron systems; to this aim, a good starting point is
certainly represented by the action (3.52) that we derived directly from the t-J model.

To make the connection with [16,17] more explicit, let us fix c = 1 in (3.52) and
perform a Wick rotation on x0 to transform the two-dimensional Euclidean space con-
sidered so far into a two-dimensional Minkowski space-time; the resulting Lagrangian
is then

L =
1

2g2
(

∂µ − i aµ
)

z∗·
(

∂µ + i aµ
)

z+ λ
(

z∗·z− 1
)

+ Ltop

+ ψ̄
(

i/∂ − /a
)

ψ .

(4.1)

Here we have introduced a dimensionless coupling constant g2 for the CP1 term;
because of our choice of units, g2 is actually fixed to be one (cf (3.50)), but it could
be more convenient to think of it as a parameter. Furthermore, in (4.1) the space-
time indices are contracted with the Minkowski metric η11 = −η00 = 1, and the
gamma matrices used in the “/” symbol are γ̃0 = i σ1 and γ̃1 = vF σ

2 with vF given
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by (3.53). (For ease of notation we have incorporated the Fermi velocity into the
definition of γ̃1, and thus these gamma matrices satisfy a modified Clifford algebra.)
Finally, Ltop is the topological Lagrangian which is given by the integrand of (3.33)
also in a Minkowski space-time.

If, for a moment, we consider aµ as an independent field and compute its equation
of motion from the first line of the Lagrangian (4.1) denoted by Lz, we get

δLz
δaµ

= 0 =⇒ aµ = i z∗·∂µz , (4.2)

i.e. precisely the (Wick rotated) definition given in (3.27) and (3.23). Notice that
Ltop, being a topological term, does not give any contribution to this field equation.
The result in (4.2) is quite interesting because it shows that the wanted relation
between the gauge field aµ and the bosonic vector z may be dynamically determined
since it could be viewed as an equation of motion. However, (4.2) is not the true
field equation of aµ determined by the whole Lagrangian L, since also the fermionic
terms in the second line of (4.1) give a contribution to it because the vector potential
aµ couples to ψ. This problem is easily cured if, instead of (4.1), we consider the
following Lagrangian

L′ =
1

2g2
(

∂µ − iAµ
)

z∗·
(

∂µ + iAµ
)

z+ λ
(

z∗·z− 1
)

+ Ltop

+ ψ̄
(

i/∂ − /A
)

ψ +
g2

2
ψ̄ γ̃µ ψ ψ̄ γ̃µ ψ ,

(4.3)

where the vector field Aµ is completely independent of the other fields, and a new
four-fermion interaction has been introduced. Notice that Aµ appears in L′ without a
kinetic term, and thus it can be effectively eliminated through its equation of motion,
which is given by

δL′

δAµ
= 0 =⇒ Aµ = i z∗·∂µz+ g2 ψ̄ γ̃µ ψ = aµ + g2 ψ̄ γ̃µ ψ . (4.4)

If we substitute this into L′, we exactly reproduce the original Lagrangian (4.1);
in particular, the four-fermion interaction of (4.3) has been designed to cancel the
fermionic terms arising when (4.4) is inserted into L′. Thus, we can say that (4.3)
is equivalent to (4.1), but it is more useful than the latter since the gauge field Aµ
in (4.3) is truly an independent degree of freedom, whilst aµ in (4.1) is functionally
detemined by the bosonic vector z. We point out that the four-fermion interaction of
L′ is renormalizable in two dimensions being marginal (indeed the coupling constant
in front of it is dimensionless). It is one of the standard fermionic interactions that

are usually considered in this context, the other being
(

ψ̄ ψ
)2

and
(

ψ̄ γ5 ψ
)2

where
γ5 = σ3.

The general structure of our final result is similar to that of previous investiga-
tions on the dynamics of holes in doped antiferromagnets; however a more detailed
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comparison, in particular with [18,20], shows important and significant differences.
First of all, contrarily to [18,20], we took as our starting point the t-J model in the
CP1 representation, and deduced everything from it. The coupling between holons
and spinons is then determined by the structure of the Hamiltonian of t-J model and is
not introduced by hand. In the low-energy limit, our model turns out to be described
by the Lagrangian L′ (or better by its Euclidean version) which, though similar, is
different from that of [18,20] in many respects. Indeed, we have only one fermionic
field describing the charge degrees of freedom instead of two, and moreover we have
also a four-fermion interaction that is not present in [18]. The reason for having one
holon field instead of two is because in the CP1 representation it is possible to realize
a nearest neighbor hopping of holons in the presence of a ferromagnetic arrangement
of fictitious spinons, as we discussed at length in section 2. On the contrary, if one
wants to describe the charge motion in doped antiferromagnets without using the CP1

representation, it becomes necessary to introduce by hand a next-to-nearest neighbor
holon hopping term as it was done in [18,20], and consequently to define two different
types of holons each one moving only within one sub-lattice. However, a next-to-
nearest neighbor hopping term is vanishing from the point of view of the t-J model
and hence it would be unnatural for us.

We conclude this paper by pointing out that if we generalize the doublet (3.41)
to an N -component vector

z =





z1
...
zN



 (4.5)

with z∗· z = 1, the action (4.3) becomes that of a CPN−1 model coupled to one
fermionic field. Since z appears quadratically in this action, it can be integrated out
to yield an effective action for the gauge field Aµ and the fermionic field ψ. This
may be studied non-perturbatively with a large-N expansion [35]; in particular one
may examine if the factorization of the electrons into holons and spinons is really
consistent and survives loop corrections; furthermore, one may analyze the role of
the topological term of the action in connection with Haldane’s conjecture [11,34],
and determine the structure of the renormalization group flow and the nature of
the long-distance fixed points, and hopefully also shed some light on the dynamical
mechanisms of the charge-spin separation from a field theory point of view. We leave
these issues as well as a more complete analysis of the system described by (4.3) to
future investigations.
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Figure Captions

Fig. 1a An electronic configuration in which the even site a is occupied by an electron of
spin up and the nearest neighbor odd site b is empty.

Fig. 1b After hopping, the spin up electron has moved to b and the hole to a.
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