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ABSTRACT

Based on the '"naturalness'" criterion, upper
bounds on all superparticle masses as
functions of the top quark mass are derived.
These bounds give an objective criterion to
test (or disprove) the idea of low-energy
supersymmetry, as implemented in supergravity
models. These bounds strongly differentiate
weakly interacting superparticles, like
charginos or neutralinos, lighter than
100-200 GeV, from strongly interacting ones,
like gluinos or squarks which can become
heavier than 1 TeV.
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1. Introduction

A seemingly embarrassing point when one starts talking about supersymmetry is the
fact that, among all known particles, not even one (broken) boson-fermion supermultiplet
can as yet be reconstructed. Is this not enough to discourage even the most fervent
proponent of supersymmetry as a relevant extension of the standard model physics? Or - if
this first question can get a natural answer - is there a sensible upper bound on superparticle
masses to be used as a criterion to test (or disprove) the idea of supersymmetry at all?

The relation of these questions to the issue of the gauge symmetry breaking is manifest.
Any known particle, whose mass requires the SU(3) x SU(2) x U(1) symmetry to be
broken, is paired to a superpartner which, on the contrary, can get a mass term invariant
under the gauge symmetry. Accordingly, the gauge symmetry, preventing a mass term
for the standard particles, naturally splits the "light” ordinary particle spectrum from the
"heavy” superpartners, that may have not yet been discovered for this very reason. On the
other hand, as it is well known, the effective scale of supersymmetry breaking, controlling
the typical splitting inside the supermultiplets, cannot be arbitrarily separated from the
electroweak breaking scale, if one is not willing to introduce increasingly precise tunings
among parameters. In turn, the implementation of this "naturalness” criterion !, gives
rise to a physical upper bound on superparticle masses in the TeV range [2].

This paper deals with a quantitative analysis of these general arguments in the context
of low energy supergravity models 2. Notice that these models are précisely designed to
incorporate the above ideas, so as to overcome the difficulties previously met in the early
attempts® to extend the standard model in a supersymrmetric manner. |

Our strategy is quite straightforward. In the context of supergravity models (to be

defined in sect. 2), we consider the electroweak symmetry breaking scale, or the Z°-boson

1 The unnaturalness of light scalars has been underlined in ref. [1]. The relevance of

" supersymmetry to this issue has been pointed out in ref. [2].
2 For a review, see ref. [3] and references therein.
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mass, as a function of the most general parameters a; of the theory:

M3 = M}(ai;m;). (1.1)

To describe the electroweak symmetry breaking, which is induced by radiative corrections
[4,5], and to get a sensible approximation, this function must include all one loop renor-
malization group improved effects. In (1.1) we have made explicit the dependence on the
top quark mass, m;, since the corresponding Yukawa coupling plays a crucial role in de-
termining the appropriate gauge symmetry breaking. The parameters a;, as well as my,
also control the masses of the various supersymmetric partners of the standard particles.
By explicit calculation, eq.(1.1) exhibits the already mentioned feature that a consistent
range of parameters allows arbitrarily heavy superpartners, still keeping Mz fixed. In fact,
in this limit, the theory under consideration can be thought of as a physically regularized
version (with respect to quadratic divergences) of the standard model Lagrangian. On
the other hand, not surprisingly, this is achieved only at the price of an unnatural tuning
among the physical parameters of the theory. We avoid this tuning by imposing *, for

every a;:

a; OMZE(a;;m,)
M2 Oa;

<A, (1.2)

so that a percentage variation of any of the parameters a; does not correspond to a percent-
age variation of M2 more than A-times larger. For example, A = 10 amounts to tolerate
in (1.1) cancellations among parameters of at most one order of magnitude. In turn, for
every top quark mass, the inequalities (1.2) can be converted into upper bounds on all
dimensional parameters of the theory and therefore on all superparticle masses, These
bounds are shown in figs. 2 for A = 10.

Notice the disappearance of the bounds on the gluino and the scalar masses for special
values of the top quark mass, m; ~ 55 GeV and m; ~ 160 GeV respectively. This feature,
which will be illustrated in sect. 3, corresponds to the vanishing of some renormalization
group coeflicients for the mentioned values of the top Yukawa coupling. Of course, the

precise determination of these values depends on neglected higher order effects, which are

* Similar conditions were imposed on a particular supergravity model in ref. 6].
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otherwise irrelevant to our analysis *.

The paper is organized as follows. In section 2, we define the general class of super-
gravity models that we consider and we summarize previous work relevant to our purposes.
In section 3, we derive the upper bounds on the dimensionful parameters of the model in
the special case of vanishing mixing between the two Higgs doublet superfields (¢ = 0).
The general bounds on the same parameters and on g itself are given in section 4. In
section 5, we convert these limits into upper bounds on the masses of the various super-
symmetric particles. Our conclusions are drawn in section 6. Appendix A gives the explicit
my dependence of the various renormalized parameters of the theory. Appendix B relates
the bounds on the dimensionful parameters of the theory with the bounds on the different

supersymmetric particles.

2. The model: summary of previous work

We work in the framework of the minimal supergravity model, defined by the following

Lagrangian?:

L = Lyusy(f = fy+pH1Hz)+ Amfy + BmpHiHy +m* Y | o P+ M D (Aa)Da (2.1)

In the supersymmetric part of the Lagrangian invariant under SU(3) x SU(2) x U(1),
L,ysy, the superpotential f includes the standard Yukawa terms f,, as well as a mass
coupling pH; H; between the two Higgs doublets H; ; of opposite hypercharge. In the
remaining part of I, which softly break supersymmetry, m* 3" _| ¢ ?and M Y o (Ra) Ao
are universal mass terms for all the scalar degrees of freedom ¢, and for all the SU(3) x
SU(2) x U(1) gaugino fields A\, respectively. Other than the gauge and the Yukawa cou-
plings, I contains five more parameters: m, M, u with dimension of mass and 4, B

dimensionless. These parameters play the role of the a; introduced in the previous section. -

% The avoidance of the bounds for the particular values of m, corresponds to an "un-
natural” fine tuning of the corresponding Yukawa coupling y;, which could be excluded by
imposing a condition analogous to (1.2) on the derivative with respect to y; itself. This

would smooth away the singular points from figs. 1,2.
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The soft breaking terms in L are the remnants of the supergravity couplings of the
"observable” particles to a "hidden” sector, which determine the classical vacuum of the
theory and drive the spontaneous breaking of supersymmetry [7]. For this reason, the
Lagrangian (2.1) and all its parameters are meant to be defined at a grand scale My ~
10'® — 1018 GeV. The universality, at this grand scale, of the gaugino and the scalar mass
terms is attributed to the universality of the supergravity couplings of the "hidden” to the
"observable” sector [7]. Small deviations from this hypothesis may occur [8] due, e.g. , to
grand unification couplings, which may have interesting consequences at low energy. They
would not however affect any of our conclusions. Similarly, we take the parameters m, M,
t#, A, B all real, with an appropriate definition of the various fields, as it can be ascribed
to a CP conserving "hidden” sector.

The one loop renormalization down to lower energies of the above Lagrangian has
been intensively studied by several groups [4,5]. For the sake of completeness, we recall
the results that we need for later use.

Let us confine our attention to the part of L, eq. (2.1), describing the potential along
the neutral components of the Higgs fields:

2+ 12
V(Hy, Hz) = ngU Hy " —| Hy I°) +ml| Hy *+md| Hy [P —~m2(Hy Hs +h.c.), (2.2)

which, for

mi+m;>2|mi| , mim} < mi, (2.3)

gives rise to the appropriate breaking in the direction

< Hy >= Lcosﬂ y < Hy >= —v—sinﬁ (2.4)

V2 V2

2 _ _8(mi — mjtg®pB)

T (2 +97)(tg?8 — 1) (2:5)
. 2m2
szn2ﬂ = m (2.6)

The crucial equation is therefore:



2(m} — mitg®B)
tg2f — 1
2 2

which is equivalent to eq. (1.1), after the properly renormalized parameters m?, m2, m?2

M3 =

(2.7)

are related to the original parameters appearing in eq. (2.1) by:

mi = —aM? — bAmM + cm? — dA%m? + e’ (2.8a)
m? = m? + eu® + fM? (2.88)
mi = Ig,uM + hBum + kAum (2.8¢)

In egs. (2.8) the coefficients are functions of the gauge couplings and of the top
Yukawa coupling, as obtained from the solution of the appropriate renormalization group
equations, with all other Yukawa couplings neglected. Their explicit dependences on the

top quark mass are given in appendix A.

3. The bounds for 4 =0

Before going to the full parameter space, we consider the bounds on the parameters
m, M for 4 = 0. This is done for pedagogical reasons, but also because the small p region
may have a special physical significance [3].

In this case, using eqs. (2.8), eq. (2.7) reduces to a particularly simple form

M} = —2m2 = 2(aM? 4 bAmM — cm? + dA%m?), (3.1)

which makes manifest the cancellation required among the parameters m, M, A in order for
m and/or M to increase arbitrarily. The cancellation depends on the coeficients a, b, ¢, d,
or, ultimately, on the top quark mass. Actually, no cancellation is required if and only if
a or ¢ vanish. When a vanishes, which happens for m; ~ 55 GeV, M can be arbitrarily
large, without implying any fine tunings among parameters, provided m and A are taken

sufficiently small. On the other hand, when ¢ vanishes, for m; ~ 160 GeV, it is m which
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can be taken large as M and A go to zero. This explains the singularities in fig. 1, which
represents the upper bounds for arbitrary . For all other values of m,, the cancellation
required to allow an arbitrary increase of m and/or M entails a violation of the inequalities
(1.2).

Actually, before worrying about the unnaturalness of fine tunings among the different
terms in eq. (3.1), one has to see if they are possible at all. If not, one limits m and M in
an absolute way, independently of (1.2). This is indeed the case for m; > 160 GeV, since,
from this point on, the ratio between (3.1) and M? or m? never vanishes. This is due to

the fact that the coefficients in eq. (3.1) satisfy, for m, > 160 GeV

ac <0 and b —4ad <0. (3.2)

On the other hand, a zero of the same ratios is required in order for any of the dimensionful
parameters m and/or M to become arbitrarily large, for fixed M%. Therefore, for u = 0,
one gets an absolute bound on M (m) by minimizing the right hand side of eq. (3.1) with
respect to A and m (M). One obtains in this way:

2d

2 v —
M < 4ed — 0

1
ME , m?< EM% for my > 160 GeV. (3.3)

This feature is lost for arbitrary u, even though it remains true that a bound on p

implies 2 bound on M and m. In fact, from the general formula (2.7), one obtains:

2m2 > — M2, (3.4)
so that, from eq. (2.8a):
4d M?2
2 _ 2, Mz
M < fed — (e’“" 3 ) (3-5a)
9 1 . Mz

For m; < 160 GeV, the scaled right hand side of eq. (3.1) is able to vanish. Accord-
ingly, the bounds on M and m rely on the imposition of the inequalities (1.2}). The bounds
themselves are most easily obtained in the following way. Eq. (3.1) can be solved in M

(m). For large M (m), neglecting terms of order (%#)? ((*%)?), one obtains:
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M= zi [-bA + +/4ac + AX(BE = 4ad)} . | (3.6)

a

Notice that MZ in eq. (3.1), and also its derivatives, eq. (1.2), only depends on the sign
of A relative to the sign of M. For this reason, any of the two solutions (3.6) is enough
to span the full space of parameters. If now this solution is substituted in the explicit

expressions of the derivatives,

A M Am
MZ A " 2M§ (bM +2dAm) (3.7a)
m M3 m N
= 2 — .
MZ Bm ME (bAM - 2¢m + 2dA"m) (3.7b)
MAME M
MEOM 2M§;(2aM + bAm), (3.7¢)

the inequalities (1.2) acquire the form

m? fi(A‘)1< A (Mzg,:(A)- 1< A), (3.8)

which is immediately converted into a bound on m (M):

m? < A -mazs(min; f;(4)) (JM’2 <A- mawA(minigi(A))). (3.9)

The parameter A is allowed to vary only between -3 and 3 in order to avoid unwanted
minima breaking color and/or electric charge [3].

For dimensional reasons, the bounds on m, M scale as VA. Notice that, if we had
imposed our naturalness criterion on the function Mz rather than M%, we would have got
bounds less restrictive by a factor v/2 (A — 2A). On the other end, M%(ai;my) is the
natural combination of parameters that appear in the Higgs potential.

For m; < 160 GeV, these bounds are very close to the general ones, plotted in fig. 1.
For m; > 160 GeV, when the switching on of y allows a tuning of parameters that can
make the scaled right hand side of eq. (3.1) arbitrarily small, the bounds (3.3) are given
in the same figure as dashed lines.

A top quark mass heavier than 190 GeV is not considered, since it would correspond

to a singular behavior of the relevant Yukawa coupling before the grand scale.
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4. The bounds in the general case

The study of the general case can be made along similar lines, except that the general
expression for M2, eq. (2.7), is more complicated and it involves five parameters instead
of three. It is therefore useful to make the following preliminary observations.
| As it is clear from the previous section, we are interested in approximate zeros of the

function MZ(a;;m,), which, in the general case, are obtained for

. m2 —mitg’8 ~ 0 (4.1)

or, equivalently,

mim2 = mi. (4.2)

When the parameters satisfy this relation, which is, for large m, M,y an approximate

solution of eq. (2.7), the derivatives of M%(a;;m;) can be simplified to

8
. 8M2(a'm)f$2ai3@i( im3 —m3)
Blasme) = S o T

maai
Furthermore, using eqs. (2.8) and (4.2), we replace in (4.3) the parameter B with the

(4.3)

approximate solution:

B = % (—kAm —-gM £ ;1; m%m%) (4.4)

Here again we can disregard one of the two solutions corresponding to the + sign in front
of the square root, without losing any effective combination of parameters.

In this way the inequalities (1.2) acquire a form analogous to (3.8), except that now

the functions f; (g;) depend, other than on A, on two dimensionless ratios of the three

variables m, M, . The bounds are obtained by maximizing these functions.

5. Upper bounds on supersymmetric particles

The bounds on m, M, u shown in fig. 1 can be easily converted into upper bounds

on any kind of supersymmetric particle. This is completely straightforward for squarks,
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sleptons and the gluino, whose masses are directly and easily related to the above param-
eters (see appendix B). In fig. 2a, we show the bounds on the masses of the gluino, the
scalar partner of the right-handed up quark (similar to the bounds for all other quarks)
and the right-handed scalar electron (which provides, among sleptons, the most stringent
bound). Notice there that the scalar particle masses become unbounded for both m, ~ 55
GeV and my ~ 160 GeV: this is because the physical squared masses receive contributions
proportional to both m? and M?2.

The bounds on the lightest chargino and neutralino (the physical superpositions of
charged and neutral gaugino and higgsino fermion fields) require a discussion of the cor-
responding mass matrices. The diagonalization of the 2 x 2 chargino mass matrix readily

leads to the following bound on the squared mass of the lighter state:

m(x™)? < My + min(M3, ph), (5.1)
where
My=-"2M , ug=+eu (5.2)
ag

and ag is the gauge constant at the grand scale (see apps. A and B).
A bound for the neutralino is obtained by considering the corresponding 4 x 4 squared

mass matrix, whose diagonal entries limit the lowest squared mass eigenvalue, so that

MZ
m(x°)? < min (,u'ﬁ + —23—,M12 + sinzﬂwM%) , (5.3)
where
5
M, = 22 M (5.4)
3 (s Fe]

The corresponding results are given in fig. 2b. Notice here that neither the lightest
chargino nor the lightest neutralino can become arbitrarily heavy for any value of the top
quark mass. This is a consequence of the bound on the parameter u (fig. 1).

Notice that, for any given top quark mass, the limits on m, M, i are all saturable, al-
though not all at the same time, namely for one particular choice of the parameters. This,

in turn, means that the bounds on the physical particles are also essentially saturable,
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again not at the same time. The limitation comes from the fact that we have simultane-
ously inserted in the expressions for the physical masses the maximum values for m, M, p.

Practically, this does not lead us to over-estimate significantly the real bounds.

6. Conclusions

In this paper we have derived upper bounds on the masses of the supersymmetric
particles, which rely on the assumption that no cancellation takes place among the physical
parameters of the minimal supergravity model by more than one order of magnitude (A =
10). A different numerical criterion can easily be imposed by knowing that the bounds
scale like V/A. '

We fee] that these results put on a sounder basis the problem of testing, or disproving,
supergravity models. In our opinion, the bounds on weakly interacting particles, like
charginos and neutralinos, are of particular significance. Although the knowledge of the
top quark mass would be required to make a more precise statement, these results, we
believe, point in the direction of ete™ colliders as the most efficient machines to discover
supersymmetry.

Let us finally spend a word on the significance of the "naturalness” criterion that we
are employing. The problem of the quadratic divergences of the Higgs squared mass is a
serious one. There is no known example of cancellation between a quadratic divergence in
the low energy theory and contributions from shorter distances. In the fundamental Higgs
picture, supersymmetry is the only known way to avoid at all the quadratic divergences,
which are replaced by squared superpartner mass terms. On the other hand, we do not
know of any way to enforce a natural cancellation among the different contributions to
eq. {2.7), when these masses get large. It follows that these masses must be limited. If
no supersymmetric particle is found below the limits that we have given, the case for low
energy supersymmetry gets, in our opinion, extremely weakened. This should certainly not
be interpreted as an argument against the idea of supersymmetry at all, which has strong
independent motivations. One then should however at least reconsider, theoretically even

before than experimentally, the strategy to look for its signals.
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Appendix A

In this appendix, we give the explicit dependence on the top quark mass of the co-
eflicients appearing in eqs. (2.8), computed using the one loop renormalization group
equations. We follow the same conventions of ref. [5], and we refer the reader to those
papers for further details.

We first define the functions

E(z) = (1+ sz} (1 + foz) % (1 + fro) s (A1)

F(z) = fo " B(e')da! (A.2)

where b;, b2 and b; are the coefficients of the one loop B-function for the gauge couplings
(bl = ].].,bz = 1,b3 = "—3) &Ild
a;(0)

=20 =1, (4.3)

«;(0) are meant to be defined at the unification scale Mx where

5
a3(0) = a»(0) = 501(0) = ag (A.4)
Then, we call
MZ
= lnMg; (A4.5)
E=E(lt) , F=F@) (A.6)
1 1- 7}
i = 1 +ﬁzt ) f; = ﬂi 1 1, .,3 (AT)

Next, we define the following quantities:

30:@ 1

H, = . (gf1 + fz) (4.8)
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1 nfac (32, o, 26,
H, :2—1;/0 E(t )[Z;Cri (?fa(t }+6f2(t") + Efl(t )) +
2

og g2 (16, N B Y 1

+ 81r2t ( 3 Z3(t)+3Zz(t)+ 15Z](i) ]dt (Ag)

1 2
H; = —§H4 (A.10)

E
Hy =27, 7, ™ (A.12)
1

He = 5H4H5 (A.13)

1
H; = ~3g—$t (Zg + ng) Hs (A14)
_ 3FGr (4.15)

44272 F

where Gp 1s the Fermi constant.
In terms of the previous quantities, we can explicitly show the dependence on the top

quark mass, m., of the parameters appearing in egs. (2.8):

a=H,+H;Km? + Hy K*m? (A.18)
b= HyKmi(l — 2Km?) (A.17)
¢c=1-3Km? - (A.18)
d=Kml(l — 2Km?) (A.19)
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e = H2(1 - 2Km?)} (A.20)

f=—H (4.21)

9= (HeKm? + H:)(1 — 2Km?2)i (A.22)
h = Hs(1 - 2Km?)% (A.23)

k= HsKm?(1 — 2Km?)% (A.24)

The choice Mx ~ 3-10'% GeV and ag ~ 5135 yields: Hy ~ —.53, Hy ~ 14., Hy ~
—11., Hy =47, Hs~ 1.4, Hs ~3.3, Hr =~ —.84, K ~ 1.25 - 105 GeV—2.

Appendix B

In section 5, the bounds on the dimensionful parameters m, M and p are translated
into bounds on the physical supersymmetric particle masses through the relations collected
in this appendix (see also ref. [5]).

For the scalar partners of the right-handed up quark and electron and for the gluino:

m*(dg) < m? + "g—aG (fa + ,f1) (B.1)
m*(ér) < m? + %—aaflM + sin’0w M}, (B.2)
m(§) = Zs M (B.3)

where ag, fi, Z; are defined in appendix A.
The chargino and neutralino mass matrices involve the following mass parameters,

renormalized up to the low energy scale:
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M1 =Z1M ) Mz’—"ZzM y ,uR:\/e—:,u, (B4)
The squared mass of the lightest chargino is:

1
m®(x*) =3 [m§ + uh + 2My

v/ (MZ — u3)? + 4Miycos®2B + AME, (M + & + 2Mprsin28)| (B.5)

and, consequently, eq. (5.1) easily follows. Since the smallest eigenvalue of a Hermitian
matrix is bounded by any of its diagonal entries, which in the case of the neutralino squared
mass matrix are: M? + sin®@y M%Z , M7 + cos?0w ML | pkh + cos?BM% , p% + sin’BMZ,

we obtain a limit on the mass of the lightest neutralino, according to eq. (5.3).
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Figure captions

Fig. 1. Upper bounds on the parameters m (la), M (1b) and g (lc) for A = 10 (fine
tunings of at most one order of magnitude). All bounds scale as v/A. The dotted lines in
fig. la,b are the absolute bounds for p = 0 and m; > 160 GeV (see text).

Fig. 2. Upper bounds for A = 10 (fine tunings of at most one order of magnitude} on
the masses of: (2a) gluino (g), scalar partner of the right-handed up quark (@ r), scalar
partner of the right-handed electron (ér); (2b) lightest neutralino (x°), lightest chargino

(x%).
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