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1. INTRODUCTION

Conformal symmetry was introduced into the quantum field theory about
twelve years ago, mainly due to the scaling ideas in the second order phase
transition theory (see Ref. [1] and references therein). According to the
scaling hypothesis, the interaction of the fields of the order parameters at

the critical point is invariant with respect to the scale transformations

§% —= %" (1.1)

where-ga are the co-ordinates; a = 1,2,..+,D. In quantum field theory, the
scale symmetry (l.1) takes place provided the stress energy tensor is

traceless,

To(%) = © a2

Under coadition {(1.2), the theory possesses not only the scale
symmetry but is invariant with respect to all the co-ordinate

transformations

2 > 4 (%) .3)

having the property that the metric tensor transforms as

4

a
2% 9},‘ (1.4)
gaé -2 ?Z“ 925 gaé’ "jo(f)gdé
where p(&) is any functiom. Co-ordinate transformations of this type

constitute the conformal group. These transformations can be easily

described, the properties of the conformal group being different for the
cases D)2 and D = 2. If D)2 the conformal group is finite-dimensional and
consists of tramslations, rotations, dilatations and special conformal
transformations (see Refs. [2] and [3]). A kinematical manifestation of
this symmetry and its dynamical realization in the quantum field theory has
been investigated in many papers (see, e.g., Réfs. [2]—[4]). In particular,
it has been shown that the local fields Aj(g), involved in the conformal
theory, should possess anomalous scale dimensions dj’ i.e., should transform

as follows under transformation (l.1)
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where the parameters dj are non—-negative. A computation of the spectrum
{dj} of the anomalous dimensions is the most important problem of the theory

because these quantities determine the critical exponents.

To solve this problem, a bootstrap approach based on the operator
algebra hypothesis has been proposed in Ref. [4]. Let us describe it in
some detail since it is most suitable for our purposes. The operator
algebra is a strong version of the Wilson operator product expansioanJ.
Namely, the existence of an infinite set of local fields Aj(ﬁ) is assumed,
then the set of operators {A.(0)} is assumed to be complete in the sense
specified below. The set {Aj} contains the identity operator I and also all
the co-ordinate derivatives of each field involved. The completeness of the
set {Aj(O)} means that any state can be generated by a linear action of

these operators. This condition is equivalent to the operator algebra

/4[(5) /‘]/- (o) = Zx C;f(’g) A (o) (1.6)

k
i
be single-valued in order to take into account the locality. Relation (1.6)

where the structure constants C j(2‘;) are the c—number functions which should

is understood as an exact expansion of the correlation functions

{A:GEVA; ) Ap (s Ag (t)y =
= > C; (5) <Awle) Ag (3,) - Ae (5)>
< .

which is convergent in some finite domain of €, the domain being certainly
dependent on the location of 51"'f'§m' The most restrictive requirement,
which is considered as the main dynamical principle in this approach, is the
assoclativity of the operator algebra (1.6). This requirement leads to an
infinite system of equations for the structure constants cij(g). Since the
conformal symmetry fixes the form of the functions cij(g) up to some

numerical parameters (which are the anomalous dimensions and numerical
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factors), this system of equations has to determine these parameters.
However, in the multidimensional theory (D 2), this system turns out to be
too complicated to be solved exactly, the main difficulty being the

classification of the fields Aj entering the algebra.

The situation seems to be much better in two dimemnsions. ' The main
reason is that the conformal group is infinite-dimensional in this case; it
consists of the conformal analytic transformations. To describe this group,

it is convenient to introduce the complex co—ordinates

z2 =357+ z=z7-:1% (1.7

with the metric having the form

— (1.8)

de2 = d 2 dZ

a——

The conformal group of the two—dimensional space (which will be denoted

by G) consists of all substitutions of the form

—_—, — (1.9)
Z —> 5 (2) - T > T(E)

where { and T are arbitrary analytic functions.

For our purposes, it will be convenient to consider the space co—
ordinates 51, 52 as complex variables, i.e., to deal with the complex space
C2. Therefore, in general, we shall treat the co—ordinates (1.7) not as
complex conjugated but as two independent complex variables; the same is
supposed for the functions (1.9). The complex metric (1.8) belo gs to this
space. The Euclidean plane and the Minkowski space—time could be obtained

as appropriate real sections of this complex space.

In the complex case, it is evident from (1.9) that the conformal

group G is a direct product
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where T (f) is a group of the analytic substitutions of a variable z (z).
In what follows, we shall often concentrate on the properties of the group

I', keeping in mind that the same properties hold for T.

Infinitesimal transformations of the group I have the form

Z —> 2 4 ECE) (L.11)

where €(z) is an infinitesimal analytic function. It can be represented as

an infinite Laurent series
O i {
+
E¢z)y =23 E,. 2 (1.12)
h= =2

The Lie algebra of the group I' coincides therefore with that of the

differential operators

hH._«-‘-_J, . | ._
b =277 5 h=ex g, (1.13)

the commutation relations having the form
L, bn] = (n-m) by, (1.14)

The generators in of the group T satisfy the same commutation relations, the
operators ln and im being commutative. We shall denote the algebra (1.14)

as LO'

The generators A-15 %gs %4, form the algebra s(2c¢) Ly. The

corresponding subgroup SL(2c) ¢ T' consists of the projective transformations

Z2 > %= 22+6 ad —bec =71 (1.15)
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Note that the projective transformations are uniquely invertible mappings of
the whole z-plane on itself and these are the only conformal transformations

with this property.

This is the first paper of a series we intend to devote to the
general properties of the two—dimensional quantum field theory ilmvariant
with respect to the conformal group G l). In this paper we give a general
classification of the fields Aj(g) entering the operator algebra (1.6)
according to the representations of the conformal group and investigate the
special exactly solvable cases of the conformal quantum field theory

associated with degenerate representations. In more detail, we shall show

that:

a) The components of the stress-energy tensor Tab(g) [which satisfy
(1.2)] represent the generators of the conformal group G in quantum field

theory. The algebra of these generators 1s the central extension of the

algebra i; (1.14) and coilncides with the Virasorc algebra Lc. The value of

the central charge C is the parameter of the theory.

b) Amcng the fields Aj(a) forming the operator algebra, there are some

nunbers of primary fields ¢n(§) which transform in a simple way
_ J5 4 ; JT B _
‘3'(2-,%)9(4;}) 2‘5} ﬁ[ljz‘} (1.16)

under the substitution (1.9). Here An and An are real non—negative
parameters. In fact, the combinations d =A+A and S_ = A -A_ are the

n n n n n n )
anomalous scale dimension and the spin of the field ¢n, respectively . We
shall often call these quantities An and En the dimensions of the field ¢n.
The simplest example of a primary field is the identity operator I. A non—
trivial theory containing more than one primary field and index n is

introduced to distinguish between them.

¢) The complete set of fields Aj(a) consists of conformal families [¢n]
each corresponding to some primary field ¢n. The primary fileld ¢n belongs

to the conformal family L¢n] and, in some sense, plays the role of the
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ancestor of the family. Each conformal family also contains infinitely many

other fields ("descendants"”). The dimensions of these descendant fields

form the integer spaced series

. = + K
4, =Ap+K 5 Efn Bu. (1.17)

where «, K = 0,1,2,... . The variations of any descendant field A ¢ [¢n]
under the infinitesimal conformal transformations (1L.11) are expressed
linearly in terms of the representatives of the same conformal family [¢n].
S0, each conformal family corresponds to some representation of the
conformal group G. 1In accordance with (1.10), this representation is the
direct product [¢n] = Vﬂgﬁn, where Vn and Gn are the representations of the

3)

Virasoro algebra Lc 3 in general, these representations are irreducible.

d) Correlation functions of any descendant fields can be expressed in
terms of the correlators of the corresponding primary fields by means of
special linear differential operators. Therefore, all the information about
the conformal quantum field theory is collected in the correlators of the

primary fields ¢n.

e) The structure constants c:j(g) of the operator algebra (1.6) can be
computed, in principle, in terms of the coefficients Cim of the primary
field ¢2 in the operator product expansion of ¢n¢m' Therefore the bootstrap
equations (i.e., the associativity condition for the operator algebra) can
be reduced to the equations imposing constraints upon these coefficients and

the dimensions An of the primary fields.

f) At a given value of the central charge c, there are (infinitely many)
special values of dimension A such that the representation L¢A] proves to be
degenerate. The most important property of the corresponding “"degenerate”
primary field ¢A is that the correlation functions involving this field

satisfy special linear differential equations, whose simplest example is the

hypergeometric equation.

g} 1f the parameter c satisfies the equation




(1.18)

Z5-c —V1i—¢ - ,3?

2s-¢ +¥41-c¢

where p and q are positive integers, then the "minimal” conformal quantum
field theory can be constructed so that it is exactly solvable in the
following sense: 1) a finite number of conformal families [¢n] is involved
in the operator algebra, each of them being degenerate; ii) ail the
anomalous dimensions An are known exactiy; iii) all the correlation
functions of the theory can be computed as the solutions of the special
systems of linear partial differential equations. There are infinitely many
conformal quantum field theories of this type, each is associated with some
solution of (1.18) and, the simplest non-trivial example (c = %) describes
the critical theory of the two—dimensionai Ising model. We suppose that
other "minimal™ conformal theories describe the second order phase

transitions in some two-dimensional spin systems with discrete symmetry

groups.

Apart from second order phase transitions in two dimensions, there is
another important application of the conformal quantum field theory. This
is the dual theory. From the mathematical point of view, dual models are
none other than special kinds of the two-dimensional conformal quantum field
theory. This is natural in view of their association with the string
theory. The quantum fields describe the degrees of freedom associated with
the string, the conformal symmetry being the manifestation of the
reparametrization invariance of the world surface swept out by the string.
In fact, the dual amplitudes are expressed in terms of correlation
functions of some local fields (vertex operators). In standard models {like
the Veneziano_mddel), the vertex operators are related in a simple way to
free massless fields. We suppose that incorporating the interacting fields
into the theory might produce new types of dual models with more suitable

physical properties.
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2+ STRESS~ENERGY TENSOR IN CONFORMAL QUANTUM FIELD THEORY

Consider an arbitrary correlation function of the form
= ’ . . 2.1)
XED> = KAL) 4,050 Ay (50> ‘

where Aj (£) are some local fields, and perform an infinitesimal co-ordinate
k

transformation v
a
I > 3% + g9) 2.2) y

As is well known in quantum field theory the following relation is valid

N
%{ <A G- A (55, A (5 A (Fea) -4 (8> +

(2.3)

+[d P KT, X D> = o

where the field Tab(é) is the stress energy tensor and GaAj(é) denotes
variations of the fields Aj under the transformatiom (2.2). Due to the
locality, these variations are linear combinations of a finite number of
derivatives of the function e€(f) taken at the point & = Ek, the coefficients
being some local fields. It follows from (2.3) that

ga<7-46(§')x > = o (2.4)

everywhere, exceﬁt at the points E1s 52,...,§N. In conformal quantum field
theory, the trace of the stress energy tensor vanishes, T: = 0. Therefore,
in the two-dimensional case, this tensor has only two independent components

which can be chosen as

T(s) = Ty —Tea *2¢ 102
T(3) = Ty ~Te = 2¢ 102

(2.5)

i
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Combining relations (1.2) and (2.4), one can easily find that these

components satisfy the Cauchy-Riemann equations

3LT(E)X> = o
2, < 'F(‘f)x> = o

(2.6)

where z and z are defined by (L.7). So, each of the fields T and T is an
analytic function of a single variable (z and z respectively) and we

shall write
T = T(=2) . T = T(Z) @1

4)

Let us concentrate on the correlation function

<7)X> (2.8)

It is the analytic function of z which is single-valued (due to the
locality) and regular everywhere but at the points z = z,5 2y < g¢+i§§,
where it has poles, the orders and residues of these poles being deternined
by the conformal properties of the fields Ajk(g). Actually, for the
conformal co-ordinate transformations (l.l11l) the relation can be reduced to

the form
<8, X > = ﬁ: ‘JSSCS) <T(s)X > (2.9)

where 6EX is a variation of the product X = Ajl(gl),...,Ajn(EN) under the
transformation (l.11) and the contour C encloses all the singular points
Zys k =1,2,...,Ne Equivalently, the following relatiom is valid

S A(E) = S dS EG)T(5) 4 (2E) o
Ca

where the contour Cz surrounds the point z. The same formula (with the
substitution T » 5) holds for the variation GEAj of the field Aj under the
infinitesimal transformation

zZ > Z <+ E(F) (211
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of the group I. Therefore, the fields T(z) and T(z) represent the

generators of the conformal group Tol in quantum field theory.

Conformal transformation laws for the general fields Aj will be
considered in the next Section. We are now interested in the conformal
properties of the fields T(z) and E(;) themselves which are obviously
related to the algebra of the generators of the conformal group. The

variations éaT and 665 should be expressed linearly in terms of the same

fields T and T and their derivatives, and may also include ¢ number iv

Schwinger terms. Taking into account the tensor properties of the field
I(z) and the locality condition, one can write down the following most

general expression for the variation 6€T :
/ e Ar
G T(2) =E£=)T ' R)+28'@7T@) +7; €(2) .1y

. . 5
where the prime denotes the z derivative ). For the variation 6ET one can

obtain, by the same consideration

Sé- T(z) = o (2.13)

The numerical comstant ¢ in relation (2.12) is not determined by general
principles; it should be treated as the parameter of the theory. The
variation 6Ef satisfies the same relation (2.12), the corresponding constant
c being equal to c. The constant ¢ can take real positive values. These
statements follow from the reality condition for the stress energy tensor in
Euclidean space and in Minkowski space-time.

If none of the points 2z k=1,2,...,N in (2.1) is equal to

k!
infinity, then the correlation function (T(z)X) should be regular at z = =,
This means, as one can easily verify using the transformation law (2.12),

that the function (T(z)X) decreases as

T(z) ~ /24 at 2> eo (2.14)

In quantum field theory the correlation functions (2.1) are
represented as the vacuum expectation values of the time—ordered products

of the local field operators Aj(g). In our case it is convenient to
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introduce the co-ordinates ¢ and 7t according to

z = exp (T +15) ; zZ= Cﬂ’ﬂ('r"‘:d) (2.15)

Choosing both o and t© to be real, ¢ being the angular variable, 0 o =, one
gets the Euclidean real section. The corxrelation functions in this

fuclidean space can be represented as

KXY =<l TLA ST ~ A len,T]le> e

where the chromological ordering should be performed with respect to the
"Euclidean time” 7. In the operator formalism, the variatioms 6€Aj can be

expressed in terms of equal-time commutators
o A, (s,T) = [T, A (s,7) ] (2-17)

where the generators TE are defined by

- é E(2)T()dz (2.18)
bglz)=T

Note that due to HEgqs. (2.7) these operators are in fact 1 independent.

Te

Relation (2.12) becomes :

[T, T@]= @ T @) +26"@)T() + 72 £7@) a9

It is useful to introduce the operators Ln’ Ln; n=0,%x1,%¥2,..., as

coefficients of the Laurent expansions

ol ey & L
T(z2) = Z Zht2 7(z)= Z ez (2.20)
_ h=-po N=woo

1t follows from (2.19) that the operators Ln satisfy the commutation

relations

[, L] = (n-m) Loem S (1) S 5 @2D)

Clearly, the same relations are satisfied by in‘s, the operators Ln and Em

being commutative. The algebra (2.21) of the conformal generators Ln is the
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central extension of the algebra (1.14)6). This fact is well known in the
dual theory and the algebra (2.21) is called the Virasoro algebra [6]——[11];

we shall denote it as Lc'

Like the algebra Lo’ the Virasoro algebra Lc contains the subalgebra
s81(2c) geunerated by the operators L-;, Lg, Ly [note that the ¢ number term
in (2.21) vanishes for n=0,il]. In particular, the operators L-; and i—l
generate translations, whereas Ly and EO generate infinitesimal dilatations
of the co-ordinates z and z. In the co—ordinate system o, T defined by

(2.15), the operator

H = L, + L,

(2.22)

is the generator of the "time"” shifts. So, it plays the role of the
Hamiltonian. Note that the "infinite past” 7 » —= and the "infinite future"

T > « correspond to the points z = 0 and z = =, respectively.

The vacuum )0 in (2.16) is the ground state of the Hamiltonian

(2.22). The vacuum must satisfy the equations

Lnle) =0 if h>-1 (2.23)

because otherwise the stress energy tensor would have been singular at 2z=0.
Note that the operators Ln with n -1 generate the conformal transformations
which are regular at z = 0. Therefore Eq. (2.23) is the manifestation of
the conformal invariance of the vacuum. Transformations generated by the
operators Ln with n -2 are singular at z = 0; these operators distort the
vacuui,

The field T(z) should also be regular at z = o, Similarly to (2.23), this

means that

ol L, =0 cf n< { (2.25)

Since in the Minkowski space-time (which can be obtained by continuation to
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imaginary values of 1) the field T(z) must be rea’, the operators Ln satisfy

the conjugation relation

;T = Lo

h - (2.26)

Note that the generators L-;, L,, L, annihilate both the "in" and

"out"™ wvacua

<o/45 = LS/o> = 0 ;. ST o, 1, (2.27)

These equations are the manifestations of the regularity of the projective
transformations mentioned in the Introduction. Equations (2.27)} are self-

consistent because the ¢ number term in (2.21) vanishes for m = 0, Z£l.

Equations (2.23), (2.25) and the commutation relations (2.21) enable
7)

one to compute any -correlation function of the form

TUs) o T ) T ) T (pm) >
= T TG L T) T (0u) >

(2.28)

In particular, a two-point function is given by the formula

TGIT(5)> =S5 -3) ! (2.29)

which shows that ¢ ) 0.

3. WARD IDENTITIES AND CONFORMAL FAMILIES

Consider the variations 6€aj(§) of some local field Aj under the
infinitesimal conformal transformation (1.11). Due to its local properties,
this variation is a linear combination of the function €(z) and finite

number of its derivatives taken at the point z = §L+i£2

V.
< (-1} d%
5:,544‘}' (z) = :c2='a BJ' (z)gg.‘ E(7) (3.1)
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where B§kﬂl) are local fields belonging to the set {Aj}, and v_ is a
certain integer. In (3.1) we have omitted the argument z which is not
important here. The study of infinitesimal translations and dilatations of

the variable z shows that the first and second coefficients in (3.1) are

(1)

B ey =334,(2) ; B (z)=4;4i(2) (o

where Aj is the dimension of the field A.. It is evident that the

dimensions of the fields ng—l) in (3.1) are equal to

AJ"(k.,) = AJ- +7- Kk ; k=od .., _V,’ O (3.3)

Let us concentrate again on the correlation function (2.8). As has
already been mentioned in the previous section, this correlator is a single-
valued analytic function of =z possessing poles at z = Z,3 k =1,2,...,N.

Because of (2.10) and (3.1), one can write down the relation

<T(—2)/4J1(%¢)--- /4/;, (Zy) 7 =

(3.4)

_Z Z Ki(z-z, ) ( () M [ ,)3 )(zeJAJ-m(e,,,) A,;.,@«D

=4 K=o

This formula is a general form of the conformal Ward identities.

In a physically suitable theory, the dimensions Aj of all the fields
Aj should satisfy the inequality

4, 20 (3.5)
since otherwise the theory would possess correlations increasing with the
distance. 1In what follows, we shall suppose that the only field with zero
dimensions A = A = Q is the identity operator I. Comparing (3.3) with the
condition (3.5) we see that the sum in (3.1) contains a finite number of
terms vj Aj+l. Another important conclusion which follows from (3.3) is
that the spectrum of dimensions {Aj} in any two-dimensional conformal

quantum field theory consists of the infinite integer spaced series
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() -
A = A, 4K K=o, 1,2, (3-6)
Here An dencotes the minimal dimension of each series, whereas the index n

labels the series. The same is obviously wvalid for the dimensions Ej’

i.e., the spectrum {Ej} also consists of the series

= 25; -+ Iz ;‘:3 =:Ch'(rz/ e *
(3.7)

Let ¢n be a field with dimensions An and En' The variation (3.1) of
this field has the simplest possible form

Sf. qbu('a') = E(EJ%%.(?)-*A,,E/(%) 45,,,(-2-) (3.8)

since the corresponding fields B(k_l) with k 0 would have dimensions
smaller than An. A similar formula holds for the variation 6E¢n' The
finite form of this conformal transformation law is given by (1.16). We

shall call the operators ¢n with transformation laws (1.16) the primary

fields. Note that Eq. (3.8) is equivalent to the commutation relations

[Z»., #.(2)] = Zmlé% ‘7%4(%) + A,,(meZ’“é,(-z) (3.9)

which are satisfied by the vertex operators of dual theory [8,9].

if all the fields Aj(g) entering the correlation function (2.8) are

primary ones, the general relation (3.4) is reduced to the form

<T(a) % (%,) w B l2)> =
B :EE; (;E 2; ) i;jifggc'g?§§;:¥‘<:q#}(%s),,, qéytﬂz][)t;>

(3.10)

where Ays AZ""’AN are the dimensions of the primary fields 012 $oreresd
N

respectively. Note that this Ward identity relates explicitly the
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correlation functions T(z)¢l,...,¢N to the correlators o cresdy -

It is also worth noticing that the projective conformal Ward identities
(A.6) can be directly obtained from (3.10) if one takes into account the
asymptotic condition (2.14).

The primary fields themselves camnot form a closed operator algebra.
In fact, there are infinitely many other fields associated with each of the
primary fields ¢n. We shall refer to these fields as secondary with respect
to the primary field ¢n. The dimensions of the secondaries form the integer

spaced series mentioned above. These secondaries, together with the primary

field ¢n » constitute the conformal family [¢n]. It is essential that under
the conformal transformations every member of each conformal family
transforms in terms of the representations of the same conformal family.

50, each conformal family forms some irreducible representation of the
conformal algebra. A complete set of fields {Aj} consists of some number

(which can be infinite) of the conformal families

{/4_,'] = o [ &, ] (3.11)

To understand the nature of these secondary fields, consider the
product T(§)¢n(z,;). This product can be expanded according to (1.6), the
coefficients C:j being single-valued analytic functions of £~z due to the
relation (2.7) and the local properties of the fields T(%) and ¢n(z,z).

Therefore, this product can be represented in the form

—- g ~2+ K (-k)
T(3) (z) =2.(3-2)° &, (=) (3.12)
K=o

where we have again omitted the dependences of the fields on the variable z.
The dimensions of the fields ¢g-k) are given by (3.7). The singular terms
in (3.12) are completely determined by the transformation law {3.8)
[remember (2.10)]. Thus the first two coefficients in (3.12) are

qé'(-f)(%) = —8?3:" q&(_z) ; qgn(o)(a) = Aac;é‘(_z_) (3.13)
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The coefficients ¢g-k); k = 2,3,..., of the regular terms in (3.12) are new
local fields. To prove the existence of these fields, it is possible to

expand the Ward identity (3;10) in power series in, say, z-z);. These new

i‘k) e [o ] The

are more complicated

fields are representatives of the conformal family [¢n]; ¢
(-k)
n

than those of the primary field ¢n. An infinitesimal conformal

conformal properties of these secondary fields ¢

transformation and comparison of the variations of both sides of (3.12)
yields

S 2)= £ ) +(0,49 @) 4 z) +

s kel 1 4% (t-k) _ ke

(3.14)

The fields ¢iﬁk) do not exhaust the conformal family [¢n]. Consider,

for instance, the operator product expansion

Tlz) $.%0) = 75 (-2 22 (13- 1) %, (2) +

(3.15)

¢, » , oo aek Lk,
=4 ' i

The generators accompanying the singular terms in (3.15) are

unambiguously determined by Eq. (3.14). In particular

& ") 2 E M) . O ) (4 Ty

=-k.,~k
The new local fields ¢( 1>7k2)

N with k) )1 also belong to the conformal
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family {¢ ]. The variations 6E¢(_kl’—k2)

1 are expressed in terms of fields
(=21,=%9)  (-2)
N N

and ¢n.

Considering the operator products T(§)¢;-k1’_k2)(z),...,etc., one can

discover an infinite set of secondary fields

(¥ ~ky, ... , = Ky) (3.17)
¢é; 7 b J (’i? )

where kiz 1 and N = 1,2,... . The fields (3.17) can be defined by the

explicit formula
‘?%.(_m'_‘cz' ""—‘9}2) =L @ g (@) Lo (D) % o

where the operators L~k(z) are given by the contour integrals

Iy T(3)
Lolz)=¢ s 2 &+ (3.19)

The integration contours associated with each of the operators L_p (zi) in
i

(3.18) enclose the point z and also the points §i+l’ §i+2"°°’EN which are

the integration variables corresponding to the operators L on the right-hand
side of L_ki 8, The dimensions of the fields (3.17) are

(k')"'l ky)
"

A = A4, tk +ky+t -+ Ky (3.20)

The infinite set of fields (3.17) constitutes the conformal family [¢n].
These fields are not linearly independent (see below). 1In fact, in general,

the fields (3.17) with klsgkz ,...,5gkN form the basis 9). Note that

"

4,5{-»!, ~IG, =Ky, .., Ky) _ 2 45(—1:,, Iy e, =iey) (3.21)
' P2 'k

Therefore, the conformal family [¢n] naturally includes all the derivatives

of each field involved. One can derive from (3.18) that the variations

k
6€¢£ }; {k} = (—kl,—kz,...,-kN), are expressed in terms of the fields
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belonging to the same conformal family [¢n] and therefore each counformal

family corresponds to some representation of the conformal algebra.

To describe the structure of the representation [¢n], it is
convenient to turn again to the operator formalism. Let us introduce the

vectors (primary states)
[nD = qﬁ” (o) lo2 (3.22)

Using the properties (2.23) of the vacuum IO) and the commutation relations

(3.9), one can get

(3.23)

Lo (u> = 4,[n>
It follows from (3.18) that

%(—%'.-"-KM)(O) [0>= Lot Lok, ... Loy, 9> (3.24)

So, the conformal family L¢n] is isomorphic to the space of states generated
from the primary state |n) by the negative components Lm, m {0 10). In the
representation theory this space is known as the Verma modulus Vn (see for
example Ref. [6]). Due to the relatioms (2.21) there are linear dependences
between the vectors (3.24). As has been mentioned above, in all the cases
excluding some special values of An (see Section 5), the states (3.24) with
ki <k, g,...,skN form the basis of Vn' Note, that the vectors (3.24) are

the eigenstates of the operator L,, the eigenvalues being given by (3.20).

Up to now we have only dealt with the subgroup T of the conformal
group G. Actually, more precise definitions are required. Since the
complete conformal group is the direct product (1.10}), the representations

L¢n] are in fact the direct products of the representations of T and T

[4,”] = [/“ ®@ —I/: (3.25)

This means that it contains mot only the vectors (3.24) but all the states

of the form
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¢M{K?{E}(o)/o> = |
= Z-k,l-k; "‘Z’KM Z"Z"' Z'EH e (3.26)
ey =Ch,~s65,...,- k) ; (i} = (-4l , ..~k )

where {k} = (“kpskpseeank); {k} = (~Ky,-Kp,++,-Ey); 'k, and Ry are
independent positive integers. Remember that the operators L and L are

commutative. According to (1.16), the primary state |n) satisfies besides

(3.23), the equations

W in> = o it myo,
ln> = anln? (3.27)

| I~

‘\

{#]

Therefore each conformal family [¢n] is characterized by two parameters An

and E .
n

Because of the conformal invariance, the two—point functions
(¢n(£l)¢m(§2)) vanish unless the fields ¢n and ¢m have the same dimensions
(see Appendix A). Moreover, the system of the primary fields can always be

chosen to be orthonormal

-24, _ __ -
<&.(2,7)b.(2,2)> =95, (2-2,) (£-F,) % o

Let us define the "out" primary states by the formula

<nl = Lim <o/, (2 %) 223526 (3.29)
2,3 oo

These vectors satisfy the equations

<n/ tf;a, = ‘ f? m < ©
<ull, = A,<ul

(3.30)

and the same equations with substitution L + E, An > An. As in (3.26), omne
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has

2,2 >o° (3.31)

The orthonormality condition (3.28) can be evidently rewritten in the form
— (3.32)
<nlm> ""gwm

The conformal Ward identities make it possible to express explicitly

any correlation function of the form

<‘7-_(3'1) T(S) - T{%n) % (3) -~ Pl 2w) 7 (3.33)

in terms of the correlator

(3.34)

< #02) - Blan)>

Here ¢;,+..,¢ are some primary fields. This can be done by successively

N
applying the relation

STEITUS ) TCGy) (7)) Bulze)> =
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12
N N D s
S T(Z) - Tow) Bl2) -~ B (E) > 535)

+ZH (??_—/;)q <T(3'4) T({,.)T(S'J-H) T[Yn) ‘Pr(i”:)--- ‘?”N (‘Zﬂ)>
J=1 J

The first term in (3.35) is of the same origin as (3.10), whereas the second

one is due to the ¢ number term in the transformation law (2.12)11).

Using the correlation functions (3.33) one can compute also any

correlators of the form

< ‘?131{‘('}(-2,) ¢N{z”j(zﬂ) v (3.36)
{ks}

where ¢i 7 are some secondaries of the fields ¢i, because these secondaries
are none other than the coefficients in the operator product expansions like
(3.12), (3.15), etc. Actually, in this way the correlators (3.36) are
expressed in.terms of the correlation functions (3.34) by means of linear
differential operators. The general expression is rather cumbersome and we

present the simplest example only 12)
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<¢n(-kl,—ka;'--)'kﬂ)(£_) ¢4 ['Z'l) . ¢~(2”)> = | (3.37)
= " (z,2;) f_ (2,2) . L, ( 2,2,) D@ PR (2]

K-y

where the differential operators ﬁ-k are given by the formula

NV
L (2,%)= JYCEENL (z- 2.\ 270 (3.38)

S0, the conformal Ward identities enable one to express any correlation
functions in terms of the correlators of the primary fields (3.34). Hence,
all the information about conformal quantum field theory is contained in

these correlators.

4. CONFORMAL PROPERTIES OF THE OPERATOR ALGEBRA

In quantum field theory the correlation functions {(2.1) should obey
the operator algebra (1.6). Conformal symmetry imposed hard restrictions on
the coefficients cij(g). Consider the product of two primary fields

¢n(§)¢m(0). The operator product expansion can be represented as
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qéquﬁi?) 9%"(}30) ::-%E: :E: }%'fK;ch] )

ficjfic} Com (4.1)

Lp+2 Kk -A,-D,, EA,,-!-ZI( ~4,-4,, ¢{z}{u](

x Z 0,0)

where ¢{k}{E} are the secondafy fields belonging to the conformal family
[¢p]. Both sides of (4.1) should exhibit the same conformal properties.
The transformation law of the left-hand side is determined by (3.8); the
conformal properties of each term in the right—hand side can be derived, in
principle, from (3.18). The requirement of the conformal invarianse of
(4.1) leads to the relations among the numerical constants CE;{k}{K} with
different k's but with the same index p (see Appendix B). 1In principle,
these relations can be solved recurrently, the solution can be given as
follows

yARF{ K, (e — P4k
e P el /”fm Bl (4:2)

where Cﬁm are the constants which appear in the definition of the primary
fields ¢ themselves, the factors B (E) are expressed unambiguously in terms

of the dlmenslons A, B, B (8, b, &) only, and the condition Bp{O} =
m- p "0 m p nm
zpio}

nm
consequence of (3.25). The expansion {(4.1) can be rewritten as

=1 is implied. The factorized (in terms of B's) form of (4.2) is a

?6(% e)¢ (oo)-Z C,,,,,Z panm 5 E;’-Z"“Z“‘fﬁ’f;(z,i/o,o) (4.3)

where

{ef __p,{ic}

oSSR  AME] 4
}F(i-%/oo) z Pu”, PP ZS CPPK} }(

6,0)
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is the contribution of the conformal family [¢P]. Let us stress that the
conformal properties of the "bilocal” operators (4.4) coincide with those of
the product ¢n(z,;)¢m(0,0), all the coefficients in the power series (4.4)
being unambiguously determined by this requirement. Unfortunately,
equations determining these coefficients are too complicated to be solved
exactly. The first few coefficients B are presented in Appendix B for the
particular case An = Am.-

The constants Cim in (4.3) and the values of the dimensions An’ An
are not determined by the conformal symmetry itself. These numerical

parameters are the most important dynamical characteristics of the conformal
quantum field theory. Note that, under the orthonormality conditiom (3.28),

. s R . . . g
the coefficients Cnm = Cnm are symmetric functions of the indices n,m, %

b
and coincide with the numerical factors in the three-point functions

<”’ 4Dm(%,€),(> - Chme Z_Ah Amdfzdu A..I-Ae (4.5)
where, for éimplicity, we put.fwo points equal to 0 and . To determine the
parameters Cim and An iF is necessary to apply some dynamical principle. 1In
the bootstrap approach described in the Introduction, the associativity of
the operator algebra (l.6} is taken to be the main dynamical principle. As
is shown in Appendix C, the associativity condition is equivalent to the

crossing symmetry of the four-point correlation functions

<A, 0) 4, (5) A (55D Ay (34> (4:6)

Thanks to the relations described at the end of the previous Section, it is

sufficient to consider the four-point functions of the primary fields

<é&.(5,) ‘#/}a)ﬂ(ﬁ)qﬁm (¥.)> | (4.7)
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Due to the projective invariance (see Appendix A), the four-point

functions depend essentially only on two anharmonic guotients

- C'E!‘?Z.)(EB—e‘*) v ¥ o= (%_ht“iz.)(%;-%q)
(Z- 23) ('Z'?._ ) ( 2-2,) (2~ 2,

(4.8)

Therefore, it is convenient to set Z) =2} =® z,=12Z,=1, Z3 = Xj
X; z, = Z, = 0, and to define the functions

zZy =
Geu (x %) = Lkl Fpl1, 1) (2, Z)Im> (4.9)
W /
In terms of these functions the crossing symmetry condition is
mi — —_
Gl (x,E) = Gug (1-%,1-F)
(4.10)

A £€wm
—~248, — —24, 1 1/
= 9 "DC G‘hu( /x, /x)
Substituting the expansion (4.3) for the product ¢n(x,§)¢m(0,0), one can

rewrite (4.10) as

4 —_ p du _
G;l:('x}x)-*% Chwckep 74.,‘”(?'1:’&) (4.11)

where each of the “"partial waves”

-1 Dy-A,-B,., —A,y-8,-4,,
Atk (prz, 7 = L) oc 970 bm g Ay =8l
(4.12)

x Ll olt,4)Wp (x,% [0,0)|0%

fepresents the "s—channel” contribution of the conformal family [¢p] to the

four-point function (4.9). It is convenient to introduce the diagrams

associated with these amplitudes
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() o)
14 n
ﬂnmz(f/x, x) = /\m P < (4.13)

©
(x') l’O)

Then the "partial wave" decomposition (4.11) can be represented as

¢

n ¢ n
4% —N - e >_P_<
G'nm (x,x) = ):f = Z- Chwcftp o (4.14)
WA K P )

It is clear from (4.4) that the amplitudes (4.12) have the following

factorized form
O 1, %) = Ty (1) Fr (P 1)
A, (/o/x,x)- nw (P12 T OF (4.15)
where, for instance, the function F is given by the power series

‘?;.f"(f/xf =

-4, amz F{d Ek‘, <K‘4’¢(f I)[-K, Z-/ql >
{,‘} <k| dy(1,1) lp>

The matrix elements in the right—hand side of (4.16) can be computed exactly

(4.16)

o
——

with the use of the commutation relations (3.9) and Eqs. (3.30). Therefore,
the functions (4.16) are completely determined by the conformal symmetry;
these functions depend on six parameters: five dimensions An’ Am’ Ak, Ai’

AP and the central charge ¢. We shall name (4.16) the conformal blocks

because any correlation function (4.7) is built out of these functions F.

The crossing symmetry conditions for the four—point functioms (4.9)

can be represented as the following diagrammatic equations
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W £

% C""" C""f >——< Zche Me a4 GdAD

¥

The analytic form of these equations is

2 Coy F X pI)T L (p 17y =
f (4.18)

-_ X q 5 —_— -—
- %—l Che kaq :,-nvzk(? ,4"x) ‘J‘ul:k(?{ 4"2’.)

Lf the conformal blocks F are known, (4.18) yields the system of equations
determining the constants An, En' Therefore the computation of the
conformal blocks (4.16) for general values of A's is the problem of
principal importance for conformal quantum field theory. The first few
terms of the power expansion for these functions are givem in Appendix B,
where the case An=Am=Ak=A£=A is considered for the sake of simplicity.
Although the conformal blacks are not yet known for the general case, there
are special values of the dimensions A (associated with the degenerate
representations of the Virasoro algebra; see Section 5) when the
corresponding conformal blocks can be computed exactly. In these cases they
are solutions of certain linear differential equations; the simplest
example is given by the hypergeometric function. In these special cases the

bootstrap equations (4.18) can be solved completely.

5. DEGENERATE CONFQRMAL FAMILIES

The representation VA of the Virasoro algebra is irreducible unless
the dimension A takes some special values [6,7]. For these values the

vector space V, contains a special vector (the null-vector) [ %) E:VA

which satisfies the following equations
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-

LalX> =0
Lo (> = (a+K)[X>

characteristic of the primary states; here K is some positive integer. For

h>o
(5.1)

example, one can easily verify that the vector

2
//Y> =[Z-2 "'2_(24+4)Z-1]/4> (5.2)

(where lA} denotes the primary state of the dimension A) satisfies (5.1)

with K = 2 provided A takes any one of the two values

1
A= 57 [5‘—-6 *Vlc-1)Ce-25) ] (5.3)

In general, the null-vector |x) can be considered as the primary state of

its own Verma modulus V . Therefore, the representation VA turns out to

MK .
reducible. One obtains the irreducible representation Vglr) if the null-
vector |y) (together with all the states belonging to VA+K) is formally put

equal to zero
[X> = o (5.4)

Note that Eq. (5.4) does not lead to contradictions because due to (5.1) the
null-vector is orthogonal to any state of VA and, in particular, has zero

norm

<A X> =0 Y>> €V,
LAY = o . e

In conformal quantum field theory the meaning of this phenomenon is
the following. If a dimension A of some primary field ¢A happens to take
one of the special values mentioned above, then the conformal family [¢A],
formally computed according to (3.18) proves to contain the special
secondary field XAtk g[¢A] which possesées the conformal properties of a
primary field, i.e., satisfies the commutation relations of the type (3.9).

This field corresponds to the null-vector [x) €V, and we call it the
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null-field. For example, if A is given by (5.3) the operator

_ g 2) 3 2% 4

is the null-field.

Formally, the extra primary field L gives rise to the conformal

family [ which is embedded into [¢A]. Note, however, that any

X ptg ]
correlation function of the form

L Xype (B B (7)) Fo (27

vanishes. 50, the null-field Xpq C2D be self-consistently considered to be

Zero

XA"’:K = © (5.7)

This condition obviously kills all the secondaries of the null-field

[%A-!--.K] =0 o

If Eq. (5.7) is applied, one gets a true irreducible conformal family
L¢A] of the original primary field ¢A' In this case the conformal family

contains "fewer” fields than usual and we call it a degenerate conformal

family; we shall also call degenerate the corresponding primary field ¢A.

All the special values of A corresponding to the reducible

representations V, have been listed by Kac [7] (see also [6]). These

A
values, which can be labelled by two positive integers n and m, are given by

the formula

_ L, L, K 2
Atmy = 80 +(Fn +Fm) (5.9)

where
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A, = c-1 (5.10)

and

o Vvi=c ZFVar-c
di = ﬁ—q— (5.11)

If A = A(n m) then the corresponding null-vector has the dimension
3

Alnmy + UM (5.12)
Let us call ¢ the degenerate primary field having a dimension
13) (n,m)
A . Note that
(n,m)
O
A(l,f)
{5.13)
; , ; 14)
It can be shown that the field ¢(l 1) is z independent, i.e. s
2>
< =

The dimensions A(1,2) and A(Z,l) are just the two values given by (5.3).
Consider the correlation functions of the form

<l/?n,mj (Z) 9%(}'4) ‘?SA/ (¥i) > (5.15)

An important property of these correlators is that they satisfy linear

partial differential equations, the maximal order of derivatives being

nm 15). To make this evident, let us recall that the correlators of any
secondaries
(“1G,-Kz, =Kz,
< L/?h m; 2o (%)Qb.,(}?)---qé/(?#) P4 (5.16)

can be expressed in terms of the correlation function (5.13) by meéns of

the linear differential operators [see (3.37)]. The null-field )XA+n is a
k’...,

certain linear combination of the secondary fields ¢( l) .
’
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Therefore, the differential equation for (5.15) follows directly from
Eq. (5.7). For example, taking into account (5.6) and (3.37), one obtains
for the degenerate field ¢(1,2)(z)

3 P _ ¢ o«
/2(25—-}-4 2 2% ‘é(g-gi) % '2" Z; 3%

(5.17)

X <:; ‘;zgz) (3;‘) q&f (;},) e q#mf(agﬂf):> =

where § = A(I,Z) and Al’ AZ,...,AN are the dimensions of the primary fields
¢l’ ¢2,...,¢N, respectively. The correlation function involving the field
¢(2 1) satiigies the same differential equation, the only difference being
b = A(Z,l) +« The differential equation satisfied by the degenerate

fields ¢ and ¢, ia presented in Appendix D as another example.
(1,3) (3,1)

In the case of four-point functions
l'ér(n,m) (2 [ 2, 2 =< ‘-f’(“,h) (1?)‘?51 (2,)P.(2,) 453(-23)> (5.18)

the partial differential equations can be reduced to ordinary ones.
Actually, in this case the relations (A.7) can be solved for the derivatives

blazi; i=1,2,3. For example, substituting these derivatives into
{5.17) one gets the ordinary Riemann differential equation

A‘.
{2.(2.35+4)di?— + Z [2 - 2; c'z & ——z,;)zj +

¢~t
(5.19)
2 5
+ A
+> 2t Y(zlzz,2,) = o
f:‘:‘; (z-2;)(2-%) bE TS
where A), = Aj¥A,=hg, etee; 5= by oy, ¥ =¥y oy 0or 6= 4, 4y,

¥ = W(Z 1" So, for the cases (n,m) = (1,2) or (2,1) the four-point
»

function (5.18) can be expressed in terms of the hypergeometric function.



_33_

Let us consider the operator algebra containing the degenerate
fields. Some important information about this operator algebra can be
obtained from the differential equations discussed above. For example,
cousider the product ¢(z)¢A(zl), where ¢A is some primary field of dimension
&, whereas ¢(z) temporarily stands for one of the degenerate fields ¢(l,2)

or ¢ + Let us substitute the expansion
(2,1) P

Viz) @ (=) =
= Comt (2 —24)2[9% (7,)+(z -2,)/8(-')6;%{#1)(@,)4,...:{

(5.20)
into the differential equation (5.17). In (5.20) ¢A' denotes some primary
field of dimension A'; x = A'-A-8 where & is the dimension of the field ¢,
i.e., one of the values given by (5.3). <Considering the most singular term
as z > z;, one immediately obtains the characteristic equation determining

the exponent x

3 2 (®2-1) o
— A <+ - o
20285+ 1) (5.21)

i

To describe the solutions of this equation, it 1s convenient to introduce

the following parametrization of the dimensions
-— 2
Alx) = Lo+ 7 o (5.22)

where Ay is defined by (5.10). If A = A(a), then two solutions of (5.21)

are given by

/!

A;z) = A, *TJL(O‘ - ol )® (-23)

where a, are given by (5.11) and o, (x_) is chosen if ¢ = ¢(1 2)
- b

(¢=¢(2 1)). Let ¢(a)(z) be the primary field with dimension (5.22). The
2

result of the above consideration can be represented by the following

symbolic formulae
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%,:.) #}4) = [¢(o(-—ol+)j + [?5(«“(4;]
'7’?1,1) 45(,,() = [¢fd—o(—)] + [ 9£(o(+ a(_)]

(5.24)

Here, the square brackets denote the contributions of the corresponding
conformal families to the operator product expansion of ¢(z)¢(a)(zl). In
(5.24) the over-all factors standing in front of these contributions are
omitted. These factors certainly cannot be determined by simple
calculations like the one performed abovel7). As we shall see in the next

Section, some of these coefficients could vanish.

It can be shown that the "fusion rule” (5.24), when generalized to

the cases of arbitrary degenerate fields ¢(n m)? takes the form
. 3

14-hn 14+h
l/z”") ‘??d) % KZ [ ¢(a(+€°( +x<,<*)_7 (5.25)
=1-w = J-h

where the variable k runs through the even (odd) vaiues, provided the index
n is odd (even); the same is valid for the variable & and the index m. So,
in the general case, the sum in (5.25) contains nm terms in agreement with
the fact that the degenerate field ¢(n,m) satisfies the nmorder

differential equation.

We see that the differential equations satisfied by the degenerate
fields impose hard constraints on the operator algebra. Certainly, in the
general case, these differential equations do not provide emough information
to determine the correlation functions (5.15) completely. Even in the case
of the four-point functions (5.18), one has to take into account the z
dependence of the fields and to impose the constraints of locality. In
the next Section, we shall consider the "minimal™ models of conformal

gquantum field theory in which all primary fields involved are degenerate.
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6. MINIMAL THEQRIES

Let us consider the "fusion rule" (5.24). The substitution ¢(a) =

= ¢(1’2) yields

l/?;z) q’(f,z} = Z—L//QUJ +[¢(531J (6.1)

Here (5.9) is taken into account. Similarly, one gets for m y1

%,2.) tX?:,».J = [‘/’(t,m-:)] +[‘/’(:, hw)j (6-2)

So, if the degenerate field ¢(1’2) is involved in the operator algebra, in
the general case, this algebra includes also all the degenerate fields
¢(l,m); m = 3,4,... . Moreover, assuming that the operator algebra
includes also the degenerate field ¢(2,1) and, using (5.21), one can obtain
all the degenerate fields ¢(n,m)' In the "fusion rule” (5.21) the fields

and ¢ act as the "shift operators”

Ya,2) (2,1)

(//(I,J.) "/f'h m) = [%(h,m-:)_-] + [ ‘/7":"“'”)] (6-3a)

‘/’(z,:) L/’(h,m) = ["L(h-l,m)] + ["L("“)"‘)J (6.3b)

The following comment is necessary. Using the rules (6.3)7%7

formally, one would get as a result all the fields of dimensions A(n m)
»

given by (5.9) where the integers n and m take zero and negative values, as

well as positive ones.

In fact, fields of dimensiouns A(n,m) with zero and negative n,m drop
out from the algebra, 1.e., the operator algebra developed by "fusing" the
fields ¢(1’2) and ¢(2’1) proves to contain the degenerate fields ¢(n,m)

(n,m )0) onmly. To understand the nature of this phenomenon, consider, for
instance, the product ¢(l,2)¢(2,1)' Analyzing the differential equation for
the degenerate field ¢(l,2) one gets, according to (6.3a)

L/?gz) q/(ﬂ,/) = C"f [?b(z,a)] -+ C;_[ L/Zz)g)] (6-4)

= At 2, In
(2,0y = botler)
6.4) we have written explicitly the numerical coefficients C, and C., of the
1 2

where ¢(2 0) denotes the primary field of dimension A
3
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the corresponding primary fields in the operator product expansion; in the
above symbolic formulae, like (6.1)-(6.3), such coefficients are omitted. On
the other hand, the field ¢(l 2) being alsoc degenerate satisfies the

»

differential equation (5.17) which leads to the expansion
/ /
(’I/n,z) q’(z,n = 4 [‘p(o,.:.)] + dz [%(z,u.—] (6.5)

where the field ¢(0,2) has dimension A(O,Z) = AG+(a_) and Ci, Cé are some

numerical coefficients. Comparison of this formula with (6.4) gives that
= v = = '. 1

C1 C1 0 and C2 C2 Hence, the expansion of the product ¢(l,2)¢(2,1)

contains the contribution of only one conformal family

Y60 fron = ["'?z,a)] e

We shall call the phenomenon described above the truncation of the

18)

operator algebra . It can be shown that for the degenerate fields ¢(n m)
this is the general situation: the degenerate conformal families [¢(n m)
with n Y0, m }0 actually appear only in the "fusion rules” like {(6.3). The

general "fusion rules” for the degenerate fields have the formlg)

n +”?. M, +Wll-4

w(u,m) ‘#(n“.,) _Z Z [ L{/(*f,é’)] (6.7)

K=[u-nlaq €=1m-ml+A

where the variable k (L) runs over the even integers, provided ny+n, (ml+m2)

is odd and vice versa.

So, the degenerate fields (more precisely, the degenerate conformal
families) form the closed operator algebra. This observation gives rise to
the idea of conformal quantum field theory in which all the primary fields
are degenerate. To examine this possibility, let us concentrate once more

on the Kac formula (5.9). It is evident that there are three distinct

20)

domains of parameter ¢ . If ¢ > 25, the second term in (5.9) is negative

and the dimensions A( become negative for sufficiently large n and m. If

n,m)
25%¢c )1, the dimensions A(n ) are, in general, complex. Neither

»
possibility is acceptable in quantum field theoryzo). Therefore, in what

follows, we shall consider the domain
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< ¢ £ 1
o ) (6.8)

To understand the properties of the spectrum (5.9), let us consider the
"diagram of dimensions”™ shown in Fig. 1. The vertical and the horizontal
axes in this Figure correspond to the values of the parameters n and m in
(5.9); the "physical" (i.e., the positive integer) values of these

parameters are shown by dots. The dotted line has the following slope :

| Vls—d; 1—c
Oé$ =
zfg & =— Vol Vic—c +V4-¢ (6.9)

The value (5.22) of the dimension is associated with each point of the plane
in Fig. 1, the parameter & being proportional to the distance between the

point and the dotted line.

1f the slope (6.9) takes an irrational value, the dotted line in
Fig. 1 passes arbitrarily close to some of the dots. Since at Ay is
negative at c4{1l, we meet again with the problem of negative dimensions.

Let us consider, however, the cases of the rational slope

{59 —_ — ,E:(_Z_i ) P/? (6.10)

where p and q are positive integers. The characteristic feature of the
corresponding values of ¢ is that each degenerate representation VA(n,m)
contains not only one, but infinitely many null-vectors of different
dimensions; this is evident from (5.9) and (6.10). In these cases the
irreducible conformal families [¢(n’m)} obtained by nullification of all the

null-fields contain considerably fewer fields than the usual families and we

call conformal quantum field theories, corresponding to (6.10) and involving

these degenerate fields ¢(n,m)’ the minimal theories. It is important that
in the minimal theories the correlation functions (5.13) satisfy infinitely
many differential equations obtained by the nullification of all the
corresponding null—fieldSZI). This fact enables one to prove that the
operator algebra of degenerate fields in the minimal theories possesses not
only "truncation from below” described at the beginning of the Section, but
also the "truncation from above”. Namely, if one starts with the fields

with ¢ {(n(p, 0 {m (g, then the degenerate fields with n > p or

Y(n,m)
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m>q drop out from the "fusion rules” (6.7) [like the fields ¢(2 0) and
2

Q(O,Z) in (6.4) and (6.5)]. In other words, the conformal families [¢(n,m)]

with O {n (p; O(m{q form the closed algebra which can be treated as the
operator algebra of quantum field theory. Note that [under the condition
(6.10)] n=p, m=gq are the co~ordinates of the nearest dot in Fig. 1
through which the dotted line passes. Degenerate fields with dimensions
associated with the dots inside the rectangle 0{(n {(p; O {(m<{gq, shown in
Figs. 2 and 3, form the closed operator algebra. Due to the diagonal

symmetry of this rectangle, there are (p-1){q-1)/2 different dimensions.

Let us consider in more detail the simplest non—-trivial example of

the minimal theory corresponding to the case
FA? = A/ (6.11)

which takes place if

o= % {6.,12)

The “"diagram of dimensions” for this case is shown in Fig. 2. Let us
demonstrate the "truncation from above" using this example. The dimensions

corresponding to the dots im Fig. 2 are

byy = B3 T ©
- 1
beo,y = A3) = % (6.13)

4
Ay = 82y = e

Kespectively, there are three degenerate fieldszz) which we shall denote as
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£ _ .4/(2’) - '“/’(/,3) (6.14)

Consider, for instance, the product e€+c. The field ¢, being equal to

¢(2 1y satisfies the second order differential equation (5.17). Therefore,
3

according to (6.3b),

E.-€ = %2,:) ('//(Z,r) =4[I] + da [L//(-?,f)j (6.15)

where the field ¢(3 1) has dimension A = 5/3. On the other hand, since
3

(3,1)
g = ¢(l 3)° this field satisfies the third order differential equation (D.8)
H]

and hence

52 = L{?l,s) %1,3) = d,/[I] +C: [ ‘{;I,.'?)] ad C.s/[%(vf).?(()'le)

where the field ¢(l 5) has dimension A = 5/2. Comparing (6.16) and
]

(1,5)
(6.15), one concludes that in fact

E - &

I

[ I 7 (6.17)

By a similar consideration, one can obtain the following "fusion rules” for
the fields (6.14)

Te=1rl€1 ;5 &€-¢ =[7T7;
L o= [s] [ ] ; (6.18)
Ir-I =777 ; c.s = [T]+ &,

N e

™
9
|

-

In Appendix E one shows that this minimal theory describes the
critical point of the two—dimensional Ising model, the primary fields o, €
and I being identified with the local spin, energy density and identity

operators, respectively.
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In Fig. 3, the "diagram of dimensions” for the minimal theory

characterized by the wvalues

% - %

is presented as another example. The corresponding numerical values of the

c = :7'/40 (6.19)

LY )

dimensions are

Ay = Ay) =0

4
Ars) = 4(32) e
by = L0 = Y2
A(zlz_) = A (ZJ3) 3/80
46, = F/16

(6.20)

1l

Note, that due to the inequalities (6.8), the integers p and q in

{(6.10) are restricted as follows

2
/3< % < 7 (6.21)

Nevertheless, there are infinitely many ratiomal numbers satisfying .(6.21)
and each of them corresponds to some minimal model of conformal quantum
field theory. We suppose that the minimal theories describe the second
order phase tramnsitions in the two—dimensional systems with discrete
symnetry groupsZB). In any case, each of the minimal models seems to
deserve a most detailed investigation. Note that the anomalous dimensions
associated with each of the minimal models are known exactly [they are given
by (5.9)], whereas the correlation functions can be computed in the
following way. At first, one has to derive the corresponding conformal
blocks as solutions of the respective differential equatioms with
appropriate initial conditions. Then, substituting these conformal blocks
into the bootstrap equations (4.18) and taking into account the local
properties of the fields, ome should calculate the structure constants Cim

of the operator algebra which provides enough information to comstruct the
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correlation functions. For the minimal theory (6.11), this computation is
presented in Appendix E. In the general case, it has not yet been per—

formed.
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APPENDIX A

Let Ly, Ly, Ly; and i—l! EO’ i+l be the generators of the

infinitesimal projective transformations

2 .,
2 >2 + &, +& T +E42F

—_ - = = 4
-_2—_>-2—+£_4.+£°.7_ + E4FT, (A.1)

where € and € are infinitesimal parameters. The operators LS; s = 0, 1

gsatisfy the commutation relations

[Lo, L24] = t L1yg
[44)[_(] = ZLD

(A.2)

The same relations are satisfied by E‘s, L's and L's being commutative. The
operators P° = L_l+i_1 and pl = —i(L_l—i_l) are the components of the total
momentum, whereas M = i(LO—EO) and D = L0+i0 are generators of the rotations
{Lorentz boosts in Minkowski space~time) and dilatations, respectively. The
operators L, and El correspond to the special conformal transformations.

The vacuum of conformal field theory satisfies the relations

<elfls, = L [o> =0 Sza,'_*'l_. (A.3)

which are equivalent to the asymptotic condition (2.14).

We shall call the local field OR(Z,E) quasiprimary, provided it

satisfies the commutation relations

[, Cetem)] = {25755 + (sende 2°{ Oe(,8)

[Z;,Og(:!;?)]z{_és*% +(s+1)de _z'?-S; Op (2,7) (A.4)
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where s = 0, *1. The constants Al and A, are the dimensions of the field

01. These relations mean that the fieldi Oi(z,g) transform according to
(1.16) under the projective tramsformations (1.15). This distinguishes them
from the primary fields ¢n which transform according to (l1.16) with respect
to all conformal transformations (1.9)24). In conformal quantum field
theory, the complete set of local fields Aj forming the algebra (1.6) can be
constituted out of an infinite number of quasiprimary fields 02 and their

co~ordinate derivatives of all orders
2 .
_ 2 2. 2 2° ;
fAj} - {06’ %-F. 03, 2 05; 2z? 2 » 22202 ¢, " (4.5)

Consider an N-point correlation function of the quasiprimary fields.
It follows from (A.3) and (A.4) that such a correlation function satisfies

the equations
AS < 0{, (2-'1 -é:;) 0& (E.liz’—) O(y (%”; E';"/)> =0 (A.6)

where s = 0, *1 and KS are the differential operators

A .
A _—
Aog = Z} 22, ?
N =] A .
/To = Z[‘Zi >2; N L) ’ (A7)
Lt=1 .
A ad .2‘_.'3_. 2 2:A;
A4=Z{'Za9e+ 4c ),

where A, bp,.«¢,0y are the dimensions of the fields 011, 012,...,0£N,

respectively. Equations (A.6) are the projective Ward identities. Note
that these Ward identities follow directly from the general relatiomn (2.9).
For the infinitesimal projective transformations, the function e(z) is
regular in the finite part of the z-plane and, due to the asymptotic
condition (2.14), the contour integral in (2.9) vanishes. Let us stress

that for the general conformal transformations, the analytic function &(z)
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possesses singularities; this is why the corresponding Ward identities
cannot be reduced to the closed equations for correlation functions like
(A.6).

The general solution of Eqs. (A.6) (and the analogous equations

+ 3 A, Ei) is

obtained by substitution z i

i
<0y (2,7) Oy 2,70 -~ g (205> =

r“ —— ——— -.-c.- —
= /7 (2,:" EJ.) ‘J(Zc — %)):j X Y(xke x.’ff
c<J

(A.8)

Yo 7Y
where Yij and ;ij are arbitrary solutions of equations

% LA -
Z Y = 24; ) E-/ &) =24 (A.9)
L3 J .1

S b

J#C

whereas Y is an arbitrary function of 2(N-3) anharmonic quotients

W, [z?;-—Z;)(q?K--Ze) . fffz(f—z"_?)(f‘“g") (A.10)
Xy "Gz (zez) T Y ArRNESE)

In the particular cases N = 2 and N = 3, the correlation functions
are determined by Eqs. (A.8)—(A.10) completely up to a numerical factor.
Namely
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<G z) 0y, (2, Z)> =

, — — A.11)
O f Aq#dy o By w1y, (

-24( - _—2& . B
(2-2,)""(Z-2)  Deg, f 4ez4¢ ;3,2

for N = 2 and

L0q(2,7) 0, (2, 7) g (2,2,) 2 =

p—

3 __A‘). - _z_j-AU
= Y00 [ (-3 (573

te)

(A.12)

for N = 3, where D and Y are constants, and

L) Aoty
Ay, '—‘Ar""az"AS p ete 9

— — —_— — . &f- (A.13)
lez = Zﬁ, 4.412 - ZL3 / =2

Note that the functions (A.ll) and (A.l2) are single~valued in Euclidean

space {obtained by the substitution Ei = zg), provided the spins Sy = Afol

of all the fields involved take integer or half-integer values.

In conformal quantum field theory, the expansion (l1.6) can be

represented in the form
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Y ly, K
Q(2,% ) Op,(00) =
b k =0
- (A.14)
etk
A FK=8-8, 3 Ayt R-B -4, [ 5 e Oe (s S‘)]

X Z 3"93 Tz o

2.,k,k =

where Y£3i " are constants, k and k being integers. The transformation
properties of both sides of this equation with respect to the projective
transformations (A.l} must coincide. Commuting both sides of {(A.l4) with

the projective generators Ls’ s = 0,*1, and using (A.4), one gets the

equations relating the coefficients Yi3ik’ﬁ with different values of k.

Solving these equations, one can rewrite (A.l4) as

(A.15)
=
/ /o 2 T o m = >
F(A,ZAJEQF)F(A,ZA,EQKJ 0@’/3:,;)/__0
>, 8=
where the case R; = &, is considered for the sake of simplicity; Al
L 1
Al = Ay A = A'. Imn (A.l5) Yl 2,0,0

o 98 are the constants coinciding with Y

XA
in (A.14) and F(a,c,x) denotes the degenerate hypergeometric function.

Obviously, each conformal family [¢n] = Vn® Gn {see Section 3)

contains infinitely many quasiprimary fields. These fields correspond to the

states satisfying the equations

[, 1> = Ljl¢>=0©
L,]e> = de > ; [.1¢>=2a,1¢7

(A.16)

It can be shown that the basis in L¢n] can be constituted out of the states
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/Zq)n( Z:,)M [€> (A.17)

where n, n = 0,1,2,... and }2 are the quasiprimary states belonging to
L¢n]. This statement is equivalent to (A.5) because the operators L., and

E—l are obviously associated with the derivatives 3/3z and d/dz.
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APPENDIZX B

Here we shall demonstrate that the coefficients Biik} in (4.2) are
determined completely by the requirement of the conformal symmetry of the
expansion (4.1). For the sake of simplicity we consider only the particular
case An = Am = A. Applying both sides of (4.l) to the vacuum state |0}, one
gets the equation

lﬂg'ﬂzdﬁ — 41¢-=244

& (2,7 )4 —Z C Z x

(B.1)
f(2) G (Z) |ae>

where |A:7 is the primary state of dimensions &, A and the operator ¢A(z) is

given by the series

8¢ 4}
(&(1'?:)-{ FA: kZ-k'Z-k,_... [-k” ’
k3

(B.2)

The same formula, with the substitution z > ;, B E, L » i, holds for

EE(E). Let us consider the state
/ /

/‘-?:)A> = $(z) 4> (B.3)

It can be represented as the power series
=2 W /
[z o> = 2, Z7ANMAD (B.4)

/ N=o0

where the vectors |N,A') satisfy the equation

[.o /A/, A/> = (A/+/\/)'//\/) A/> (B.5)

To compute these vectors, let us apply the operators Ln to both sides of
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(B.1l). This leads to

d
[2‘0#3'? +A(n+4)¥7/2‘14/> = 4, /234/> (8.6)

Substituting the power expansion (B.4), one gets

Zh //V+n) A/> = (N+(n-1)4 +A/) I/\/) A/> (8.7)

Actually, one can consider Eq. (B.7) with n = 1,2 only, because due to
(2.21) the remaining equations follow from these two. Solving these
equations, one can compute the power series (B.4) order by order. 1In the

first three orders, the result is

/N 2 22 Ale1 , 2
/2)11)—?/’/""&[_4-# L_,,-#-

Y 24744 (B.8)

A8 1) 428024/ +1) (Z
C(287+1) +247(pp"-5) ' =74 2(24/+:) ; &>

+ £

This formula gives the first three coefficients B in (4.4).

Obviously, the conformal block F(A,A',x) = Fﬁi(b'lx) is given by the

scalar product
al24
Fla,8’, ¢) =x <147 x,a”> (8.9)

The first few terms of the power expansion of this function can be obtained
directly from (B.8)
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/ / 4
F (4 47x) = xd—ldz/f-* 4 A'(a%q)?
N ' ——..x + L e LA x-?._+
) 2 4(247+4)

. [81-8) ~ 24 (24741)] ¢ 22 N
2028%+1) [¢ (2474 1)4287C84%5)] j
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APPENDIX C

Consider the associative algebra determined by the relations
K
A A =2, C,. Ac (c.1)
I T » Ix

Equation (1.6) is just (C.l) where each of the indices, say I, combine the
space co-ordinate ¥ and the index 1 labelling the fields. Let the algebra

(C.1) be supplied with the symmetric bilinear form

DJ::r = < '41‘ As D ’ (C.2)

which is none other than a set of all two-point correlation functions. Let

us introduce the form
—_— ik’
CIJ'lc = 21:’ :Dklc’ C:l‘:r (C.3)

and suppose that it is a sywmmetric function of the indices I,J,K.

Obviously, (C.3) coincides with the three—point correlation function

CIJ‘K = < A; Ay Ax> (C.4)

and it can be conveniently represented by the "vertex” diagram

I
= (C.5)
CIJ'IC k T
We also introduce the diagram
T I 7
D =
(C.6)

for the “inverse" propagator D]—'J defined by the equation

b
Ik — (C.7)
ZD Dy = Sz
[
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The associativity condition of the algebra (C.l)

w M M K,

K

can be represented as the diagrammatic equation

Z >£< % < (C.9)

K

which coincides with the “"crossing symmetry” condition for the four-point

functions

<'4I AJ' ‘4L '4“4 > ' (C.10)
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APPENDIX D

In this Appendix we shall derive the differential equation satisfied

by the correlation function
< ¥(z) 954[3;) 952_('3;) ‘év (Z,) > (D.1)

where ¢(z) denotes any one of the degenerate fields ¢(1 3)(:z.) and ¢(3 l)(z)
> »
whereas ¢i(z) are arbitrary primary fields with dimensions Ai, i=

= 1,2,+«..,N. First of all, let us note that the state
1%> = { (442)L g =2 Lorlr + F= L3 Jl8> o

(where |A) is the primary state with dimension A) is the null-vector (with
dimension A+3) provided A takes any one of the values A(l,3) or A(3’1),

in&o,

I -C * ¥YCc—1)(c-25)
4 = P (D.3)

An equivalent statement is that the operator

Xpoa (2) = (4+2) ¥ 2) -

3
4 > (D.4)
(-2) A2 Yz
— 2‘53’5 (2) tae1 222 )

ig the null-field of dimension A+3. In (D.4), the ¢(-k)(z) are the

secondaries of the degenerate field ¢(z) (= ¢(1 3) or ¢(3 1)) and A is given
- ]
by (D.3). The differential equation for the correlator (D.l) follows from

the condition (D.1)

Xy, =0

+3 (D.5)
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According to (3.37), we have

VN A
< ¥ ¢z 45.,(2,)... G (2v) > ={‘Z=; E-z)* "
ZA,/ 12 <Yrz) sé,(aJ b(zy)> 5 7

<¥© (2:) f?%fe, 96#(2#»‘ Z/ Z (a 2)3"'

iy (b.7)

W
1
¥ é (z-ay f:__;.:;( ¥(z) tz,). B (2y) >

Substituting (D.4) into (D.5), and taking into account (D.6) and (D.7), one
gets the third order differential equation

493_2"‘/2445 _Z”A 2
4+1 223 £ [z—a;ﬁ = (2-g) 2%

(D.8)

—Z( 2)?_92 ZZ_ - o= /<¢(z-)¢(e,)¢(z)> o

In the particular case N = 3, the derivatives a/azi can be excluded
by means of the projective Ward identities (A.7). Simple calculations lead
to the followilng ordinarxry differential equation
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e=A « c=t
3
244, 24+2+4,, d
-D =t L 4 (0.9
i=q (z- ;'ZJS %(E ?)[‘Z ?“)d
3

A+4; 1 .
T % (a—gt.)(gj_%.) z-z. T Z-7 )f<¢(*)?3(5:)¢(fg)¢(es)> =0
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APPENDIX E

As is well known (see, for instance, [15] and references therein),
the two-dimensional Ising model is equivalent to the theory of free Majorama
fermions. 1In the continuous limit, this theory is described by the

Lagrangian density
L =7 V55V +z¥3z¥ +m&¢ (E.1)

where m 1s the mass parameter proportional to T_Tc’ and (¢,¢) is the two-
component Majorana fieldzs). In what follows, we shall consider the

critical point only, where this field is massless
m =0 (E.2)

According to (E.1), in this case the fields ¢, b satisfy the equation of

motion

A _ . 2.
9-2.-‘/’-0 > DR

N

=0 (E.3)

and therefore these fields are analytic functions of the variables z and E,

respectively. We shall write

¢ =) ; F=FE e

The stress energy tensor corresponding to this theory can be computed
straightforwardly. In the case (E.2), it is traceless and the components

{(2.5) are given by
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T(z) = -L: ¢(e-)5aa“(/’(£')‘

(E.5)

— P .
F(g)=~7  P(E)3g ¥ E"

One can easily verify that the fields (E.3) satisfy the Virasoro algebra

(2.21), the central charge c being
- 1
c= 17 (E.6)

The fundamental fields ¢ and @ satisfy the relations (1.16), i.e., these
fields are primary ones. The dimensions of the field ¢(z) [E(E)] are A= 1%,
A=0 (A=0, E=%). It can be shown that four conformal families [I], [¢],
[¢], [:9¢:] constitute a complete set of fields {Aj} forming the operator
algebra (1.6).

Let us take, for instance, the field ¢(z). This primary field
coincides with the degenerate field ¢(2,1)(z) [see (6.13)]. Actually, the
operator product expansion for T(Z)d(z) [which is easily computed if (E.5)
is used] is given (up to the first three terms) by

4 y
) ¥ (z) = g-(?;)z‘P(Z-) +t5z f‘z“/’(e-) +

2 (E.7)
+ %%;‘/’(z) + O(5-2)

which shows that its secondary field vanishes. Therefore, the correlation
functions involving the degenerate field ¢(z) satisfy the differential

equation
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2 91 ud A:,' . it 4 ")
{27"52"7. ‘"Z (z-2.)° < Z2-Z; 02, [ X
= =

< ¥(z) ¢4(E'f)"' ¢/v (Z2p)> = o0

where ¢i(z) are arbitrary primary fields [which are local themselves, but
not necessarily local with respect to ¢(z)]. In particular, the correlation

functions

LY@ 4ez,) ... ) (E.9)

{which can be computed using the Wick rules) satisfy (E.8).

On the other hand, the critical Ising model can be described in terms
of either the order parameter field o(z,Z) or the disorder parameter field
p(z,z) 26). Obviously, the fields o and p are primary ones. These fields
have zero spins, i.e., Ag = EG; Ap = EH’ and due to the Krammer—Wanier
symmetry [15], have the same scale dimensions

A = A/.., = A (E.10)

The fields c(z,z) and p(z,;) are neither local with respect to the fields
¢{z) and a(;) not mutually local [151. In fact, the correlation function

<'f’(-2)6’(§-_,)... 6’(;2“)/((;”)/4(;‘2“)> (E.11)

is a double valued analytic function of z which acquires a phase factor (-1)
after the analytical continuation around any of the singular points z, =
= 5,11{4,152; k = 1,2,004,2M. It follows from the definition {15] that the

products ¢(§)0(z,z) can be expanded as
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H5)ote,3) = (5-2) % M(a¥)+ Olv—2) ]
!

i) pelaz) = (3-2]%{ 0 (27) + OG- 2)]

(E.12)

Substituting these expansions into the differential Eq. (E.8), omne

gets a characteristic equation determining the parameter 4 :
= 1
A =" (E.13)

in agreement with the known value of the scale dimension of the spin field
d_=24=1/8 [15]. Sso, the differential Eq. (E.8), together with the
qualitative properties (E.12) of the operator algebra, enables one to

compute exactly the dimension of the field G(z,;)-

We have now to compute the correlation functions of the order and the

disorder fields

< 6 (%) - 5(5”)/" (;M-H) /q(z?-“)> (E.14)

Note that the double-valued function (E.1ll) can be represented in the form

Y@ o) MlFam) D=
(E.15)

M g
=1 (2-2.y% P(z/2,%)

=

where P(zlzi,gi) is a polynomial in z:

2M-1

. K —
=0

the order 2M-1 of this polynomial is determined by the asymptotic condition
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$lz) ~ z 1 . 2 > e

(E.17)

The coefficients Gk are some functions of Zyseens2

oM’ ;l""’EZM' Due to
(E.12), the coefficient GU(zi’zi) coincides with the correlation function
(E.14). Substituting (E.15) into the differential Eq. (E.8), cne gets the
differential equations for coefficients Gk(zi,zi) which enable one to

compute the correlator (E.l4).

In fact, the differential equations for the correlation functions
{E.14) can be obtained in a simpler way. One can note, comparing (E.13)

with (6.13), that the field c(z,z) is a degenerate field ¢(1 2) with respect
. — 3
to both variables z and z.

The same is valid for the field p(z,;). Therefore, the correlation

functions (E.l4) satisfy the differential equations

M /
{:34 _22-3.-2—.2. [2/4%.) —_Z 2 2 92 }

J#e (E.18)

6@, E) - (20, T ) M Bane, Bawn ) M(en Byp)> =0

(where i = 1,2,...,2M) and the differential equations obtained from (E.18)

> Z,.

by the substitution z; i

Let us consider, for example, the four-point correlation function

G5, 5, %) = <CE)0G,)0G:) (x> =

(E.19)

-1
=(G-3)(2,-2,) (§-5,) (5~ )] 2Y (x, %)

where Y(x,§) is some function of the anharmonic quotients
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(-2)(f-%) |, 5 (2-2,)(3,-3,) (5.20)
(.- 2)(2,-2) ' = (2-2)(%-7)

x =

[We took into account (A.S)]. In this case the differential Eq. (E.18) is

reduced to the following form

[l{/sgxz

f
4 Tiz- 1)]

(E.21)
ty x?x—f) +[ = + “"Jaxf)/(x J=o
The same equation with respect to x is also valid.
Substituting

~%
Y(x,T) =[x (1-x)(1-T)] :L&(x)f) (E.22)

one gets the following equation for u(x,%)
{x(*/-x)’:_;z"l' (%—DC)%C_ +?:fé—-'; a(xjf)=° (E.23)
The change of wvariables
x = £ o g x (E.24)
reduces (E.23) to

(92492 + %/) uce, ) =o (E.25)

The equation obtained trom (E.23) by the substitution © > © is also valid.
Therefore, the general solution of these differential equations has the

form
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5 e, &
U(BE) = U (d L g + Uy Gz AT
— (E.26)
- Wl fn 2

where u {(a,B = 1,2) are arbitrary constants.

af

Note that two independent solutions of (E.21) coincide with the

conformal blocks [see (B.9)]

~7
F (Ui 0, x) = [xr-x)] ¥ 2%
4
F(Y%, %, x) =[x -] % g8

(E.27)

H

and therefore Eq. (E.20) can be considered as the decomposition {(4.l11), the
coefficients um§3 being the structure constants.
Since the field o(z,z) is local, the correlation fumction (E.20)
should be single—valued in the Euclidean domain
—_— ¢
r = (E.28)
where the asterisk denotes complex conjugation. As is clear from (E.24),

the analytical continuation of the wvariables x and x around the singular

point % = x=0 corresponds to the substitution

g > -6
- (E.29)
& —» — 6
The function (E.26) is unchanged under this transformation, provided
U, = Uy = 0O (E.30)

The same investigation of the singular point x = x =1 (or, equivalently,

imposing the crossing symmetry condition) leads to the relation
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U, = Uz

(E.31)

The over—all factor in (E.26) depends on the ¢ field normalization. We

shall normalize this field so that

e

<o (2,3) cloo)> =[2Z]" (E.32)
Then
_ 8-6
U(B &) = C3 —35— (E.33)

The four—point function given by Egqs. (E.20), (E.22) and (E.33) is in
agreement with the previous result (see Ref. [16]) obtained by a different

method.

Note that because of (E.27), the four-point function (E.20) can be

represented as
— , 7 —
G = F(%,0,x)F (o0, )+
(E.34)

+ F e, Ve, ) F( Vi, %, %)

It is evident from this formula that only two conformal families
contribute to the operator product expansion of o(£)o(0). The corresponding
primary fields have dimensions A = A=0and A= A= 4. The first of them
is obviously identified with the identity operator 1, whereas the second is

known as the energy demnsity field

E(z T) $(T) ¥ (=) (£.35)

The four—point correlation function

HG 5 5,5) =<oG) M) SRIME)> w6

can be represented in the form



- 64 -

- T8,
H =[G-z)z8)G-5)(E-7)] * X (X,T) G

where the function Y satisfies the same differential Eq. (E.21). An

investigation, similar to the one performed above, leads to the result

~ 1 >
Y(x,x)=[2xx (1-z)(7-%)] 5 ein 6; (E.38)

Therefore the function (E.36) is

H = ?(Zs,o,x)f(zg, Z, z )t
(E.39)

 F(Y%:, %, ) F (Y 0,
This formula corresponds to the following operator product expansion

")
+ =R 5% Tz + 06D}

which is in agreement with the idea of the field {» being the regularized

product TOW .

To avoid misunderstandings, let us stress that there are three

different sets of fields

147 = {[11,[+], [¥1,[€]7,
{11, [e1,[£17, (5.41)
{c:7 = £ [11, [p7, [€1f

~

S

o
i

Each of these sets forms the closed operator algebra and is appropriate to
describe the critical Ising field theory. All the fields entering the same
set are mutually local, whereas the fields entering different sets are in

general non-local with respect to each other.
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FOQOTNOQTES

Although the projective group (1.15) and the complete conformal group G
are both consequences of (1.2) and therefore appear in quantum field
theory together, we found it instructive to consider first the general
consequences of the projective symmetry. The corresponding formulae,
which are certainly nothing but the particular case D = 2 of the

results of Refs. [2-4], are presented in Appendix A.

The spin Sn of a local field can take an integer or half-integer value

only.
The representation Vn is known as the Verma modulus over the Virasoro
algebra (see, for example, [6]). This representation is evidently

characterized by the A parameter only.

Here and below, we generally consider correlation functions in the

complex space Cz, see the Introduction.

Equation (2.12) corresponds to the following transformation of T(z)
under the finite conformal substitution (1.9)

2
ey — (S2)T(5) + 545 27

where {£,z} is the Schwartz derivative [12 ]

JS

(527 = (L. /d)-2 (4%

Note that the Schwartz derivative satisfies the following composition

law

(27 = (FE) A 5s + 4525
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This central extension has been discovered by Gel'fand and Fuks [10].

It can be shown that these correlators coincide with those of the
fields

T-(O) = WP, + 2eto lrz

where ¢ is a free massless boson field and the parameter oy is defined

by the formula

C = 7—~24u2

One can easily verify that the operators (3.19), where k = 0,%1,%2,...,
satisfy the Virasoro algebra (2.21). Obviously, the operators Ln

introduced in Section 2 are none other than Ln(O).

This statement does not hold for some special values of An; see

Section 5.

This statement is not precise, because we neglected the z dependence of

the fields; the correct definition is given below.

Obviously, the fields T(z) and T(;) are not primary fields; they
belong to the conformal family [I] of the identity operator.

To obtain (4.5) in the simplest way, one can substitute the explicit
formula (3.18) and deform the integration contours so as to enclose
them around the singularities z,, ZyyeeesZye
This notation is not complete because it says nothing about the second
dimension & of the primary field ¢. This fact, which should always be

kept in mind, does not violate the conclusions we make below.

If both dimensions A and A of the field ¢ are zero, this field does not
depend on the co—-ordinates at all and coincides with the identity

operator 1.
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The simplest example of these equatiouns is (5.14).

The following interpretation of Eq. (5.17) is worth noting. Let ¢(z)
stand for ome of the fields ¢ or ¢ , O being the corresponding
(1,2) (2,1)

dimension A Then the field ¢{z) satisfies the operator

or A .
(1,2) (2,1)
equation

S_y(z)= § TEY(ER):

npmm——
2322

where y = 2(28+1)/3, whereas the singular operator product T(z)¢(z) is

regularized by means of the subtractions

TERYR): = S:,z{T(‘gH(z)-E:ﬂ;P(e)-gjz %t}

The classical limit of Eq. (%) [which corresponds to the choice
o= ¢(1’2) and ¢ -+ w] is an essential part of the classical theory of
the Liouville equation (see, for example, [13]). We suppose that

Eq. (*) plays an analogous role in the quantum theory of this equation,
which is apparently associated with the string theory [14]. We intend

to discuss this point in another paper.

To determine these factors in quantum field theory, ome should take
into account the associativity condition for the operator algebra and

local properties of the fields.

It is interesting to understand the connection of the truncation
phenomenon with monodromy properties of the differential equations
satisfied by the correlation fumctions. This problem can be most
easily investigated for the four—point functions where one deals with
the ordinary differential equations. If all the fields involved are
degenerate, the space of solutions of the differential equations
contains the subspace invariant under the monodromy transformations.
The solutions, belonging to this subspace, correspond to the degenerate
fields ¢(k,£) (k,2 }0) in (6.7) and these very solutions contribute to

the correlation function.
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The "fusion rule” (6.7) can be obtained from the following formula

%r,m) = ( %(r,z.) )M_’( (/?z,r)) "

for the degenerate field ¢(n . Although this formula scarcely has a
3

)

precise mathematical meaning, one can use it to derive (6.7) assuming

the associativity and taking into account the truncation phenomenon.

To avoid misunderstandings, let us stress that these statements by no
means exclude the possibility of the existence of quantum field theory
at ¢ 1, but rather they prevent us from including the degenerate Al

fields in the operator algebra.

In fact, these differential equations are not all independent; they

follow from the two "basic" ones.

Certainly, the analysis of the dimensions (6.13) does not prove that
the operator algebra contains only three primary fields. To elucidate
the structure of the fields constituting the operator algebra, one
should take into account the z dependence and the local properties of
the fields. TFor the model under conslideration, this is done in

Appendix E.

V. Dotsenko has noticed that the spectrum of dimensions associated with

the minimal model
’aﬂé = J;a; 5 C = ?;é;’

contains some dimensions characteristic for the three—state Potts

model.

Obviously, any primary field is quasiprimary whereas there are

infinitely many quasiprimary fields which are secondaries.

The field E is an independent component but in general it is mot

complex conjugated value of the field ¢.

The fields o and U are the scaling limit of the lattice spin Gn n and
3y
the dual spin respectively; see Ref. [16] for a detailed

definition.

un+5’m+%,
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FIGURE CAPTIONS

Figure 1l:

Figure 2:

Figure 3:

"Diagram of dimensions”. The dimension A = A0+1/ua2 is
associated with each point of the plane, o being proportional
to the distance between the point and the dotted line. The
dots with co-ordinates (n,m) correspond to the dimensions

A described by Kac's formula (5.9).

(n,m)

Diagram of dimensions corresponding to the case tgd = 3/q
(e=%). The degenerate conformal families associated with the

dots inside the rectangle form the closed operator algebra.

Diagram of dimensions for the case tgd = “/5 (c=7/10).
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