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ABSTRACT

A recently proposed gauge theory for strong
interactions, in which the set.of planar diagrams play
a dominant role, is considered in one space and sne time
dimension. In this case, the planar diagrams can be
reduced to self-energy and ladder diagrams, and they
can be summed. The gauge field interactions resemble
those of the quantized dual string, and the physical
mass spectrum consists of a nearly straight "Regge

trajectory".
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It has widely been speculated that a quartized non-Abelian gauge
field without Higgs fields, provides for the force that keeps the quarks
inseperably together 1-4). Due to the infra-red instability of the system,
the gauge field flux lines should squeeze together to 9Tl a structure resem-

bling the quantized dual string.

If all this is true, then the strorg interactions will undoubtedly
be by far the most complicated force in nature. It may therefore be of help
that an amusingly simple model exists which exhibits the most remarkable
feature of such a theory: the infinite potential well. In the model there is
only one space, and one time dimension. There is a local gauge group U(N),
of which the parameter N 1is so large tlat the perturbation expeansior with

respect to 1/N is rcasonable.

Our Legrangian is, like in Ref. 4),
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The Lorentz indices pu,v, can take the two valuec O and 1. It will be

converient to use light cone coordinates. IFor upper indices

*

xX— = (x'x x°) (3.a)

and for lower indices
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where
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Our sunmation convertion will then ke as follows,

il

g,“P/" = x/‘F/‘ = X Pu "

"+P+ + x_p = xX'pTe x"pt = X,P_* X P4

The model becomes particularly simple if we impose the light cone
gauge condition

A

f¥+

"

o
—~
1
~

In that gauge we have

-2 A (6)

- - + ’

G,

and

L = -%_Tr<9_ﬂ+)2- C‘la(’(9+m(a_\)+ g'(_'q+)$“. (7)

There is no ghost in this gauge. 1f we take xt  as our time direction, then
we notice that the field A4 is not an independent dyiamical variable because
it has no time derivative in the Lagrangian. But it does provide for a (non—

local) Coulomb force betweer the Fermions.
The Feynman rules are given in Fig. 1 [using the notation of Ref. 4)].
The algebra for the vy matrices 1is

7—1 = 'X+z = 0 (8.a)

2 (8.D)

T+ v V-7

Since the only vertex in the model is proportional to +y_ and y% = 0,

only that part of the quark propagator that is proportional to vy, will
contribute. As a consequence we can eliminate the v matrices from our

Feynman rules (see the right-hand side of Fig. 1).



2
We now consider the limit N - ®; g N fixed, which corresponds

4)

type of Fig. 2. All gauge field lines must be between the Fermion lines and

to taking only the planar diagrams with no Fermion loops . They are of the

may not cross each other.

They are so nuch simpler than the diagrams of Ref. 4), because the
gauge fields do rot interact with themselves. We have nothing but ladder
diagrams with self-energy insertions for the Fermions. Let us first concen-
trate on these self-energy parts. Let il (k) stand for the sum of the
irrecducible self-energy parts (after having eliminatea the vy matrices).

The dressed propagator is
~ik_
mis 2k, k_ - k_T (k) -i¢ (9)

Since the gauge field lines must all be at one side of the Fermion line, we

have a simple bootstrap equation (see Fig. 3)

. 4 q? ! ~i(kxp.)
Fip) = —4 (dk, dk. & '
iT(p) @Y g k? (m'+ [2(k++ p*)_f(kqﬁ](k_yp_‘)-fi) (10)

Observe that we can shift k+ + P, k+, so T (p) must be independent of

p+, and

_ gt (dk (ksp.) dk,
rr-) w? s k2 [ m- (kep )T (k+p.) + 2(k_+p )k, -'¢ ()

Let us consider the last integral in (11). It is ultra-violet divergent, but
as it is well known, this is only a consequence of our rather singular gauge
condition, Egq. (5). Fortunately, the divergence is only logarithmic (we work
in two dimensions), and a symmetric ultra-violet cut-off removes the infinity.

But then the integral over k+ is independent of I'. It is

™
2 |kxp |

S0,

t dk._
r(-) = - _}_.S = Agn. (k+p.) - (12)
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This integral is infra-red divergent. How should we make the infra-red cut-off ?
One can think of putting the system in a large but finite box, or turning off
the interactions at large distances, or simply drill a hole in momentum space
around k = 0. We shall take )\ < ’k1l < ® as our integration region and
postpone the limit A - O wuntil it makes sense. We shall not try to justify
this procedure here, except for the remark that our final result will be
completely independent of )\, so even if a more thorough discussion would
necessitate a more complicated momentum cut-off, this would in general make

no difference for our final result.

We find from (12), that

2 n
F(p) = T(p-) = ‘%‘(4’;1"}- 7';_) » (13)

and the dressed propagator is
-tk
3 2
T o+ 2k k_+ j_l_‘.t_:\'_l - it (14)
e

w

Now because of the infra-red divergence, the pole of this propagator is shifted
towards k+ — ® and we conclude that there is no physical single quark state.
This will be confirmed by our study of the ladder diagrams, of which the spec-

trum has no continuum corresponding to a state with two free quarks.

The ladder diagrams satisfy a Bethe-Salpeter equation, depicted in
Fig. 4. Let y (p,r) stand for an arbitrary blob out of which comes a quark
with mass m, and momentum p, and an antiquark with mass o, and momentum
r - p. Such a blob satisfies an inhomogeneous bootstrap equation. We are
particularly interested in the homogeneous part of this equation, which governs

the spectrum of two-particle states:

Y(®r) -)P.[Mz+ 2(p v e ")* |P "I-‘t:l-1

G )
[”:* 1pp_+ ;?;lp.l _._21-1 ﬂ 3-%}'1'-’-)&‘&_ : (15)



where

2 2 z
M, = m; + ,?_r_ . (16)
writing

P(P..") = ['\Y(Pw p..v) dp, (17)

we have for o,

F-s —LZ%‘L{ Jappe - p-r) (3' -) 43“(&"—))4

(18)
e (s ] 2020

One integral has been separated. This was possible because the Coulomb force
is instantaneous. The P, integral is only non-zero if the integration path

is between the poles, that is,
Asn(P_—r_) = - Aa‘*(\’-) > (19)

and can easily be performed. Thus, if we take r_ >0, then

g(p..r) =

2 LN q* ‘}” qprk. )
%Q(P.)G(":P.)[ZP 7(r- P-)+ 3 tr. ITdk' - (20)

The integral in Eq. (20) is again infra-red divergent. Using the same cut-off as

before, we find

q(ptk_ .r) 2 Q (p+ k_.r)
[ —-_-i:;—_-_- clk_ = ?S-d>(e_) i-;Z?jh-—-—iz?———— dl{_

2

(21)

where the principal value integral is defined as

» (22)

gl )dk. Plk+ic)dk. [ @(k-ie)dk
PE kt B s (k+iz )? + ":.j (k- \'t)l

and is always finite.
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Substituting (21) into (20) we find

- @ (P— ,r) =

ip' (23)

M: o M; 9t glpr.r)
T 2(:.- r,))q(P"r) T om p_P z dk_

The infra-red cut-off dependence has disappeared ! In fact, we have here the
exact form of the Hamiltonian discussed in Ref. 4). Let us introduce dimension-

less units :
M, :
'r |‘z = ]Tml‘z

i 9°

%2 -1 5
(24)
..21;}; = :if/u} 5 FL//r_ = X ,
T

yw 1is the mass of the two-particle state in units of g/ﬁn.

Now we have ti"e equation

|
o, A
e = (% + )t - PLISS 4y )

We were unable to solve this equation analytically. But much can be said, in
particular about the spectrum. First, one must settle the boundary condition.

At the boundary x = O the solutions w(x) may behave like Xiﬁq, with

Wﬂ' co\-} rr'?o, + o =0, (26)

but only in the Hilbert space of functions that vanish at the boundary the

Hamiltonian [the right-hand side of (25)] is Hermitzan :

] )

(4, RN NE) .y
y a—
0 (x- Y )

(Y. He) =f(°3f,;'- + 'ff*,: )REIWE) + 4 d

o

In particular, the "eigenstate"

a0 = (5)F
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in the case o = oy is not orthogonal to the ground state that does satisfy

®(0) = (1)

Also, from (27) it can be shown that the eigenstates wk with
wk(O) = @k(1)= O form a complete set. We conclude that this is the correct
boundary condition * . A rough approximation for the eigenstates wk is the
following. The integral in (25) gives its main contrioution if y 1is close to

x. For a periodic function we have

e""“j ’ X

Pf‘jx)z 3 3PS(3 S “lele ™"

The boundary condition is ¢(0) = (1) = 0. So if @, @, ~ 0 then the

eigenfunctions can be approximated by

Lz, -

(yk(x) ~ Awkwx k

with eigenvalues
(3 ~ 2
M(_k) ~ a1 k . (29)

This is a straight "Regge trajectory'", and there is no continuum in the spec-
trum ! The approximation is valid for large k, so (29) will determine the

asymptotic form of the trajectories whereas deviations from the straight line
are expected near the origin as a consequence of the finiteness of the region

of integration, and the contribution of the mass terms.

Further, one can easily deduce from (27), that the system has only

positive eigenvalues if @ > -1. For o = o, = -1 there is one eigen-

1%

2
state with eigenvalue zero (@ = 1). Evidently, tachyonic bound states only
emerge if one or more of the original quarks were tachyons [see Eq. (24)].

A zero mass bound state occurs if both quarks have mass zero.

*
) This will certainly not be the last word on the boundary condition. For a

more thorough study we would have to consider the unitarity condition for the

interactions proportional to 1/N. © That is beyond the aim of this paper.
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The physical interpretation is clear. The Coulomb force in a one-

dimensional world has the form
V o |rx=-x.| ,

which gives rise to an insurmountable potential well. Single quarks have no
finite dressed propagators because they cannot be produced. Only colourless
states can escape the Coulomb potential and are therefore free of infra-red
ambiguities. Our result is completely different from the exact solution of

5),2)

to N = 1 in our case. The perturbation expansion with respect to 1/N is then

two dimensional massless quantum electrodynamics whickh should correspornd
evidently not a good approximation ; in two dimensional massless Q.E.D. the spec-

trum consists of only one massive particle with the quantum numbers of the photon.

In order to check our ideas on the solutions of Eq. (25), we devised
a computer program that generates accurately the first 40 or so eigenvalues
HZ. We used a set of trial functions of the type XBT(1-X)2_31 H
(1—X)B2 P2 ana sin kmx. The accuracy is typically of the order of 6
decimal places for the lowest eigenvalues, decreasing to 4 for the 40th eigen-

value, and less beyond the 40:

A certain W.K.B. approximation that yields the formula

2 2 st
M (n) -2 TTn o+ (o(,+ o(z_) 203 n+ C (0(.,0(‘) ,
k>co (30)
= O’l’ ceen
was confirmed qualitatively (the constant in front of the logarithm could

not be checked accurately).

In Fig. 5 we show the mass spectra for mesons built from equal mass
quarks. In the case m_=m_ =1 (or o, = o, = 0) the straight line is approach-

a Tq 1 2
ed rapidly, and the constant in Eq. (30) is likely to be exactly 3n2/4.

In Fig. 6 we give some results for quarks with differenct masses.
The mass difference for the nonets built from two triplets are shown in two

cases :



-9 -

in units of g/Vﬂ. The higher states seem to spread logarithmically, in
accordance to Eq. (3%0). But, contrary to Eq. (30), it is rather the average
mass, than the average squared mass of the quarks that determines the mass

of the lower bound states.

Comparing our model with the real world we find two basic flaws.
First there are no transverse motions, and hence there exists nothing like
angular momentum, nor particles such as photons. Secondly, at N = 3 there
exist also other colourless states : the baryons, built from three quarks or
three antiquarks. In the 1/N expansion, they do not turn up. To determine
their spectra one must use different approximation methods and we expect those
calculations to become very tedious and the results difficult to interpret.

The unitarity problem for finite N will also be tricky.

Details on our numbers and computer calculations can be obtained from

the author or G. Komen, presently at CERN.
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FIGURE CAPTIONS
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Planar Feynman rules in the light cone gauge.

Large diagram a and b must have opposite u(m) charge, but need

not be each other's antiparticle.

Equations for the planar self-energy blob.

Eq. (15).

"Regge trajectories" for mesons built from a quark-antiquark pair
with equal mass, m, varying from O to 2.11 in units of g/dn

The squared mass of the bound states is in units gz/n.

Meson nonets built from quark triplets. The picture is to be inter-
preted Jjust as the previous figure, but in order to get a better dis-
play of the mass differences the members of ore nonet have been
separated vertically, and the nth excited state has been shifted

to the left by an amount nng. In case a) the masses of the tri-
plet are m, = 0.00 ; m, = 0.20 ; m, = 0.40 and in case b)

1 2 3

m, = 0.80 ;5 m, = 1.00 ; my = 1.20. Again the unit of mass is g/Vn.
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Fig. 4
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