Bacteriorhodopsin and the purple membrane of halobacteria

https://doi.org/10.1016/0304-4173(79)90006-5Get rights and content

First page preview

First page preview
Click to open first page preview

References (299)

  • H. Larsen

    Adv. Microbiol. Physiol.

    (1967)
  • M. Kates
  • N.E. Gibbons
  • M.F. Mescher et al.

    J. Biol. Chem.

    (1976)
  • S.C. Kushwaha et al.

    Biochim. Biophys. Acta

    (1975)
  • J.K.G. Kramer et al.

    Biochim. Biophys. Acta

    (1972)
  • T.G. Tornabene et al.

    J. Lipid Res.

    (1969)
  • J.K. Lanyi

    Arch. Biochem. Biophys.

    (1968)
  • J.K. Lanyi

    J. Biol. Chem.

    (1969)
  • M.M. Lieberman et al.

    Biochim. Biophys. Acta

    (1971)
  • K.S. Cheah

    Biochim. Biophys. Acta

    (1969)
  • K.S. Cheah

    Biochim. Biophys. Acta

    (1970)
  • K.S. Cheah

    Biochim. Biophys. Acta

    (1970)
  • D.C. White et al.

    Adv. Microb. Physiol.

    (1971)
  • L.I. Hochstein et al.

    Biochim. Biophys. Acta

    (1973)
  • L.I. Hochstein

    Biochim. Biophys. Acta

    (1975)
  • J.K. Lanyi et al.

    J. Biol. Chem.

    (1970)
  • T. Hase et al.

    FEBS Lett.

    (1977)
  • M.M. Werber et al.

    Arch. Biochem. Biophys.

    (1978)
  • L. Kerscher et al.

    FEBS Lett.

    (1976)
  • J.G. Joshi et al.

    J. Mol. Biol.

    (1963)
  • B.N. White et al.

    Biochim. Biophys. Acta

    (1972)
  • S.T. Bayley
  • A.D. Brown

    Biochim. Biophys. Acta

    (1963)
  • A.D. Brown

    J. Mol. Biol.

    (1965)
  • A.R. Strom et al.

    Biochim. Biophys. Acta

    (1975)
  • A.R. Strom et al.

    FEBS Lett.

    (1973)
  • G. Oda et al.

    FEBS Lett.

    (1974)
  • J.H.B. Christian et al.

    Biochim. Biophys. Acta

    (1962)
  • A.E. Blaurock et al.

    J. Mol. Biol.

    (1976)
  • W. Stoeckenius et al.

    J. Cell Biol.

    (1967)
  • W. Stoeckenius et al.

    J. Cell Biol.

    (1968)
  • C.W.F. McClare

    Nature

    (1967)
  • A.E. Blaurock et al.

    Nature New Biol.

    (1971)
  • D. Oesterhelt et al.

    Nature New Biol.

    (1971)
  • D. Oesterhelt et al.
  • A. Danon et al.
  • S.C. Kushwaha et al.

    Can. J. Microbiol.

    (1974)
  • W. Stoeckenius

    Sci. Am.

    (1976)
  • W. Stoeckenius et al.
  • D. Oesterhelt

    Prog. Mol. and Subcell. Biol.

    (1976)
  • D. Oesterhelt
  • R. Henderson

    Annu. Rev. Biophys. Bioeng.

    (1977)
  • J.K. Lanyi
  • D.J. Kushner

    J. Bacteriol.

    (1964)
  • H. Larsen
  • A.D. Brown

    Bacteriol. Rev.

    (1964)
  • H.F.M. Petter
  • H. Larsen

    Antonie van Leeuwenhoek; J. Microbiol. Serol.

    (1973)
  • S.N. Sehgal et al.

    Can. J. Microbiol.

    (1960)
  • Cited by (705)

    • In silico studies of macromolecules as sensors

      2023, In-Silico Approaches to Macromolecular Chemistry
    • Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot – Purple membrane complexes under two-photon excitation

      2019, Biosensors and Bioelectronics
      Citation Excerpt :

      Moreover, in comparison with chlorophyll, another biological component often used in designing hybrid optoelectronic systems, bR has a much simpler and more stable structure and can operate under intense radiation in the presence of oxygen for years, maintaining its efficiency at temperatures as high as 140 °C in the dry form and 80 °C in water at extreme pH values varying from 0 to 12.2 (Hampp, 2000). However, a serious disadvantage of bR is that it has a very small absorption cross-section beyond its main absorption band, centered at 568 nm, with a full width at half maximum (FWHM) of ∼100 nm (Stoeckenius et al., 1979). This disadvantage can be overcome by integrating additional “nano-antennas” into the bR-containing PMs in order to effectively absorb light energy in the spectral regions beyond the main bR absorption band and transfer it to bR.

    View all citing articles on Scopus
    View full text