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Abstract:  The statistical properties of simple (complete) randomization permuted-block (or 
simply blocked) randomization, and the urn adaptive biased-coin randomization are 
summarized. These procedures are contrasted to covariate adaptive procedures such 
as minimization and to response adaptive procedures such as the play-the-winner 
rule. General recommendations are offered regarding the use of complete, permuted- 
block, or urn randomization. In a large double-masked trial, any of these procedures 
may be acceptable. For a given trial, the relative merits of each procedure should be 
carefully weighed in relation to the characteristics of the trial. Important considerations 
are the size of the trial, overall as well as within the smallest subgroup to be employed 
in a subgroup-specific analysis, whether or not the trial is to be masked, and the 
resources needed to perform the proper randomization-based permutational analysis. 
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I N T R O D U C T I O N  

In the preceding articles [1-4] we reviewed the basic properties of various 
randomiza t ion  procedures  for the ass ignment  of patients to receive one of 
two t reatments  des ignated a or b. The general  propert ies of randomizat ion  
procedures  were defined and discussed,  principally the permutat ional  prop-  
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erties with respect to all of the possible ways that the treatments could have 
been assigned to the patients [1]. These include the effects of treatment group 
imbalances on the statistical power of tests, the impact of predictability of 
future treatment assignments on selection bias, and the vulnerability of a 
randomization to covariate imbalances which could lead to accidental bias in 
the estimate of treatment effect in a linear model. Other central considerations 
are the dependence of a permutation test on the randomization employed 
and the differences between a permutation model versus a population model 
basis for a statistical test. A permutation test requires no assumptions re- 
garding the origin of the study patients or the distribution of their responses. 
In contrast, a population model assumes that the patients arose (were sam- 
pled) at random from a homogeneous (unchanging) population and that their 
responses follow some common distribution [i.e., are independently and iden- 
tically distributed (i.i.d.)]. 

The properties of simple (unrestricted) randomization were then described 
[2]. The simplest form of randomization is complete randomization, analogous 
to tossing a fair coin. This was contrasted to the random allocation rule [2] 
in which a random permutation of n/2 out of n patients is selected to receive 
treatment a and the remainder b. The latter case is rarely applicable to clinical 
trials because it requires that the sample size n be guaranteed beforehand. 
The random allocation rule is of interest, however, because it is the simplest 
possible case of permuted-block randomization (one block of size n), and thus 
some of the properties of permuted block randomization are obtained as 
generalizations of those of the random allocation rule. 

The subsequent articles then describe the properties of two commonly used 
and widely studied procedures for restricted randomization--the permuted- 
block randomization [3] and the urn adaptive biased-coin randomization [4]. 
In permuted-block randomization, successive blocks of size 2m are employed 
(where m may vary), each block containing a random permutation of m of 
2m assignments to treatment a, the remainder to b [3]. With the urn random- 
ization, one draws successive assignments from an hypothetical urn contain- 
ing both a and b balls [4]. The urn contains c~ balls of each type initially. After 
each assignment (a or b) is drawn from the urn (and replaced), [~ balls of the 
other treatment type (b or a) are added to the urn. The urn design is designated 
as UD(c~, ~) and the special case UD(o~, 0) is simply complete randomization. 
Thus, permuted-block randomization forces balance after every 2m assign- 
ments, whereas the urn randomization UD(e~, 13) for 13 > 0 promotes ongoing 
balance by altering the probability of assignment in favor of whichever treat- 
ment has been assigned least in the past. 

CONCLUSIONS 

Based on the developments presented in the preceding articles [1-4], the 
following is a summary of the principal conclusions regarding the properties 
of these procedures for randomization: 

(a) Each of these procedures can be easily implemented using a uniform 
random number generator on a computer. With a specified seed, the sequence 
so generated can be replicated and documented. Each of these procedures 
can also be implemented using a table of random numbers, but this is tedious. 
Thus, for each procedure, the randomization sequences can be pregenerated. 
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(b) These randomization procedures can be sharply distinguished according 
to the pursuant probabilities of an imbalance in the numbers assigned to each 
treatment. Although power (under a population model) is usually maximized 
with equal sample fractions, the effects of treatment imbalances on power are 
trivial unless the imbalances are substantial, on the order or 0.6 or 0.7 to one 
of the two groups (see Figure 1 in ref. 1). For a large trial with total n > 200, 
such treatment imbalances that might affect power are extremely unlikely 
with complete randomization (see Figure 1 in ref. 2) and are even less likely 
with an urn randomization procedure. For a small trial with n K 100, such 
imbalances are more likely with complete randomization. For a trial with 100 
< n < 200, an imbalance of 0.70 vs. 0.30 is very unlikely, but an imbalance 
of 0.60 to 0.40 can occur with small but nonnegligible probability. With per- 
muted-block randomization, in a trial of any size there are no imbalances 
provided that all blocks are filled. 

Therefore, from a consideration of the likelihood of imbalances and their 
effects on power, the planned sample size of the trial is important when 
choosing a randomization procedure. In this context, it is important to note 
that the probabilities of such imbalances overall in a stratified trial are the 
same as those in an unstratified trial of the same total size. On the other 
hand, if the objectives of the trial are to be assessed by separate subgroup 
analyses within one or more strata, for example, separately among males and 
separately among females, then the sample size of importance is the smallest 
among the various separate subgroups or strata to be considered. 

(c) In a homogeneous population model, it is assumed that the patients 
arose (were sampled from) a defined homogeneous (unchanging) population. 
Under this model, the method of randomization can be ignored in the conduct 
of a statistical test. However, in ref. 1 it is argued that such a population 
model is tenuous, at best, in a clinical trial, and that a permutation model 
provides an alternative basis for conducting a valid statistical test. 

Under a permutation model, the observed treatment difference is assessed 
with reference to all the possible ways (permutations) that the treatments 
could have been assigned. In this case, the preferred method of analysis is 
to analyze the way one randomized. The family of linear rank tests provides 
a simple, direct method for conducting such permutation tests with small or 
large samples. However, the proper variance of this statistic depends explicitly 
on the method of randomization employed [1]. 

(d) Therefore, for a large trial with n > 200 overall and within each planned 
subgroup (if any), simple unrestricted complete randomization is desirable 
because virtually all simple population model-based tests are equivalent to 
the corresponding permutation test, thus simplifying the analysis [2]. In this 
case, virtually all available standard statistical software provides valid statis- 
tical tests. Complete randomization also provides optimal bias reduction, 
especially in an unmasked trial [2]. 

(e) On the other hand, for a small trial (say n < 100 overall or within any 
principal subgroup or stratum), imbalances that might affect power are more 
likely with complete randomization. In these cases restricted randomization 
is desirable. 

(f) Under a permutation model it is necessary that the trial be analyzed the 
way it was randomized in order to yield tests with the proper size (type 1 
error probability) [1]. Thus, if a stratified randomization is employed, a like- 
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stratified analysis should be performed.  Also, if restricted randomizat ion  is 
employed ,  for example,  permuted-block  or u rn  design, then  the test should 
employ  the p roper  cor responding  permuta t ional  variance. 

Nevertheless ,  it is common  practice to ignore the randomizat ion  in the 
analysis. If the patients  actually arose from a h o m o g e n e o u s  populat ion,  then 
ignoring the randomiza t ion  will have no effect on the size of the test. How-  
ever, if there is significant he terogenei ty  in some systematic way among  the 
patients enter ing the trial, such as a change over  time, then ignoring the 
stratification, or ignoring the type of restricted randomizat ion (permuted-  
block or urn  design) may  substantially distort  the size of the test [1]. 

(g) If a permuted-block  randomiza t ion  is employed ,  the p roper  permuta-  
tional analysis requires a blocked or block-stratified analysis. The effect of 
ignoring the blocks in the analysis is a funct ion of the intrablock correlation 
I3]. If there is any systematic difference in the characteristics of the patients 
enter ing the trial, such as a time t rend (i.e., a t ime heterogenei ty)  or a dif- 
ference among  strata (e.g., clinics), then the intrablock correlation (R) is ex- 
pected to be positive. If the blocking is then  ignored in the analysis, the value 
of some c o m m o n  chi-square or F-test statistics ignoring the blocking (say T3 
can be expressed as T1 = (1 - R)T, where  T is the p roper  blocked-stratified 
test statistic value [3]. Thus,  a positive intrablock correlation will result in a 
conservat ive and less powerfu l  test if the blocking is ignored.  

(h) For the urn  randomizat ion,  the effects of ignoring the randomizat ion  
are not  as easily quantif ied as with permuted-block  randomizat ion.  Never-  
theless, the u rn  permuta t ion  test variance will also be affected by the presence 
of any systematic variation of the characteristics of the patients enter ing the 
trial, such as a time heterogenei ty  [4]. Here  it is best  to always perform the 
p roper  pe rmuta t ion  test for the analysis of the principal outcomes of the trial. 

(i) For a permuted-b lock  randomizat ion,  a blocked analysis can be per- 
formed using s tandard  software. For most  blocked analyses,  s tandard  soft- 
ware computes  the permuta t ion  test, including the block-stratified Mante l -  
Haensze l  test for propor t ions  and the block-stratified log-rank and Wilcoxon 
tests for lifetimes. In other  cases, such as the blocked analysis of variance, 
s tandard  software computes  tests that converge in distribution to the per- 
muta t ion  test as the block size increases. 

For the permuted-b lock  and the urn  randomizat ion,  the permutat ional  
linear rank test is readily computed  [3, 4], but  computat ional  software is not  
widely available. 

(j) There  remains cont roversy  as to whe the r  the randomizat ion  of a trial 
should be stratified on the basis of prognost ic  covariates [1]. It has been  shown 
that stratification is principally advantageous  for a small trial and has negli- 
gible advantages  in terms of power  or efficiency in a large trial (say n > 100). 
On the other  hand,  if a stratified randomiza t ion  were used,  one or more  strata 
could be el iminated from the analysis wi thout  biasing the analysis of the 
remaining strata. Accordingly we r eco m m en d  that the randomiza t ion  of a 
mult icenter  trial always be stratified by clinic, but  that fur ther  stratification 
by covariates is unnecessary .  

Another  considerat ion is the operat ional  implementa t ion  of the randomi-  
zation. The more complicated the randomization-strat if icat ion scheme,  the 
more  difficult it is to implement  operationally,  and the more  likely errors are 
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to occur in the actual randomization of patients, such as where patients are 
randomized within the wrong stratum. Therefore, the degree of stratification 
should be as minimal as possible. 

Of course, stratification may also be required by the design of the trial, 
such as where different patient populations (e.g., different disease entities) 
are to be studied simultaneously, perhaps using different outcome measures 
for the evaluation of some objectives. In these cases, some of the objectives 
of the trial will be assessed separately within each stratum (subgroup), as 
well as in aggregate. 

(k) If the randomization is not prestratified by a covariate, then subgroup- 
specific, post hoc-defined permutational analyses can still be performed with 
any of these randomization procedures when it can be assumed that the 
covariate values are statistically independent of the treatment assignments 
[1-4]. This is a strong but untestable assumption. In the case where separate 
tests are conducted within each of multiple mutually exclusive strata, these 
tests are statistically independent  for complete randomization and the random 
allocation rule [2] and for permuted-block randomization [3]. With the urn 
randomization, however, these stratum-specific tests are correlated [4]. With 
any of these procedures, a permutational covariate-adjusted test can then be 
obtained by combining tests over strata [1-4]. 

(1) Any analysis is complicated when some observations are missing, re- 
gardless of whether a population model or a permutation model is assumed. 
However,  with any of these randomization procedures, a permutational anal- 
ysis of the subset of patients with observed responses can be justified under 
the assumption of missing-at-random observations [1]. This is also a strong 
and unverifiable assumption that states that whether a patient's response is 
observed or missing is statistically independent of the treatment assignments. 

With permuted-block randomization, an alternate assumption-free strategy 
is to analyze only the subset of complete blocks that contain no missing data 
[3]. Compared to the analysis of the subset of patients with complete data, 
this approach will probably result in a loss of efficiency. Therefore, if this 
approach is planned, then the block size should not be so large as to result 
in a significant loss in efficiency due to incomplete blocks. 

(m) Common statistical methods, such as population tests of significance, 
parameter estimates, confidence intervals, and regression models, can only 
be applied under population model assumptions [1]. Such analyses are more 
relevant than permutation tests in terms of attempting to generalize the ob- 
served results to some more general hypothetical patient population. The 
frame of reference for such generalizations, however, is the sample of patients 
actually studied. In this regard, extensive tabulations of baseline patient char- 
acteristics should be performed, both marginally and jointly, so as to provide 
a complete description of the "population" of patients studied. 

(n) Randomization procedures can also be distinguished with respect to 
the susceptibility to experimental biases in the estimate of treatment effect 
due to the predictability of the randomization sequences [1]. Among all the 
procedures considered, complete randomization provides maximum protec- 
tion against such biases. 

In an unmasked trial, the Blackwell-Hodges model assesses the potential 
for selection bias due to the possibility of correctly guessing future assign- 
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ments when the investigator guesses which treatment has been assigned least 
often in the past [1]. With complete randomization, the potential for this bias 
is eliminated. Among the restricted randomization procedures considered, 
the urn randomization has the least potential for selection bias [4] while the 
permuted-block randomization has the highest [3] (see Figure 1 in ref. 4). 

With the random allocation rule, the potential for selection bias increases 
monotonically as n increases [2]. Thus, with the permuted-block design this 
bias increases as a function of the block size, and the use of random block 
sizes does not in any way protect against this bias [3]. However, if this model 
is altered to only allow for selection bias when future assignments can be 
guessed with certainty, then withholding knowledge of the possible blocking 
scheme from the investigators will eliminate this bias [3]. Otherwise, the use 
of random block sizes affords some protection. In any event, selection bias 
can be eliminated entirely by randomizing patients in a block as each block 
is filled rather than as patients arrive. 

With the urn randomization, since the probability of treatment assignment 
approaches 1/2 as n increases, the potential for selection bias approaches that 
of complete randomization as n increases. 

(o) Efron's model for accidental bias assesses the susceptibility of a ran- 
domization to bias in the estimator of treatment effect in a linear model when 
important covariates have been ignored [1]. For each of these randomization 
procedures, the estimate is unbiased but the variance of the estimate, and 
thus the susceptibility to bias, depends on the nature of the randomization. 
This is important because such bias arises when there is a covariate imbalance 
between treatment groups for the ignored covariates. 

For all of the randomization procedures considered, the variance of the 
bias, and thus the susceptibility to accidental bias in the estimate of treatment 
effect, vanishes asymptotically [11. However, for given finite n, the variance 
of the bias is minimized with complete randomization and it is minimally 
greater with the random allocation rule [2]. For the urn randomization, as n 
increases, the variance approaches that of complete randomization [4]. With 
permuted-block randomization the variance is slightly greater than that of 
these other procedures. Thus, the susceptibility to this bias is slightly greater 
for permuted-block randomization than for the other procedures considered 
[3]. However, for all practical purposes, the differences are minuscule for 
large n (say n > 200). 

COVARIATE- A N D  RESPONSE-ADAPTIVE PROCEDURES 

In the preceding articles, we have only considered the case of restricted 
randomization procedures that account for imbalances in the prior numbers 
of assignments to each of the two treatments, what are termed "treatment 
adaptive" procedures. These are permuted-block randomization [3] and the 
urn adaptive biased-coin design [4]. We have not considered those treatment 
assignment procedures that account for the covariate values of the prior pa- 
tients entered into the trial (covariate adaptive), nor those that account for 
the prior patient responses (response adaptive) [5-7]. 

Among covariate and response adaptive procedures, a distinction must 
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be made between those that are deterministic and those that are probabi- 
listic. In a deterministic procedure, the treatment assignment of the first 
patient is determined by chance, but thereafter the assignment of each fu- 
ture patient is predetermined based either on that patient's covariate val- 
ues, or on the responses of the prior patients entered. Such deterministic 
methods do not entail use of chance or randomization in the designation 
of the treatment assignments, and thus cannot be evaluated with respect 
to the permutational properties of the treatment assignment rule itself. For 
such methods, however,  a valid unbiased analysis can be based on the as- 
sumption that the patients in the trial arose from a homogeneous popula- 
tion (i.e., using a population model). 

On the other hand, probabilistic adaptive procedures entail modification 
of the probability of assignment to treatment a (and b) based on a patient's 
covariate values or on the prior patients' responses. Here, randomization 
does play a role and thus it is possible, though tedious, to evaluate the 
permutational properties of the treatment assignment rule. 

Well-known covariate adaptive procedures are minimization [8], which 
is deterministic, and the Pocock-Simon procedure [9], which is probabilis- 
tic. Here the treatment assignment of the next patient, or the probability of 
assignment, is determined so as to minimize a measure of overall covariate 
imbalance when that patient's covariate values are considered. For minim- 
ization, it has been shown that the statistical analysis (under the assump- 
tion of a population model) must incorporate adjustments for the covari- 
ates employed in the design in order to yield tests of proper size [10, 11]. 

The play-the-winner rule is an example of a response-adaptive procedure. 
The original formulation of Zelen [12] is deterministic, whereas the modifi- 
cation of Wei and Durham [13] is probabilistic. Here the treatment assignment 
of the next patient, or the probability of assignment, is determined such that 
the patient will receive the treatment that appears to be most favorable based 
on the responses of the prior patients entered. For the deterministic proce- 
dure, the trial can be analyzed under the assumption that the patients arose 
at random from a homogeneous population (the population model). For the 
probabilistic procedure, Wei [14] describes the permutational distribution for 
a single test of a binary response when that response is also used as the basis 
for the adaptive treatment assignment procedure. However,  the permutation 
test has not been described for the analysis of other outcome variables that 
were not used as the basis for adjustment of the treatment assignment prob- 
abilities. 

Therefore, for the most part, these covariate- and response-adaptive pro- 
cedures require population model assumptions for a valid analysis, and the 
permutational properties of the probabilistic procedures have not been thor- 
oughly studied. Further, these procedures are tedious to implement opera- 
tionally, especially in a stratified trial or a masked trial, in part because the 
sequences of treatment assignments cannot be pregenerated. 

On the other hand, permutational properties of treatment adaptive pro- 
cedures have been widely studied and the family of permutation tests based 
on these procedures provides a variety of assumption-free significance tests. 
Also, these procedures can be used to pregenerate the randomization se- 
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quences, thus simplifying operational implementation in a trial. Therefore, 
we feel that treatment-adaptive restricted randomization procedures are pre- 
ferred over covariate- or response-adaptive procedures. 

RECOMMENDATIONS 

Based on the above, a series of recommendations are offered as a guide to 
choosing between complete (simple, unrestricted) randomization and either 
the permuted-block or urn (restricted) randomization procedures. In many 
cases, we feel that any of these procedures Will be acceptable and that the 
choice of a randomization procedure will depend upon one's evaluation of 
the relative properties of each procedure. Therefore, rather than present an 
algorithm as to when one versus another procedure should be employed 
(which we feel would be unwise to attempt), we have tried to summarize 
those conditions under which each procedure might be appropriate. For each 
procedure, the relevant paragraphs in the conclusions section are cited. 

Complete Randomization 
Complete randomization provides optimal protection against various ex- 

perimental biases (n, o). For a small trial, permutation tests are easily per- 
formed on a computer. For a large trial, virtually all simple common statistical 
tests are equivalent to the corresponding permutation test (d). However,  
complete randomization also allows the greatest probability of an imbalance 
in the numbers assigned to each treatment (b). For a small trial, one must 
weigh the relative need for balance against the possibility of bias when de- 
ciding whether or not to use complete randomization. For a large trial, balance 
is not that important (b), in which case complete randomization is attractive 
due to its other favorable properties. 

Permuted-Block 
The permuted-block procedure is appropriate when there is a strong need, 

real or perceived, for both periodic and final balance in the numbers of patients 
assigned to each treatment. The permuted-block procedure, however, is vul- 
nerable to experimental biases (n, o), especially in an unmasked trial, and 
proper analyses require blocking if any intrablock correlation is present (g). 

Central considerations in the use of the permuted-block design are the 
choice of block size(s), choice of fixed versus random blocks, and whether 
the trial is to be masked. The block size(s) should not be too large: otherwise 
a moderate proportion of patients may be members of an incomplete last 
block within one or more strata (when stratification is employed). This is 
undesirable because incomplete blocks complicate the analysis when an in- 
trablock correlation exists. 

If the trial is masked, even the smallest block size, 2, can safely be em- 
ployed. However,  when the number of allocations to each treatment group 
is not masked, the choice of block size(s) and/or block types must be weighed 
against the potential for selection bias. If one adopts the Blackwell-Hodges 
model for selection bias [1, 3], small block sizes, especially of size 2, should 
be avoided in favor of larger block sizes. Further, the use of random or variable 
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block sizes does not in any way protect against this type of bias [3]. However,  
in ref. 3 it is shown that the use of random block sizes does provide consid- 
erable protection against selection bias if bias is viewed as only possible when 
the investigator can guess with certainty. 

Therefore, in an unmasked trial, permuted block randomization should be 
used with caution. In such a case, the use of a fixed block size of 2 should 
especially be avoided unless the patients are randomized 2 at a time rather 
than as they arrive. In fact, with any block size, the only way to eliminate 
selection bias with permuted-block randomization in an unmasked trial is to 
randomize patients in blocks as each block of patients is recruited rather than 
randomizing patients individually as they arrive [3]. 

It is also recommended that the intrablock correlation should be examined 
for all principal outcome variables. If intrablock correlation exists, it is nec- 
essary that the analysis be blocked in order to provide tests of the proper size 
(g). Permutational subgroup analyses can also be performed in the case of 
either pre- or poststratified randomization (k). 

Urn Design 
Likewise, the urn design is appropriate when there is a desire to promote 

but  not guarantee periodic and final balance in the numbers of patients as- 
signed to each treatment. The urn design is far less susceptible to experimental 
biases than is the permuted-block procedure (n, o); however,  it also requires 
special analyses in order to obtain tests of proper size (h). 

The urn design promotes balance during the early stages of a trial, where 
it is usually most important, but  then approaches complete randomization as 
the size of the trial increases. This makes the urn design particularly attractive 
when the size of the trial is uncertain a priori. For example, in a stratified 
trial one usually does not have foreknowledge of the size of each stratum. 
Another example is a trial that may be terminated early due to sequential 
monitoring of treatment effects. 

For the urn design, UD(oL, ~), the choice of o~ depends on how closely it 
is desired that the design resemble complete randomization in the early stages 
of the trial. On the other hand, the choice of 13 depends on how strongly it 
is desired that balance be maintained. For example, UD(10, 1) closely resem- 
bles complete randomization, whereas UD(0, 10) will be highly balanced ini- 
tially and will slowly approach complete randomization only as n becomes 
very large. The UD(0, 1) design usually has adequate balancing properties 
while still being less susceptible to bias than the permuted-block or biased- 
coin designs. 

Proper permutational tests are required (h) that may be easily programmed 
on a computer. Such tests also may be performed in the case of either pre- 
or poststratification by a covariate (k). 

Therefore, the urn design is acceptable in a large unmasked trial because 
its susceptibility to experimental biases approaches that of complete random- 
ization as n increases (n, o). However,  in a very small trial (say n < 10 within 
any stratum), the urn design has a vulnerability to selection bias as high as 
that of the permuted-block or biased-coin designs. 

As is the case with all of the procedures considered, the urn design is not 
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r e c o m m e n d e d  for an u n m a s k e d  trial wi th  very  small total or subgroup  sizes 
(< 10). In all other  cases, the u rn  design has highly favorable properties.  

The Small Unmasked Trial 
Of all the cases considered,  the most  problematic is the small (n < 10) 

u n m a s k e d  trial. In this case, the best  approach  might  be to randomize  in 
small blocks as each block is filled, rather than as patients arise. If this is not  
feasible, then none  of the above procedures  is  whol ly  satisfactory and  each 
will have  significant disadvantages .  
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