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Abstract

We review the experimental and theoretical status of baryons containing one heavy quark. The
charm and bottom baryon states are classified and their mass spectra are listed. The appropriate
theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory,
whose general ideas and methods are introduced and illustrated in specific examples. We
present simple covariant expressions for the spin wave functions of heavy baryons including
p–wave baryons. The covariant spin wave functions are used to determine the Heavy Quark
Symmetry structure of flavour–changing current–induced transitions between heavy baryons as
well as one–pion and one–photon transitions between heavy baryons of the same flavour. We
discuss 1/mQ corrections to the current–induced transitions as well as the structure of heavy to
light baryon transitions. Whenever possible we attempt to present numbers to compare with
experiment by making use of further model–dependent assumptions as e.g. the constituent
picture for light quarks. We highlight recent advances in the theoretical understanding of the
inclusive decays of hadrons containing one heavy quark including polarization. For exclusive
semileptonic decays we discuss rates, angular decay distributions and polarization effects. We
provide an update of the experimental and theoretical status of lifetimes of heavy baryons and
of exclusive nonleptonic two body decays of charm baryons.
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1 Introduction and Motivation

This year marks the 20th anniversary of the discovery in 1974 of the J/ψ, a narrow meson
resonance of mass 3.1 GeV [1,2]. With the discovery of the J/Ψ a new era in particle physics
began. In subsequent years this state was successfully interpreted as a bound state composed of
the heavy charm quark with mass mc ≈1.5 GeV and charge 2/3, and its antiparticle. Soon after
the discovery of the so–called hidden charm state J/Ψ further so–called open charm hadrons
composed of a charm quark and light (u:up , d:down, s:strange) quarks/antiquarks were found.
The first candidate charm baryon states were detected in 1975 in neutrino interactions [3] soon
to be followed by the identification of charm meson states at the SPEAR e+e−–ring in 1976
[4,5]. In retrospect, charm hadrons had probably made their appearance several years earlier
in cosmic ray interactions [6].

The discovery [7] in 1977 of the Υ family of mesons was the first indication of the existence
of a fifth quark, the bottom quark b, with mass mb ≈ 5 GeV and a charge −1/3. Again, open
bottom meson states composed of a heavy bottom quark and a light antiquark were identified at
a somewhat later stage [8,9]. Concerning bottom baryons the experimental situation is not yet
quite conclusive. There have been reports on low statistics direct evidence for Λb in the channels
Λb → Λψ [10] and Λb → Λcπ

− [11]. These results need confirmation from other experiments.
Some indirect evidence for semileptonic Λb and Ξb decays exists in the form of the detection of
enhanced Λcℓ

− (high p⊥) [12] and Ξcℓ
− (high p⊥) [13] correlations from Z–decays at LEP. An

early 1981 claim to the first observation of the Λb (at a rather low mass of ≃ 5425 MeV) in
an ISR experiment has not been upheld and probably was due to a statistical fluctuation [14].
Finally, a third species of heavy flavour quarks is anticipated but not yet identified in the top
quark with a mass mt ≈ 140 GeV and charge 2/3.

Recent measurements and theoretical calculations have substantially enhanced our under-
standing of charm meson states, their spectroscopy and decays. Experimental results on charm
baryons and their decays are beginning to be good enough to apply and test what has been
learned in the charm meson sector to the charm baryon sector. Furthermore, there is a very ac-
tive ongoing experimental program at various laboratories to study charm and bottom baryons,
their masses, lifetimes and weak decays. The present experiments and further planned future
experiments will produce a wealth of data on heavy baryons. It is therefore timely to review
what we know now about these states and what we can expect to learn from these experiments.
How can we extrapolate theoretical calculations from mesons to baryons, and how do they
translate to heavy flavour baryons with bottom quantum numbers?

The heavy charm and bottom quarks and the heavy hadrons composed of them are quite
distinct in their properties from the light flavoured hadrons composed of u, d and s quarks.
The large mass of the heavy flavoured quarks introduces a mass scale much larger than the
confinement scale Λ ≈ 400 MeV which governs the physics of the light hadrons.
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Although heavy hadrons with different heavy flavours have distinctly different masses, they
are in some sense quite similar to one another once the appropriate mass scale including possible
anomalous dimension factors have been taken care of. Recently this notion has been given a
more precise meaning in the Heavy Quark Effective Theory (HQET). The HQET provides a
systematic expansion of QCD in terms of inverse powers of the heavy quark mass. The leading
term in this expansion gives rise to a new spin– and flavour–symmetry, termed Heavy Quark
Symmetry.

Nature has been very accommodating in that it has divided its six quarks into a heavy
and a light quark sector. The “heavy” c, b, t quarks are much heavier than the QCD scale
ΛQCD = 400 MeV whereas the “light” u, d, s quarks are much (except for the s quark) lighter
than ΛQCD, i.e. one has

mc, mb, mt ≫ ΛQCD ≫ mu, md, ms . (1)

In the heavy quark sector it then makes sense to first consider QCD in the limit where
the heavy quark masses become very large and then, in the second stage, to consider power
corrections to this limit in terms of a systematic 1/mQ expansion. Likewise, one can profitably
first study the light quark sector in the zero mass limit, i.e. in the chiral symmetry limit, and
then add corrections to the chiral limit at a later stage.

It is quite important to realize that the Heavy Quark Symmetry is not a spectrum symmetry
but it is a new type of equal velocity symmetry. That one cannot expect a spectrum symmetry
to hold in the heavy quark sector should be quite clear from the fact that there are two orders
of magnitude difference between the masses of the c and t quarks! The new type of symmetry
at equal velocities takes a little bit of getting used to. But once one has gotten into the habit
of thinking in terms of quark and particle velocities the Heavy Quark Symmetry will in fact
look quite natural.

The basic physics leading to the new spin and flavour symmetries at equal velocity can
easily be appreciated in nontechnical terms by considering a bottom and charm baryon at rest
as shown in Fig.1.

The heavy bottom quark and the charm quark at the center are surrounded by a cloud
corresponding to a light diquark system. The only communication between the cloud and the
center is via gluons. But since gluons are flavour blind the light cloud knows nothing about the
flavour at the center. Also, for infinitely heavy quarks, there is no spin communication between
the cloud and the center. Thus one concludes that, in the heavy mass limit, a bottom baryon
at rest is identical to a charm baryon at rest regardless of the spin orientation of the heavy
quarks, i.e. one has

Bottom baryon at rest(↓↑) = Charm baryon at rest(↑↓) . (2)

One then just needs to boost the rest configuration by a Lorentz boost from velocity zero to
velocity v to conclude

Bottom baryon at velocity v(↓↑) = Charm baryon at velocity v(↑↓) , (3)

remembering that a Lorentz boost depends only on relative velocities. Eq.(3) exposes the
existence of a new spin and flavour symmetry of QCD at equal velocities which holds true in
the large mass limit. This is nothing but the advertised Heavy Quark Symmetry.

In fact, everyone should be quite familiar with the existence of such a symmetry in the
context of QED. Take a hydrogen, deuterium and tritium atom at rest as also shown in Fig.1.
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Figure 1: Portrayal of bottom and charm baryon wave functions at rest. Upper right corner:
wave functions of the hydrogen, deuterium and tritium atoms.

When hyperfine interactions are neglected they possess identical wave functions and thus iden-
tical atomic properties. The Coulombic interaction between the electron cloud and the nucleus
at the center is sensitive only to the total charge of the nucleus which is the same for all three
isotopes.

It is quite intriguing that many of the ideas of the HQET date back as far as 1937, then of
course in the context of QED [15,16]. In the Bloch–Nordsieck approach to soft photon radiation
it was the electron that was “infinitely” heavy (on the scale of the soft photons) so it could
be treated as a classical source of radiation. In fact the Bloch–Nordsieck model was already
formulated in terms of an effective theory with the electron degrees of freedom removed from
the field theory. The quantum mechanical Foldy–Wouthuysen transformation has turned into
the field–theoretical 1/m expansion. What used to be called the eikonal approximation is now
referred to as on–mass shell propagation of heavy quarks with no velocity change (“velocity
superselection rule”).

We begin in Sec.2 with a discussion of the ground–state charm and bottom baryons. We
list experimental mass values whenever they have been measured. For the missing mass values
we give theoretical extrapolations. In Sec.3 we give a brief outline of HQET where we focus on
heavy baryon applications. In Sec.4 we write down covariant forms of the heavy baryon spin
wave functions including those of the p–wave excited heavy baryon states. Using the covariant
spin wave functions we calculate current–induced transitions between heavy baryons of different
flavours and discuss their contributions to the sum rule of Bjorken. We also compute one–
pion and one–photon transitions between heavy baryons. In Sec.5 we review recent advances
in the field of inclusive semileptonic decays of heavy hadrons and hope to convey some of
the excitement that has been spawned by these recent developments. Sec.5 also contains a
treatment of exclusive c→ s and b→ c semileptonic heavy baryon decays including a discussion
of polarization effects where there have been some recent experimental and theoretical advances.
Sec.6 deals with inclusive nonleptonic decays where we discuss lifetime hierarchies suggested
by the interplay of various theoretical mechanisms contributing to the decays. Sec.7 treats
exclusive nonleptonic charm baryon decays where there has been a wealth of recent data to
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compare with theoretical modelling. Sec.8 contains our theoretical summary and an outlook
on the heavy baryon physics that lies ahead of us.

From the point of view of phenomenological applications, the main emphasis in this review
is on charm baryons and their decays. The obvious reason is that there already exists enough
data on charm baryon decays to make their study worthwhile, while we are just entering the
decade of experimental bottom baryon physics.

The charm baryons, being the lightest of the heavy baryons, may not be the best candidates
to test and apply the predictions of HQET formulated for infinitely heavy quarks. But certainly
charm hadrons and their decays will be the best studied experimentally in the next few years,
at least what concerns baryons. Also they are an ideal laboratory to study the influence of
preasymptotic 1/m effects to the heavy quark limit. And last, but not least, the quality of the
b→ c physics to be extracted from bottom baryon to charm baryon transitions depends on the
detailed knowledge of the decay properties of charm baryons.

Space limitations preclude an exhaustive treatment of charm and bottom baryon physics
and of the many fascinating aspects of heavy hadron physics in general. In particular we do not
discuss the physics of charm and bottom baryon production. Instead we focus on the properties
of charm and bottom baryons as revealed in their decays. We refer the reader to earlier reviews
on heavy baryon physics and on heavy hadron physics in general [17–25].

5



2 Classification of States and Mass Measurements

The ground–state charm baryons are classified as usual as members of the SU(4) multiplets
20′ and 20. The JP = 1/2+ ground–state baryons (containing the ordinary C = 0 octet
baryons) comprise the 20′ representation and the JP = 3/2+ ground–state baryons (containing
the ordinary C = 0 decuplet baryons) make up the 20 representation. For the bottom baryons
we limit our attention to the lower mass B = 1 and C = 0 states, which can be classified in
analogy to the charm baryon states. In Tables 1, 2, and 3 we list the quantum number content
and masses of the charm baryon members of the 20′ and 20 representation and of the B = 1,
C = 0 bottom baryon states. We use the same notation as the Particle Data Group [26]. I
and I3 denote the isospin; S, C and B refer to the strangeness, charm and bottom quantum
numbers.

There exist now precise mass measurements for the charm JP = 1/2+ baryon states Λ+
c ,

Ξ+
c , Ξ0

c , Σ++
c , Σ+

c , Σ0
c [26], Ω0

c [27,28] and a first determination of the mass of the JP = 3/2+

state Σ∗c [29] at 2530 MeV. The Ω0
c mass listed in Table 1 is an average of the two results

[27,28]. Because of the preliminary nature of the Σ∗c mass determination [29] we do not list
the experimental mass in Table 2. Discussion of the recently discovered excited Λc–states is
deferred to Sec.4.

For the bottom baryons so far only the lowest lying state Λb has been observed [10]. The
theoretical predictions of the Λb mass range from 5547 to 5660 MeV [30] and have to be
compared with the experimental mass value of 5641 ± 50 MeV quoted in [26]. Using the
symmetry properties of the static theory for heavy quarks simple relations between heavy
hadron masses can be derived (see e.g. [31]): from the relation MΛc

− 1/4(MD + 3MD∗) =
MΛb

− 1/4(MB + 3MB∗) the Λb mass is predicted to be ∼= 5630 MeV in good agreement with
the experimental value. The remaining mass entries in Tables 1, 2, and 3 have been estimated
in the framework of the one–gluon–exchange model of [32] where isospin splitting effects are
not taken into account. In the non–relativistic Breit–Fermi reduction the one–gluon–exchange
contribution leads to a spin–spin interaction of the form

Hss =
∑

i<j

16παs

9mimj

~si · ~sjδ
3(~ri − ~rj) . (4)

Starting with the seminal work of [32] many authors have emphasized the fact that the hyperfine
splitting resulting from (4) is crucial in understanding the mass breaking pattern of both heavy
and light hadrons [18,33]. As long as the spin–spin interaction term is taken into account a
variety of models with differing degrees of sophistication will basically reproduce the heavy
baryon mass pattern in Tables 1, 2, and 3. However, for our estimates of charm and bottom
baryon masses in Tables 1, 2, and 3, we have retained the original version of the one–gluon–
exchange model as detailed in [32].

6



Table 1: Charm 1/2+ baryon states. [ab] and {ab} denote antisymmetric and symmetric
flavour index combinations.

Notation Quark SU(3) (I, I3) S C Mass

content

Λ+
c c[ud] 3∗ (0, 0) 0 1 2285.0 ± 0.6 MeV

Ξ+
c c[su] 3∗ (1/2, 1/2) -1 1 2466.2 ± 2.2 MeV

Ξ0
c c[sd] 3∗ (1/2, -1/2) -1 1 2472.8 ± 1.7 MeV

Σ++
c cuu 6 (1, 1) 0 1 2453 ± 0.7 MeV

Σ+
c c{ud} 6 (1, 0) 0 1 2453 ± 3.0 MeV

Σ0
c cdd 6 (1, -1) 0 1 2452.5 ± 0.9 MeV

Ξ+′

c c{su} 6 (1/2, 1/2) -1 1 2.57 GeV

Ξ0′

c c{sd} 6 (1/2, -1/2) -1 1 2.57 GeV

Ω0
c css 6 (0, 0) -2 1 2719.0 ± 7.0 ± 2.5 MeV

Ξ++
cc ccu 3 (1/2, 1/2) 0 2 3.61 GeV

Ξ+
cc ccd 3 (1/2, -1/2) 0 2 3.61 GeV

Ω+
cc ccs 3 (0, 0) -1 2 3.71 GeV

Of the observed charm and bottom baryons, the Λc, Ξc, Ωc, and Λb states are weakly
decaying. According to theoretical expectations, the unobserved Ξcc, Ωcc and Ωccc as well as
the Ξb and Ωb states in Tables 1 and 3 are also anticipated to be weakly decaying.

Because of the spatial δ–function in Equation (4) the matrix elements of the spin–spin
interaction term are proportional to the square of the baryon wave function at the origin.
The experimental hyperfine splittings thus provide a reliable measure of the wave function
at the origin of the ground–state baryons, the value of which is needed in lifetime estimates
(cf. Sec.6.2).
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Table 2: Charm 3/2+ baryon states.

Notation Quark SU(3) (I, I3) S C Mass

content

Σ∗++
c cuu 6 (1, 1) 0 1 2.51 GeV

Σ∗+c cud 6 (1, 0) 0 1 2.51 GeV

Σ∗0c cdd 6 (1, -1) 0 1 2.51 GeV

Ξ∗+ cus 6 (1/2, 1/2) -1 1 2.63 GeV

Ξ∗0 cds 6 (1/2, -1/2) -1 1 2.63 GeV

Ω∗0c css 6 (0, 0) -2 1 2.74 GeV

Ξ∗++
cc ccu 3 (1/2, 1/2) 0 2 3.68 GeV

Ξ∗+cc ccd 3 (1/2, -1/2) 0 2 3.68 GeV

Ω∗+cc ccs 3 (0, 0) -1 2 3.76 GeV

Ω++
ccc ccc 1 (0, 0) 0 3 4.73 GeV

3 Outline of Heavy Quark Effective Theory

Over the last past years it has become widely recognized that the fundamental theory of the
strong interactions, quantum chromodynamics (QCD), simplifies enormously in the presence of
a very heavy quark [35]. By heavy it is understood that the quark mass must be much larger
than the typical scale of the strong interactions ΛQCD ≃ 400 MeV. The Heavy Quark Effective
Theory (HQET) [36] is a set of rules which embodies in a natural way the new symmetries
appearing in this limit and describes in a systematic manner the deviations from the symmetry
limit.

There exist two quarks in nature to which the ideas of HQET can be applied: the charmed
(mc ≃ 1.5 GeV) and the bottom quark (mb ≃ 4.8 GeV). In this review we will mainly be
concerned with applications of the HQET to the study of baryons made up of one of these two
heavy quarks and two light quarks (denoted as Qqq, with Q = c,b and q = u,d,s). The scope
of the method is, however, not limited to this situation. It is possible to regard a baryon of the
type QQq as a bound state of the heavy pair QQ looking like a pointlike heavy object and the
light quark q [37].
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Table 3: Bottom baryon states with B = 1, C = 0 and JP = 1/2+, 3/2+ quantum numbers.

Notation Quark JP SU(3) (I, I3) S B Mass

content

Λb b[ud] 1/2+ 3∗ (0, 0) 0 1 5641 ± 50 MeV

Ξ0
b b[su] 1/2+ 3∗ (1/2, 1/2) -1 1 5.80 GeV

Ξ−b b[sd] 1/2+ 3∗ (1/2, -1/2) -1 1 5.80 GeV

Σ+
b buu 1/2+ 6 (1, 1) 0 1 5.82 GeV

Σ0
b b{ud} 1/2+ 6 (1, 0) 0 1 5.82 GeV

Σ−b bdd 1/2+ 6 (1, -1) 0 1 5.82 GeV

Ξ0′

b b{su} 1/2+ 6 (1/2, 1/2) -1 1 5.94 GeV

Ξ−
′

b b{sd} 1/2+ 6 (1/2, -1/2) -1 1 5.94 GeV

Ω−b bss 1/2+ 6 (0, 0) -2 1 6.04 GeV

Σ∗+b buu 3/2+ 6 (1, 1) 0 1 5.84 GeV

Σ∗0b bud 3/2+ 6 (1, 0) 0 1 5.84 GeV

Σ∗−b bdd 3/2+ 6 (1, -1) 0 1 5.84 GeV

Ξ∗0b bus 3/2+ 6 (1/2, 1/2) -1 1 5.94 GeV

Ξ∗−b bds 3/2+ 6 (1/2, -1/2) -1 1 5.94 GeV

Ω∗−b bss 3/2+ 6 (0, 0) -2 1 6.06 GeV

The idea of the Heavy Quark Symmetry is very simple and can be best explained using a
quantum mechanical analogy. A bound state Qqq can be looked upon as consisting of the heavy
quark Q surrounded by the two light valence quarks, gluons and vacuum pairs, which will be
collectively referred to as the “light diquark system” or, more generally, as the “light degrees of
freedom”. The Heavy Quark Symmetry expresses the fact that the state of the “light degrees
of freedom” is independent of that of the heavy quark, in the limit when the mass of the latter
goes to infinity. In particular this means that the “light degrees of freedom” will look the same
regardless of the flavour type and the spin orientation of the heavy quark. Thus, there are
actually two distinct heavy quark symmetries, the flavour symmetry and the spin symmetry,
and we will turn to a separate discussion of their properties and consequences.

Before doing this, it is convenient to introduce a formal field–theoretical description for
the heavy quark in a hadron of the type Qqq or Qq̄. The heavy quark in such a bound state
continually exchanges momentum with the “light degrees of freedom”, of the order ΛQCD, and
therefore its change in velocity is of the order Λ/mQ, which vanishes when the quark is infinitely
heavy. Let us consider for simplicity the rest frame of the hadron. Then the heavy quark will
be also at rest and we can disregard all its dynamical degrees of freedom, except for colour. It
can be then described in terms of the Lagrangian

LHQET = Q̄(iD0 −mQ)Q , (5)
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where Dµ = ∂µ + igAµ. This results from the QCD Lagrangian

LQCD = Q̄(i6D −mQ)Q , (6)

when the condition

Q =
1 + γ0

2
Q (7)

is imposed. This condition expresses the fact that the heavy quark is at rest and is equivalent
to saying that such a quark is only described by the upper two components of the Dirac spinor,
the Pauli spinor. The generalization of (5) to a heavy quark moving with velocity v is

LHQET = Q̄v(iv ·D −mQ)Qv , (8)

where the field Qv now satisfies the condition

Qv =
1 + 6v

2
Qv . (9)

It is easy to see that in this limit the quark mass mQ becomes irrelevant, as it can be completely
removed from the Lagrangian through a simple field transformation

hv = eimQv·xQv . (10)

In terms of the new field hv, the HQET Lagrangian becomes

LHQET = h̄v(iv ·D)hv . (11)

The reader will have noticed that we labeled the heavy quark field hv with the heavy quark
velocity v. This is to say that for each possible velocity we introduce a distinct field, which
duplicates the initial one, and for each such field we have one term in the Lagrangian similar
to (11). There is no term in this Lagrangian which connects heavy quark fields of different
velocities, so the quark velocity is a good quantum number. This statement is sometimes called
the “velocity superselection rule”.

Having developed the formalism of the HQET at zeroth order in 1/mQ, we are in a position
to discuss the two symmetries specific to the infinite mass limit. As discussed before, the flavour
symmetry relates heavy hadrons containing different (heavy) quarks. Let us denote the two
heavy quark species by b and c. Then the total Lagrangian is

LHQET = h̄(b)
v (iv ·D)h(b)

v + h̄(c)
v (iv ·D)h(c)

v . (12)

Note that the two heavy quarks must have the same velocity. It is easy to see that this
Lagrangian is invariant under the transformation

(

h(c)
v

h
(b)
v

)

→ U

(

h(c)
v

h
(b)
v

)

where U is an arbitrary SU(2) matrix. This is the formal statement of the flavour symmetry.
Any symmetry in quantum mechanics has in general two consequences: degeneracies and an
associated conservation law, and this one is no exception to the rule. The degeneracy implied
by the flavour symmetry can be expressed as

mbqq −mb = mcqq −mc , (13)
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that is, the mass of the light degrees of freedom (for given quantum numbers) is independent
of the type of the heavy quark. The other consequence of this symmetry is the existence of a
conserved operator, a kind of isospin, which we will denote by ~τ . It has the following properties

τ3|bqq〉 = |bqq〉 τ3|cqq〉 = −|cqq〉 (14)

τ−|bqq〉 = |cqq〉 τ+|cqq〉 = |bqq〉 (15)

where τ± = τ1 ± iτ2. An explicit representation for ~τ is

~τ =
1

2

∫

d3x(h̄(b)
v (x) h̄(c)

v (x))γ0~σ

(

h(b)
v (x)

h
(c)
v (x)

)

(16)

where ~σ are the Pauli matrices. Note that they act in the flavour space, not on the Dirac indices
of the fields. The conservation of ~τ can be used to relate amplitudes for processes involving
b quarks to those involving c quarks, much in the same way as the conservation of the usual
isospin can be used to relate processes involving protons to those involving neutrons.

Another symmetry appearing in the infinite mass limit is the spin symmetry: the “light
degrees of freedom” are insensitive to the spin orientation of the heavy quark. This can be seen
by noting that the HQET Lagrangian (11) is invariant under an arbitrary spin rotation of the
heavy quark (for a heavy quark at rest)

hv → exp(
i

2
~Σ · ~nθ)hv (17)

where ~n and θ are respectively, the rotation axis and the rotation angle, and ~Σ is the spin
operator. This symmetry implies a degeneracy between the two states of spin J = j ± 1

2

obtained by coupling the heavy quark spin s = 1
2

with the angular momentum of the “light
degrees of freedom” j. Such states are for example B and B∗ for mesons and Σb and Σ∗b for
baryons. The corresponding conserved quantity is, of course, the heavy quark spin

~s =
1

2

∫

d3xh̄(x)γ0
~Σh(x) . (18)

The conservation of this operator can be used to relate amplitudes for processes involving the
two partners of a multiplet described above.

As an example of how the HQET can relate various transition amplitudes, we consider the
calculation of the matrix element [38,39]

Mµ = 〈Λc(v2, s2)|c̄γµb|Λb(v1, s1)〉 (19)

appearing in the description of the semileptonic decay Λb → Λceν̄e. It will be shown that, in
the limit of infinitely heavy b and c quarks, it can be completely described in terms of ξ(ω)
(ω = v1 · v2), which is one of the elastic form–factors of the Λc baryon, defined through

〈Λc(v2, s2)|c̄γµc|Λc(v1, s1)〉 = ū(v2, s2)[ξ(ω)γµ + ζ(ω)(v1 + v2)µ]u(v1, s1) . (20)

This is the most general form which is allowed for this matrix element from current conservation.
Furthermore, in the infinite mass limit, the form–factor ζ(ω) will be shown to vanish.

The states in (20) are normalized according to

〈ΛQ(p1, s1)|ΛQ(p2, s2)〉 = 2E1(2π)3δ(3)(~p1 − ~p2)
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and the spinors u(v, s) satisfy ū(v, s)u(v, s) = 2mΛQ
.

Let us write the matrix element (20) in the HQET using the Lagrangian (8) and go to the
reference frame where v1 = (1,~0). Also, take s1 = +1

2
and consider the (1 + i2) component of

the vector current. This gives

〈Λc(v2, s2)|h̄(c)
v2
γ1+i2h

(c)
v1
|Λc(~0, ↑)〉 = ζ(ω)ū(v2, s2)u(~0, ↑)v21+i2

, (21)

since γ1+i2u(~0, ↑) = 0. We now use the commutation relation

[s
(v1)
3 , h̄(c)

v2
γ1+i2h

(c)
v1

] = 1
2
h̄(c)

v2
γ1+i2h

(c)
v1

(22)

which can be obtained from the defining relation for ~s (v1) (18). Here the fields h(c)
v1

and h̄(c)
v2

must
be considered as distinct, according to the discussion above, and therefore they anticommute.
Thus we can write

1

2
〈Λc(v2, s2)|h̄(c)

v2
γ1+i2h

(c)
v1
|Λc(~0, ↑)〉 =

〈Λc(v2, s2)|s(v1)
3 h̄(c)

v2
γ1+i2h

(c)
v1

− h̄(c)
v2
γ1+i2h

(c)
v1
s
(v1)
3 |Λc(~0, ↑)〉 = (23)

−1

2
〈Λc(v2, s2)|h̄(c)

v2
γ1+i2h

(c)
v1
|Λc(~0, ↑)〉 = 0 ,

where we have used that s
(v1)
3 |Λc(v2, s2)〉 = 0 because this state contains no v1–type heavy

quarks. Comparing with (21), this gives that

ζ(ω) = 0 . (24)

We have seen in the above calculation the heavy quark spin symmetry in action. Next we
make use of the flavour symmetry to relate the transition matrix element for c → c to the
matrix element for b→ c. The proof is entirely analogous to the preceding one, and makes use
of the following commutation relation

[τ−, h̄
(c)
v2
γµh

(c)
v1

] = −h̄(c)
v2
γµh

(b)
v1
. (25)

This gives

〈Λc(v2, s2)|h̄(c)
v2
γµh

(b)
v1
|Λb(v1, s1)〉 = −〈Λc(v2, s2)|τ−h̄(c)

v2
γµh

(c)
v1

− h̄(c)
v2
γµh

(c)
v1
τ−|Λb(v1, s1)〉

= 〈Λc(v2, s2)|h̄(c)
v2
γµh

(c)
v1
|Λc(v1, s1)〉 = ū(v2, s2)γµu(v1, s1)ξ(ω) . (26)

This proves the promised result. Actually it is much more general: any matrix element between
any ΛQ baryon states can be expressed, in the infinite mass limit, in terms of the same function
ξ(ω)

〈Λc(v2, s2)|h̄(c)
v2

Γh(b)
v1
|Λb(v1, s1)〉 = ū(v2, s2)Γu(v1, s1)ξ(ω) , (27)

with Γ an arbitrary gamma matrix. The universal function ξ(ω) is called the Isgur–Wise
function or the reduced form–factor. It encodes nonperturbative, long–distance properties of
QCD, which are at present noncalculable (except on a lattice or from QCD sum rules) and has
therefore to be extracted from experiment. There is one thing which can be said about this
function, its value for ω = 1 is known

ξ(1) = 1 . (28)
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This may be seen by taking v1 = v2 = v in (20) and noting that the value of the matrix element
on the l.h.s. is equal to 2mΛc

vµδs1,s2
because the vector current is conserved. Also, on the r.h.s.

ū(v, s2)γµu(v, s1) = 2mΛc
vµδs1,s2

(because 6vu(v, s) = u(v, s)), which gives (28).
In principle, the relation (27) and its generalization to other baryon states could be proved

by making use of commutation relations like the ones above. This procedure is rather tedious
and, fortunately, there exists a more elegant method which allows one to do the same with
considerably less effort. This is the covariant wave–function method, which will be presented
later on in Sec.4.

In the infinite mass limit, the matrix element in (27) becomes independent of the heavy
quark mass. This is to be expected, because it is a measure of the overlap between the “light
degrees of freedom” of the initial and final baryons, which only depends on the velocity change
ω but not on the masses of the heavy quarks. There are two sorts of corrections to this
result which induce a mass–dependence: i) radiative corrections and ii) power–suppressed mass
corrections.

The first type of corrections are due to hard gluon exchange between the initial and final
heavy quarks and bring about a logarithmic mass dependence of the matrix elements. Because
of lack of space, we only quote the result in the leading logarithm approximation [40] and refer
the reader to the literature for its derivation:

〈Λc(v2, s2)|h̄(c)
v2

Γh(b)
v1
|Λb(v1, s1)〉 = (29)

(

αs(mb)

αs(mc)

)− 6

25
(

αs(mc)

αs(µ)

)− 8

27
[ωr(ω)−1]

[ū(v2, s2)Γu(v1, s1)]ξ(ω, µ)

with

r(x) =
1√

x2 − 1
log(x+

√
x2 − 1) . (30)

The Isgur–Wise function ξ(ω, µ) acquires a dependence on the renormalization scale µ, which
is exactly compensated by the µ–dependence in the anomalous dimension factor, so that the
matrix element is µ–independent.

In contrast to the radiative corrections discussed above, which have left unchanged the
prediction (27) (apart from multiplying it with a correction factor), the corrections suppressed
by one or more powers of 1/mQ change its form. This will be seen to happen because these
corrections break in general both the spin and the flavour heavy quark symmetries. To order
1/mQ they can be obtained in a simple way as follows. Consider the Dirac equation for the
heavy quark field

(i6D −mQ)Q = 0 . (31)

Decompose Q(x) into an “upper” and a “lower” component

Q(x) = e−imQv·x(h(+)(x) + h(−)(x)) , 6vh(±) = ±h(±) . (32)

Introducing this into the Dirac equation (31) and projecting the resulting relation onto the
“upper” and “lower”–spaces gives two equations

i6D⊥h(+) − (iv ·D + 2mQ)h(−) = 0 (33)

iv ·Dh(+) + i6D⊥h(−) = 0 . (34)

The first relation can be used to solve for h(−) in terms of h(+):

h(−) =
i6D⊥
2mQ

h(+) + O(1/m2
Q) (35)

13



which, when inserted into the second relation, gives the equation of motion for the h(+) field

(

iv ·D +
(i6D⊥)2

2mQ

+ · · ·
)

h(+) = 0 . (36)

This can be considered to have arisen from the Lagrangian [41–43]

LHQET = h̄(+)iv ·Dh(+) + h̄(+) (i6D⊥)2

2mQ
h(+) + · · · (37)

which gives the generalization of (11) by including corrections of order 1/mQ (the derivation
presented here has been taken from [25]). The relation of the QCD field Q(x) to the HQET
field h(+) can be found from (32,35) to be given by

Q(x) = e−imQv·x
(

1 +
i6D⊥
2mQ

+ · · ·
)

h(+)(x) . (38)

We mention that the extension of this method to obtain the higher order corrections to
the HQET Lagrangian (see also [43]) is not without risk [44,45]. This is due to the fact that
the h(+)(x) field has a mass–dependent normalization. The correct heavy quark field must be
determined from the condition of its having the same normalization as the QCD field Q(x) [42].

We proceed now with investigating the effects of the new terms which appear in the HQET
Lagrangian at order 1/mQ. They can be written in a slightly different form as

LHQET = h̄(+)iv ·Dh(+) +
1

2mQ
h̄(+)

(

(iD)2 − (iv ·D)2 − g

2
σµνF

µν
)

h(+) + · · · (39)

with
F a

µν = ∂µA
a
ν − ∂νA

a
µ − gfabcA

b
µA

c
ν . (40)

All three terms at order 1/mQ break the flavour symmetry. Indeed, one cannot rotate anymore
the fields of two heavy quarks into each other, as before, because the mass factors 1/mQ are
different for the two quarks. The last term breaks also the spin symmetry, because it is no
longer invariant under the field transformation (17). One therefore expects corrections to the
predictions (27), which have been obtained under the assumption that these two symmetries
are valid. There is, however, one important kinematical point where these corrections vanish
and the leading order result (27) remains valid. This happens for the zero recoil point v1 = v2.
This result is called Luke’s theorem [46,47,49,42]. We shall prove Luke’s theorem for the special
case of Λb → Λc transitions. We will do this by explicitly calculating the form of the 1/mc–
order correction to the matrix elements of the vector and axial transition currents away from
the equal–velocity point [47]. The correction proportional to 1/mb can be calculated in a
completely analogous manner.

There are two sources of corrections to the prediction (27): i) corrections due to the new
terms in the Lagrangian (39) and ii) corrections due to the modified form of the current:

c̄Γb→ h̄(c)
v2

Γh(b)
v1

− 1

2mc

h̄(c)
v2

(i
←
6D⊥)Γh(b)

v1
. (41)

These corrections are represented into a graphical form in Fig.2. The insertion of a 1/mc

term in the HQET Lagrangian is shown as a cross on the c propagator and contributes a

14



Figure 2: a) O(1) matrix element for a b → c transition; b) the same for a c → c transition;
c) insertion of a O(1/mc) term in the HQET Lagrangian for a b → c transition; d) the same
for a c→ c transition; e) vertex correction of order O(1/mc) to a b→ c transition.
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correction to (27) equal to

i

2mc
〈Λc(v2, s2)|

∫

d4xT(h̄(c)
v2

(iD)2h(c)
v1

)(x)(h̄(c)
v2

Γh(b)
v1

)(0)|Λb(v1, s1)〉

− i

4mc

〈Λc(v2, s2)|
∫

d4xT(h̄(c)
v2
gσµνF

µνh(c)
v1

)(x)(h̄(c)
v2

Γh(b)
v1

)(0)|Λb(v1, s1)〉 =

1

2mc

ū(v2, s2)Γu(v1, s1)η(ω) +
1

2mc

ū(v2, s2)σ
µν 1 + 6v2

2
Γu(v1, s1)ζµν(ω) (42)

where η(ω) is an unknown function and ζµν is the most general antisymmetric tensor which

can be built from v1, v2 and hence is proportional to v1µ
v2ν

− v1ν
v2µ

(the combination ǫµνλξv
λ
1v

ξ
2

is not allowed because it has the wrong parity, it transforms as a pseudotensor). Actually,
this form for ζµν vanishes when inserted in (42) because σµνv

ν
2 = 0 when sandwiched between

projectors (1 + 6v2)/2 and we are only left with the first term.
The correction to the current (41) is shown in Fig.2 as a cross on the upper vertex and

contributes to the matrix element (27) the term

− 1

2mc
〈Λc(v2, s2)|(h̄(c)

v2
(i
←
6D⊥)Γh(b)

v1
)(0)|Λb(v1, s1)〉 . (43)

Let us first calculate the matrix element

〈Λc(v2, s2)|h̄(c)
v2

(i
←
Dµ)Γh(b)

v1
|Λb(v1, s1)〉 = ū(v2, s2)Γu(v1, s1)[Av1µ

+Bv2µ
] , (44)

in terms of which one can readily express (43). Here A,B are functions of v1 · v2 which we will
compute now. Multiplying (44) with v2µ and using the equation of motion for the h(c)

v1
field

h̄(c)
v2
iv2·

←
D= 0, one obtains

B = −Av1 · v2 . (45)

A can be obtained by noting that

〈Λc(v2, s2)|i∂µ(h̄(c)
v2

Γh(b)
v1

)|Λb(v1, s1)〉 = Λ̄(v1µ
− v2µ

)〈Λc(v2, s2)|h̄(c)
v2

Γh(b)
v1
|Λb(v1, s1)〉

= Λ̄(v1µ
− v2µ

)ū(v2, s2)Γu(v1, s1)ξ(ω) (46)

with Λ̄ = mΛQ
−mQ the binding energy of the ΛQ baryon, which is independent of Q in the

infinite mass limit. On the other hand, the first matrix element in this equation can be written
as

〈Λc(v2, s2)|h̄(c)
v2

(i
←
Dµ)Γh(b)

v1
|Λb(v1, s1)〉 + 〈Λc(v2, s2)|h̄(c)

v2
Γ(i

→
Dµ)h(b)

v1
|Λb(v1, s1)〉 (47)

By contracting this with v1µ
and comparing with (44,46), the following result emerges

A =
Λ̄ξ(ω)

1 + ω
. (48)

Thus, for example the correction to (27) for Γ = γµ can be obtained to be of the form

− 1

2mc

ū(v2, s2)[2v1µ
− γµ(1 + ω)]u(v1, s1)

Λ̄ξ(ω)

1 + ω
+

1

2mc

[ū(v2, s2)γµu(v1, s1)]η(ω) . (49)

One can obtain a condition on η(1) by considering the same correction to the matrix element

〈Λc(v, s2)|h̄(c)
v1
γµh

(c)
v1
|Λc(v, s1)〉
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which, by current conservation, is known to vanish. This can be calculated in a completely
analogous way, with the result

1

mc
[ū(v2, s2)γµu(v1, s1)](η(ω) + Λ̄ξ(ω)) − 1

mc

Λ̄ξ(ω)

1 + ω
[ū(v2, s2)u(v1, s1)](v1µ

+ v2µ
) . (50)

This should vanish for v1 = v2, whence η(1) = 0.
The correction to (27) for the other case of physical significance Γ = γµγ5, is equal to

− 1

2mc
ū(v2, s2)[2v1µ

+ γµ(1 − ω)]γ5u(v1, s1)
Λ̄ξ(ω)

1 + ω
+

1

2mc
[ū(v2, s2)γµγ5u(v1, s1)]η(ω) . (51)

We can summarize our findings by introducing six form–factors fV
1,2,3(ω) and fA

1,2,3(ω), de-
fined by

〈Λc(v2, s2)|c̄γµb|Λb(v1, s1)〉 = ū(v2, s2)[f
V
1 γµ + fV

2 v1µ
+ fV

3 v2µ
]u(v1, s1) (52)

〈Λc(v2, s2)|c̄γµγ5b|Λb(v1, s1)〉 = ū(v2, s2)[f
A
1 γµ + fA

2 v1µ
+ fA

3 v2µ
]γ5u(v1, s1) . (53)

In terms of these form–factors, the relations (27,49,51) can be compactly expressed as

fV
1 (ω) = ξ(ω) +

(
1

2mc
+

1

2mb

)

(η(ω) + Λ̄ξ(ω)) (54)

fV
2 (ω) = − 1

mc

Λ̄ξ(ω)

1 + ω
(55)

fV
3 (ω) = − 1

mb

Λ̄ξ(ω)

1 + ω
(56)

fA
1 (ω) = ξ(ω) +

(
1

2mc
+

1

2mb

)

(η(ω) +
Λ̄ξ(ω)(ω − 1)

1 + ω
) (57)

fA
2 (ω) = − 1

mc

Λ̄ξ(ω)

1 + ω
(58)

fA
3 (ω) =

1

mb

Λ̄ξ(ω)

1 + ω
. (59)

We have included here also the corrections proportional to 1/mb, which can be obtained from
those of order 1/mc by taking the complex conjugate followed by the interchange of the quark
labels c↔ b.

For v1 = v2 one can see, by making use of ξ(1) = 1 and η(1) = 0, that

fV
1 (1) + fV

2 (1) + fV
3 (1) = 1 (60)

fA
1 (1) = 1 (61)

which is just the content of Luke’s theorem for the ΛQ1
→ ΛQ2

transitions (the original deriva-
tion of the theorem [46] was given for the transition matrix elements between meson states
B → D(∗)). The linear combination of vector current amplitudes in Eq.(60) and the axial
vector current amplitude fA

1 in Eq.(61) are the partial wave s–wave amplitudes that survive
in the limit ω → 1 (see the discussion in Sec.5.2.2). We emphasize that Luke’s theorem and
the O(1/mQ) normalization condition applies to the s–wave amplitudes as written down in
(60,61). We mention that the 1/mQ corrections have been worked out also for other baryonic
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transitions of interest, like Ωb → Ω(∗)
c [48], for which simplifications similar to (60,61) hold true

at the zero–recoil point v1 = v2.
We mention that Luke’s theorem can be proved in a very general context using a diagram-

matic language [42]. Referring to the b→ c and c→ c transitions drawn in Fig.2 one notes that
there is a doubling up of the contributions of both the Lagrangian and the current insertion
when going from the inelastic b → c to the elastic c → c case. Since one knows from current
conservation that the elastic 1/mc corrections have to vanish at the zero recoil point (or, equiv-
alently, at q2 = 0) one concludes that also the inelastic 1/mc corrections have to vanish at the
zero recoil point — they are exactly one–half of the vanishing elastic 1/mc corrections. This
way of proving Luke’s theorem is independent of what happens on the light side and thus imme-
diately applies to any heavy particle transition, be it baryons, mesons or even supersymmetric
heavy particles. Using the diagrammatic language one can also immediately appreciate that
Luke’s theorem breaks down at O(1/m2

c). The elastic O(1/m2
c) transition shown in diagram 2f

has no analogue in the inelastic b→ c case and thus there is no longer a doubling up argument
as was used in the O(1/mc) proof.

This concludes our brief presentation of the basic ideas and methods of the HQET. The
reader can find more details and applications in the many good existing reviews on this subject
[24,25].
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4 Heavy Baryon Spin Wave Functions and Heavy Baryon

Transitions

The heavy baryons that we are mainly concerned with in this review are bound states formed
from a heavy quark and a light diquark system. The spin–parity quantum numbers jP of the
light diquark system are determined from the spin and orbital degree of freedom of the two light
quarks that make up the diquark system. From the spin degrees of freedom of the two light
quarks one obtains a spin 0 and a spin 1 state. The total orbital state of the diquark system
is characterized by two angular degrees of freedom which we take to be the two independent
relative momenta k = 1

2
(p1 − p2) and K = 1

2
(p1 + p2 − 2p3) that can be formed from the two

light quark momenta p1 and p2 and the heavy quark momentum p3. The k–orbital momentum
describes relative orbital excitations of the two light quarks, and the K–orbital momentum
describes orbital excitations of the center of mass of the two light quarks relative to the heavy
quark as drawn in Fig.3.

Figure 3: Orbital angular momenta of the light diquark system. lk describes relative orbital
momentum of the two light quarks and lK describes orbital momentum of the center of mass
of the light quarks relative to the heavy quark.

In this review we limit our discussion to the ground state baryons with lk = lK = 0 and
the p–wave baryons with (lk = 0, lK = 1) or (lk = 1, lK = 0). A treatment of higher orbital
excitations can be found in [50]. The flavour symmetry nature of the light diquark state can
then be determined from the generalized Pauli principle as applied to the light quark sector.
Totally antisymmetric (symmetric) spatial configurations are antisymmetric (symmetric) in
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flavour space. The antisymmetric flavour configurations Λ[q1q2]Q will be generically referred to
as Λ–type states and the symmetric flavour configurations Σ{q1q2}Q as Σ–type states. In SU(3)
(q = u, d, s) the Λ–type states form an antitriplet 3∗ and the Σ–type states a sextet 6 according
to the decomposition 3 ⊗ 3 = 3∗ ⊕ 6.

Mass values of the ground state charm and bottom baryons have been listed in Tables 1,2
and 3. As concerns p–wave levels there are altogether seven Λ–type and seven Σ–type p–wave
states for a given flavour configuration. According to a quark model calculation [51] done in
the charm baryon sector the p–wave levels are well separated from the ground states. For
the Λc–type p–wave states the two (lk = 0, lK = 1) states are lowest because orbital and
spin–spin splitting effects work in the same direction to lower these two states while the five
(lk = 1, lK = 0) states are raised. The total orbital and spin–spin splitting effect amounts to
∼= 350 MeV. For the Σc–type states, however, the orbital and spin–spin splitting effects work
in opposite directions leading to a close level spacing of the seven Σc–type states.

These qualitative features clearly show up in the Λc– and Σc–type charm baryon level plot
in Fig.4 taken from the calculation of [51]. Copley et al. [51] used a constituent quark model
based on harmonic oscillator interquark forces. The two recently found excited Λc–states at
∼= 2593 MeV [52] and at ∼= 2627 MeV [52–54] lie almost on top of the two (lk = 0, lK = 1)
levels predicted by [51] thus inviting an interpretation of these two new states as forming the
1/2− and 3/2− members of the (lk = 0, lK = 1) Heavy Quark Symmetry spin doublet. The
details of the closely spaced level ordering of the remaining five Λc–type and seven Σc–type
p–wave states awaits to be unravelled by further experimental and theoretical effort.

There exists no universal agreement on how to label the excited heavy baryon states. In
a spectroscopic notation one would write 2s+1

j (l; l1, l2)J where l1 and l2 are the two light–side
orbital degrees of freedom coupling to a total orbital momentum l. The total orbital momentum
then couples with the spin singlet or triplet state 2s+1 to form a light diquark state with spin j.
The total spin J of the heavy baryon is then obtained by coupling j with the heavy quark spin
SQ = 1/2 to form J = j±1/2. In order to avoid the cumbersome spectroscopic notation we use
a more concise notation in this review which is i) tailored to the p–wave states and ii) uses the
l1 = lk and l2 = lK basis which diagonalizes the Hamiltonian, at least in the harmonic oscillator
approximation [51]. The (lk = 0, lK = 1) and the (lk = 1, lK = 0) states will be referred to as
the K– and k–states, respectively. Heavy Quark Symmetry doublets will be denoted by {BQKj}
or {BQkj} (j=1,2) and the singlets (j=0) by BQK0 and BQk0 (B = Λ– or Σ–type). The two
degenerate members of the doublets are denoted by {BQKj} := {BQKj, B

∗
QKj} (and the same

for K → k) for total heavy baryon spins {J = j−1/2, J = j+1/2}. When summarily referring
to excited heavy baryon states these will be called B∗∗Q as in Λ∗∗Q or Σ∗∗Q .

4.1 Ground State Spin Wave Function

The ground state heavy baryons (lk = lK = 0) are made from the heavy quark Q with spin–

parity JP = 1
2

+
and a light diquark system with spin–parity 0+ (Λ–type) and 1+ (Σ–type)

moving in a s–wave state relative to the heavy quark. The spin wave functions of the light
diquark system will be denoted by χ0 and χ1,µ for the spin 0 and spin 1 diquark, respectively.
When one combines the diquark spin with the heavy quark’s spin one obtains the ground state
heavy baryons ΛQ and {ΣQ,Σ

∗
Q} according to the coupling scheme

0+ ⊗ 1
2

+ → 1
2

+
ΛQ (62)
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Figure 4: Spectrum of strangeness zero Λc– and Σc–type s–wave and p–wave charm baryon
states. Mass values for s–wave states from Tables 1 and 2. Mass values of the two lowest
Λc–type p–wave states are taken from [52–54]. Masses of remaining p–wave states are taken
from Copley et al.[51]. They are adjusted upward to be in agreement with the measured Λc

mass.
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(63)

The two states ΣQ and Σ∗Q are exactly degenerate in the heavy quark limit since the heavy
quark possesses no spin interaction with the light–side diquark system as mQ → ∞.

For the purposes of deriving the consequences of the Heavy Quark Symmetry the only
information needed about the light diquark system is its spin and its parity. This entails the
transversality condition on the 1+ state vµχ1

µ = 0. Nevertheless it is convenient (but not
necessary) to regard the spin 0 and spin 1 diquark system as being composed of two light
quarks according to

1
2

+ ⊗ 1
2

+
= 0+ ⊕ 1+ . (64)

The explicit forms of the covariant bispinor spin wave functions in the constituent quark model
read (see [50])

0+ : χ̂0
αβ = 1

2
√

2
[( 6v + 1)γ5C]αβ

1+ : χ̂1,µ
αβ = 1

2
√

2
[( 6v + 1)γµ

⊥C]αβ

(65)

where γµ
⊥ is the (four–) transverse γ–matrix defined by γµ

⊥ = γµ − 6vvµ, and vµ is the four–
velocity of the diquark system (equal to the heavy baryon’s four velocity vµ = P µ

M
). C is the

4 × 4 charge conjugation matrix C = iγ0γ2 and serves to ”pull down” the antispinor index in
the remaining spinor–antispinor γ–matrix combination. In the following we shall drop explicit
reference to the spin of the bispinor state and write χ̂ and χ̂µ for χ̂0 and χ̂1,µ, respectively,
where this does not lead to confusion.

The spin wave functions χ̂ and χ̂µ satisfy the so–called Bargmann–Wigner equations on
both labels, i.e.

6vαα′ χ̂α′β = 6vαβ′ χ̂ββ′ = χ̂αβ (66)

and similarly for χ̂µ. They further possess the symmetry properties

χ̂αβ = −χ̂βα

χ̂µ
αβ = χ̂µ

βα
(67)

The transverse γµ–matrix is used in the spin 1 part of Eq.(65) in order to ensure that the spin
1 wave function is transverse to the four–velocity vµ, i.e.

vµχ̂
µ = 0 (68)

The transversality condition (68) insures that χ̂µ reduces to a three–component object in the
particle’s rest frame (r.f.) vµ = (1, 0, 0, 0). The Bargmann–Wigner condition (66) in turn
implies that the bispinor wave functions reduce to an upper–left two by two matrix in the rest
frame which, from the transversality condition (68), has the appropriate r.f. spin transformation
behaviour. In fact one has

χ̂αβ
r.f.

= − 1√
2

(

iσ2 0
0 0

)

χ̂µ
αβ

r.f.

= − 1√
2

(

σkiσ2 0
0 0

)
(69)
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where the σk (k = 1, 2, 3) are the usual Pauli matrices and iσ2 is the 2 × 2 charge conjugation
matrix [55]. When reading Eq.(69) component–wise in the spherical basis (see Eq.(73)) one
recovers the familiar spin wave functions χ̂

r.f.

= 1√
2
(↑↓ − ↓↑) etc. The representations (65)

can be seen to form a covariant way of writing the Clebsch–Gordan coupling in a moving frame
vµ with ~v 6= 0 or, put differently, the covariant spin wave functions are just boosted rest frame
spin wave functions.

Let us briefly have a look at the normalization of the bispinor diquark spin wave functions
Eq.(65). The conjugate spin wave functions are given by (see e.g. [56])

¯̂χ(v) = C−1C−1χ̂(−v) (70)

such that
¯̂χ = − 1

2
√

2
[C−1γ5( 6v + 1)]

¯̂χ
µ

= − 1
2
√

2
[C−1γµ

⊥( 6v + 1)]
(71)

The normalization can then be calculated to be

¯̂χαβχ̂αβ = 1

¯̂χ
µ
αβχ̂

ν
αβ = −gµν

⊥
(72)

where gµν
⊥ = gµν − vµvν .

It is sometimes convenient to transform to the spherical basis for the spin 1 diquarks which
can be done with the help of the spin 1 polarization vectors. One has (λ = ±1, 0)

χ̂(1, λ) = εµ(λ)χ̂µ (73)

and the inverse
χ̂µ =

∑

λ

ε∗µ(λ)χ̂(1, λ) (74)

where
εµ(±) = ∓ 1√

2
(0, 1,±i, o)

εµ(0) = (| ~v |, 0, 0, v0)
(75)

In as much as the spin wave functions χ̂ and χ̂µ satisfy the Bargmann–Wigner equation on
both spinor labels they are spin wave functions built from constituent on–mass shell quarks.
While these do not adequately describe the actual physical situation of the light diquark system
the on–mass shell spin wave functions are nevertheless quite useful when one wants to construct
non–constituent spin wave functions with the correct spin and parity of the diquark system. To
obtain the full light side spin wave functions one just multiplies the on–shell spin wave functions
χ̂αβ with a spinor valued matrix Aα′β′

αβ such that the spin and parity of the light diquark system
remain untouched. The resulting off–shell spin wave functions will be denoted by an unhatted
object and reads

χαβ = Aα′β′

αβ χ̂α′β′ (76)

where the wave function matrix Aα′β′

αβ in general depends on the nature of the diquark state as
well as on the velocity vµ and the relative momenta k and K. The multiplication with the spin

and parity neutral matrix Aα′β′

αβ serves to soften the light–side spinor structure. This would
e.g. be achieved by the replacement (6v + 1) → (A6v +B +C 6k+D 6k · 6v) for the positive energy
projection in the spin wave functions (65). The off–shell spin wave functions χαβ no longer
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satisfy the Bargmann–Wigner equations but still represent a diquark system transforming as
JP = 0+ and JP = 1+ under parity transformations and SO(3) rest frame rotations. The

constituent quark model can be seen to be a special case of Eq.(76) where the matrix Aα′β′

αβ

takes the special form Aα′β′

αβ = δα′

α δ
β′

β A.

The normalization of the wave function matrix Aα′β′

αβ must be such that the normalization
conditions Eq.(72) generalize to

(χ, χ) = 1 (77)

(χµ, χν) = −gµν
⊥ (78)

where the inner product ( , ) is defined with regard to integrations and traces over the internal
degrees of freedom of the diquark state. The exact form of the phase space integral, the spinor
trace and the form of the integrand need not concern us here since we are only interested
in the rest frame transformation properties of the spinor tensors χ and χµ, and their correct
normalization which we define through Eqs.(77) and (78).

We are now in the position to write down the spin wave functions Ψαβγ of the ground state
heavy baryons by writing down invariant couplings between the light–side spinor tensors χ and
χµand the heavy–side spinor tensors ψ and ψµ of the ground state baryons according to the
coupling scheme

1
2

+ ⊗ 1
2

+

︸ ︷︷ ︸

light side

⊗ 1
2

+ ⊗ JP

︸ ︷︷ ︸

heavy side

=⇒ 0+. (79)

The heavy–side spinor tensors ψ and ψµ involve the heavy baryon spinor u (for JP = 1
2

+
) and

the Rarita–Schwinger spinor–vector uµ (for JP = 3
2

+
), and their couplings to the heavy quark

spinor label. The rule is that if additional tensor structure is required on the heavy side one
brings in a factor of γµ

⊥ (remember that vµ annihilates on the light side tensor). One then has

ΛQ : Ψαβγ = χαβψγ ≡ χu (80)

{ΣQ} : Ψαβγ = χµ
αβψµ,γ

≡ χµ

{
1√
3
γ⊥µ γ5u

uµ

} (81)

where the curly bracket notation always implies a two–fold Heavy Quark Symmetry degeneracy.
The Lorentz contraction on the r.h.s. of Eq.(81) is required because the total heavy baryon
wave function Ψαβγ on the l.h.s. of Eq.(81) transforms as a scalar in Lorentz space (but not in
spinor space).1

The total spin wave functions Ψαβγ satisfy the Bargmann–Wigner (or mass–shell) condition
on the heavy quark spinor label γ, i.e.

6vγγ′Ψαβγ′ = Ψαβγ (82)

showing that the heavy quarks appear in the theory as freely propagating on–mass shell quarks
as is required in the Heavy Quark Symmetry limit. Note that a factor of γ5 is needed in the
ΣQ spin wave function in order to satisfy the mass–shell condition (82).

1For added emphasis we keep the transversality labels in scalar products such as χµγ⊥
µ most of the time even

though the the transversality label could be dropped since χµγ⊥

µ = χµγµ since vµχµ = 0.
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The normalization of the heavy–side spin wave functions ψ and ψµ can be seen to follow
from the overall normalization condition

(Ψ,Ψ) = 2M (83)

where the inner product ( , ) is defined as in Eqs.(77) and (78). Using the fact that the light–
side and heavy–side spin wave functions factorize in the sense of Eqs.(80) and (81) one then
obtains the appropriate normalization conditions for the heavy–side spin wave functions ψ and
ψµ. In fact one has

ΛQ : 2M = (Ψ,Ψ) = (χ, χ)ψ̄ψ (84)

{ΣQ} : 2M = (Ψ,Ψ) = (χµ, χν)ψ̄µψν (85)

Using the normalization conditions Eqs.(77) and (78) for the light–side wave functions one
obtains

ψ̄ψ = 2M (86)

− gµν
⊥ ψ̄µψν = 2M. (87)

The Λ– and Σ–type heavy–side spin wave functions ψ and ψµ in Eqs.(80) and (81) can be seen
to satisfy the normalization conditions (86) and (87) using ūu = 2M and ūµuµ = −2M .

4.2 Excited Heavy Baryon States

The spin wave function formalism introduced in Sec.(4.1) for the ground state baryons can
easily be extended to describe excited baryon states. The coupling scheme (79) now involves
also orbital angular momentum and reads

1
2

+ ⊗ 1
2

+ ⊗ l
P=(−)lk

k ⊗ l
P=(−)lK

K
︸ ︷︷ ︸

light side

⊗ 1
2

+ ⊗ JP

︸ ︷︷ ︸

heavy side

=⇒ 0+. (88)

In the tensor formalism the orbital excitations are represented by tensor products of the
relative momenta k⊥µ = kµ − k ·v vµ and K⊥µ = Kµ − K ·v vµ where the transversality again
reduces the relative four–momenta to relative three–momenta in the rest frame ~v = 0. Here we
shall only discuss p–wave orbital excitations.

Combining the p–wave negative parity orbital angular momentum state jP = 1− with the
two jP = 0+, 1+ spin states one has the following spin–parity content for the total light–side
diquark states:

0+ ⊗ 1− = 1− (89)

1+ ⊗ 1− = 0− ⊕ 1− ⊕ 2− (90)

For example, in the tensor formalism the decomposition (90) is achieved by writing e.g.

χ̂µ1kµ2

⊥ = 1
3
χ̂µk⊥µg

µ1µ2

⊥ + 1
2
[χ̂µ1kµ2

⊥ ] + 1
2
{χ̂µ1kµ2

⊥ }0 (91)

where { }0 stands for the traceless symmetric tensor product. Without any loss of generality
we have taken k⊥µ to represent the orbital excitation in the above example. For our purposes it
is more convenient to represent the spin one piece of (91) by an one–index tensor according to

1
2
[χ̂µ1kµ2

⊥ ] ≈ −1
2
εµµ1µ2αχ̂

µ1kµ2vα (92)

:= −1
2
ε(µ χ̂ k v)
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(we define ε0123 = 1 as in Bjorken–Drell). In the following we use a concise notation for ε–tensor
contractions, cf.

ε(µχ̂kv) := εµµ1µ2αχ̂
µ1kµ2vα . (93)

As in the case of the ground–state baryons we can now use the on–shell diquark states χ̂
and χ̂µ together with the orbital momenta represented by kµ

⊥ and Kµ
⊥ to build up the light–side

states φ̂µ1...µj with the desired jP quantum numbers. For illustrative purposes such explicit
constructions have been listed in Tables 4 and 5 (where the spin zero metric contraction gµ1µ

⊥
has been already absorbed into the heavy–side spin wave functions). The construction has to
be such that the resulting spinor–tensors φ̂µ1...µj representing a spin j diquark state have to be
i) transverse on all indices ii) totally symmetric in all indices and iii) traceless w.r.t. any pair
of indices. This would be the approach that one would take in a constituent type quark model
approximation.

The spinor–tensor spin wave functions φ̂µ1...µj listed in Tables 4 and 5 have the correct parity
and spin angular momentum to describe the diquark states. As in the ground–state case the
spinor–tensor has to be multiplied by a wave function matrix Aα′β′

αβ in order to obtain the full
diquark state wave functions. One thus has

[φµ1...µj ]αβ = Aα′β′

αβ [φ̂µ1...µj ]α′β′ (94)

where the wave function matrix Aα′β′

αβ in general depends on the external and internal degrees
of freedom of the diquark state, i.e. it is different for different diquark states. In the following
we shall mostly suppress spinor labels.

The full diquark wave function φµ1...µj satisfies the normalization condition

(φν1...νj , φµ1...µj ) = Gµ1...µj ;ν1...νj (95)

where the inner product is defined as an integration and trace over the internal degrees of
freedom of the diquark state as in Eqs.(77) and (78). Gµ1...µj ;ν1...νj is a generalized transverse
metric tensor which is i) transverse in all indices, ii) symmetric in the sets of indices {µi} and
{νi} and iii) traceless w.r.t. to any index pair in {µi} or in {νi}. Its general explicit form can
be found in [50].

We emphasize again that all that is needed for the purposes of Heavy Quark Symmetry is the
jP transformation behaviour of the light–side diquark states together with the normalization
condition (95). The constituent states listed in Tables 4 and 5 can be viewed as possible
”interpolating fields” of the true diquark states. Furthermore explicit forms of the constituent
states are needed in later applications if one wants to make reference to the constituent quark
model approach.

Although we are dealing only with diquark spins j = 0, 1 and 2 in this review the generic
notation introduced in (94) and (95) turns out to be quite convenient even for these simple
cases. It is also easily generalized to higher spins [50] (see also [57]). To be explicit we list the
subsidiary conditions and the normalization tensors for the light–side diquark states with spins
j = 0, 1, 2. One has

i) j = 0 : φ; G = 1 (96)

ii) j = 1 : φµ1 ; Gµ1ν1 = −gµ1ν1

⊥

transversality: vµ1φµ1
= 0 (97)
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Table 4: Spin wave functions (s.w.f.) of Λ–type s– and p–wave heavy baryons. Light–side spin
wave functions are constituent spin wave functions.

light side s.w.f.

φ̂µ1...µj
jP heavy side s.w.f.

ψµ1...µj

JP

ΛQ χ̂ 0+ u 1
2

+

{ΛQK1} χ̂0Kµ1

⊥ 1−
1√
3
γ⊥µ1

γ5u

uµ1

1
2

−

3
2

−

ΛQk0 χ̂1 · k⊥ 0− u 1
2

−

{ΛQk1} 1
2
ε(µ1χ̂

1k⊥v) 1−
1√
3
γ⊥µ1

γ5u

uµ1

1
2

−

3
2

−

{ΛQk2} 1
2
χ̂1{µ1k

µ2}0
⊥ 2−

1√
10
γ5γ

⊥
{µ1
uµ2}0
uµ1µ2

3
2

−

5
2

−

Table 5: Spin wave functions (s.w.f.) of Σ–type s– and p–wave heavy baryons. Light–side spin
wave functions are constituent spin wave functions.

light side s.w.f.

φ̂µ1...µj
jP heavy side s.w.f.

ψµ1...µj

JP

{ΣQ} χ̂1µ1 1+
1√
3
γ⊥µ1

γ5u

uµ1

1
2

+

3
2

+

{ΣQk1} χ̂0kµ1

⊥ 1−
1√
3
γ⊥µ1

γ5u

uµ1

1
2

−

3
2

−

ΣQK0 χ̂1 ·K⊥ 0− u 1
2

−

{ΣQK1} 1
2
ε(µ1χ̂

1K⊥v) 1−
1√
3
γ⊥µ1

γ5u

uµ1

1
2

−

3
2

−

{ΣQK2} 1
2
χ̂1{µ1K

µ2}0
⊥ 2−

1√
10
γ5γ

⊥
{µ1
uµ2}0
uµ1µ2

3
2

−

5
2

−
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iii) j = 2 : φµ1µ2 ; Gµ1µ2;ν1ν2 = 1
2
(gµ1ν1

⊥ gµ2ν2

⊥ + gµ1ν2

⊥ gµ2ν1

⊥ − 2
3
gµ1µ2gν1ν2)

symmetry: φµ1µ2 = φµ2µ1

transversality: vµ1φµ1µ2
= 0

tracelessness: gµ1µ2

⊥ φµ1µ2
= 0 (98)

It is a useful and instructive exercise to transform the cartesian tensors φµ1...µj to a spherical
basis. First note that because of the normalization condition Eq.(95) the cartesian tensors
φµ1...µj can be looked upon as forming a set of orthonormal vectors in a (2j+1) dimensional
linear vector space. They can thus be represented by the state vectors | µ1 . . . µj〉 which satisfy
orthonormality and completeness relations. One has

orthonormality : 〈ν1 . . . νj | µ1 . . . µj〉 = Gν1...νj
µ1...µj

(99)

completeness : | µ1 . . . µj〉〈µ1 . . . µj |= 1 (100)

where the Einstein summation convention is used in Eq.(100).
One can then transform to a spherical basis | φj, λ〉 :=| j, λ〉

| j, λ〉 = εµ1...µj (λ) | µ1 . . . µj〉 (101)

where the εµ1...µj
are the usual spin–j polarization tensors. The inverse of (101) is given by

| µ1 . . . µj〉 =
∑

λ

ε∗µ1...µj
(λ) | j, λ〉 (102)

The spherical basis vectors | j, λ〉 in turn satisfy orthonormality and completeness relations.
One has

orthonormality : 〈j, λ | j, λ′〉 = δλλ′ (103)

completeness :
∑

λ

| j, λ〉〈j, λ |= 1 (104)

From the above one can then derive orthonormality and completeness relation for the polariza-
tion tensors which read

ε∗µ1...µj
(λ)εµ1...µj (λ′) = (−)jδλλ′ (105)

∑

λ

εµ1...µj (λ)ε∗ν1...νj(λ) = Gµ1...µj
ν1...νj

(106)

After this technical aside we return to the construction of the excited heavy baryon states.
Using the diquark states φµ1...µj the heavy baryon spin wave functions can easily be obtained
from the contraction

Ψαβγ = [φµ1...µj ]αβψµ1...µj ;γ (107)

The heavy–side spin wave functions ψµ1...µj
are then uniquely determined in terms of spinor–

tensor forms that involve the heavy baryons Rarita–Schwinger spinor–tensors uµ1...µj and uµ1...µj−1

for the j±1/2 high and low spin partners, respectively, in the degenerate Heavy Quark Symme-
try baryon doublet. In the latter case an additional γ

µj

⊥ γ5 needs to be introduced to complete
the tensor structure (vµj cannot be used because it annihilates on the light side). The γ5 enters
since the ψµ1...µj have to satisfy the heavy quark mass–shell condition

6vψµ1...µj = ψµ1...µj (108)
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The normalization of the heavy–side spin wave functions is fixed through the normalization
condition

ψ̄ν1...νjψµ1...µjGµ1...µj ;ν1...νj
= 2M (109)

by the same reasoning as in Eq.(86) and (87). The generalized Rarita–Schwinger spinor–tensors
are normalized according to

ūµ1...µjuµ1...µj
= (−)j2M.

In this way one can then write down all the spin wave functions of the excited heavy baryons.
In Table 4 we have listed the spin wave functions for the excited Λ–type states together with
the ground state Λ and in Table 5 we have done the same for the Σ–type states. The p–wave
states are labelled according to the nature of their orbital state and their light–side diquark
spin j. Of interest is also whether the states are in a spin singlet χ0 or triplet χ1,µ state. This
can be determined by invoking the generalized Pauli principle for the light diquark system. One
thus finds that one has a spin singlet configuration χ0 for {ΛQK1} and {ΣQkj(j = 0, 1, 2)} and
a spin triplet configuration χ1,µ for {ΛQkj; (j = 0, 1, 2)} and {ΣQK1}. In the remaining part of
Sec.4 we shall make repeated use of the covariant spin wave functions written down in Sec.4.1
and 4.2.

A last comment concerns flavour wave functions. The antisymmetric (antitriplet) and sym-
metric (sextet) light diquark flavour wave functions are given by [qiqj ] = 1√

2
(qiqj − qjqi) and

{qiqj} = 1√
2
(qiqj + qjqi) with qi, qj = u, d, s. It is sometimes convenient to represent the an-

tisymmetric flavour wave function by an one–index object by raising indices with the help of
εijk, i.e. T k = εijk[qiqj], as is appropriate for the antitriplet representation.

4.3 Current–Induced Heavy Baryon Transitions

The exclusive semileptonic decays Hb → Hc + l− + ν̄l have played a central role in the devel-
opment of the Heavy Quark Symmetry. Originally the prime motivation for studying these
decays was the desire to get a handle on the value of the Kobayashi–Maskawa matrix element
Vbc. Once HQET was formulated it was noticed that the structure of these decays is sufficiently
rich to put the predictions of the heavy quark limit and the 1/mQ corrections to this limit to
a detailed test in these decays. Quite naturally in the beginning the main emphasis was on
the mesonic b→ c transitions. But as more and more data is being collected on heavy baryon
decays a new important field for the applications of Heavy Quark Symmetry has been opening
from the investigation of current–induced heavy baryon transitions.

As explained in Sec.2 the following ground state to ground state weak semileptonic transi-
tions are expected to be observable

ΛQ − type : Λb → Λc + l− + ν̄l

Ξb → Ξc + l− + ν̄l

ΣQ − type : Ωb → Ωc + l− + ν̄l

: Ωb → Ω∗c + l− + ν̄l (110)

The other ground state bottom baryons also have semileptonic modes but their semileptonic
branching ratios are so small as to make their semileptonic decays unobservable for all practical
purposes.

Further there are transitions to excited charm baryon states as in Λb → Λ∗∗c . One would
then want to know how big the rate into the inelastic channels Λ∗∗c is, in particular as the
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Figure 5: Current–induced transition between heavy baryons. Heavy–side transition Q1(v1) →
Q2(v2) mediated by (V-A) heavy quark current. Light–side transition jP1

1 (v1) → jP2

2 (v2) de-
pends only on the invariant velocity transfer variable ω = v1 ·v2.

elastic rate and the inelastic rates are intimately linked together by the sum rule of Bjorken.
Again one would like to test the predictions of HQET also for the inelastic contributions. For
example, the excited Λ∗∗c –states produced in these decays (and for that matter the Λc) will
be polarized with definite predictions for the polarization density matrices from HQET. The
polarization of the Λ∗∗c ’s would reveal itself by the angular decay distribution of its subsequent
decay products. Such considerations can e.g. be used to pin down the JP quantum numbers
of the excited Λ∗∗Q states.

There are two ingredients that go into the Heavy Quark Symmetry description of the
semileptonic transitions as shown in Fig.5. First there is the b → c transition which is me-
diated through the known (V-A) structure. Second there is the transition from the initial
diquark system to the final diquark system whose strength and structure is not known. The
lack of knowledge concerning the light–side diquark transition can be parameterized in terms
of independent transition amplitudes which are called reduced form factors. These can only
depend on the one kinematical Lorentz invariant ω = v1·v2 that arises in the transition. Finally
the heavy quarks and the light diquark system in the initial and final state have to combine to
form heavy baryons with the correct spin–parity quantum numbers. The correct spin coupling
factors that achieve this can be determined from products of C.G. coefficients [58,59] (or alter-
natively from 6–j symbols). Here we use the covariant approach to determine the correct spin
coupling factors as in [50].

For the current–induced transitions we then obtain

Mλ = 〈BQ2
(v2) | Jλ | BQ1

(v1)〉 = ψ̄
µ1...µj1
2,α Γλ

αβψ
ν1...νj2

1,β (
∑

i

fi(ω)tiµ1...µj1
;ν1...νj2

) (111)

where the ψµ1...µj are the heavy–side spin wave functions. Γλ determines the structure of the
Q1 → Q2 current transition (e.g. γλ(1− γ5) for a (V-A) interaction). The tensors tiµ1...µj1

;ν1...νj2

describe the diquark transition. They have to be build from the vectors vµi

1 and vνi
2 , the metric

tensors gµiνk
and, depending on parity, from the Levi–Civita object ε(µiνkv1v2). The fi(ω) are

reduced form factors that depend only on the invariant velocity transfer variable ω = v1·v2.
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Note that the Heavy Quark Symmetry prediction for the current matrix element (111)
has some structural similarity to the Wigner–Eckart theorem. The fi(ω) can be regarded
as ”reduced matrix elements” and the ψ̄

µ1...µj1
2 Γλψ

ν1...νj2
1 tiµ1...µj1

;ν12
...νj2

are the Clebsch–Gordan

coefficients that project onto the reduced matrix elements fi(ω). The reduced form factors serve
to parameterize our ignorance about the dynamics of the light–side transitions. Heavy Quark
Symmetry can tell us nothing about the reduced form factors fi(ω) except for the existence
of a normalization condition at zero recoil ω = 1 for the elastic transitions, as mentioned in
Sec.3. The magnitude and the ω–dependence of the reduced form factors would have to be
calculated using nonperturbative methods such as QCD sum rules, lattice gauge theory or,
more conventionally, explicit quark models.

The number of the independent tensors tiµ1...µj1
,ν1...νj2

and their parity depend of course on
the particular transition that is being considered. For the simple cases considered here they can
easily be written down using the building blocks vµi

1 , vνi
2 , gµiνk

and ε(µiνkv1v2), as mentioned
before.

For the Λ–type transitions the tensor structure is particularly simple since the diquark in
the initial state has jP = 0+. This implies that there is at most one reduced form factor for
the Λ–type transitions. One has [50,60]

i) ΛQ1
→ ΛQ2

: 1
2

+ → 1
2

+

Mλ = ū2Γ
λu1f

(0)(ω) (112)

form factor normalization: f (0)(ω = 1) = 1

ii) ΛQ1
→ {ΛQ2K1} : 1

2

+ →
{

1
2

−

3
2

−

}

Mλ =

{

− 1√
3
ū2γ5γ

µ
⊥2

ūµ
2

}

Γλu1f
(1)
1 (ω)v1µ (113)

iii) ΛQ1
→ ΛQ2k0 : 1

2

+ → 1
2

−

Mλ = 0 (forbidden) (114)

iv) ΛQ1
→ {ΛQ2k1} : 1

2

+ →
{

1
2

−

3
2

−

}

Mλ =

{

− 1√
3
ū2γ5γ

µ
⊥2

ūµ
2

}

Γλu1f
(1)
2 (ω)v1µ (115)

v) ΛQ1
→ {ΛQ2k2} : 1

2

+ →
{

3
2

−

5
2

−

}

Mλ = 0 (forbidden) (116)

For the elastic transition there is a change of notation from the one used in Sec.3 (f (0)(ω) =
ξ(ω)) to allow for the inclusion of the p–wave contributions.

Let us make a few comments about the structure of the current–induced matrix elements
(112)–(116). An alternative way of determining the tensors tiµ1...µj1

;ν1...νj2
and their associated

reduced form factors fi(ω) consists in considering the structure of the light–side transitions.
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For this purpose it is convenient to consider the light–side transition in the spherical basis (see
Eq.(99)–(106)). One has

(φ2(j
P2

2 , λ, v2), φ1(j
P1

1 , λ, v1)) = ε∗ν1...νj2 (λ)(
∑

i

fi(ω)tiν1...νj2
;µ1...µj1

)εµ1...µj1 (λ) (117)

where the tensors tiν1...νj2
;µ1...µj1

describe the light side transition. Explicitly one has

(φ2ν1...νj2
(v2), φ1µ1...µj1

(v1)) =
∑

i

fi(ω)tiν1...νj2
;µ1...µj1

(118)

In Eq.(117) we have made use of the fact that the helicity (or jz) is conserved in the light side
diquark transition, i.e. λ1 = λ2 := λ. The inner product is defined as in Eq.(95), but now
for the parity conserving inelastic transitions jP1

1 (v1) → jP2

2 (v2). It is evident that Eq.(117)
possesses the same tensor structure as Eq.(111). Using the alternative form (117) it is then
easy to understand the absence of ΛQ1

→ ΛQ2k0, {ΛQ2k2} transitions since there can be no parity
conserving transitions 0+ → 0− and 0+ → 2−.

The form (117) also provides for the zero recoil normalization condition f(ω = 1) = 1 for
the ΛQ1

→ ΛQ2
transition mentioned in Sec.3 and written down in (112). In this case one

has an elastic 0+ → 0+ transition which is evidently normalized to 1 at v1 = v2 according to
Eq.(95). Physically speaking, the normalization condition arises because there is a complete
overlap of the wave function of the diquark system before and after the Q1 → Q2 transition at
zero recoil.

The counting of the number of reduced form factors that describe the heavy baryon tran-
sitions can readily be done by referring to the number of independent diquark transition am-
plitudes N in Eq.(117). Defining the normality n of a diquark state with quantum numbers jP

by n = P (−)j one has to differentiate between the two cases where the product of normalities
of the two diquark states is even or odd. One finds

i) n1 ·n2 = 1 : N = jmin + 1
ii) n1 ·n2 = −1 : N = jmin

(119)

where jmin = Min{j1, j2}. In closed form one has N = jmin + 1
2
(1+n1 ·n2). The above analysis

agrees with Eqs.(112)–(116) as it must. Eq.(119) can be derived by counting the number
of independent helicity amplitudes in the transition Eq.(117) [61]. The difference between the
n1·n2–even and –odd case comes about because parity invariance forbids helicity zero transitions
when n1·n2 = −1. An even more elementary way of deriving Eq.(119) is by performing a simple
LS analysis in which the transition operator is treated as a 0+ ”spurion” state either in the
initial or final state [58].

For the Σ–type transitions the form factor structure predicted by Heavy Quark Symmetry
is a trifle more complex since now the initial diquark is a jP = 1+ diquark state. For each of
the Σ–type transitions there are now at most two reduced form factors.2 One has

i){ΣQ1
} → {ΣQ2

} :

{
1
2

+

3
2

+

}

→
{

1
2

+

3
2

+

}

Mλ =

{

− 1√
3
ū2γ5γ

ν1

⊥2

ūν1

2

}

Γλ

{
1√
3
γµ1

⊥1
γ5u1

uµ1

1

}

(−g(0)
1 (ω)gµ1ν1

+ g
(0)
2 (ω)v1ν1

v2µ2
)

2As a curious byline we would like to remind the reader that the full Heavy Quark Symmetry spin structure
of the ΛQ– and ΣQ–type ground state transitions had already been written down some 17 years ago in the
crossed e+e− channel [62].
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form factor normalization: g
(0)
1 (ω = 1) = 1

ii){ΣQ1
} → {ΣQ2k1} :

{
1
2

+

3
2

+

}

→
{

1
2

−

3
2

−

}

Mλ =

{

− 1√
3
ū2γ5γ

ν1

⊥2

ūν1

2

}

Γλ

{
1√
3
γµ1

⊥1
γ5u1

uµ1

1

}

ig
(1)
1 (ω)ε(µ1ν1v1v2)

iii){ΣQ1
} → ΣQ2K0 :

{
1
2

+

3
2

+

}

→ 1

2

−

Mλ = ū2Γ
λ

{
1√
3
γµ1

⊥1
γ5u1

uµ1

1

}

g
(1)
2 (ω)v2µ1

(120)

iv){ΣQ1
} → {ΣQ2K1} :

{
1
2

+

3
2

+

}

→
{

1
2

−

3
2

−

}

Mλ =

{

− 1√
3
ū2γ5γ

ν1

⊥2

ūν1

2

}

Γλ

{
1√
3
γµ1

⊥1
γ5u1

uµ1

1

}

ig
(1)
3 (ω)ε(µ1ν1v1v2)

v){ΣQ1
} → {ΣQ2K2} :

{
1
2

+

3
2

+

}

→
{

3
2

−

5
2

−

}

Mλ =

{

− 1√
10
ū
{ν1

2 γ5γ
ν2}0
⊥2

ūν1ν2

2

}

Γλ

{
1√
3
γµ1

⊥1
γ5u1

uµ1

1

}

(−g(1)
4 (ω)v1ν1

gν2µ1
+ g

(1)
5 (ω)v1ν1

v1ν2
v2µ1

)

(121)

As discussed before the form factor counting can of course be done equally well by counting the
number of form factors in the diquark transitions 1+ → jP2

2 using the general formula Eq.(119).
The normalization condition for the ”elastic” transition {ΣQ1

} → {ΣQ2
} at zero recoil applies

only to the metric form factor g
(0)
1 (ω) since the second form factor g

(0)
2 (ω) does not contribute

when v1 = v2. The zero recoil normalization g
(0)
1 (1) = 1 follows directly from the normalization

of the diquark state, cf. Eq.(95).
Equations (112)–(116) and (120)–(121) represent the most general transition form factor

structure in the Heavy Quark Symmetry limit. We shall discuss some possible simplifications
at the end of Sec.4.4 by resolving the diquark transitions into constituent quark transitions. It is
important to keep in mind, though, that any simplification of the form factor structure predicted
by Heavy Quark Symmetry necessarily involves further model dependent assumptions.

Before closing this subsection we briefly want to discuss the Heavy Quark Symmetry struc-
ture of current–induced transitions from a heavy baryon to a light baryon. This would be of
relevance for e.g. c → s or b → u transitions. Here we limit ourselves to ground state tran-
sitions. For heavy to light transitions one must now allow for spin interactions of the light
”active” quark coming from the weak interaction vertex with the light diquark system, i.e.
now one has a factorization only in the initial state. The spin interaction can be introduced
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by adding γ–structure to the light ”active” fermion in the final state. This amounts to the
replacements f (0) → f ′ + 6v1f

′′, g
(0)
1 → g′1 + 6v1g

′′
1 and g

(0)
2 → g′2 + 6vg′′2 in Eq.(112) and (120).

Explicitly one has [39,63]

ΛQ → Λq : Mλ = ū2(p2)(f ′(p2 ·v1) + 6v1f
′′(p2 ·v1))Γ

λu1(v1) (122)

{ΣQ} → Σq : Mλ = 1√
3
ū2(p2)γ5γ

ν1

⊥2
[−gµ1ν1

(g′1(p2 ·v1) + 6v1g
′′
1(p2 ·v1))

+v1ν1
p2µ1

(g′2(p2 ·v1) + 6v1g
′′
2(p2 ·v1)]

Γλ

{
1√
3
γµ1

⊥1
γ5u1(v1)

uµ1

1 (v1)

}

(123)

and similarly for {ΣQ} → Σ∗q , albeit with a new set of form factors. Now there is no normal-
ization condition for any of the form factors, and the transitions {ΣQ} → Σq and {ΣQ} → Σ∗q
are not related.

4.4 Contribution of Transition Form Factors to the Bjorken Sum

Rule

As mentioned before, Heavy Quark Symmetry says nothing about the ω– dependence of the
reduced form factors except for the normalization condition at zero recoil in the elastic case.
However, Bjorken has pointed out [64] that one may extract useful information on the reduced
form factors by considering the contribution of the heavy decay baryons BQ2

, B∗∗Q2
. . . to the

structure functions H i occurring in the semileptonic decay BQ1
→ (BQ2

+B∗∗Q2
. . .)+νl + l (for a

definition of the structure functions Hi see Sec.5.2). Then, by invoking duality, one equates the
sum of particle structure functions to the corresponding inclusive structure function calculated
from the free quark decay Q1 → Q2 + νl + l for any value of ω.

Technically, it is simplest to consider the contribution of the decay baryons to the longitudi-
nal structure function HL. One first calculates longitudinal helicity transition amplitudes and
then squares them in order to obtain the contribution of a given final baryon to the Bjorken
sum rule. This is an elegant method that avoids the tedium of having to do lengthy spin sums
in squared covariant matrix elements.

In this way it is not difficult to obtain the contribution of the s– and p–wave baryons to the
Bjorken sum rule. For the Λ–type transitions one has

1 = | f (0)(ω) |2 +(ω2 − 1)(| f (1)
1 (ω) |2 + | f (1)

2 (ω) |2) (124)

+ . . .

where the ellipsis stand for the contributions of higher radial and orbital excitations not con-
sidered here, and for continuum contributions.

The higher orbital and radial excitations, and the continuum will contribute to the sum
rule with threshold powers (ω2 − 1)n at least as high as the p–wave contributions, i.e. n ≥ 1.
For the zero recoil point ω = 1 all but the elastic contribution vanish and one recovers the
normalization condition f (0)(1) = 1 for the elastic form factor. As one is moving away from
the zero recoil point ω = 1 rate is disappearing from the elastic channel while it appears in the
inelastic channels. Using positivity one obtains bounds for the elastic form factor and for its
derivative at the zero recoil point ω = 1. One has

f (0)(ω) ≤ 1 (125)

df (0)

dω ω=1

≤ −(| f (1)(1) |2 + | f (1)(1) |2) ≤ 0 (126)
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For the Σ–type transitions one finds [50,65]

1 = 2
3
| g(0)

1 (ω) |2 +1
3
| ωg(0)

1 (ω) − (ω2 − 1)g
(0)
2 (ω) |2

+(ω2 − 1){2
3
| g(1)

1 (ω) |2 +1
3
| g(1)

2 (ω) |2 +4
3
| g(1)

3 (ω) |2 (127)

+2
3
| g(1)

4 (ω) |2 +4
9
| ωg(1)

4 (ω) − (ω2 − 1)g
(1)
5 |2} + . . .

We have diagonalized the form factor contributions of the ground state and the {ΣQ2K2}
multiplet in terms of the longitudinal and the transverse diquark transitions, FL = g

(0)
1 and

FT = ωg
(0)
1 − (ω2 − 1)g

(0)
2 and similarly for the 1+ → 2− transition.

The bounds on the elastic form factors and their derivatives now read

2
3
| g(0)

1 (ω) |2 +1
3
| ωg(0)

1 (ω) − (ω2 − 1)g
(0)
2 (ω) |2≤ 1 (128)

and
dg

(0)
1 (ω)

dω ω=1

≤ −1
3

+ 2
3
g

(0)
2 (1) (129)

The bounds on the form factors (128) and (129) are not very strong. Still one of the bounds
suffices to e.g. rule out the ”quark confinement model (QCM)” of [66]. In the QCM model one

finds f (0)(ω) = Φ(ω), g
(0)
1 = ωΦ(ω) and g

(0)
2 (ω) = Φ(ω) where the form factor function

Φ =
ln(1 +

√
ω2 − 1)√

ω2 − 1
(130)

has a similar origin as the one–loop correction to the current–quark–quark vertex discussed in
Sec.3. Substituting the QCM results in the bound (128) the bound translates into

Φ2(ω) ≤ 3

1 + 2ω2
(131)

which can be checked to be wrong. One can check that the sum rule bounds (125), (126) and
(132) are indeed satisfied by the QCM form factors (Φ′(1) = −1). However, in view of the
violation of the bound (128) one concludes that the QCM model has to be ruled out as it
predicts form factors which are too hard.

Let us consider the simplification that occur when one adopts a constituent quark model
description for the ground state to ground state transitions ΛQ1

→ ΛQ2
and {ΣQ1

} → {ΣQ2
}.

As already mentioned in Sec.4.1 the constituent approximation for the spin–wave functions
consists in writing A(k,K, v)αβ

γδ = A(k,K, v)δα
γ δ

β
δ such that the Λ–type and Σ–type states

become related. In the language of collinear SU(6)W the diquark is the 21–dimensional 22–
representation of the SU(6)W symmetry, where 21 = 1a ⊗ 3∗a + 3s ⊗ 6s is the SU(2)spin ⊗
SU(3)flavour decomposition of the 21–dimensional representation. The spin 0 antisymmetric 3∗

representation is made up by the three antisymmetric combinations of u, d and s while the spin
1 symmetric 6 representation is made up by the six symmetric combinations of u, d and s.

The diquark transition will now be resolved into a pair of quark–quark transitions. A first
simplification occurs when the quark–quark transitions are taken to be superpositions of a
scalar and a vector interaction which are parameterized by the form factors f(ω) and g(ω),
respectively, as drawn in Fig.6. A spin–spin interaction term could be due to an effective one–
gluon exchange force as described in [32] or, alternatively, would show up as a remnant of the
fermionic propagator effect in the Bethe–Salpeter approach of [39]. It is then a simple matter to
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Figure 6: Light–side diquark transition resolved into constituent quark transitions. Reduced
form factors f(ω) and g(ω) multiply scalar–scalar and vector–vector constituent quark transi-
tions. Zero recoil normalization condition for elastic case is f(1) + g(1) = 1.

calculate the resolved diquark transition using the spin wave functions (65) and the transition
operator

I(ω) = f(ω)1 ⊗ 1 + g(ω)γµ ⊗ γµ (132)

One finds

¯̂χ
0
(v2)I(ω)χ̂0(v1) =

ω + 1

2
f(ω) + (2 − ω)g(ω) (133)

¯̂χ
1
ν(v2)I(ω)χ̂1

µ(v1) = −
(
ω + 1

2
f(ω) + g(ω)

)

gµν + 1
2
f(ω)v2µv1ν (134)

with the zero recoil normalization condition

f(1) + g(1) = 1. (135)

Eq.(134) is understood to be taken between the spin polarization vector ε∗ν2 and εµ
1 . In terms

of the elastic form factors defined in Eqs.(112) and (120) one finds

ΛQ : f (0)(ω) =
ω + 1

2
f(ω) + (2 − ω)g(ω) (136)

{ΣQ} : g
(0)
1 (ω) =

ω + 1

2
f(ω) + g(ω) (137)

g
(0)
2 (ω) = 1

2
f(ω) (138)

It will not be easy to experimentally test the above relation between the Λ–type and the
Σ–type form factors in semileptonic decays. In the test one would have to compare Λb → Λc

and Ωb → Ωc transitions where there are additional SU(3) breaking effects. However going to
the e+e−–production channel, one can predict the relative rates of heavy baryon pair produc-
tion from (136–138). For example, close to the threshold the contribution of f(ω) is strongly
suppressed and one obtains [39] 3

σΛQΛ̄Q
: σΣQΣ̄Q

: σΣQΣ̄∗
Q

+ σΣ∗
Q

Σ̄Q
: σΣ∗

Q
Σ̄∗

Q
= 27 : 1 : 16 : 10 (139)

3The spin coupling factor (ω + 1)/2 multiplying the scalar form factor f(ω) in (136) and (137)has a simple
interpretation in the crossed e+e−–channel where (ω + 1) → −(ω − 1) after crossing. Each factor of

√
ω − 1 in

(ω − 1) = (
√

ω − 1)2 accounts for one p–wave suppression for each of the light quark–antiquark pairs that are
independently produced [39].
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In the so called spectator quark model one sets the spin–spin interaction term to zero. In this
case one finds

f (0)(ω) = g
(0)
1 (ω) =

ω + 1

2
f(ω) (140)

g
(0)
2 (ω) = 1

2
f(ω) (141)

All three reduced form factors are now related to one single form factor f(ω). We shall
refer to f(ω) as the residual quark model form factor since the spin coupling factor (ω + 1)/2
has been factored out. When Eq.(140) and (141) is substituted into either of the Bjorken sum
rules (124) or (127) one now finds

f(ω) ≤ 2

ω + 1
(142)

for the residual form factor f(ω). Since 2/(ω + 1) is the normalized monopole form factor in
the heavy quark limit one finds that the residual form factors f(ω) has to fall at least as fast as
a monopole form factor in the heavy quark limit. The form factor f(ω) used in the spectator
quark model calculation of [67] and [65] is consistent with the bound (142).

Carone, Georgi and Osofsky [69] have recently presented arguments that the light con-
stituent quarks have no spin interactions to leading order in 1/NC (NC is the number of colours).
This would lend support to the viability of the constituent spectator approach (light constituent
quarks plus absence of spin interactions of light quarks). This would have dramatic implications
for threshold production of heavy baryon pairs in e+e− –interactions because of the extra |~p|4
threshold suppressions present in the spectator model as argued before. In the absence of spin
interactions of the light constituent quarks there are no spin singlet – spin triplet transitions
because of the orthogonality of the spin wave functions χ̂0 and χ̂1

µ. Consequently one would
predict e.g. that the s–wave to p–wave transitions ΛQ1

→ {ΛQk1} and ΣQ1
→ {ΣQk1} vanish

(see also [65] and [70]). This would imply that only two of the seven Λc–type p–wave states
contribute to the Bjorken sum rule (124). If there is only little rate into Λ∗∗c ’s much of the
inclusive rate must go into the elastic Λb → Λc channel. One would then conclude that the
elastic channel has a large branching ratio, or, in the light of the sum rule of Bjorken, that the
elastic transition form factor f (0)(ω) should be quite flat.

Finally, the simplest quark model configuration is given by the “independent quark motion
approximation” where each light quark moves around the heavy quark source independently
with no interaction between the light quarks. The analogue of this configuration in atomic
physics is the ”unperturbed” helium atom configuration where the interaction between the
electrons has been switched off. This approximation corresponds to a totally factorized form
of the diquark wave function [39]

Aβδ
αγ(k,K, v) = A(p1, v)A(p2, v)δβ

αδ
δ
γ . (143)

In this approximation the baryonic form factor is nothing but the square of the mesonic reduced
form factor ξ(ω) with ξ(1) = 1, i.e.

f(ω) = ξ2(ω). (144)

Substituting (144) into (142) one obtains

ξ(ω) ≤
√

2

ω + 1
(145)

which, not surprisingly, is just the Bjorken bound for the heavy meson reduced form factor [64].
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Figure 7: Allowed pion transitions between p–wave and s–wave charm baryon states. For the
one–pion transitions drawn in the figure there are no orbital angular momentum selection rules
from Heavy Quark Symmetry. The transitions {ΛcK1} → Λc are via two–pion transitions. One–

pion transitions are forbidden for these transitions by isospin and, in the case 3
2

− → 1
2

+
+ π−,

also by parity in the heavy quark limit.

4.5 Pion Transitions Between Heavy Baryons

A look at the spectrum of the s–wave charm baryon states shows that there is enough phase
space for the two members of the {Σc} doublet to decay into Λc via pion emission. In fact the
1/2+ Σc–states revealed themselves as peaks in the (Λcπ) invariant mass spectrum. Last year
the SCAT collaboration reported evidence for the corresponding one–pion decay mode of the
3/2+ Σ∗c state via the decay Σ∗c → Λcπ [29].

Further interest in pion transitions between heavy charm baryons has been triggered by
the recent observation of two excited Λ–type charm baryon states at ≃ 2593 MeV and at
≃ 2627 MeV by the ARGUS [53], CLEO [52] and E687 [54] collaborations. These states show
up as peaks in the (Λππ) invariant mass distribution. The resonances are narrow, in fact too
narrow to be resolved by the experiments.

The lower resonance of the two appears to be dominantly decaying via the decay chain
Λc(2593) → Σc(→ Λcπ) + π. For the higher lying resonance state ARGUS reports on some
evidence for the existence of the decay chain Λc(2627) → Σc(→ Λcπ) + π [53] which, however,
is not corroborated by the other experiments.

The two new states are very likely the two JP = 1/2− and 3/2− members of the p–wave
multiplet {ΛcK1}. In fact, an early quark model calculation [51] predicted mass values of 2.53
GeV and 2.61 GeV for the 1/2− and 3/2− members 4, respectively, of the {ΛcK1} multiplet which
are quite close to the experimental mass values. A direct experimental determination of the JP

4The numerical mass values were adjusted upward such that the input Λc mass agrees with its measured
value.
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Figure 8: One–pion (left) and one–photon (right) transitions between heavy baryons in the
heavy quark limit. The pion and the photon couple only to the light–side diquark which makes
a transition from spin–parity jP1

1 to jP2

2 at the same velocity v. The heavy quark is not affected
by the transition. Pion transitions are labelled by pion’s orbital momentum. Photon transitions
are labelled in terms of electric (EJγ) and magnetic (MJγ) multipoles.

quantum numbers of the two new states is still outstanding. However, there is some indirect
evidence for the validity of the JP = 1/2− and 3/2− assignments of the two new states from the
existence or nonexistence of the intermediate state (Σcπ) in the Λc(2593) and Λc(2627) decays.
The argument goes as follows (see Fig.7). Both decays Λc(2593) → Σcπ and Λc(2627) → Σcπ
are kinematically allowed. Although the phase space for Λc(2627) → Σcπ is larger than for
Λc(2593) → Σcπ the former channel is not seen by two of the three experiments. This would
find a natural explanation if Λc(2627) → Σcπ is a very much suppressed 3/2− → 1/2+ + π
d–wave decay and Λc(2593) → Σcπ is an unhindered 1/2− → 1/2+ + π s–wave decay.

The physics of the one–pion transitions between heavy baryons is depicted in Fig.8. The
pion is emitted from the light diquark while the heavy quark propagates unaffected by the pion
emission process. Since the heavy baryon is infinitely heavy the heavy baryon will not recoil in
the pion emission process, i.e. the velocity of the heavy quark and thereby the heavy baryon
remains unchanged, as indicated in Fig.8.

The number of independent amplitudes describing the one–pion transitions on the light
side can be determined by the same reasoning as in Sec.4.3. When counting the number N of
independent helicity amplitudes one has to distinguish again between the two cases that the
product of the normalities of the diquark states is even or odd. One obtains

i) n1 ·n2 = 1 N = jmin

ii) n1 ·n2 = −1 N = jmin + 1
(146)

or, in closed form, N = jmin − 1
2
(n1n2 − 1). The counting of amplitudes can of course equally

well be done using the LS–coupling scheme.
In fact, in Table 6 we list the relevant forms of the covariant couplings of the pions in a

definite orbital state lπ. In the heavy quark limit the orbital momenta of the pion relative to
the diquark lπ and relative to the baryon Lπ are identical, i.e. lπ = Lπ. As we shall see at
the end of Sec.4.5 the couplings listed in Table 6 can easily be transcribed into chiral invariant
couplings.
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Table 6: Tensor structure of pion couplings to diquark states. The pion is in a definite or-
bital state lπ. Tensor structure of transitions with (jP1

1 , jP2

2 ) → (j−P1

1 , j−P2

2 ) → (jP2

2 , jP1

1 ) →
(j

P−2

2 , j−P1

1 ) are identical and are not always listed here.

diquark transition orbital wave covariant coupling

jP1

1 → jP2

2 + π lπ tiµ1...µj1
;ν1...νj2

0+ → 0+ + π forbidden -

1+ → 0+ + π 1 p⊥µ1

1+ + π 1 1√
2
ε(µ1ν1pv)

0− → 0+ + π 0 1 (scalar)

1+ + π forbidden -

0− + π forbidden -

1− → 0+ + π forbidden -

1+ + π 0 1√
3
g⊥µ1ν1

2
√

3
2
(p⊥µ1

p⊥ν1
− 1

3
p2
⊥g
⊥
µ1ν1

)

0− + π 1 p⊥µ1

1− + π 1 1√
2
ε(µ1ν1pv)

2− → 0+ + π 2
√

3
2
p⊥µ1

p⊥µ2

1+ + π 2 p⊥µ2
ε(µ1ν1pv)

0− + π forbidden -

1− + π 1
√

3
5
g⊥µ1ν1

p⊥µ2

3
√

5
2
{p⊥µ1

p⊥µ2
p⊥ν1

− 1
5
(p2
⊥g
⊥
µ1µ2

p⊥ν3
+cycl.(µ1µ2ν1))}

2− + π 1
√

2
5
g⊥µ1ν1

ε(µ2ν2pv)

3
√

2
5
(p⊥µ1

p⊥ν1
− 1

5
gµ1ν1

p2
⊥)ε(µ2ν2pv)
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The one–pion transition amplitudes between heavy baryons can then be written as

Mπ = 〈π(~p), BQ2(v) | T | BQ1(v)〉

= ψ̄
ν1...νj2
2 (v)ψ

µ1...µj1
1 (v)(

∑

lπ

flπt
lπ
µ1...µj1

;ν1...νj2
) (147)

where the heavy–side baryon wave functions ψµ1...µj have been given in Tables 4 and 5 and the
relevant light–side tensors tlπµ1...µj1

;ν1...νj2
are listed in Table 6. They are tensors of rank (j1 + j2)

build from the building blocks g⊥µν = gµν − vµvν , p⊥µ = pµ − p·vvµ and, depending on parity,
from the Levi–Civita tensor. They are put together such that they have the correct parity and
project out the correct partial wave amplitude with amplitude flπ . The normalization of the
amplitudes flπ is such that a given partial wave amplitude flπ contributes as | flπ |2| ~p |2lπ to
the spin summed square of the diquark transition amplitude.

As a first application we consider the ground state to ground state transition {Σc} → Λc+π.
The one–pion transition amplitudes are easily written down using Eq.(147), the relevant heavy–
side spin wave functions from Tables 4 and 5, and the 1+ → 0+ + π covariant pion coupling in
Table 6. One has

Mπ = ū2(v)

{
1√
3
γµ
⊥γ5u1(v)

uµ
1 (v)

}

fpp
⊥
µ (148)

The decay rates can be calculated using the general rate formula

Γ =
1

2J1 + 1

| ~p |
8πM2

1

∑

spins

| Mπ |2 . (149)

One then obtains

ΓΣ∗
c→Λc+π = ΓΣc→Λc+π =

1

6π

M2

M1
| fp |2| ~p |3 (150)

where | ~p | is the CM momentum of the pion. The equality of the rates for Σ∗c → Λc + π and
Σc → Λc + π true in the heavy quark mass limit (when MΣ∗

c
= MΣc

) is a general result for
transitions into a Heavy Quark Symmetry spin singlet state. This general result is most easily
derived in the 6–j symbol formalism discussed at the end of this section.

Differences in the phase space factors | ~p |3 in the two decays constitute O(1/mc) effects
which may be important when one wants to model 1/mc–effects in phenomenological applica-
tions. Similarly the final form of the rate (150) depends on at what stage of the rate calcu-
lation one has dropped the zero recoil approximation inherent to the Heavy Quark Symmetry
approach. This explains the O(1/mc) differences between the results of [71] and Eq.(150). We
have retained the zero recoil approximation in the calculation of the squared matrix element
| Mπ |2.

An estimate of the coupling strength fp can be obtained in the constituent quark model
approximation [71]. The one–pion transition between the dipion states is resolved into one–
pion transitions of the constituent quarks as drawn in Fig.9. The coupling of the pion to the
constituent quarks can be obtained from PCAC and is given by gAf

−1
π 6p⊥γ5 (fπ = 93 MeV)

where gA is a phenomenological factor (gA = 0.75) which is introduced to get the gA/gV ratio in
neutron β–decay right. The coupling strength fp can then be computed by using the constituent
spin wave functions χ̂0 and χ̂1,µ introduced in Sec.4.1. For the transition 1+ → 0+ + π one
needs the trace

Tr{¯̂χ
0 6p⊥γ5χ̂

1
µ} = p⊥µ . (151)
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and for the 1+ → 1+ + π transition one needs the trace

Tr{¯̂χ
1
ν 6p⊥γ5χ̂

1
µ} = iε(µνpv). (152)

Returning to Eq.(148) one then obtains fp = gAf
−1
π from a comparison with Eq.(151). This

results in a width value of e.g.
ΓΣ0

c→Λcπ− = 2.45 MeV (153)

where we quote the numerical result of the calculation of [71]. A QCD sum rule calculation
results in a width value which includes the constituent quark model value within its large error
bound [72]. A slightly different value is obtained upon using the rate formula (150), due to
a difference in the treatment of recoil corrections, as remarked on earlier. From the width
estimate Eq.(153) one concludes that the Σc is very likely so narrow that it will not be an easy
task to experimentally determine its absolute width.

As a further application consider the transition {ΛCK1} → {Σ} + π with JP quantum

numbers {1
2

−
, 3

2

−} → {1
2

+
, 3

2

+}+ 0−. The transition matrix element can easily be written down
using Eq.(147) and reads

Mπ =

{

− 1√
3
ū2γ5γ

ν
⊥

ūν
2

}{
1√
3
γµ
⊥γ5u1

uµ
1

}

( 1√
3
fsg
⊥
µν +

√
3
2
fd(p⊥µ p

⊥
ν − 1

3
g⊥µνp

2
⊥)) (154)

As mentioned above, the decays 1
2

− → 1
2

+
+ π and 3

2

− → 1
2

+
+ π are kinematically allowed and

are thus interesting from the experimental point of view. Their matrix elements can be read
off from (154) and are

Mπ(1
2

− → 1
2

+
+ π) = − 1√

3
fsū2u1

Mπ(3
2

− → 1
2

+
+ π) = 1√

2
fdū2γ5p

⊥
µ 6p⊥uµ

1

(155)

As expected the covariant couplings project out the correct orbital angular momenta lπ = Lπ.
Using the rate formula (149) one obtains

Γ
(

1
2

− → 1
2

+
+ π

)

= f 2
s

| ~p |
6π

M2

M1
(156)

Γ
(

3
2

− → 1
2

+
+ π

)

= f 2
d

| ~p |5
8π

M2

M1
. (157)

One notes that the rates (156) and (157) exhibit the correct threshold behaviour | ~p |2Lπ+1

where ~p is the CM momentum of the pion.
Using MΣc

= 2.453 GeV one finds | ~p |= 1.62×10−2 GeV and | ~p |5= 1.06×10−5 GeV for the
two respective threshold factors. If the scale of the coupling constants were 1 GeV one would
in fact have a 10−3 suppression of Λc(2627) → Σcπ relative to Λc(2593) → Σcπ in agreement
with the observation [52,54]. However, for the soft pion emission in these decay processes
fπ

∼= mπ is frequently a more appropriate scale. One would then have | ~p | /mπ = 0.117
and | ~p |5 /m5

π = 0.204. In such a case the d–wave decay in Λc(2593) → Σcπ would not be
suppressed as seems to be the case in the ARGUS result [53]. Hopefully future experiments
can clarify the situation about the Λc(2593) → Σcπ branching fraction.

Next consider the one–pion transitions from the p–wave multiplet {ΛCk2} down to the

ground state multiplet {Σ}. In terms of JP quantum numbers one has the transitions {3
2

−
, 5

2

−} →
{1

2

+
, 3

2

+} + π. Here the pion is emitted in a d–wave. For the transition amplitude one now has

Mπ =

{

− 1√
3
ū2γ5γ

ν1

⊥
ūν1

2

}{
1√
10
γ5(γ

µ1

⊥ u
µ2

1 + γµ2

⊥ u
µ1

1 )

uµ1µ2

1

}

f ′dp
⊥
µ1
ε(µ2ν1p

⊥v) (158)
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Figure 9: Light–side one–pion transition resolved into constituent quark transitions. Equal
velocities of diquark and quarks are implied.

One can then use the amplitude (158) to calculate the ratio of the four one–pion transitions
described by (158). After a little bit of algebra [73] one obtains

Γ 3

2

−→ 1

2

+
+π

: Γ 3

2

−→ 3

2

+
+π

: Γ 5

2

−→ 1

2

+
+π

: Γ 5

2

−→ 3

2

+
+π

= 9 : 9 : 4 : 14 (159)

and
Γ 3

2

−→ 1

2

+
+π

+ Γ 3

2

−→ 3

2

+
+π

= Γ 5

2

−→ 1

2

+
+π

+ Γ 5

2

−→ 3

2

+
+π
. (160)

This result agrees with the conventional approach using Clebsch–Gordan coefficients [74] or, in
a more recent and compact guise, using 6–j symbols [75,76]. The sum rule (160) is a general
result for Heavy Quark Symmetry doublet to doublet transitions and is easily derived in the
6–j coupling approach.

Let us briefly review the reasoning of Ref.[74–76] that leads to the introduction of Wigner’s
6–j symbols. Having Fig.8 in mind one first compounds the spins in the initial and final state
j1 + SQ → J1 and j2 + SQ → J2, where SQ = 1/2 is the heavy quark spin, and then combines
these with the transition j1 → j2 + lπ (lπ = Lπ) using the appropriate Clebsch–Gordan
coefficients. One then obtains

Mπ(J1J
z
1 → J2J

z
2 + Lπm) = MLπ

∑

sz,jz
1
,jz

2

〈J2J
z
2 | j2jz

2SQS
z
Q〉〈Lπmj2j

z
2 | j1jz

1〉

〈j1jz
1SQS

z
Q | J1J

z
1 〉

= MLπ
(−1)Lπ+j2+SQ+J(2j1 + 1)1/2(2J2 + 1)1/2

{

j2 j1 Lπ

J1 J2 SQ

}

〈LπmJ2J
z
2 | J1J

z
1 〉. (161)

The reduced matrix elements MLπ
correspond to the coupling factors flπ used in Eq.(147). In

the second step of Eq.(161) one has rewritten the first part of Eq.(161) in terms of the Wigner
6–j symbol.

After spin–averaging over the initial spin and summing over final spins one obtains the rate

1

2J1 + 1

∑

spins

|Mπ(Lπ) |2= (2j1 + 1)(2J2 + 1)

∣
∣
∣
∣
∣

{

Lπ j2 j1
SQ J1 J2

}∣
∣
∣
∣
∣

2

|MLπ
|2 (162)
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for a transition involving a given orbital angular momentum Lπ of the pion. Using the standard
orthogonality relation for 6–j symbols

∑

J2

(2j1 + 1)(2J2 + 1)

∣
∣
∣
∣
∣

{

Lπ j2 j1
SQ J1 J2

}∣
∣
∣
∣
∣

2

= 1 (163)

one can immediately appreciate the significance of the result Eq.(160). The total rate of pionic
decays from any of the two doublet states J1 = j1 ± SQ is independent of J1. Also one
immediately concludes that the transitions into a heavy quark symmetry singlet state from
any of the two heavy quark symmetry doublet states are identical to one another. A general
proof of the equivalence of the covariant coupling scheme and the 6–j coupling scheme (161) is
presently being worked out [77].

It is quite apparent that the 6–j approach to one–pion transitions is much easier to handle
from a calculational point of view and is structurally more transparent than the covariant
approach. In the covariant approach, on the other hand, one may more readily include O(1/mc)
recoil and phase space corrections according to one’s own intuition and experience (or prejudice).
Also the covariant approach lends itself more easily to a transcription into the usual field
theoretic formulation of the pion’s coupling in terms of effective Lagrangians. In fact one can
easily turn the covariant couplings written down in this section into chirally invariant pion
couplings. This can be done by enacting the following substitutions in Table 6

pµ1
. . . pµk

⇒ 1
F
∂µ1

. . . ∂µk
Φπ + . . .

gµ1µ2
⇒ gµ1µ2

(164)

and, for k=0, constant ⇒ 1
F
v·∂Φπ. The ellipses in Eq.(164) stand for higher order contribution

in the chiral expansion (see [73]).

4.6 Photon Transitions Between Heavy Baryons

In addition to the pion transitions between heavy baryons treated in Sec.4.5 photon transitions
between heavy baryon states are also of interest. In fact, because of phase space limitations
there are many more levels that can be reached via photon transitions than via pion transitions
for a given higher lying heavy baryon initial state. In some cases where the pion mode is not
available the total rate of the heavy baryon state is entirely in terms of the photon decay mode.
Examples are the Ξ′c and Ω∗c charm baryon states which are expected to decay electromagneti-
cally because pion emission is kinematically forbidden according to present mass estimates (see
Fig.10). Furthermore hyperfine splitting effects can be expected to have become so small in
the bottom sector that transitions between the two partners in a heavy quark spin multiplet
can be mediated by photons alone.

In the following we set up the formalism necessary to describe photon transitions between
heavy baryon states in the heavy quark limit. Our discussion will be limited to the treatment of
leading effects in the 1/mQ expansion, although a consideration of nonleading effects certainly
warrants future attention [78]. In the heavy mass limit the (real!) photon couples only to the
light diquark side since the photon coupling to the heavy quark involves a spin–flip transition
down by 1/mQ. Although the formalism in this section applies both to the heavy charm and
bottom sectors we shall stay in the charm sector when we work out a few definite one photon
transition examples. The reason is clearly experimental. While we are just at the threshold of
being able to observe photon transitions in the charm baryon sector the corresponding physics
in the bottom sector lies a few years ahead of us.
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The photon transition amplitude between heavy baryon states can be written down in
complete analogy to the corresponding one–pion transition amplitude Eq.(147) in Sec.4.5. The
physics underlying the heavy quark description of one–photon transitions is depicted in Fig. 8.
The photon is emitted from the light diquark side while the heavy quark remains unaffected.
The transition amplitude can thus again be written in a factorized form

Mγ = 〈γ(k), BQ2
(v) | T | BQ1

(v)〉 = Ψ̄
ν1...νj2
2 (v)Ψ

µ1...µj1
1 (v)(

∑

Jγ

fJγtJγ

µ1...µj1
;ν1...νj2

) (165)

where the appropriate spin coupling factors are determined by performing the tensor contrac-
tions in Eq.(165). The index Jγ in (165) denotes the total angular momentum of the photon
(spin of the photon plus its orbital angular momentum). We choose to work in terms of mul-
tipole amplitudes fJγ with multipolarities 2Jγ with Jγ = Jγ min, (Jγ min + 1), . . . Jγ max. The
tensors tJγ

µ1...µj1
;ν1...νj2

project onto the multipole amplitudes. The reason for working in terms of

multipole amplitudes is simply that the multipole amplitudes fJγ contribute to the decay rate
with definite powers of the photon momentum | ~k |2Jγ+1. This allows one to classify the tran-
sitions in terms of decreasing importance. The reasoning is similar to the one–pion transition
case treated in Sec.4.5 where we used an orbital momentum classification.

In Table 7 we list explicit forms of the covariant multipole tensors for radiative diquark
transitions jP1

1 → jP2

2 + γ for the cases of interest. The covariant tensors project onto magnetic
(MJγ) or electric (EJγ) multipole transitions. The nature of the multipole transition is deter-
mined by the parity of the photon in a given multipole state which is P (EJγ) = (−1)Jγ and
P (MJγ) = (−1)Jγ+1. For example, for P1·P2 = +1 parity conservation implies an even and an
odd Jγ for electric and magnetic multipole transitions, respectively. The covariants are written
in terms of the momentum representation of the field strength tensor Fαβ = kαεβ − kβεα or its
dual 1

2
F̃αβ = εαβγδF

γδ where εα is the polarization vector of the photon. The use of the field
strength tensor guarantees the appropriate coupling to (three–) transverse photons as can be
easily appreciated by rewriting the antisymmetric field strength tensor as an one–index object
Fαβ → εµαβγk

αεβvγ, in analogy to Eq.(92). Whether the coupling is to Fαβ (n1n2 = +) or to
its dual F̃αβ (n1n2 = −) is determined by the product of normalities n1 ·n2 also listed in Table
4. The counting of covariants and thereby the counting of the number of multipole amplitudes
can be done by helicity or multipole amplitude counting and is given by

i) j1 = j2 : N = 2j
ii) j1 6= j2 : N = 2jmin + 1

(166)

The normalization is such that a given multipole amplitude fJγ contributes as |fJγ |2| ~k |2Jγ+1

to the spin summed square of the diquark transition amplitude [79].
It is then an easy matter to derive the heavy quark symmetry structure of photon transitions

between heavy baryon states using Eq.(165) and Tables 4,5 and 7. As a first application we
write down the amplitude for the ground state transition {ΣQ} → ΛQ + γ. One has

Mγ = ū2

{
1√
3
γµ1

⊥ γ5u1

uµ1

1

}

1√
2
fM1F̃αβg

α
µ1
vβ (167)

Using standard εαβγδ–tensor identities one obtains

Σc → Λc + γ : Mγ = i 1√
6
fM1ū2 6k 6ε∗u1 (168)

Σ∗c → Λc + γ : Mγ = 1√
2
fM1ū2ε(µ1vkε

∗)uµ1

1 (169)
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Table 7: Tensor structure of photon couplings to diquark states. Photon is in definite multipole
state EJ (electric) MJ (magnetic). Sign of the product of naturalities determines whether
coupling is to field strength tensor Fαβ (n1 ·n2 = +1) or to its dual F̃αβ (n1 ·n2 = −1). Tensor
structure of transitions with (jP1

1 , jP2

2 ) → (j−P1

1 , j−P2

2 ) → (jP2

2 jP1

1 ) → (j−P2

2 j−P1

1 ) are identical
and are not always listed separately.

diquark transition

jP1

1 → jP2

2 + γ
multipoles n1n2

covariant coupling

tiµ1...µj1
;ν1...νj2

0+ → 0+ + γ forbidden +1

1+ → 0+ + γ M1 −1 1√
2
F̃αβg

α
µ1
vβ

1+ + γ M1 +1 1
2
Fαβg

α
µ1
gβ

ν1

E2 +1 1
2
Fαβ(2kµ1

gα
ν1
vβ + k ·vgα

µ1
gβ

ν1
)

0− → 0+ + γ forbidden −1

1− → 0+ + γ E1 +1 1√
2
Fαβg

α
µ1
vβ

1+ + γ E1 −1 1
2
F̃αβg

α
µ1
gβ

ν1

M2 −1 1
2
F̃αβ(2kµ1

gα
ν1
vβ + k ·vgα

µ1
gβ

ν1
)

2− → 0+ + γ M2 −1 F̃αβkµ1
gα

µ2
vβ

1+ + γ E1 +1
√

3
10
Fαβg

α
µ1
gµ2ν1

vβ

M2 +1
√

1
6
Fαβ(v ·kgµ2ν1

gα
µ1
vβ + 2kµ2

gα
µ1
gβ

ν1
)

E3 +1
√

1
30
Fαβ((v ·k)2gµ2ν1

gα
µ1
vβ + 5

4
v ·kkµ2

gα
µ1
gβ

ν1

+15
4
vβkµ2

(kν1
gα

µ1
+ kµ1

gα
ν1

))

2− → 0− + γ E2 +1 Fαβkµ1
gα

µ2
vβ

1− + γ M1 −1
√

3
10
F̃αβg

α
µ1
gµ2ν1

vβ

E2 −1
√

1
6
F̃αβ(v ·kgµ2ν1

gα
µ1
vβ + 2kµ2

gα
µ1
gβ

ν1
)

M3 −1
√

1
30
F̃αβ((v ·k)2gµ2ν1

gα
µ1
vβ + 5

4
v ·kkµ2

gα
µ1
gβ

ν1

+15
4
vβkµ2

(kν1
gα

µ1
+ kµ1

gα
ν1

))

2− + γ M1 +1
√

1
5
Fαβgµ1ν1

gα
µ2
gβ

ν2

E2 +1
√

3
7
Fαβgµ1ν1

(2kµ2
vβgα

ν2
+ v ·kgα

µ2
gβ

ν2
)

M3 +1
√

3
10
Fαβg

α
µ2
gβ

ν2
((v ·k)2gµ1ν1

+ 5
2
kµ1

kν1
)

E4 +1
√

1
14
Fαβ(2kµ2

vβgα
ν2

+ v ·kgα
µ2
gβ

ν2
)

((v ·k)2gµ1ν1
+ 7

2
kµ1

kν1
)
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Figure 10: Light–side one–photon transition resolved into constituent quark transitions. Equal
velocities of light diquark and heavy quark are implied.

The transition (169) can be checked to have the correct M1 coupling structure. The rate follows
from the two body decay rate formula Eq.(149). In the degeneracy limit MΣ∗

c
= MΣc

one finds

ΓΣc→Λc+γ = ΓΣ∗
c→Λc+γ =

1

6π
|fM1 |2 M2

M1
| ~k |3 (170)

where | ~k |= (M2
1 − M2

2 )/2M1. The equality of the decay rates of heavy quark symmetry
partners into the ground state Λc is again a general result that can easily be derived in the 6–j
formalism as applied to photon transitions.

The photonic coupling (Λc; Λcγ) vanishes in the heavy quark limit as Table 7 shows. The
reason is simply that a (real!) photon cannot couple to the 0+ diquark state. For the ground
state transition {ΣQ} → {ΣQ} + γ we calculate the M1 contribution to the kinematically
accessible transition Σ∗c → Σc + γ. One obtains

Σ∗c → Σc + γ : Mγ = 1
2
√

3
f ′M1ū2γ5γ

αuµ1

1 (kµ1
ε∗α − kαε

∗
µ1

) (171)

where we denote the M1 diquark amplitude by f ′M1 to set it aside from the amplitude fM1

used in Eq.(167). It can again be checked that Eq.(171) has the correct M1 coupling structure
even though the proportionality of the M1–covariants in Eq.(169) and (171) is not apparent.
The rate of the transition (171) can be computed to be

ΓΣ∗
c→Σc+γ =

1

36π
|f ′M1 |2 M2

M1
| ~k |3 (172)

It is quite clear that heavy quark symmetry can tell us nothing about the strength of the
”reduced matrix elements” fM1 and f ′M1. In order to obtain a rough estimate for the magnitude
of the couplings fM1 and f ′M1 we resort to the constituent quark model as has been done in
[71]. In the constituent quark model the coupling of the photon to the diquark state is resolved
into the sum of the couplings of the photon to the constituent quarks as shown in Fig.11. The
photon couples to the constituent quarks with a M1 coupling structure and a known coupling
strength 1

2
µqσαβF

αβ where µq is the magnetic moment of the quark q given by µq = eqe/2mq.
The diquark coupling strengths fM1 and f ′M1 can then be obtained by evaluating the photonic
quark coupling sandwiched between the spin 0 and spin 1 constituent diquark states χ̂0 and
χ̂1

µ1
introduced in Sec 4.1. One obtains

Tr{¯̂χ
0 1

2
µqσαβF

αβχ1
µ} = µqF̃

αβgµαvβ (173)
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Tr{¯̂χ
1
ν

1

2
µqσαβF

αβχ1
µ} = iµqF

αβgναgµβ (174)

for the photon coupling to one of the quark lines.
From comparing (173) and (174) with the covariant structure in Table 7 one finds

fM1 =
√

2e

(

eq1

2mq1

− eq2

2mq2

)

(175)

f ′M1 = 2ie

(

eq1

2mq1

+
eq2

2mq2

)

(176)

after adding in flavour factors and the contribution of the second constituent quark. Note that
the constituent quark model approach predicts a vanishing E2 amplitude for the {ΣQ} → {ΣQ}
transitions.

Using standard values for the constituent quark masses the authors of [80] have calculated
the photonic width of Σ+

c → Λc + γ. They obtain

ΓΣ+
c →Λc+γ = 93 keV. (177)

Comparing with the pionic width ΓΣ+
c →Λc+π0 = 2.43 MeV calculated in the same constituent ap-

proximation one finds a photonic branching ratio of ∼= 4% for the Σ+
c which compares favourably

with the ∼= 0.5% branching ratio found for ∆ → N + γ. From the minus sign in Eq.(175) one
predicts a severe rate suppression for Ξ′0c → Ξ0

c + γ relative to Ξ′+c → Ξ+
c + γ due to an almost

complete cancellation of the contributions of the d and s quarks. From [80] the two Ξ′c → Ξc +γ
rates are in the ratio 0.3/16.

In Fig.10 we have drawn all possible one–photon transitions involving the ground state
charm baryons. We have included the two newly discovered Λ–type p–wave states in the plot.
The multipole structure of the photonic transitions indicated in Fig.10 refers to the multipole
structure predicted by Heavy Quark Symmetry. For example, the decay ΛcK1 → Λc + γ can in
general be a E1 and M2 transition but Heavy Quark Symmetry tells us that the transition is
purely E1. This will not be an easy task to check experimentally. The remaining E2 and M2
quadrupole transitions indicated in Fig.10 are not forbidden by Heavy Quark Symmetry but
are expected to be small in the constituent quark model approximation.

As a last application consider the one–photon transitions {ΛcK1} → Λc + γ. Using again
Table 4 and 7 we find

ΛcK1 → Λc + γ : Mγ = − 1√
6
fE1ū2 6ε∗γ5u1 | ~k | (178)

Λ∗cK1 → Λc + γ : Mγ = − 1√
2
fE1ū2ε

∗
µ1
uµ1

1 | ~k | (179)

One can check that Eqs.(178) and (179) have the correct E1 coupling structure. In the mass
degeneracy limit the two rates are equal as remarked on before. One finds

ΓΛcK1→Λc+γ = ΓΛ∗
cK1
→Λc+γ =| fE1 |2 1

6π

M2

M1

| ~k |3 (180)

When phase space effects are taken into account the ratio of rates of ΛcK1 → Λc + γ and
Λ∗cK1 → Λc + γ gets lowered by ∼= 25%. A very rough estimate of the rate for Λ+∗

cK1 → Λc + γ
can be obtained by comparison with the rate estimate for Σ+

c → Λc + γ given in Eq.(177).
Phase space enhances the former rate by a factor of ∼= 7. Setting fE1 ∼= fM1 one can thus
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Figure 11: One–photon transitions between s–wave charm baryon states including the lowest
lying Λ–type p–wave state. Multipolarities drawn in plot are multipolarities predicted by Heavy
Quark Symmetry. In some cases there are no restrictions on number of multipole transitions
from Heavy Quark Symmetry.

49



expect a rate of O(700 keV) for the decay Λ+∗
cK1 → Λc + γ. If the hadronic width of the Λ∗cK1

is suppressed as much as is argued for in [81] one can indeed expect a substantial one–photon
branching fraction of the Λ∗cK1. At any rate, one can hope to extract a great deal of interesting
physics from the analysis of one–photon transitions between charm baryon states in the future.

We close this subsection by expressing the photonic transition amplitudes in terms of 6–j
symbols, in complete analogy to the pionic case discussed in Sec.4.5 . In fact one just needs to
replace Lπ in Eqs.(161) and (163) by the total angular momentum of the photon Jγ . Skipping
the first step in the derivation of Eq.(161) one now has

Mγ(J1J
z
1 → J2J

z
2 + Jγm) = MJγ

(−1)Jγ+j2+SQ+J1(2j1 + 1)
1

2 (2J2 + 1)
1

2

{

Jγ j2 j1
SQ J1 J2

}

〈JγmJ2J
z
2 | J1J

z
1 〉 (181)

The symbols appearing in (181) are explained at the end of Sec.4.5. The reduced matrix
elements MJγ

correspond to the multipole amplitudes fJγ in Eq.(165). As discussed in the
beginning of this subsection parity determines whether the transition Mγ(Jγ) is a magnetic or
electric multipole transition.
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5 Semileptonic Decays

5.1 Inclusive Semileptonic Rates

The main motivation for studying the inclusive semileptonic decays of bottom hadrons is to
learn more about the two fundamental constants of the Standard Model Vcb and Vub. To extract
these parameters, it is important to have a precise calculation of the electron spectrum in the
inclusive decays b → {c, u}eν̄. The simplest description of these processes assumes that the
lepton spectrum is that of the free heavy quark decay (FQD). The light quark is assumed to
play no role at all and is regarded as being just a “spectator”. Refinements of this approach
include taking into account the one–loop radiative corrections and of the internal motion (Fermi
motion) of the heavy quark inside of the hadron in the framework of a nonrelativistic bound–
state model. It is, however, only recently that a systematic calculation of the nonperturbative
corrections to this picture has become possible, in terms of an expansion in powers of the inverse
heavy quark mass m−1

b . The aim of this chapter is to give a brief account of these developments.
We begin by presenting the predictions of the FQD picture for the decay of a polarized b

quark. This provides a lowest–order description to be improved upon and is useful for under-
standing the gross features of the lepton spectrum. The weak interaction Lagrangian responsible
for the decays we are considering is

LW = Vjb2
√

2GFJµ[ℓ̄γµ 1
2
(1 − γ5)νℓ] (182)

where Jµ = j̄γµ
1
2
(1−γ5)b is the charged current and j = u, c, ℓ = e, µ, τ . Vjb is the corresponding

Kobayashi–Maskawa matrix element. This yields for the decay rate of the process b(mbv) →
j(pj)e(pe)ν̄(pν) the following expression (under the assumption that the lepton mass vanishes
mℓ = 0)

dΓ = 32G2
F |Vjb|2(pe · pj)[(pν · v) + (pν · s)]dLips . (183)

The heavy quark spin s satisfies v · s = 0. The phase space element of the final state particles
is

dLips = (2π)4δ(4)(pB − pe − pν − pj)
d3pe

(2π)32Ee

d3pν

(2π)32Eν

d3pj

(2π)32Ej

→ EeEνdEedΩedΩν

8(2π)5[mb + Ee(cos θeν − 1)]
. (184)

We have chosen to parameterize the final state by giving the electron energy Ee and the flight
directions of the electron and neutrino in the b–quark rest frame with dΩ = d cos θdφ.
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In some applications it might be more convenient to choose the neutrino energy Eν as an
independent variable. This is done most easily by choosing pe as the z–axis and specifying the
neutrino direction by giving θeν and a polar angle φν whose origin might be chosen corresponding
to the configuration where the three vectors pe, pν , s are coplanar. The direction of pe is given
with respect to ~s by (θ, φ) and will be considered for the moment being as fixed. Now θeν can
be replaced by Eν by making use of

Eν =
m2

b −m2
j − 2mbEe

2[mb + Ee(cos θeν − 1)]
, dEν =

EeEνd cos θeν

mb + Ee(cos θeν − 1)
(185)

and (183) can be rewritten as

dΓ = 2G2
F |Vjb|2(m2

b −m2
j − 2mbEν)(1 + cos θsν)

EνdEedEνdΩedφν

(2π)5
(186)

with
cos θsν = cos θeν cos θ + sin θeν sin θ cosφν (187)

It is a simple matter now to integrate over φν . The φ–integration is also trivially performed.
The result can be most conveniently represented in terms of the scaled variables

ye =
2Ee

mb
, yν =

2Eν

mb
, ρ =

m2
j

m2
b

(188)

and is

dΓ

dyedyνd cos θ
=
G2

Fm
5
b |Vjb|2

4(2π)3
yν(1 − ρ− yν)

[

1 +
2 cos θ

yeyν

(

1 − ρ− ye − yν +
1

2
yeyν

)]

. (189)

An integration over the neutrino energy within the limits yνmin
= 1 − ρ − ye and yνmax

=
1 − ρ/(1 − ye) gives

dΓ

dyed cos θ
=

G2
Fm

5
b |Vjb|2

24(2π)3

y2
e(1 − ρ− ye)

2

(1 − ye)3
([(1 − ye)(3 − 2ye) + ρ(3 − ye)]

+ cos θ[(1 − ye)(1 − 2ye) − ρ(1 + ye)]) . (190)

The total decay rate is obtained after integrating this distribution over θ and over ye from 0 to
1 − ρ with the result

Γb =
G2

Fm
5
b |Vjb|2

24(2π)3
(1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 log ρ) . (191)

The corrections to these predictions are of three types: i) radiative corrections of order
αs(mb) due to hard gluon exchange between the initial and final state quarks; ii) corrections of
order Λ/mb due to the interaction of the heavy quark with the light quarks in the hadron and
their gluon field; iii) corrections proportional to the lepton mass of order O(m2

ℓ/m
2
b).

The radiative corrections have been computed in [82,83] and their effect is to change the
electron spectrum (190) into

dΓ

dye
=

dΓ(0)

dye

(

1 − 2αs

3π
G(ye, ρ)

)

. (192)
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Figure 12: Inclusive semileptonic Hb → Xc decays in QCD. The squared transition amplitude
is expressed as the absorptive part of the handbag diagram where the b quark interacts with
the light degrees of freedom in Hb and the c quark propagates in the background field of the
light constituents.

Here dΓ(0)/dye is the FQD spectrum of an unpolarized b quark and G(ye, ρ) is in general a
complicated function of its arguments. For ρ ≃ 0.08, corresponding to a b→ c transition, it is
almost constant (≃ 2.5) for ye < 0.7 and diverges logarithmically for ye → 1− ρ. However, this
divergence is not very problematic in this case, because in this region the uncorrected spectrum
vanishes and furthermore, the bound–state effects average the effect away. The situation is
more serious for the b→ u case, where the divergence is doubly–logarithmic

G(ye, 0) = ln2(1 − ye) + 7
2

ln(1 − ye) + terms regular as ye → 1 , (193)

and the FQD spectrum (190) does not vanish for ye = 1 (actually at this point it has a very
steep fall, which in the limit mu → 0 is described by a step–function θ(1 − ye)). The authors
of [84] have therefore proposed to change the correction (192) into

dΓ

dye
=

dΓ(0)

dye

(

1 − 2αs

3π
G̃(ye, ρ)

)

exp
(

−2αs

3π
ln2(1 − ye)

)

. (194)

Here the exponential sums the double–logarithms of the form αn
s ln2n(1 − ye) (Sudakov loga-

rithms) to all orders in αs and G̃(ye, 0) is the remainder of G(ye, 0) (193) after the first term has
been subtracted away. After this modification, the QCD corrected spectrum vanishes at the
end–point ye = 1 − ρ in a smoother way than a step–function θ(1 − ye). We mention that the
O(αs) radiative corrections to the electron spectrum (190) in semileptonic decays of polarized
b quarks have recently been calculated [85].

The corrections proportional to Λ/mb are partly due to the internal motion of the b quark
inside of the heavy hadron, which Doppler shifts the FQD predictions (190,192) and partly to
the interactions of the b quark with the background gluonic field created by the light constituents
of the hadron (see Fig.12). Recent theoretical advances have made it possible to study these
effects in an essentially model–independent way [86,87]. We present in the following a brief
account of the method, as applied to the inclusive semileptonic decays of polarized Λb baryons.
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The decay rates and the lepton angular distributions can be expressed in terms of the hadronic
tensor

W µν = (2π)3
∑

X

δ(4)(pΛb
− q − pX)〈Λb(v, s)|Jµ†|X〉〈X|Jν|Λb(v, s)〉 = (195)

−gµνW1 + vµvνW2 − iǫµναβvαqβW3 + qµqνW4 + (qµvν + qνvµ)W5

−q · s[−gµνG1 + vµvνG2 − iǫµναβvαqβG3 + qµqνG4 + (qµvν + qνvµ)G5]

(sµvν + sνvµ)G6 + (sµqν + sνqµ)G7 + iǫµναβvαsβG8 + iǫµναβqαsβG9 ,

with q the total momentum of the lepton pair, s the spin vector of the Λb and W1−5(q2, q · v),
G1−9(q2, q · v) invariant form–factors.

The hadronic tensor W µν (195) can be expressed as the discontinuity across the physical
cut of the transition amplitude

T µν = −i
∫

d4xe−iq·x〈Λb(v, s)|TJµ†(x)Jν |Λb(v, s)〉 (196)

which can be decomposed into covariants T1−5, S1−9 similarly to (195) and are related to Gi by

Wi = −1

π
ImTi Gi = −1

π
ImSi . (197)

The physical cut for the inclusive process under consideration extends from q · v =
√
q2 up to

q · v = (m2
Λb

+ q2 − m2
jmin

)/(2mΛb
) with mjmin

the mass of the lightest hadron containing a
j–type quark.

The time ordered product in (196) can be expanded into an operator product expansion
(OPE) [86]. In momentum space, the operators of higher dimension which appear are sup-
pressed by increasing (inverse) powers of mb and ∆ = (mbv − q)2 − m2

j , so the OPE can be
meaningfully applied only in regions of the phase space where the second parameter is large
enough, in comparison with the QCD scale Λ. In particular, this is not true near the boundaries
of the allowed phase space, where special methods have been devised to deal with this problem
[88].

The leading order term in the OPE consists of the operators b̄γµb and b̄γµγ5b, whose matrix
elements in a polarized Λb state are given by vµ and sµ, respectively, to leading order in 1/mb.
By taking the imaginary part of the transition matrix element (196) according to (197), the
old results of the FQD picture (183-191) are recovered. This procedure is shown in graphical
form in Fig.12.

The operators contributing to the next order in the 1/mb expansion have dimension five.
Actually, their contribution can be shown to vanish, which gives the remarkable prediction that
the FQD results obtain corrections only at order Λ2/m2

b [86]. This is a constraint set by QCD
on any model–dependent description of the inclusive semileptonic of heavy hadrons. It has
been recently shown [89] that the ACCMM model [84] can accomodate this feature.

Up to now, the OPE method has been pushed up to order 1/m2
b . The corrections which

appear to this order arise from two sources: i) from the matrix element of the kinetic energy
of the b quark h̄(b)

v1
(iD)2h(b)

v1
; ii) the corrections to the matrix element of the axial current in a

polarized Λb state. The first one has been calculated with the help of constituent quark models
or from QCD sum rules, whereas the second one has only been estimated from a constituent
quark model in [90]. For the case of the inclusive bottom meson decays, there is one more
source of corrections, due to the chromomagnetic interaction operator h̄(b)

v1
gσ · Fh(b)

v1
, whose
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Figure 13: Electron spectrum in inclusive semileptonic decays of bottom mesons for b→ c and
b → u transitions. The spectra are normalized to Γb(ρ = 0). Full line: the free quark decay
result (190). Dashed line: O(1/m2

b) nonperturbative corrections included.

matrix elements can be determined in a model–independent way from the hyperfine splitting
mB∗ −mB. The effect of these corrections on the lepton spectrum is shown on Fig.13 for the
two cases b→ c and b→ u.

Finally, the last type of corrections to the FQD predictions which we discuss are due to a
nonvanishing lepton mass. As said before, they are of order O(m2

ℓ/m
2
b). Therefore they are

most important for the case ℓ = τ and, to a lesser extent, for ℓ = µ. The combined corrections
of order O(Λ2/m2

b , m
2
ℓ/m

2
b) have been calculated, to all orders in m2

ℓ/m
2
b , in [91]. The combined

effect of these corrections is to lower the total FQD decay rate for B → Xcτ ν̄τ by 6.5%, whereas
the neglect of the τ mass would have given a decrease of only 3.7%.

On the experimental side, the totally inclusive semileptonic branching ratio for Λc → e++X
has been measured by the Mark II collaboration [92] as (4.5 ± 1.7)%. This then leads to the
inclusive rate

Γsl
Λc

(inclusive) = (22.5 ± 8.7) × 1010s−1 . (198)

The corresponding inclusive semileptonic charm meson rates are [26] Γsl
D±(inclusive) = (16.1 ±

1.54) × 1010s−1 and Γsl
D0(inclusive) = (18.5 ± 2.9) × 1010s−1.

We mention that the Mark II collaboration [92] has also given results on semileptonic semi–
inclusive branching ratios. They find BRΛc→pe++X = (1.8 ± 0.9)% including protons from Λ
decay, and BRΛc→Λe++X = (1.2 ± 0.4)%.

5.2 Exclusive Semileptonic Decays

5.2.1 Amplitudes, Rates and Angular Decay Distributions

Let us first stake out the spin complexity of the problem that one is concerned with. This
entails an enumeration of the number of independent amplitudes in exclusive semileptonic
decays and a discussion of how to measure them. To set the scope we remind the reader that
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the separate determination of the three respective form factors in semileptonic B→ D∗ [93–96]
and D→ K∗ [97] transitions through angular measurements has been eminently important for
the development of a plausible theory for heavy meson transition form factors [98–104].

Let us begin our discussion by defining a standard set of invariant form factors for the weak
current–induced baryonic 1/2+ → 1/2+ and 1/2+ → 3/2+ transitions. One has

〈Λs(P2)|JV +A
µ |Λc(P1)〉 = ū(P2)[γµ(F V

1 + FA
1 γ5) + iσµνq

ν(F V
2 + FA

2 γ5)

+ qµ(F V
3 + FA

3 γ5)]u(P1) (199)

〈Ω−(P2)|JV +A
µ |Ωc(P1)〉 = ūα(P2)[gαµ(GV

1 +GA
1 γ5) + P1αγµ(GV

2 +GA
2 γ5)

+P1αP2µ(GV
3 +GA

3 γ5) + P1αqµ(GV
4 +GA

4 γ5)]γ5u(P1) (200)

where JV
µ and JA

µ are vector and axial vector currents and qµ = (P1 −P2)µ is the 4–momentum
transfer. We have found it convenient to use particle labels from baryonic c→ s decays instead
of generic names. The form factors F V,A

i and GV,A
i are functions of q2.

The invariants F V
3 , F

A
3 , G

V
4 and GA

4 multiplying qµ contribute to semileptonic decays at
O(m2

ℓ/q
2) and are thus difficult to measure. Muon effects have been investigated in the cor-

responding semileptonic D→K(K∗) decays and have been found to be ≤ 5% in the total rate
[100]. Muon effects in charm baryon decays are of similar size. The biggest effect occurs for
the longitudinal rate, where the muon mass effect amounts to O(10%), and is largest at small
q2. This is different in semileptonic b → c decays where lepton mass effects can be conve-
niently probed in the τ–channel [105,106]. The branching ratio into the τ–modes is typically
≃ 20-30% of the e–mode and now there can be large contributions from the qµ–form factor

terms. Nevertheless, the invariants F V,A
3 and GV,A

4 multiplying qµ are important in nonleptonic
decays where they contribute through the so–called factorizing contributions in the nonleptonic
BQ1

→ BQ2
+ M(0−) decays.

Rates and angular decay distributions are given in terms of bilinear forms of the form
factors. We first consider the (cascade) decay of an unpolarized charm baryon Bc → B(→
B′M) + l+ + νl where the cascade decay B(→ B′M) is used as an analyzer of the polarization
of the daughter baryon B. For semileptonic 1/2+ → 1/2+ transitions the full four–fold decay
distribution differential in the momentum transfer squared q2 and the angles Θ, χ and ΘB

shown in Fig.14 reads [107,108]

dΓ(Λ+
c → Λ(→ pπ−) + l+ + νl)

dq2d cos Θdχd cos ΘΛ
= BΛ→pπ−

1

2π
[

3

8
(1 + cos2 Θ)

dΓU

dq2
(1 + αU

c αΛ cos ΘΛ) +
3

4
sin2 Θ

dΓL

dq2
(1 + αL

c αΛ cos ΘΛ)

− 3

2
√

2
sin(2Θ) cosχ sin ΘΛ)αΛ

dΓI

dq2
− 3

4
cos Θ

dΓP

dq2
(1 +

dΓU

dΓP
αΛ cos ΘΛ)

3√
2

sin Θ cosχ sin ΘΛαΛ
dΓA

dq2

]

(201)

where

dΓi

dq2
=

1

2

G2

(2π)3
|Vcs|2

pq2

12M2
1

Hi (202)

and where G is the Fermi coupling constant (G = 1.026 · 10−5m−2
p ) and p is the momentum of

the daughter baryon in the Bc rest frame, p =
√
Q+Q−/2M1 with Q± = 2(P1P2 ±M1M2) =
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Figure 14: Definition of polar angles θΛ and θ and azimuthal angle χ in the decay Λ+
c → Λ(→

pπ) +W+(→ ℓ+νℓ). For b→ c decays change the lepton side to W−(→ ℓ−ν̄ℓ).

(M1 ±M2)
2 − q2. Again we have used particle labels in Equation (201) instead of a generic

notation.
The helicity rates (or structure functions) Hi in Equation (201) are defined as follows

HU = |H 1

2
,1|2 + |H− 1

2
,−1|2

HL = |H 1

2
,0|2 + |H− 1

2
,0|2

HI =
1

2
Re

(

H− 1

2
,0H

∗
1

2
,1 −H 1

2
,0H

∗
− 1

2
,−1

)

HP = |H 1

2
,1|2 − |H− 1

2
,−1|2

HA =
1

2
Re

(

H− 1

2
,0H

∗
1

2
,1 +H 1

2
,0H

∗
− 1

2
,−1

)

(203)

where the Hλ2,λW
= HV

λ2,λW
+ HA

λ2,λW
are the helicity amplitudes of the current induced tran-

sition, λW is the helicity of the current (λW = 0 longitudinal, λW = ±1 transverse ) or,
equivalently, of the off–shell W–boson and λ2 is the helicity of the daughter baryon. The
relation between the set of helicity and invariant form factors is given by

√

q2HV
1

2
,0 =

√

Q−
(

(M1 +M2)F V
1 − q2F V

2

)

(204)

HV
1

2
,1 =

√

2Q−
(

−F V
1 + (M1 +M2)F V

2

)

(205)
√

q2HA
1

2
,0 =

√

Q+

(

(M1 −M2)F
A
1 + q2FA

2

)

(206)

HA
1

2
,1 =

√

2Q+

(

−FA
1 − (M1 −M2)FA

2

)

(207)

The remaining helicity amplitudes can be obtained with the help of the parity relations

H
V (A)
−λ2,−λW

= +(−)H
V (A)
λ2,λW

. (208)

The labeling of the helicity rates Hi describes the polarization of the off–shell W boson in the
decay: U (unpolarized transverse), L (longitudinal), I (transverse–longitudinal interference), P
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(parity odd), A (parity asymmetric). For semileptonic decays involving the leptons ℓ− + ν̄ℓ (as
in c̄→ s̄ and b→ c transitions) the sign in the last two terms of Eq.(201) have to be reversed.

We have also introduced αU
c and αL

c , the q2–dependent transverse and longitudinal asym-
metry parameters

αU
c =

|H 1

2
,1|2 − |H− 1

2
,−1|2

|H 1

2
,1|2 + |H− 1

2
,−1|2

(209)

αL
c =

|H 1

2
,0|2 − |H− 1

2
,0|2

|H 1

2
,0|2 + |H− 1

2
,0|2

. (210)

αΛ is the asymmetry parameter in the parity–violating nonleptonic decay Λ → p+ π− defined
in analogy to Eq.(210). Its experimental value is αΛ = 0.64 [26]. Triple, double and single
decay distributions as well as the rate may be obtained from Eq.(201) by the appropriate
integrations. For example, integrating over the azimuthal angle χ and the lepton–side polar
angle θ one obtains

dΓ

dq2d cos ΘΛ
∝ 1 + ααΛ cos ΘΛ (211)

where the asymmetry parameter α is defined by

α =
|H 1

2
,1|2 − |H− 1

2
,−1|2 + |H 1

2
,0|2 − |H− 1

2
,0|2

|H 1

2
,1|2 + |H− 1

2
,−1|2 + |H 1

2
,0|2 + |H− 1

2
,0|2

. (212)

The asymmetry parameter α is nothing but the longitudinal (“alignment”) polarization of
the daughter baryon Λ which is being analyzed by its subsequent decay according to the above
polar angle distribution (211). For example the ARGUS [109] and CLEO [110] Collaborations
have recently measured the mean of the asymmetry parameter α in the semileptonic Λc →
Λ + ℓ+ + νℓ decay using the above polar decay distribution. They found a large negative value
of the asymmetry parameter α in agreement with earlier theoretical predictions. We shall
return to this point in Sec.5.2.2.

In Eq.(201) we have assumed that the form factors and helicity amplitudes are real since the
physical threshold is at q2 = (M1 +M2)

2 > q2
max = (M1−M2)2. We have thus omitted so–called

T–odd contributions in the decay distribution which are proportional to sin Θ sinχ sin ΘΛ and
sin(2Θ) sinχ sin ΘΛ [107]. We note in passing that the presence of such contributions could
signal possible CP–violations in the decay process [108].

The structure of the decay distribution Eq.(201) is quite similar to the corresponding four–
fold decay distribution for the cascade decay D→ K∗(→Kπ)+l+ + νl [100],[102–104] which has
been proven so useful in disentangling the form factor structure in the semileptonic D→ K∗

decays [67,97]. The angular distribution Eq.(201) defines a set of eight observables which are
bilinears in the four independent q2–dependent real form factors. A measurement of these
eight observables would considerably overdetermine the form factors. Note though that the
complexity of the problem is reduced close to the phase space boundaries. At zero recoil q2 ≈
q2
max only the s–wave contribution remains, and at q2 ≈ 0 only the longitudinal contribution

survives. The relevant dynamical information may be extracted by either one of the following
methods: (i) moment analysis (ii) analysis of suitably defined asymmetry ratios as in [111] or
(iii) angular fits to the data as in [97] depending on the quantity and quality of the data. All of
this carries over to the b→ c sector with the requisite sign changes as mentioned after Eq.(208).

An additional set of polarization observables can be defined for the decay of polarized charm
and bottom baryons. For example, bottom and charm quarks produced on the Z0 resonance are
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Figure 15: Definition of polar angles θΛ and θp and azimuthal angle χ in the decay of a polarized

Λ+
c → Λ(→ π−) + X. The left plane is determined by polarization vector ~PΛc

of the Λc. The
unobserved state X stands for Woff−shell in semileptonic decays and for a meson in nonleptonic
decays.

94% and 67% negatively polarized. It is quite likely that some of this polarization is retained
when the bottom and charm quarks fragment into bottom and charm baryons. This will be
discussed in more detail in Sec.5.3.. Also, hadronically produced Λ’s have been observed to be
polarized where the polarization necessarily has to be transverse to the production plane because
of parity invariance in the production process. It may well be that hadronically produced Λ+

c ’s
show a similar polarization effect [112,113]. Also, charm baryons from weak decays of bottom
baryons are expected to be polarized.

For polarized Λc–decays one orients the decay products and the subsequent decay of the
daughter baryon relative to the Λc polarization as drawn in Fig.15 where the orientation angles
Θp,ΘΛ and χ are defined. For the corresponding four–fold angular decay distribution one finds

dΓ(Λ↑c → Λ(→ pπ−) + l+ + νl)

dq2d cos Θpdχd cos ΘΛ
=

1

8π
BΛ→pπ−

[

dΓU+L

dq2
+ αΛ cos ΘΛ

(

αU
c

dΓU

dq2
+ αL

c

dΓL

dq2

)

−Pc cos Θp

(

αU
c

dΓU

dq2
− αL

c

dΓL

dq2

)

+ PcαΛ cos Θp cos ΘΛ

(

−dΓU

dq2
+

dΓL

dq2

)

−PcαΛ sin Θp sin ΘΛ cosχ
dΓLI

dq2

]

(213)

where Pc is the degree of polarization of the Λ+
c . The longitudinal interference rate is dΓLI/dq

2 =
2Re (H 1

2
,0H

∗
− 1

2
,0

). A corresponding four–fold angular decay distribution formula can be derived

for the lepton–side [108].
Measurements of the angular decay distribution relative to the initial spin polarization

vector would allow one to either measure the degree and sign of the polarization of the Λc
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Figure 16: Partial wave analysis of quasi–two body decay 1/2+ → 1/2+ +Woff−shell.

if its decay structure is known, or, vice versa, if Pc were known, further constrain the decay
amplitudes of the Λc. The information contained in the ”decay” W+ → ℓ+ + νℓ has not been
used in Equation (213), i.e. the angular dependence on the orientation angles (Θ, χ′) of the
W+ → ℓ+ + νℓ decay have been integrated out. As the lepton–side angular distribution goes
unanalyzed the distribution (213) holds for both Λc → Λ and Λb → Λc transitions without
any sign change. If this angular dependence is kept one would have a six–fold differential
distribution. Corresponding decay distributions for semileptonic 1/2+ → 3/2+ transitions
(polarized and unpolarized) can be found in [108]. Let us mention that the decay distributions
Equations (201) and (213) can also be derived using a frame independent representation in
terms of spin and momenta correlations [114].

5.2.2 Model Results c→ s

The accessible q2–range in semileptonic charm baryon decays is not small (m2
ℓ ≤ q2 ≤ (M1 −

M2)2). One thus has a large experimental leverage to study the q2–dependence of the form
factors. Also, the full spin dependent form factor structure can be investigated as the C.M.
momentum p = |~p| becomes large enough when q2 moves away from the zero recoil point (or
pseudo–threshold point) q2 = (M1 − M2)

2 to populate all partial waves in the decay B1 →
B2 +Woff−shell(q

2).
In fact the momentum dependence of the semileptonic transitions close to the zero recoil

edge of phase space can be conveniently classified by doing a partial wave analysis of the two–
body decay of 1/2+ → 1/2+ +W as drawn in Fig.16. Since the W is off–shell it has four degrees
of freedom for each of its vector and axial components. The JP content of the off–shell W are
JP = (1−V , 1

+
A) for the spin 1 pieces and JP = (0+

V , 0
−
A) for the spin 0 piece. We remind the

reader that the spin 0 pieces are not active in the decay in the limit of zero lepton mass.
One can then determine the partial wave content of the decay 1/2+ → 1/2+ +W . For the

spin 1 part one has (in brackets the final state spin sum S = S1 + S2 )

1
2

+ → 1
2

+
+ 1−V : p–wave (S = 1/2, 3/2) “first forbidden Fermi transition”

1
2

+ → 1
2

+
+ 1+

A : s–wave (S = 1/2) “allowed Gamow–Teller transition” (214)

d–wave (S = 3/2) “second forbidden Gamow–Teller transition”
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whereas for the spin 0 pieces one has

1
2

+ → 1
2

+
+ 0+

V : s–wave (S = 1/2) “allowed Fermi transition” (215)
1
2

+ → 1
2

+
+ 0−A : p–wave (S = 1/2) “first forbidden Gamow–Teller transition”

Let us limit our discussion to the case mℓ = 0 which is a very good approximation for e and a
good approximation for µ for c→ s decays. There are then two vector and axial amplitudes each
for 1/2+ → 1/2++W (1−V ) and 1/2+ → 1/2++W (1−A) in agreement with the number of covariant
form factor in Eq.(199) when the qµ form factors are disregarded. As p→ 0 and the phase space
closes5 only the axial vector s–wave contribution in 1/2+ → 1/2++W (1+

A) survives. We want to
call to mind that in nuclear physics parlance the vector and axial vector transitions are referred
to as Fermi and Gamow–Teller transitions, respectively. They are further classified according to
their partial wave threshold behaviour by “allowed”, “first forbidden”, etc. The nuclear physics
classification has been included in Eq.(214, 215). In contrast to nuclear physics transitions
(where the Q–values of the transitions are comparable to the electron mass and the spin 0
components do contribute) the Q–values of the c→ s transitions are so big that only the spin
1 pieces are active, to a good approximation. We shall return to the partial wave classification
when discussing the measurement of the KM matrix element Vbc in the exclusive semileptonic
decay Λb → Λc + ℓ− + ν̄ℓ in Sec.5.2.3. Returning to the c → s decays one can certainly state
that for large enough momenta p all partial waves in the decay B1 → B2 +Woff−shell(q

2) come
into play. This is different in ordinary hyperon decays, where the accessible q2–range is small
and only the low partial waves contribute to any significant degree. How to actually extract
the various form factors through polarization type measurements has been dealt with before in
Section 5.2.1.

To begin with we discuss rates. There have been a number of theoretical attempts to model
the form factors in the semileptonic 1/2 → 1/2+ and 1/2+ → 3/2+ transitions employing
flavour symmetry and/or quark models. In Table 8 we have listed the rate predictions of
various models for the semileptonic decay Λ+

c → Λ + ℓ+ + νℓ, Ξ+
c → Ξ0 + ℓ+ + νℓ and the

1/2+ → 3/2+ decay Ωc → Ω−+ ℓ+ + νℓ (mℓ = 0). The first column contains early predictions
which exploited SU(4) flavour symmetry at q2 = 0 to relate ∆C = 1 to the known ∆C = 0
amplitudes [115]. The results were then continued to q2 = 0 by using suitable form factors. The
predictions of [116] are similar. The rates come out too large due to the use of SU(4) at q2 = 0.
[117] and [118] have shown that there are large mass breaking corrections to the SU(4) limit at
q2 = 0 which brings the rates down as column 2 in Table 8 shows. Flavour symmetry should
rather be applied at q2

max. Nonrelativistic quark model results calculated close to q2
max and

then continued to q2 6= q2
max via form factors were presented in [119,120]. Explicit quark model

calculations as the ones in [119,120] tends to show approximate unit overlap at zero recoil,
regardless of the masses of the quarks involved in the transition. Thus they tend to mimic the
HQET zero recoil normalization, even for c→ s decays. The model of [121] uses such a HQET
zero recoil normalization and dipole form factors to continue to q2 6= q2

max. In order to be
able to compare predictions we have taken the liberty to rescale the results of [119] by taking
away their assumed large QCD correction which must be considered to be unrealistically large.
The rate values for Λ+

c → Λ then scatter around 20 × 1010s−1 except for the rate prediction of
Singleton [120]. These rates would imply a saturation of the total semileptonic inclusive rate

5Readers old enough will remember that the zero recoil point q2
max = (M1 −M2)

2 used to be also called the
pseudo–threshold. “Pseudo” because phase space closes when the zero recoil point is approached in contrast to
the normal threshold where phase space opens.
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Table 8: Exclusive semileptonic decay rates in units of 1010 s−1.

Buras Gavela PHGA PHGA Singleton HK

[115] [117] NRQM [119] MBM [119] [120] [121]

Λ+
c → Λ 60(20) 15(5) 17(5.6) 13(4.3) 10 22(7.3)

Ξ+
c → Ξ0 235(118) 28(14) 28(14) 22(11) 17 33(16.5)

Ω0
c → Ω− 280 49 – – – 48

by the exclusive mode. The semi–inclusive rates quoted in Sec.5.1, however, preclude such a
possibility. A more precise measurement of the experimental semileptonic Λ+

c → Λ (exclusive
or inclusive) rate would help to pin down this issue.

The calculation of Singleton [120] (see also [122]) differs from the other calculations in one
important respect in that he has taken a spin–flavour suppression factor in the Λc → Λ and
Ξc → Ξ transitions into account which other authors have not included. In order to understand
the spin–flavour suppression factor present in the calculation of [120] consider the amplitude cs
of the spin 0 light diquark configuration in the various charm and strange baryons. Whereas
the spin 0 light diquark configuration has the amplitude cs = 1 in Λc and Ξc it is only one of
the many possible diquark configurations in the light baryons Λ and Ξ. In order to determine
the amplitude of the spin 0 diquark configuration in the Λ and Ξ state one appeals to SU(6)
for guidance. Consider the spin–flavour wave functions of the Λc,Ξc,Λ and Ξ. They are given
by (see e.g. [123])

Λ↑c = c↑[ud]0 , Ξ+↑
c = c↑[us]0 (216)

Λ↑ = 1√
3
s↑[ud]0 + 1

2
√

3
d↑[us]0 + 1

2
√

3
u↑[ds]0 − 1

2
√

3
d↑{us}0

+ 1
2
√

3
u↑{ds}0 + 1√

6
d↓{us}+1 − 1√

6
u↓{ds}+1 (217)

Ξ0↑ = 1√
2
s↑[us]0 − 1√

18
s↑{us}0 + 1√

9
s↓{us}+1 + 1√

9
u↑{ss}0 −

√
2
9
u↓{ss}+1 (218)

where the suffix label denotes the m–quantum number of the diquark states. The [ud]0 is
the totally symmetric spin 0–isospin 0 combination [ud]0 = 1

2
(u↑d↓ − u↓d↑ + d↓u↑ − d↑u↓) and

the {us}0,+1 are the corresponding totally symmetric spin 1–flavour symmetric combinations
with m = 0,+1. The spin–flavour wave functions can be checked to be normalized to 1. The

transitions Λc → Λ and Ξc → Ξ can be seen to acquire factors of
√

1
3

and
√

1
2

in amplitude,

respectively, from the [ud]0 and [us]0 components in the Λ and Ξ0 wave functions. The authors
of [117,118,119,121] instead used SU(8)–type wave functions for the charm baryons Λc and Ξc

treating all quarks democratically, i.e. they used wave functions for Λc and Ξc that are identical
to the above Λ and Ξ wave functions except for replacing s by c. In such an approach there are
no a priori spin–flavour suppression factors. In order to be able to compare the rates we have
accordingly multiplied the high rates by factors of 1/3 and 1/2 and have included the lowered
rates in brackets in Table 8. One can only hope for more accurate measurements on exclusive
semileptonic charm baryon rates in the near future to be able to resolve this issue. No such
adjustment is required for the transition Ω0

c → Ω−. The semileptonic rates for Ω0
c → Ω−+ℓ++νℓ

are predicted to be quite large [121]. This is basically because there are several possibilities for

62



the initial c quark to make a transition to the final s quark, regardless of the model.
Next we turn to the polarization type observables measurable through the joint angular

decay distributions Eqs.(201) and (213). First observe that the angular decay distributions
become quite uninteresting close to zero recoil point q2 → q2

max = (M1 −M2)2 where the axial
vector s–wave contribution dominates (HV

λ2,λW
→ 0, HA

1

2
,1

→ −
√

2HA
1

2
,0

). For example, the

asymmetry Eq.(211) (or the polarization of the Λ) vanishes at the zero recoil point and the
corresponding polar angle distribution becomes flat. At the other end of phase space as q2 → 0
(or more exactly q2 → m2

ℓ) the longitudinal helicity amplitudes dominate as Eqs.(204–207)
show. There exists a very interesting Heavy Quark Symmetry prediction for the structure of
heavy to light Λc → Λs transitions at q2 = 0. Take the relevant heavy to light form factor
structure from Eq.(122) and substitute it into Eq.(212). At q2 = 0 one finds H 1

2
,0 = 0, i.e.

the daughter baryon Λ is predicted to emerge 100% (negatively) polarized from the decay at
q2 = 0. For the mean value of the polarization averaged over q2 Ref.[107] quote a theoretical
range −0.52 to −0.94 (depending on the assumed form factor ratio), 〈α〉 = −0.82 being a
preferred value.

There have been two recent measurements of the mean polarization of the Λ in semileptonic
Λc → Λ decays by ARGUS [109] and CLEO [110] who quote

〈α〉 =







−0.91 ± 0.49 ARGUS [109]

−0.89+0.17+0.09
−0.11−0.05

CLEO [110]
(219)

where we refer to the original papers for a discussion of the phase space region in which the
mean is taken. Both collaborations conclude that their results imply that α is close to −1 at
q2 = 0 in agreement with the Heavy Quark Symmetry prediction.

One can check that the 100% polarization prediction of Heavy Quark Symmetry remains
intact even if one includes 1/mc and naively applied 1/ms corrections according to Eq.(54–59).
This may be taken as an indication of the stability of the HQET result. A semiphenomenological
analysis that includes terms of order 1/mc in the HQET expansion but still treats the Λ as
light leads to a very small departure from −1 at q2 = 0 [124].

It will not be an easy task experimentally to completely disentangle the form factor structure
of semileptonic baryonic c → s transitions through the angular correlation measurements in
Eq.(201) and (213). However, one can hope for more and better data in the future. The two
recent measurements [109] and [110] on the polarization of the Λ in the Λc → Λ + ℓ+ + νℓ and
their interpretation in terms of HQET foreshadow things to come.

5.2.3 Model Results b→ c

For the heavy–to–heavy b → c transitions it is more convenient to work entirely in terms of
velocity variables. Correspondingly we define a new set of form–factors in terms of velocity
covariants, which we can choose to be the six form–factors introduced in (52–53). Note that
now all six “velocity” form–factors contribute to the transition in the zero lepton mass case,
i.e. one has not separated out the two scalar form–factors (multiplying qµ) as in the repre-
sentation (199,200) used before. Let us first state the linear relation between the “velocity”
form–factors defined in (52–53) and the helicity amplitudes that enter into the formulas for
physical observables. One has

√

q2HV,A
1

2
,0

=
√

2M1M2(ω ∓ 1)
(

(M1 ±M2)fV,A
1 ±M2(ω ± 1)fV,A

2 ±M1(ω ± 1)fV,A
3

)

HV,A
1

2
,1

= −2
√

M1M2(ω ∓ 1)fV,A
1 (220)
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where HV,A
λ2,λW

are the helicity amplitudes for the vector (V) and axial vector (A) current induced
1/2+ → 1/2+ +W−

off−shell transitions. The upper and lower signs in (220) stand for the vector
(V) current and axial vector (A) current contributions, respectively, where the total helicity
amplitude is given by

Hλ2,λW
= HV

λ2,λW
+ HA

λ2,λW
(221)

The remaining helicity amplitudes are related to the above two helicity amplitudes by parity
as given in Eq.(208). For the differential decay rate one then obtains

dΓ

dω
=

G2
F

(2π)3
|Vbc|2

q2pM2

12M1

(

|H 1

2
,1|2 + |H− 1

2
,−1|2 + |H 1

2
,0|2 + |H− 1

2
,0|2
)

(222)

where p is the CM momentum of the daughter baryon Λc (p = M2

√

(ω + 1)(ω − 1)).
The structure of the rate formula becomes very simple at the zero recoil point ω = 1. Using

again HV
λ2,λW

→ 0 and HA
1

2
,1
→ −

√
2HA

1

2
,0

one finds that

dΓ

dω
=

G2
F

(2π)3
2|Vbc|2M3

2 (M1 −M2)2
√
ω2 − 1|fA

1 (1)|2 + · · · (223)

at ω = 1. At zero recoil only the ”allowed Gamow–Teller transition” fA
1 survives (see Eq.(214)).

Since HQET predicts that fA
1 (1) = 1 up to order O(1/mQ) (see Eq.(61)), this relation would

allow one to extract the value of |Vbc| up to order O(1/mQ) accuracy from e.g. semileptonic
Λb → Λc transitions if the data can be reliably continued to the zero recoil point. In doing so one
has to also account for the small change in normalization resulting from vertex renormalization
as discussed in Sec.3. This and the corrections of order O(1/m2

Q) to (223) have been carefully
discussed in [90].

It is interesting to keep in the rate formula (222) not only the terms corresponding to ω = 1
(as has been done in deriving (223)), but also the contributions linear in (ω− 1) including also
p–wave contributions (see Eq.(214)). Using the predictions of HQET (54–59) for the O(1/mQ)
structure of the Λb → Λc transition one obtains

dΓ

dω
=

G2
F

(2π)3
2|Vbc|2M3

2 (M1 −M2)2
√
ω2 − 1

(

1 + (ω − 1)

[

−2ρ2 + 1 − 2

3

M1M2

(M1 −M2)2
+ Λ̄

M1 +M2

2M1M2

])

+ · · · (224)

where the ellipsis stand for O((ω − 1)2) contribution. Here ρ is the so–called “charge radius”
of the fA

1 form–factor defined by

fA
1 (ω) = fA

1 (1) − ρ2(ω − 1) + O((ω − 1)2) . (225)

Eq.(224) is useful when one wants to extrapolate experimental Λb → Λc data into the zero
recoil point for a given model value of the charge radius ρ2.

As concerns the joint angular decay distribution for unpolarized Λb → Λc transitions it can
be taken from Eq.(201) with the requisite sign changes when going from a final state ℓ+ + νℓ

to ℓ− + ν̄ℓ, as remarked on already there. The angular decay distribution for polarized Λb

decay is identical to Eq.(213). Corresponding formulas including lepton mass effects relevant
for semileptonic decays involving the τ–lepton can be found in [108,125]. Rate formulas and
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Table 9: Rate for semileptonic decay Λb → Λc + e− + ν̄e and polarization 〈α〉 for daughter
baryon Λc in the models [126,120], dipole form factor model and in the free quark decay model
with mb = mΛb

= 5.64 GeV and mc = mΛc
= 2.285 GeV. We have used |Vbc| = 0.044.

Decay: Λb → Λc + e− + ν̄e Γ [1010 s−1] 〈α〉
Infinite momentum frame [126]

O(1) 3.70 –0.71

O(1) + O(1/mQ) 4.57 –0.77

Dipole form factor 5.14 –0.72

Quark model [120] 3.48 –0.71

Free quark decay 11.73 –0.81

decay distributions for 1/2+ → 3/2+ transitions relevant for the decay Ωb → Ω∗c + ℓ− + ν̄ℓ have
been worked out in [67,108].

There have been a number of attempts to calculate the decay properties of the semileptonic
decays Λb → Λc + ℓ− + ν̄ℓ, Ξb → Ξc + ℓ− + ν̄ℓ and Ωb → Ωc + ℓ− + ν̄ℓ using a variety of model
assumptions and elements of HQET as a guiding principle. We shall not attempt to provide
an exhaustive discussion of all the model calculations, in particular since there is no data to
compare with yet. Instead, we list the results of a few representative model calculations for
Λb → Λc + ℓ− + ν̄ℓ (in the zero lepton mass case) in Table 9.

The model of [126] uses infinite momentum frame wave functions and determines the tran-
sition form factors at q2 = 0 by making use of the O(1) and O(1/mQ) structure of HQET. The
form factors are then continued to the whole q2–region by using the HQET scaling properties
of the form factors. The model of [127] is similar. For comparison we list the results of a
very simple dipole form factor ansatz described after Eq.(228). The model of Singleton uses a
constituent quark model approach with a harmonic oscillator potential [120]. The transition
form factors are evaluated in the Λb rest frame. For comparison we also give the results of free
quark decay where we have taken mb = mΛb

= 5.64 GeV and mc = mΛc
= 2.285 GeV in order

to get the kinematics right. The free quark decay result corresponds to taking structureless
form factors in the dipole model or in the O(1) HQET calculation and shows the influence
of the form factor effect on the rate and the polarization. If one takes mb = 4.73 GeV and
mc = 1.55 GeV one obtains a rate of 7.52×1010 s−1 instead. Judging from the numbers in Table
9 the exclusive semileptonic decay rate Λb → Λc + ℓ− + ν̄ℓ would be predicted to amount to
about 37%–73% of the total inclusive semileptonic rate if one compares to the above two par-
ton model rates. The difference in rate between the form factor models and the “structureless”
rate Γtot ≃ (7.52− 11.73)× 1010 s−1 would have to be filled in by the contribution of higher Λc

resonances and continuum states.
O(1/mQ) effects in the IMF model [126] are small and tend to increase the rates and the

value of the polarization. The value of the polarization of the daughter baryon Λc does not
appear to be very model dependent and is predicted to lie in the range −0.70 to −0.80, close to
the polarization of the charm quark in the free quark decay. We shall return to the subject of
the Λc polarization in semileptonic Λb decays in Sec.5.3 where we discuss attempts to determine
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the chirality of b→ c transitions using polarized Λb decays.
To conclude this section we briefly discuss the Σ–type b → c transitions Ω−b → Ω0

c and
Ω−b → Ω∗0c . The leading order HQET structure of these decays can easily be worked out from
the spinor expression Eq.(120). One obtains

Ω−b (1/2+) → Ω0
c(1/2+) :

〈Ωc(v2)|JV +A
λ |Ωb(v1)〉 = −1

3
ū2

[

FLγλ(1 − γ5) −
2

ω + 1
(FL + FT )(v1λ

+ v2λ
)

+
2

ω − 1
(FL − FT )(v1λ

− v2λ
)γ5

]

u1 (226)

Ω−b (1/2+) → Ω∗0c (3/2+) :

〈Ω∗0c (v2)|JV +A
λ |Ωb(v1)〉 = 1√

3
ūν

2

[

2FTgνλ(1 + γ5) +
1

ω + 1
(FL + FT )v1ν

γλγ5

− 1

ω − 1
(FL − FT )v1ν

γλ +
2

ω2 − 1
(FL − ωFT )v1ν

v2λ
(1 + γ5)

]

u1 ,

(227)

where FL(ω) = g
(0)
1 (ω) and FT (ω) = ωg

(0)
1 (ω) − (ω2 − 1)g

(0)
2 (ω) describe the longitudinal and

transverse spin 1 diquark transitions. As remarked on earlier FL and FT diagonalize the transi-
tion rates. We have dropped any reference to the ω–dependence in the form–factors in Eq.(226).
In the heavy quark limit there are thus two universal form factors FL and FT compared to the
many independent factors in the general covariant expansion (199,200) to which they can be
related. The two form factors are normalized to one at zero recoil q2 = q2

max = (M1 −M2)2

or ω = 1, that is FL(ω = 1) = FT (ω = 1) = 1. The 1/mQ corrections to the limiting struc-
ture described by Eqs.(226) and (227) have been worked out in [49]. At O(1/mQ) there are
altogether seven universal form factors compared to the two leading order form factors FL and
FT . According to Luke’s theorem [46,42] one retains the zero recoil normalization condition at
O(1/mQ).

In order to perform a quick appraisal of the structure of the Σ–type transitions and their
rates we turn to the constituent quark model approximation discussed in Sec.4.3. The longi-
tudinal and transverse form factors FL and FT can be seen to be related to the residual form
factor f(ω) by

FL(ω) = FT (ω) =
ω + 1

2
f(ω) . (228)

For the residual form factor we make a dipole ansatz, i.e. we write

f(ω) =

(

1 +
2M1M2(ω − 1)

m2
FF − (M1 −M2)2

)−2

(229)

where f(ω) is evidently normalized at ω = 1. By writing this formula in terms of the momentum
transfer variable q2 one recovers the familiar dipole representation F dipole(q2) = N(q2)(1 −
q2/m2

FF )−2 where N(q2) normalizes the dipole form factor to one at the zero recoil point q2 =
(M1 −M2)

2. As pole masses we take mFF = 6.34 GeV and 6.73 GeV for the vector and axial
vector form factors, respectively. These pole masses correspond to the expected masses of the
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(bc̄) vector and axial vector mesons. Using |Vbc| = 0.044 one obtains the following rate values

Λ0
b → Λ−c : (5.14; 1.54) × 1010s−1

Ξ0
b → Ξ+

c : (5.21; 1.55) × 1010s−1

Ω−b → Ω0
c : (1.52; 0.52) × 1010s−1

Ω−b → Ω∗0c : (3.41; 0.99) × 1010s−1

(230)

In Eq.(230) we also list predictions for the Λ–type transitions in the same constituent approx-
imation. We have also included the corresponding rate predictions for the τ–mode which can
be seen to be down by a factor of approximately three. Similar results have been obtained in
[120]. The rate predictions of the QCM model are higher [66] due to the fact that the QCM
form factors are much harder than our dipole form factors. As argued in Sec.4.3 the high rate
predictions of [66] for the Σ–type transitions cannot be trusted since the QCD form factors
violate one of the bounds due to Bjorken.

5.3 Polarization effects

According to the Standard Model, b quarks from the Z0 resonance e+e− → Z0 → bb̄ have
almost complete longitudinal polarization, given by

P b
L =

(8x2
W − 4xW + 1)2vbabβ(1 + cos2 Θ) + 2(4xW − 1)(v2

b + βa2
b) cos Θ

(8x2
W − 4xW + 1)((v2

b + β2a2
b)(1 + cos2 Θ) + v2

b (1 − β2) sin2 Θ) + 4(4xW − 1)vbabβ cos Θ
(231)

where vb = −1 + 4
3
xW , ab = 1, xW = sin2 ΘW , β2 = 1 − 4m2

b/m
2
Z and Θ is the CM scattering

angle relative to e−. For xW = 0.23 this gives a mean value < P b
L >= −0.94 with very little

angular dependence. A small transverse polarization of order 0.02 is predicted in the scattering
plane; there is no polarization normal to the plane if we neglect γ − Z interference and loop
corrections. Noteworthy is the absence of a longitudinal component proportional to sin2 Θ in
the numerator of (231) which comes about because there is no axial vector induced amplitude
into the positive helicity b (or b̄) to lowest order in QCD. The lowest order result for < P b

L > is
not changed by soft or hard gluon emission, or by loop effects, to any order in αs if (and only if!)
the b quark can be treated as massless. However, while doing the O(αs) radiative corrections to
< P b

L > [128], it was noticed that one cannot naively set the quark mass to zero ab initio when
doing radiative corrections. There is a spin flip contribution proportional to m2

b which survives
the limit mb → 0 since it gets promoted to a constant term by a would–be collinear singularity
∝ m−2

b . As a result < P b
L > is corrected at O(αs) [128] even for mb/mZ0 → 0. We mention

that the orientation dependent P b
L(cos Θ) will be changed by hard gluon emission regardless of

the above spin flip contribution. For charm the Standard Model predicts a somewhat smaller
value < P c

L >= −0.67.
The question is whether this big polarization can be exploited and whether b quark polariza-

tion can survive hadronization to give bottom hadron polarization [129,76]. Hadronization to
mesons is hopeless for our purposes. It is possible that high–spin mesons formed from b quarks
may retain some of the initial b polarization, but they will decay by parity–conserving processes
(that cannot give polarization–dependent asymmetries) down to a spin–0 B meson that retains
no spin information. It is instructive however to consider how the b spin information is lost.
Suppose at t = 0 a spin–up b combines with a spin–down q̄ forming the state b↑q̄↓. This is not
an eigenstate of total spin S but can be decomposed into a sum of S = 0 and S = 1 eigenstates:

b↑q̄↓ =
1√
2

(

b↑q̄↓ − b↓q̄↑√
2

)

+
1√
2

(

b↑q̄↓ + b↓q̄↑√
2

)

(232)
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If we add a common space wave function, then these two terms represent a spin–0 meson
and a spin–1 meson coherently superposed. If indeed the physical meson states were precisely
degenerate (as in theMQ → ∞ limit of HQET), the time evolution of the S = 0 and S = 1 terms
would be identical and the coherence would be preserved; the spin wave function would then
remain b↑q̄↓, the coherent superposition of meson states would preserve the b spin and total spin
S would be irrelevant. In reality however Mb 6= ∞; the pseudoscalar B and vector B∗ mesons
have different masses and therefore different time evolutions; at times t≫ (MB∗ −MB)−1, the
S = 0 and S = 1 amplitudes become effectively incoherent and the b quark is depolarized over
a period of time by spin–spin forces within the mesons (indeed the same forces that generate
the B −B∗ mass splitting).

One can make this more precise by defining a decoherence time scale tdecoherence = (MB∗ −
MB)−1 and a decay time scale tdecay = Γ−1. For the case in question one has

tdecoherence =
1

MB∗ −MB

∼= 2 · 10−2 MeV−1

tdecay =
1

ΓB∗→Bγ

∼= (103 − 104) MeV−1 (233)

where the width of the B∗ is determined by its one–photon decay. The B∗ width can be
estimated in the constituent model as described in Sec.4.6. The authors of [80] quote Γ(B∗+u →
B+

u + γ) = 0.84 keV and Γ(B∗0d → B0
d + γ) = 0.28 keV similar to the estimates in [130,131].

Thus one has tdecay ≫ tdecoherence for the B mesons, i.e. the t = 0 coherent superposition in
Eq.(232) will have become completely decoherent by the time B∗ decays (the B decays weakly
and is much longer lived).

Hadronization to bottom baryons is more promising. The Pauli principle implies that if a
b quark combines with a spin–0 combination of one u plus one d, a Λb is formed; if the light–
quark pair has spin 1 then Σb or Σ∗b result with total spin 1/2 or 3/2. The crucial feature of
this system is that in the heavy–quark limit the ΣQ, Σ∗Q become degenerate and some 200 MeV
more massive than the ΛQ with the result that they decay to ΛQ by the strong interaction,
preserving the b polarization.

Suppose first that the polarized b quark picks up a spin–0 ud pair to form a ’prompt’ Λb.
Due to its ud pair having spin 0, all of the Λb spin resides on the valence b quark and we
expect b polarization to become Λb–polarization (in the heavy–quark limit where b spin–flip is
suppressed during hadronization). Suppose instead that the polarized b quark had combined
with a spin–1 ud pair. In this case we would have to decompose the bqq wave functions into
superpositions of eigenstates of different total spin S = 1/2, 3/2(Σ,Σ∗). Take e.g. the state
b↑{uu}0 which, at t = 0, is a coherent superposition of S = 1/2 and S = 3/2 states according
to

b↑{uu}0 =
√

1
3

(√
1
3
b↑{uu}0 −

√
2
3
b↓{uu}+1

)

S=1/2

+
√

2
3

(√
2
3
b↑{uu}0 +

√
1
3
b↓{uu}+1

)

S=3/2
(234)

At t > (MΣ∗
b
− MΣb

)−1 the b quark would become depolarized in the Σb, Σ∗b systems for
reasons analogous to those outlined for the B,B∗ bottom mesons above (in the present case the
depolarization is only partial). Subsequent decays to Λb would produce partially depolarized
Λb.

68



Quantitatively one has

tdecoherence = (MΣ∗
b
−MΣb

)−1 ∼= 5 · 10−2 MeV−1

tdecay = Γ−1
(Σ∗

b
,Σb)→Λb+π

∼= 5 · 10−2 MeV−1 (235)

taking the constituent one–pion width estimate from [71] as discussed in Sec.4.5. That the
two time–scales come out approximately equal is an accident since the width is independent of
the heavy quark mass while ∆M(Σ∗b ,Σb) is proportional to 1/mb. The outcome of the above
estimate is that the b quark will have become partially depolarized when it finally ends up in
the Λb, because of the tdecoherence

∼= tdecay. The situation is more favourable for fragmentation
into the higher lying excited Σ∗∗b –states because of phase space, but may be less favourable
for fragmentation into excited Λ∗∗b since these can decay to Λb only via two–pion emission.
According to a rough estimate presented in [76] the polarization transfer from b to Λb can be
expected to be all in all about 70%.

The reason that there has been such a wide interest in the polarization of the b or the Λb

from Z0–decays is that one can hope to turn this polarization information into an effective tool
to analyze bottom or Λb–decays. One of the issues that has been discussed in this context is
the hope to be able to determine the b → c chirality using polarized b–decay. In order to set
the stage let us gather together pieces of information and arguments concerning b→ c chirality
(see also the review of [132]).

The prediction of the Standard Model that the b → c transition is left chiral has recently
been confirmed by a determination of the sign of the lepton’s forward–backward (FB) asym-
metry in the (l−νl) rest system in the semileptonic decay B → D∗ + l− + νl [95,96]. In this
analysis one uses the Standard Model left–handedness of the lepton current as input. How-
ever, if one leaves the realms of the Standard Model, the same FB asymmetry would arise if
both quark and lepton currents were taken to be right–chiral, i.e. if one would switch from a
Hµν(V −A)Lµν(V −A) coupling to a Hµν(V + A)Lµν(V + A) coupling.6

The FB asymmetry measure alluded to above constitutes a momentum–momentum correla-
tion measure < ~l ·~p > which clearly is not a truly parity–violating measure.7 What is needed to
distinguish between the two above options is to define truly parity–violating spin–momentum
correlation measures of the type < ~σ · ~p >.

Some such possible parity–violating measures that have been discussed recently exploit the
polarized bottom quarks produced on the Z0 resonance. One then defines spin–momentum
correlations w.r.t. the longitudinal spin direction of the decaying b or Λb using the momenta of
the decay products of the b or Λb. For the semileptonic decays Λb → Λc+l−+ν̄l or b→ c+l−+ν̄l

this has been done using the lepton momentum [129,134] and the c or Λc momentum [134,107].
The sign of these correlations or the sign of the correspondingly defined FB asymmetries allow
one to differentiate the above two options which remain after the analysis of the mesonic
experiments, [95,96], i.e. the Hµν(V −A)Lµν(V −A) or the Hµν(V +A)Lµν(V +A) option. A
problem with the suggested analysis is that they require the reconstruction of the Λb rest frame
which will be a difficult experimental task.

Alternatively one can consider the shape of the lepton spectrum directly in the lab system
[135]. The spin–lepton–momentum correlation effects referred to above have the effect that
the emitted leptons in the semileptonic decay Λb → Λc + l− + ν̄l (or b → c + l− + ν̄l) tend to

6A viable model involving a right-handed WR that is consistent with all present data has recently been
proposed [133].

7 For example, it is well–known that in e+e−–annihilation the two photon exchange contribution also gives
rise to nonvanishing FB asymmetries despite of the fact that QED is parity conserving.
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counteralign and align with the polarization of the b for Hµν(V −A)Lµν(V −A) and Hµν(V +
A)Lµν(V + A) interactions, respectively, leading to harder and softer lepton spectra in the lab
system relative to unpolarized decay allowing one to distinguish between the two options in
principle. However, as has been emphasized in [129], a lack of knowledge of the precise form of
the b→ Λb fragmentation function precludes a decision whether the lepton spectrum is harder
or softer than that of unpolarized decay, in particular since there is no unpolarized decay sample
to compare with.

Another possibility to distinguish between theHµν(V−A)Lµν(V−A) andHµν(V+A)Lµν(V+
A) options via a parity–violating measure is to determine the polarization of the lepton in the
semileptonic decays B → D(D∗) + l− + νl [136] or Λb → Λc + l− + ν̄l [125]. This will be a
difficult experiment but may be feasible in the not too distant future for semileptonic decays
involving the τ–lepton.

In [137] two of us together with B. König proposed yet a fourth variant of a truly parity–
violating spin–momentum correlation measure in b → c decays. They proposed to look at the
decay cascade Λb → Λc(→ a1 + a2 + · · ·) + l− + ν l to determine the chirality of b → c decays
where Λc → a1 +a2 + · · · are nonleptonic decays of the Λc. The weak nonleptonic decays of the
Λc serve to analyze the polarization of the Λc through the correlation of their momenta with the
polarization of the decaying Λc. Ideal in this regard are the nonleptonic decays Λc → Λπ and
Λc → Σπ the analyzing power of which has recently been determined [96,95,138]. As a further
analyzing channel they discussed the decay modes Λ+

c → pK̄∗0 and Λ+
c → ∆++K− which could

make up a large fraction of the dominant decay mode Λc → pK−π+. The analyzing power
of these channels has not yet been determined experimentally but can be estimated using the
theoretical quark model ansatz of [139].

Consider the semileptonic decay of an unpolarized Λb. Possible polarization effects due to
polarized Λb–decays average out if one integrates over all possible momentum directions of the
Λc in the decay Λb → Λc + l−+ νl. Possible Λb polarization effects due to incomplete averaging
because of experimental cut biases have been found to be very small. From simple helicity
arguments the longitudinal polarization PL (also called α in Sec.5.2.1) of the daughter baryon
Λc is expected to be negative (positive) in most of the phase space region for left–chiral (ξ = 1)
(right–chiral (ξ = −1)) b→ c transitions, respectively. For the mean value of PL one finds

< PL >= ξ
{ −0.77 IMF [126]
−0.81 FQD

. (236)

The two polarization values refer to the Heavy Quark Effective Theory (HQET) improved
infinite momentum frame (IMF) model of Ref.[126] and free quark decay (FQD) where we use
mb = MΛb

= 5.64 GeV and mc = MΛc
= 2.285 GeV in order to get the phase space right.

The longitudinal polarization of the Λc can be probed by looking at the angular distribution
of its subsequent nonleptonic decays as written down in Eq.(211). Ideal in this regard are the
nonleptonic modes Λc → Λπ and Λc → Σπ since the analyzing power of these decays has
recently been determined. For Λc → Λπ one has

αΛc→Λπ =
{ −1.0+0.4

−0.0
[96]

−0.96 ± 0.42 [95]
. (237)

For Λc → Σπ we quote the preliminary value [138]

αΛc→Σπ = −0.43 ± 0.23 ± 0.20 . (238)
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In correspondence to the decay distribution Eq.(211) one can define a forward–backward (FB)
asymmetry by averaging over the daughter baryons in the respective forward (F) (0◦ ≤ Θ < 90◦)
and backward (B) (90◦ ≤ Θ < 180◦) hemispheres to obtain

AFB = 1
2
PLαΛc

. (239)

Judging from the large numerical values of the mean of PL Eq.(236) and of the asymmetry
parameters αΛc

Eqs.(237,238) a measurement of the sign of AFB within reasonable errors should
allow one to conclude for the sign of ξ and therefore for the chirality of the b → c transition
with a good certainty.

What has been said up to now requires the reconstruction of the Λb rest system. This will
not be an easy task for the energetic Λb bottom baryons produced on the Z0 where the analysis
suggested in this paper is most likely to be done first. There is some hope, though, that such
a reconstruction can be done with the newly installed vertex detectors in the CERN detectors.
At present it is more realistic to consider the LEP environment with energetic longitudinally
polarized Λb’s whose rest frames cannot be reconstructed. The polarization of the Λc’s in the
semileptonic decays takes a more complicated form in the laboratory frame than in the Λb rest
frame as given by Eq.(212). In particular negatively polarized Λc’s emerging backward in the
Λb rest frame will turn into positively polarized Λc’s in the lab frame because of the momentum
reversal due to the requisite Lorentz boost. Also, because of experimental cuts and/or biases
the Λc’s polarization dependence on the polarization of the Λb may no longer average out, i.e.
one has to address the question of polarization transfer under realistic experimental conditions.

In order to study all these issues a Monte Carlo program has been written that generates
semileptonic decay events of polarized Λb into polarized Λc. It is then a simple matter to
adapt the calculation to the experimental conditions present in the LEP environment including
longitudinal and transverse lepton momentum cuts. What one finds is that approximately 50%
of the polarization information is retained when going from the Λb rest frame to the lab frame
(Z0 rest frame). One obtains < PL >labframe= −(0.3− 0.4)ξ with little cut and Λb polarization
sensitivity. ξ is the chirality parameter as before. With sufficient statistics it should not be too
difficult to pin down the chirality of the b → c transitions through some such measurements.
We emphasize that the quality of this experiment is crucially dependent on the quality of the
charm decay data that one is using to analyze the Λc polarization.

Regardless of what has been said about the potential use of polarized b or Λb decays to
measure the chirality of the b → c transitions there is a wealth of interesting physics to be
investigated using polarized b quarks, and for that matter, polarized heavy baryon decays.
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6 Lifetimes and Inclusive Nonleptonic Decays

6.1 Experimental Lifetimes

Let us quote the charm baryon lifetime values from the 1992 Particle Data Group [26]. The
Λc has a lifetime of τ(Λc) = (1.91 ± 0.15

0.12
) × 10−13 s, the charged Ξ+

c has a lifetime of τ(Ξ+
c ) =

(3.0 ± 1.0
0.6

) × 10−13 s and the neutral Ξ0
c lifetime is quoted at τ(Ξ0

c) = (0.82 ± 0.59
0.30

) × 10−13 s.
There exist no lifetime measurements for the Ω0

c yet. For comparison, the lifetimes of the
charmed mesons are τ(D0) = (4.20 ± 0.08) × 10−13 s, τ(D±) = (10.66 ± 0.23) × 10−13 s and
τ(D±s ) = (4.50 ± 0.30

−0.26
) × 10−13 s.

In the bottom baryon sector there exist lifetime measurements only for the Λb. R.Forty
[140] quotes a LEP average of τ(Λ0

b) = (1.07±0.15)×10−12 s. Ironically one now has a lifetime
measurement of the Λb although the Λb has not yet been seen with certainty. Contrast the Λb

lifetime with the bottom meson averages quoted by the Particle Data Group [26]: τ(B±) =
(1.62 ± 0.13) × 10−12 s, τ(B0) = (1.43 ± 0.12) × 10−12 s and τ(B0

s ) = (1.41 ± 0.22) × 10−12 s.

6.2 Theoretical Lifetime Estimates

In the large mass limit, one expects all heavy hadrons of the same flavour to have identical
lifetimes. The spread in the experimental lifetime values of the Λ+

c ,Ξ
0,+
c and Ωc charm baryons

signals that 1/mc effects are still important in the weak inclusive decays of charm baryons
(as they are for charm mesons). The preasymptotic effects enter in the form of W–exchange
contributions [141], and additional contributions come from the interference of decay quarks
and spectator quarks. These are sensitive to the probability that the the charm and light quarks
in the baryon wave function will come together at one point: to the square of the wave function
at the origin |Ψ(0)|2 with mass dimension [m3].

From dimensional arguments, one then finds

ΓFQD ≈ G2
Fm

5
c

Γexch,int ≈ G2
Fm

2
c |Ψ(0)|2 (240)

where ΓFQD denotes the ”free quark decay” parton model decay rate, Γexch and Γint denote the
W–exchange and interference rates, and mc refers to the charm quark mass.

Explicit calculations [142,143] show that ΓFQD ≈ Γexch,int in the charm baryon sector and
that ΓFQD ≈ Γint in the charm meson sector [143]. Using the fact that the wave function at
the origin of the heavy–light bound state becomes independent of the heavy quark mass as the
heavy quark mass becomes large [144], one can scale Equation (240) to the bottom quark sector.
One then finds Γexch,int/ΓFQD ≈ (mc/mb)

3 ≈ O(5%), which implies that the lifetime differences
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in the bottom sector are expected to be quite small. To some extend this is corroborated by
the present bottom lifetime measurements.

The difficulty in obtaining reliable rate and life time estimates for the charm baryons is
clearly evidenced by the fact that the preasymptotic effects, which are down by several powers
of 1/mc, are so important. This makes an analysis in terms of a 1/mc expansion difficult.
Nevertheless one can attempt to obtain a qualitative picture of the life time differences of
charm baryons in the form of a life time hierarchy [142,143].

The starting point in the analysis is the usual effective nonleptonic Hamiltonian

Heff =
√

2GFVcsV
∗
ud [c−O− + c+O+] (241)

where O± are local 4-quark operators

O± = (ūLγµdL)(s̄Lγ
µcL) ± (s̄LγµdL)(ūLγ

µcL) (242)

with q̄LγµqL = 1
2
q̄γµ(1− γ5)q, and Vq̄αqβ

are elements of the Kobayashi-Maskawa mixing matrix
with Vcs ≃ Vud ≃ cos Θc and Θc the Cabibbo angle. The coefficients c± describe the leading
logarithmic evolution of the nonleptonic Hamiltonian from the W mass scale down to the charm
mass scale µ ≃ O(mc) [145]. We take c+ = 0.74 and c− = 1.80 as in the work of Guberina et
al. [143].

The effective nonleptonic Hamiltonian Eq.(241) induces the inclusive nonleptonic decay
contributions drawn in Fig.17 for e.g. the inclusive Λ+

c decays. Simple expressions can be
obtained for these rates when one neglects u, d, s quark masses and uses a nonrelativistic wave
function for the charm baryons. For example, for the Λ+

c decay one then has a nonleptonic
(n.l.) rate [143]

ΓΛ+
c

n.l. = ΓΛ+
c

FQD + ΓΛ+
c

exch + ΓΛ+
c

int

= (2c2+ + c2−)
G2

Fm
5
c

192π3
+ c2−

G2
Fm

2
c |Ψ(0)|2
4π

− c+(2c− − c+)
G2

Fm
2
c |Ψ(0)|2
4π

= (1.58 + 3.01R− 0.99R) × 10−12s−1 (243)

with mc = 1.6 GeV , c±-values as above and R = |Ψ(0)|2/10−2GeV3.
As is evident from Equation (243) the resulting nonleptonic rate is quite sensitive to the

value of the wave function at the origin |Ψ(0)|2. From a fit to the hyperfine splitting, as
discussed in Sec.2, one has |Ψ(0)|2 ≃ 10−2GeV3. Adding a nominal semileptonic rate value
2 × 15% of the nonleptonic FQD rate one finds τΛ+

c
= 2.46 × 10−13s which is somewhat larger

than the experimental value τΛ+
c

(exp.) = (1.91 ± 0.15
0.12

) × 10−13s. Smaller values of the wave

function at the origin are obtained in a bag model [143] (|Ψ(0)|2 ≃ 0.4 × 10−2GeV3) or if one
equates the baryon’s and meson’s wave function at origin [142] (|Ψ(0)|2 ≃ 0.4 × 10−2GeV3

with fD = 165 MeV). Values similar to the above |Ψ(0)|2 ≃ 10−2GeV3 are also obtained by
using electromagnetic mass differences in the hyperfine formula [146]. It is clear that using the
smaller values of |Ψ(0)|2 worsens the agreement with the experimental rate.

Applying the same calculation to the other weakly decaying charm baryons Guberina, Rückl
and Trampetic [143] find a lifetime hierarchy τ(Ωc) ≈ τ(Ξ0

c) < τ(Λc) < τ(Ξ+
c ) whereas Voloshin

and Shifman [142] obtained τ(Ωc) < τ(Ξ0
c) < τ(Λc) ≈ τ(Ξ+

c ). In a more recent analysis Blok
and Shifman estimate the lifetime ratios at τ(Ξ0

c) : τ(Λc) : τ(Ξ+
c ) ≈ 0.36 : 0.77 : 1 and point

out that the lifetime of the Ωc can either be the most short–living and the most long–living
among charmed baryons depending on the strength of the unknown spin–spin interaction in
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Figure 17: Free quark decay, W–exchange and interference contributions to inclusive nonlep-
tonic Λ+

c decays.
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the Ωc [147]. Present data favours the inequality chain of [143] and the new values of Blok and
Shifman [147].

The main effects leading to the lifetime extremes in the inequality chains are easily identified:
the large Ω0

c–rate is due to a large positive interference effect among the s–quarks (the s–quark
from the weak decay vertex can interfere with either of the spectator s–quarks) and the small
Ξ+

c –rate is due to the absence of a W–exchange contribution in this case.
One must stress that there are a number of theoretical uncertainties in the lifetime calcu-

lations of [142] and [143] related to the size of the preasymptotic effects which could not be
discussed in detail here. Nevertheless, the authors of [142] are optimistic and claim that their
inequalities can be replaced by equality relations with multiplicative factors of 1.5 to 2.

The absence of large preasymptotic effects in bottom baryon nonleptonic decay rates is
gratifying. Present evidence points to a somewhat larger difference in lifetimes between bottom
mesons and the Λb bottom baryon than expected from the naive dimensional analysis (240).
Clearly one needs better experimental data on bottom hadron lifetimes including the bottom
baryons Ξ0,−

b and Ωb to be able to ascertain how big the spread in lifetimes in the bottom sector
is, and whether one can understand the lifetime hierarchy from first theoretical principles.
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7 Exclusive Nonleptonic Decays

7.1 Decay Rates and Decay Distributions

Let us begin by counting the number of independent amplitudes in the four classes of two–body
nonleptonic ground-state to ground-state transitions
B1(1/2+) → B2(1/2

+, 3/2+) +M(0−, 1−):

(i) 1/2+ → 1/2+ + 0− : 2 complex amplitudes

(ii) 1/2+ → 3/2+ + 0− : 2 complex amplitudes

(iii) 1/2+ → 1/2+ + 1− : 4 complex amplitudes

(iv) 1/2+ → 3/2+ + 1− : 6 complex amplitudes

Using standard methods (e.g. [148]) one can then derive angular decay distributions which,
upon integration, give the decay rates. Again we prefer an explicit frame–dependent represen-
tation of the decay distributions instead of the frame independent representation discussed in
[149]. We begin by considering the nonleptonic decay of unpolarized charm or bottom baryons.
In the simplest case one has the decay 1/2+ → 1/2+(→ 1/2+ + 0−) + 0− as for example in
Λ+

c → Λ(→ pπ−) + π+. Referring to Fig.14, one now sees a cascade only on one side as the
pion’s decay goes unobserved. Consequently one has only a single polar angle distribution. One
obtains

dΓ(Λ+
c → Λ(→ pπ−) + π+)

dcos ΘΛ
= 1

2
BΛ→pπ−ΓΛ+

c →Λπ+(1 + αcαΛ cos ΘΛ) (244)

where αc and αΛ are the asymmetry parameters in the decays Λ+
c → Λπ+ and Λ → pπ−,

respectively, defined in analogy to Eqs.(209,210). The definition of the polar angle ΘΛ is given
in Fig. 14 with the replacement W+ → π+. The cascade decay Λ → pπ− acts as an analyzer
of the longitudinal polarization of the daughter baryon Λ whose polarization is given by the
asymmetry parameter αc. This single angular decay distribution was utilized experimentally
to measure the asymmetry parameter αc in the decay Λc → Λ(→ pπ−) + π+ [96,95].

Somewhat more complicated is the decay distribution in the double cascade 1/2+ → 1/2+(→
1/2++0−)+1−(→ 0++0−) as for example in Λ+

c → Λ(→ pπ−)+ρ+(→ π+π0). One has [139,108]

dΓ(Λ+
c → Λ(→ pπ−) + ρ+(→ π+π0))

dcos Θdχdcos ΘΛ
=

1

2π
BΛ→pπ−Bρ+→π+π0

p

32πM2
1

·
(

3

4
sin2 ΘHU(1 + αU

c αΛ cos ΘB) +
3

2
cos2 ΘHL(1 + αL

c αΛ cos ΘΛ)

− 3

4
√

2
sin(2Θ) cosχ cos ΘΛαΛHI +

3

4
√

2
sin(2Θ) sinχ cos ΘΛαΛHI′

)

(245)

76



where the helicity rates HU , HL, and HI and the asymmetry parameters αU
c and αL

c are defined
in analogy to Eqs.(203,209,210). Angles are defined as in Fig.14 with the replacement of
(W+ → l+νl) by (ρ+ → π+π+). Clearly the six observables defined by the decay distribution
do not suffice to determine the four complex decay amplitudes of the process.

The observable HI′ is proportional to the imaginary part of the longitudinal–transverse
interference term (see the third line of Equation (203)) and is thus a so–called T–odd observ-
able. It obtains contributions from CP–violating interactions and/or from effects of final–state
interaction. The Standard Model CP–violating contributions are expected to be quite small
and thus HI′ would be a good measure of the strength of final state interaction effects. Al-
ternatively, one may extract possible CP–violating effects by comparing Λ+

c and Λ̄+
c cascade

decays.
We now briefly turn to the decays of polarized heavy baryons in which the cascade decay

of the daughter baryon is used as an analyzer and the meson decay goes unanalyzed. The
orientation angles are defined in Fig.15. The angular decay distribution for the 1/2+ → 1/2+(→
1/2+ + 0−) + 0− transition is well known from the analysis of the nonleptonic decays of the
cascade hyperon Ξ and reads [108,150]

dΓ(Λ↑c → Λ(→ pπ−) + π+)

dcos Θpdcos ΘΛdsinχ
=

1

8π
ΓΛc→Λπ+BΛ→pπ−

[1 + αcαΛ cos ΘΛ + Pc(αc cos Θp + αΛ cos Θp cos ΘΛ

+αΛ sin Θp sin ΘΛ(γc cosχ+ βc sinχ))] (246)

where βc and γc are the usual nonleptonic decay parameters (e.g. [149]). In a noncascade
charm baryon decay, for example Λc → pK̄0, one would be left with a decay distribution
W (Θc) = (1 +Pcαc cos Θp). This would allow for a determination of the asymmetry parameter
αc only if Pc were known.

The remaining angular decay distributions involving the other nonleptonic decay processes
(polarized and unpolarized) can be found in [108].

7.2 Symmetry Considerations

In the nonleptonic Hamiltonian Eq.(241) we included only the dominant contribution propor-
tional to ≃ cos2 Θc. Once suppressed transitions proportional to ≃ cosΘc sin Θc, not written in
Eq.(241), are the transition c→ dud̄ and c → sus̄ , and the doubly suppressed decay c → dus̄
proportional to ≃ sin2 Θc.

8 The ∆C= 1 SU(3) content of the antisymmetric representation 20′′

is 3a and 6∗, and that of the symmetric representation 84 is 3s and 15. The dominant pieces
are the 6∗ and 15 SU(3) representations. The I–, U–, and V–spin content of the dominant
piece is ∆I=1, ∆U=1 and ∆V=0, 1. Sum rules relating different charm changing nonleptonic
amplitudes can be and have been written down using various techniques [151–155]; the sim-
plest technique appears to be an analysis using the three SU(2)I,U,V subgroups [151]. The

I–spin sum rules are expected to be quite accurate. For example one predicts equal rates for
Λc → Σ+π0 and Λc → Σ0π+ from the ∆I = 1 rule [151] which is borne out by recent exper-
iments [138]. The U–spin and V–spin sum rules are not expected to be as good because of
SU(3) breaking effects. Nonet symmetry for the mesons can be incorporated in the usual way
by excluding disconnected flavour flow diagrams (see e.g. [151]).

8 In the sum rule approach, one relates different nonleptonic decay amplitudes by using flavour symmetry
relations based on the flavour symmetry group SU(4) and/or its SU(3) and SU(2) subgroups.
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An interesting observation concerns the rates of the two members Λ+
c and Ξ0

c of the same
U–spin doublet. In the case of 20′′ dominance of Heff it has been shown from U–spin arguments
that for the dominating c → sud̄ transitions one can derive equality of total rates and partial
rates into any particular spin channels [153]. Considering the present nonequality of Λ+

c and
Ξ0

c life times shows that H20′′

eff dominance of the effective nonleptonic Hamiltonian may not be
a good approximation.

Further sum rules may be obtained relating Cabibbo favoured, suppressed and doubly sup-
pressed decay amplitudes when the Cabibbo suppression factors are removed. Similarly one
may even attempt to relate charm changing ∆C= 1 processes to ordinary ∆C= 0 nonleptonic
hyperon decays although the large mass difference between charm and ordinary baryons makes
such an approach problematic.

Still another class of sum rules may be obtained by considering parity–conserving and
parity–violating amplitudes separately and assuming the full SU(4) symmetry of the transition
in conjunction with the charge conjugation symmetry of Heff which is C=+1 and C=−1 for
the parity–conserving and parity–violating parts, due to CP–conservation [151,152]. One then
e.g. obtains the result that the parity–violating amplitude A in Λ+

c → Λπ+ vanishes. This is
in direct conflict with the recent nonvanishing asymmetry measurement in this decay [95,96].
One concludes that SU(4) is not a useful flavour symmetry for charm changing weak decays
due to the large mass breaking factor (mc −ms)/mc ≃ 70%.

While SU(4) is not a useful symmetry, SU(3) flavour symmetry may still be useful for charm
changing decays [151,154]. But even then one encounters the problem of which mass dimension
the SU(3) flavour symmetric amplitude should carry. Related to this is the extraction of
supposed flavour symmetric amplitudes from rates where one does not know which mass scale
M̃ is appropriate for the (p/M̃)2l+1 phase space factor. In order to be able to answer this
question reliably one is back to the dynamical problem. Hopefully one will learn more about
the appropriate mass scaling factors for an amplitude in the future. Unfortunately one must
conclude that the SU(3) flavour symmetry approach to nonleptonic and semileptonic decays
involving ∆C= 1 transitions provides a rule of thumb at best.

7.3 Quark Model and Current Algebra Results

In the quark model the effective current×current Hamiltonian (241) gives rise to the five types
of flavour diagrams drawn in Fig.18. We have chosen to label the quark lines for the specific
transition Λ+

c → Λπ+ for illustrative purposes. The wavy lines are included in order to indicate
how the effective quark currents of the Hamiltonian (241) act. As a next step, one wants to
interpret the diagrams as Feynman diagrams possibly with additional gluon exchanges added.
The general dynamical problem in all its complexity is far from being solved, so one has to
resort to some approximation. The quark lines in Fig.18 transmit spin information from one
hadron to the other. This is realized in the spectator quark model, which postulates that there
is no spin communication between quark lines. Quark pairs are created from the vacuum with
3P0 quantum numbers. Finally, these postulates can be cast into a covariant form if the quarks
in a hadron are assumed to propagate with equal velocity which is also the hadron’s velocity.

In terms of quark model spin wave functions, the decay amplitudes for the process B1 →
B2 +M corresponding to Fig.18 can then be written as [151]

TB1→B2+M = H1B̄
ABC′

2 B1ABCM̄
D′

D (OCD
C′D′ − 1

Nc
OCD

D′C′)
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Figure 18: Quark diagrams contributing to nonleptonic decay Λc → Λπ+, including colour–
flavour weight factors.

+
1

Nc

H2B̄
AB′D
2 B1ABCM̄

D′

D OBC
B′D′

+
1

Nc

H ′2B̄
AB′C′

2 B1ABCM̄
B
DO

CD
B′C′

+
1

Nc

H3B̄
A′B′C′

2 B1ABCM̄
C
C′OAB

A′B′ (247)

where the first, second, third and fourth terms of (247) correspond to the contributions of
diagrams Ia,b, IIa, IIb and III in Fig.18 in that order. BABC and MB

A are quark model wave
functions for the baryons and mesons. Each index A stands for a pair of indices (α, a), where
α and a denote the spin and flavour degrees of freedom. We have already summed over colour
degrees of freedom which results in the typical factors 1/Nc where Nc = 3. We emphasize that
the limit Nc → ∞ cannot be taken naively for the last three contributions in (247) (IIa,b and
III in Fig.18). We shall return to this point later on. The matrix OCD

AB describes the spin–
flavour structure of the effective current×current Hamiltonian (241). H1, H2, H

′
2 and H3 are

wave function overlap integrals corresponding to diagrams I, IIa,b and III which are expected
to depend on the masses of a particular decay process. Eq.(247) can be viewed as an algebraic
realization of the diagrams shown in Fig.18: each line in Fig.18 corresponds to a contraction of
doubly occurring spin–flavour indices in (247), where one sums over the spin–flavour indices.

The first term in (247) corresponds to the so–called factorization contribution and can be
calculated in terms of the current matrix elements of Sec.5. Bringing the contributions of the
non–factorizing diagrams IIa,b and III into tenable forms with the above assumptions does not
preclude the possibility that (247) can be derived from a more general point of view dropping
some of the above assumptions. One should note that in the case of transitions between ground
state baryons, the non–factorizing diagrams IIa,b and III obtain contributions only from O−

(transforming as 20′′ in SU(4)) because of the symmetric nature of the ground state baryons
[156]. Both operators O+ and O− contribute to diagram Ia and Ib. The contributions of Ia
and Ib add up such that the resulting contribution is proportional to χ± = (c+(1 + 1/NC) ±
c−(1 − 1/NC))/2 depending on whether the final state meson is charged (+) or neutral (−).

The contribution of diagram Ib can be seen to be colour suppressed. Guided by the analysis
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of exclusive nonleptonic charm and bottom meson decays [157,158] it seems to be appropriate
to take the Nc → ∞ limit and accordingly drop the contribution of diagram Ib in Fig.18.
Superficially also the contributions of diagrams IIa,b and III appear to be colour suppressed.
But considering the fact that baryons contain Nc quarks as Nc → ∞ the denominator factor
Nc is balanced by combinatorial numerator expressions such that diagrams IIa,b and III occur
at O(1) as Nc → ∞ and may not be dropped in this limit.

The results of calculating diagrams IIa, IIb, and III depend on the details of the quark
model wave functions used as input. As a first approximation, one may use SU(2)W spin wave
functions [151]. They correspond to boosting static quark model wave functions to a collinear
equal velocity frame as mentioned above [159]. When explicit mass factors are scaled out of the
baryon wave functions according to the HQET, one can set H2 = H ′2 in Eq.(247), because of
CP–invariance. After some straightforward algebraic manipulations involving the evaluation
of the amplitude Eq.(247) with the SU(2)W wave functions, one can calculate the nonleptonic
transition amplitudes for the decays 1/2+ → (1/2+, 3/2+) + (0−, 1−).

In order to be able to discuss some general features of the solutions, we treat the decay
1/2+ → 1/2+ + 0− in more detail. Writing the amplitude TB1→B2+M = ū2(A + Bγ5)u1 one
obtains the following amplitude expressions

A = Afac +
1

3

H2

M1M2

√
M3

(

− 3

4
Q+(M1I3 −M2Î3)

+
3

4
M1M2M3(I3 − Î3)

)

(248)

B = Bfac +
1

3

H2

4M1M2

√
M3

(

Q+(M1(I3 + 2I4) +M2(Î3 + 2Î4))
)

+
1

3

H3

M1M2

√
M3

3M1M2(M1 +M2 +M3)I5 (249)

where the factorizing contributions Afac and Bfac (corresponding to diagrams Ia and Ib)
are obtained from the current-induced form factors discussed in Section 5. We have defined
Q+ = (M1 + M2)2 −M2

3 . The invariant flavour wave function contractions (Clebsch–Gordan
coefficients) denoted by Ii and Îi are defined in [151]. I3 and I4 are associated with diagram
IIa, Î3 and Î4 with diagram IIb, and I5 with diagram III. Diagram III can be seen to contribute
only to the p.c. amplitude B, whereas diagrams I and II contribute to both parity–conserving
and parity–violating amplitudes. The parity–conserving and –violating amplitudes can be seen
to be even and odd with respect to the generalized charge conjugation operation (M1; I3,4; I5)

→ (M2; Î3,4; I5) as expected from the CP–conserving property of the nonleptonic Hamiltonian.

For example, for the decay Λ+
c → Λπ+ one finds I3 = Î3 and thus the parity–violating ampli-

tude A in the symmetry limit M1 = M2 vanishes, as remarked on earlier. With M1 ≫M2 this
statement no longer holds true.

The contributions of diagrams IIb and III are nonleading on the scale of the mass M1 of the
parent baryon. As a helicity analysis shows, they are nonleading because the contributions IIb
and III are suppressed by helicity as a result of the (V −A)× (V −A) nature of the underlying
quark transition [160]. This implies that only the factorizing contribution Ia and the non–
factorizing contribution IIa survive when M2/M1 → 0. This conclusion holds in general for all
the ground state decay channels. These leading contributions can be seen to lead to an exclusive
decay mode power behaviour Γ ∼ 1/M1 when M2 and M3 are kept fixed. The helicity suppressed
contributions are down by an additional factor (M2/M1)

2. The same power behaviour holds
true in nonleptonic meson decays. Compared to the inclusive nonleptonic rate Γnl

FQD ∼ M5
1

80



one infers that the exclusive branching ratio of a particular two–body channel decreases very
rapidly as M1 becomes large and M2, M3 are kept fixed. When both M1 and M2 become large
with their ratios fixed, and M3 kept fixed and small, one has again Γ ∼ (M1)5 · (M2/M1)

6 with
the helicity suppressed contributions diagrams IIb, III down by another factor (M2/M1)

2. We
do not, however, see a mechanism that would suppress the non–factorizing contribution IIa
relative to the factorizing contribution in this limit as is implicit in the analysis of [149,161].

The flavour structure in the parity violating amplitude A has a remarkable property: there
exists a one–to–one flavour correspondence with terms arising in the current algebra plus soft
pion approach. This was first noticed empirically in the △C = 0, △Y = 1 [162] and in the
△C = 0, △Y = 0 [163] transitions and was later proven in general [151]. The correspondence
between the quark model and current algebra approach works in the following way: the contri-
butions proportional to I3 and Î3 have the flavour structure of the ”equal time commutator”
term when the symmetry limit M1 = M2 is taken. The factorizing contribution Afac has the
same interpretation in both schemes. In a similar vein, the nonfactorizing parity–conserving
contributions can readily be interpreted as baryon pole contributions.

In the past few years, many new nonleptonic charm–baryon decays have been observed [23].
By now about 25% of the Λ+

c decay channels are accounted for; new nonleptonic decay modes
of Ξc and Ωc have been seen recently. As for the bottom baryons, the experimental situation
is meagre. Evidence for Λb in the exclusive nonleptonic mode Λb → ΛJ/Ψ was presented in
[10] which, however, was not confirmed by other collaborations [164]. Low statistics evidence
has been obtained for the mode Λb → Λ+

c π
− [11]. Among the observed charm–baryon decay

channels there are many two–body and quasi–two–body modes which can be compared with
theoretical predictions. For the three– and four–body decay modes only a few theoretical anal-
yses have been carried out: Using a chiral Lagrangian, the authors of [165] give predictions
for decays of the type Λ+

c → 1/2+ + 0− + 0−, while a semiquantitative estimate of the decay
channels Λ+

c → pK0π0 and pK0π+π− has been made in [166]. Further theoretical work on the
nonleptonic many–body decays is needed. In Table 10 we list some of the current–algebra and
pole–model calculations for two–body modes and compare them to a quark model calculation
with best fit values for the overlap parameters H2 = H ′2 and H3 in Eq.(247). Compared to
the quark model calculation of [139] the calculations [167,68,168] include long–distance dynam-
ics by considering the contributions of low–lying baryon intermediate states. The calculations
differ in the details of how coupling factors in this approach are determined. In [167] the
non–factorizing contribution has been evaluated by using the pole approximation, where the
(parity–violating) s–wave amplitudes are dominated by the low-lying 1/2− resonances, while
the (parity–conserving) p–wave ones are governed by the ground state 1/2+ poles. The MIT
bag model was employed to calculate the coupling constants, form factors and baryon matrix
elements. The importance of including the 1/2− pole terms to the s–wave contributions has
also been emphasized by the authors of [68]. They used symmetry arguments to relate their
couplings to those from semileptonic hyperon decays as well as the diquark model to deter-
mine the parity–conserving amplitudes. As for the parity–violating contribution, the authors
of [68] claim that they are completely determined by the current algebra commutator term
and the masses of the relevant 1/2− resonances without introducing further new parameters.
Zenczykowski [168] sums intermediate states contributing to the parity–violating amplitudes to
obtain an effective current–algebra expression. He uses broken SU(4) to relate coupling factors
in the charm sector to coupling factors in the hyperon sector similar to the calculation [68].

All calculations [167,68,139,168] use theNc → ∞ approximation to determine the factorizing
contributions (“new factorization”). The new factorization scheme is supported by the analysis
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of the Cabibbo suppressed decay Λ+
c → pφ which only gets contributions from the factorizing

diagram I. As was first noticed in [23,139], its measured rate can only be accounted for by
dropping terms proportional to 1/Nc. We reiterate that the quark model and pole model or
current algebra approaches to nonleptonic charm baryon decays are not radically different from
one another because of the equality of spin–flavour factors in both approaches [151].

In the next few years the advent of new data will certainly constrain the current algebra and
quark model calculations further. Almost all model calculations predict negative asymmetry
parameter values close to their maximum value of −1 for the decays Λ+

c → Λπ+ and Λ+
c →

pK−. They are thus in agreement with the measured asymmetry parameter in the decay
Λ+

c → Λπ+ [96,95]. The decays Λ+
c → Ξ0K+ and Λ+

c → Σπ are particularly interesting:
they obtain contributions only from the nonfactorizing diagrams IIa and III in Fig.18 and thus
give a measure of the nonfactorizing contributions to nonleptonic charm baryon decays. Their
experimental observation proves that the nonfactorizing (or W–exchange) contributions can
certainly not be neglected as is implicit in the analysis of [149,161].
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Table 10. Current algebra and quark model predictions for nonleptonic charm baryon decays. The num
(in units 1011s−1) and asymmetry parameters αc (in parentheses)

Cheng and Tseng Cheng and Tseng Xu and Kamal Żenczykowski Quark Mo

Current Algebra [167] Pole Model [167] [68] [168] [139]

Λ+
c → pK0 1.82(−0.90) 0.63(−0.49) 0.60(0.51) 0.99(−0.90) input(−1

Λ+
c → pK0(892) 1.19 1.54

Λ+
c → ∆++K− 1.35

Λ+
c → pφ 0.05 0.11

Λ+
c → Λπ+ 0.73(−0.99) 0.44(−0.95) 0.81(−0.67) 0.31(−0.86) input(−0

Λ+
c → Λρ+ 0.27 9.54

Λ+
c → Σ0π+ 0.88(−0.49) 0.36(0.78) 0.17(0.92) 0.23(−0.76) 0.16(0.70)

Λ+
c → Σ+π0 0.88(−0.49) 0.36(0.78) 0.17(0.91) 0.23(−0.76) 0.16(0.71)

Λ+
c → Σ+ρ0 0.28 1.56

Λ+
c → Σ+ω 0.18 2.01

Λ+
c → Ξ0K+ 0.05(0) 0.04(0) 0.13(0)

Ξ+
c → Σ+K0 0.01(0.43) 0.19(−0.09) 0.10(0.24) 0.15(0.68) 1.46(−1.

Ξ+
c → Ξ0π+ 0.19(−0.77) 0.89(−0.77) 0.76(−0.81) 0.16(0.65) 0.80(−0.

Ξ0
c → ΛK0 0.89(−0.88) 0.24(−0.73) 0.33(1.00) 0.21(−0.84) 0.11(−0.

Ξ0
c → Σ0K0 0.02(0.85) 0.12(−0.59) 0.09(−0.99) 0.03(−0.89) 1.05(−0.

Ξ0
c → Σ+K− 0.11(0) 0.04(0) 0.11(0)

Ξ0
c → Ξ0π0 1.12(−0.78) 0.25(−0.54) 0.50(0.92) 0.15(−0.99) 0.03(0.92)

Ξ0
c → Ξ−π+ 0.74(−0.47) 1.12(−0.99) 1.55(−0.38) 0.46(−0.78) 0.93(−0.

Ω0
c → Ξ0K0 0.98(0.44) 0.13(−0.93) 1.75(0.51)
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8 Summary and Outlook

In this review we have concentrated on the decay properties of ground state and excited state
charm and bottom baryons, focussing on recent advances in the understanding of how QCD
turns into a much simplified Heavy Quark Effective Field Theory when the quarks become
much heavier than the QCD confinement scale. Present experiments are already proving the
usefulness of the concepts of HQET. One can expect a wealth of data on heavy hadron physics
in the future to be confronted with the predictions of HQET.

At present there are strong experimental programmes on heavy hadron physics at high
energy laboratories all over the world. ARGUS at DESY has stopped running in 1993 after
having produced a wealth of important results on charm and bottom physics during its lifetime.
CLEO is very much alive and coping very well with CESR’s present top performance at a
design luminosity of 3× 1033 cm−2 s−1 with further improvements lying ahead. LEP has begun
to contribute to bottom physics in a significant way. There will be two more years of running
on the Z0 peak and there is still data on the tapes of previous runs waiting to be analyzed. The
hyperon beam experiment WA89 at CERN specializes on charm–strangeness baryons and has
seen first signs of the Ξ′c baryon. There have been detector improvements and there are more
runs coming up. At Fermilab the collider mode detectors CDF and D0 have produced high
statistics charm and bottom hadron results and further detector and machine improvements are
being planned or have been installed. Then there are the photoproduction and hadroproduction
fixed target experiments E653, E672, E687, E691, E771, E789 and E791 that have yielded some
very accurate results on heavy hadron physics in general and on some specific decay modes in
particular.

SLAC is tooling up with its approved B factory project which is expected to start its bottom
physics program in 1999. The HERA–B project at DESY and the B factory project at KEK are
awaiting approval. While the primary objective of these machines is to discover and study CP–
violation in the bottom sector there certainly will be ample fall–off for heavy hadron physics
in general.

All in all, we can expect an abundance of interesting new data on charm and bottom baryons
in the next few years. The field is very much alive and one can be sure that there will be plenty
of experimental and theoretical activity in heavy baryon physics in the future. As experience
has shown, real progress is achieved when theoretical and experimental advances go hand in
hand. In this sense the theoretical heavy quark physics community is looking forward to a lot
of new experimental results on heavy quark physics in general and on heavy baryon physics in
particular.
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