Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T18:51:46.763Z Has data issue: false hasContentIssue false

Amino Acid Geochemistry of Fossil Bones from the Rancho La Brea Asphalt Deposit, California

Published online by Cambridge University Press:  20 January 2017

Mark A. S. McMenamin
Affiliation:
Department of Geological Sciences, University of California, Santa Barbara, California 93106
David J. Blunt
Affiliation:
United States Geological Survey, Menlo Park, California 94025
Keith A. Kvenvolden
Affiliation:
United States Geological Survey, Menlo Park, California 94025
Scott E. Miller
Affiliation:
Radiocarbon Laboratory, Queens College, Flushing, New York 11367 Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
Leslie F. Marcus
Affiliation:
Radiocarbon Laboratory, Queens College, Flushing, New York 11367
Richard R. Pardi
Affiliation:
Radiocarbon Laboratory, Queens College, Flushing, New York 11367

Abstract

Low aspartic acid d:l ratios and modern collagenlike concentration values indicate that amino acids in bones from the Rancho La Brea asphalt deposit, Los Angeles, California are better preserved than amino acids in bones of equivalent age that have not been preserved in asphalt. Amino acids were recovered from 10 Rancho La Brea bone samples which range in age from less than 200 to greater than 36,000 yr. The calibrated rates of aspartic acid racemization range from 2.1 to 5.0 × 10−6yr−1. Although this wide range of rate constants decreases the level of confidence for age estimates, use of the larger rate constant of 5.0 × 10−6yr−1 provides minimum age estimates which fit the known stratigraphic and chronologic records of the Rancho La Brea deposits.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akersten, W.A. (1980). Fossils in asphalt. Science 208. 552.CrossRefGoogle ScholarPubMed
Bada, J.L. Helfman, P.M. (1975). Amino acid dating of fossil bones. World Archaeology 7. 160173.Google Scholar
Bada, J.L. Protsch, R. (1973). Racemization reaction of aspartic acid and its use in dating fossil bones. Proceedings of the National Academy of Sciences, U.S.A. 70. 13311334.Google Scholar
Bada, J.L. Schroeder, R.A. (1972). Racemization of isoleucine in calcareous marine sediments: Kinetics and mechanism. Earth and Planetary Science Letters 15. 111.Google Scholar
Bada, J.L. Kvenvolden, K.A. Peterson, E. (1973). Racemization of amino acids in bones. Nature (London) 245. 308310.CrossRefGoogle Scholar
Bada, J.L. Schroeder, R.A. Carter, G.F. 1974a. New evidence for the antiquity of man in North America deduced from aspartic acid racemization. Science 184. 791793.Google Scholar
Bada, J.L. Schroeder, R.A. Protsch, R. Berger, R. 1974b. Concordance of collagen-based radiocarbon and aspartic acid racemization ages. Proceedings of the National Academy of Sciences, U.S.A. 71. 914917.Google Scholar
Berger, R. Libby, W.F. (1966). UCLA radiocarbon dates V. Radiocarbon 8. 467497.Google Scholar
Berger, R. Libby, W.F. (1968). UCLA radiocarbon dates VIII. Radiocarbon 10. 402416.Google Scholar
Bischoff, J.L. Rosenbauer, R.J. (1981). Uranium series dating of human skeletal remains from the Del Mar and Sunnyvale sites, California. Science 213. 10031005.Google Scholar
Deevey, E.S. Gralenski, L.J. Hoffren, V. (1959). Yale natural radiocarbon measurements IV. Radiocarbon 1. 144172.CrossRefGoogle Scholar
Douglas, D.L. (1952). Measuring low-level radioactivity. General Electric Review 55. 1620.Google Scholar
Dungworth, G. Schwartz, A.W. Van de Leemput, L. (1976). Composition and racemization of amino acids in mammoth collagen determined by gas and liquid chromatography. Comparative Biochemistry and Physiology 53B. 473480.Google Scholar
Hare, P.E. (1974). Amino acid dating—A history and an evaluation. University of Pennsylvania Museum of Archaeology News 10. 48.Google Scholar
Ho, T.Y. (1965). The amino acid composition of bone and tooth proteins in Late Pleistocene mammals. Proceedings of the National Academy of Sciences, U.S.A. 54. 2631.CrossRefGoogle ScholarPubMed
Ho, T.Y. (1966). The isolation and amino acid composition of the bone collagen in Pleistocene mammals. Comparative Biochemistry and Physiology 18. 353358.Google Scholar
Ho, T.Y. (1967). The amino acids of bone and dentine collagens in Pleistocene mammals. Biochimica et Biophysica Acta 133. 568573.Google Scholar
Ho, T.Y. Marcus, L.F. Berger, R. (1969). Radiocarbon dating of petroleum-impregnated bone from tar pits at Rancho La Brea, California. Science 164. 10511052.Google Scholar
Howard, H. (1960). Significance of carbon-14 dates for Rancho La Brea. Science 131. 712714.Google Scholar
Howard, H. (1962). A comparison of avian assemblages from individual pits at Rancho La Brea, California. Los Angeles County Museum Contributions to Science 58. 124.Google Scholar
Hubbs, C.L. Bien, G.S. Suess, H.E. (1962). La Jolla natural radiocarbon measurements II. Radiocarbon 2. 197223.Google Scholar
Kessels, H.J. Dungworth, G. (1980). Necessity of reporting amino acid compositions of fossil bones where racemization analyses are used for geochronological applications; inhomogeneities of d:l amino acids in fossil bones. Biogeochemistry of Amino Acids. Hare, P.E. Hoering, T.C. King, K. Jr.. Wiley, New York. 527541.Google Scholar
King, K. Jr., Bada, J.L. (1979). Effect of in situ leaching on amino acid racemization rates in fossil bone. Nature (London) 281. 135137.Google Scholar
Kvenvolden, K.A. Peterson, E. (1972). Amino acids in Late Pleistocene bone from Rancho La Brea, California. Geological Society of America Abstracts with Programs 5. 704705.Google Scholar
Kvenvolden, K.A. Peterson, E. Pollock, G.E. (1972). Geochemistry of amino acid enantiomers: Gas chromatography of their diastereomeric derivatives. Organic Geochemistry 1972. Gaertner, H.R. Wehner, H. Pergamon, Elmsford, New York. 387401.Google Scholar
Marcus, L.F. (1960). A census of the abundant large Pleistocene mammals from Rancho La Brea. Los Angeles County Museum Contributions to Science 38. 111.Google Scholar
Matsu'ura, S. Ueta, N. (1980). Fraction dependent variation of aspartic acid racemization age of fossil bone. Nature (London) 286. 883884.Google Scholar
Miller, S.E. Peck, S.B. (1979). Fossil carrion beetles of Pleistocene California asphalt deposits, with a synopsis of Holocene California Silphidae (Insecta: Coleoptera: Silphidae). Transactions of the San Diego Society of Natural History 19. 85106.Google Scholar
Schroeder, R.A. Bada, J.L. (1976). A review of the geochemical applications of the amino acid racemization reaction. Earth Science Reviews 12. 347391.Google Scholar
Stock, C. (1956). Rancho La Brea: A record of Pleistocene life in California. Los Angeles Museum of Natural History Science Series 20. 131.Google Scholar
Von Endt, D.W. (1979). Techniques of amino acid dating. Pre-Llano Cultures of the Americas: Paradoxes and Possibilities. Humphrey, R.L. Stanford, D. The Anthropological Society, Washington. 71100.Google Scholar
Warter, J.K. (1976). Late Pleistocene plant communities—Evidence from the Rancho La Brea tar pits. Plant Communities of Southern California. Latting, J.California Native Plant Society Special Publication Number 2 3239 Berkeley.Google Scholar
Williams, K.M. Smith, G.G. (1977). A critical evaluation of the application of amino acid racemization to geochronology and geothermometry. Origins of Life 8. 91144.CrossRefGoogle ScholarPubMed
Woodard, G.D. Marcus, L.F. (1973). Rancho La Brea Fossil Deposits: A re-evaluation from stratigraphic and geologic evidence. Journal of Paleontology 47. 5469.Google Scholar
Wyckoff, R.W.G. Doberenz, A.R. (1965). The electron microscopy of Rancho La Brea bone. Proceedings of the National Academy of Sciences, U.S.A. 53. 230233.Google Scholar
Wyckoff, R.W.G. McCaughey, W.F. Doberenz, A.R. (1964). The amino acids composition of proteins from Pleistocene bones. Biochimica et Biophysica Acta 83. 374377.Google Scholar