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ABSTRACT

The problem of achieving conjunctive goals has been central to domain-independent
planning research; the nonlinear constraint-posting approach has been most success-
ful. Previous planners of this type have becn complicated, heuristic, and ill-defined. I
present a simple, precise algorithm and prove it correct and complete. I also analyze
previous work on domain-independent conjunctive planning; in retrospect it becomes
clear that all conjunctive planners, linear and nonlinear, work the same way. I give
suggestions for future research, identifying the traditional add /delete-list representa-
tion for actions as the crucial limitation on the usefulness of contemporary planners.
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Plan to capture baby Roo

by Rabbit

. General Remarks. Kanga runs faster than any of Us, even Me:

. More General Remarks. Kanga never takes her eye off Baby Roo, except when

he’s safely buttoned up in her pocket.

. Therefore. If we are to capture Baby Roo, we must get a Long Start, because

Kanga runs faster than any of Us, even me. (See 1.)

. A Thought. If Roo had jumped out of Kanga’s pocket and Piglet had jumped

in, Kanga wouldn’t know the difference, because Piglet is a Very Small Animal.

. Like Roo.

. But Kanga would have to be looking the other way first, so as not to see Piglet

jumping in.

. See 2.
. Another Thought. But if Pooh was talking to her very excitedly, she might look

the other way for a moment.
And then I could run away with Roe.
Quickly.

And Kanga wouldn’t discover the difference until Afterwards.

— Winnie The Pooh



Chapter 1

Introduction

This thesis describes a planner, TWEAK, that is little different from Austin Tate’s NON-
LIN, or Earl Sacerdoti’s NOAH. However, after reading it, you will understand TWEAK
better than you could expect to understand NONLIN or NOAH. Planners have previously
been described as complicated, heuristic, ill-defined Al programs, without specifying clear
conditions under which they work. So what? Deep understanding is important in itself, of
course; and it’s often necessary to further research. I've found it difficult and time-consuming
to understand just how previous planners worked; maybe this thesis will make it easier for
others.

The main motivation for TWEAK, though, is that if you intend to use a planner as a
workhorse “black-box” part of something else, you care whether it works. I started work
on planning because I wanted a planner to co-routine with a learner to make an integrated
problem-solver. (This experiment is reported on in [naive].) I'd heard that NOAH was the
state of the art in planning, and decided to copy it exactly, since I had no interest in the matter.
Four readings of [NOAH] and three misconceived implementations later, I had a planner that
worked, but no idea why. To determine whether it would work as a reliable subroutine, I had
to simplify the algorithm and representations and to apply some mathematical rigor; and that
is what you see here. To quote Sacerdoti:

[The basic operations of NOAH] ... were developed in an ad hoc fashion. No
attempt has been made to justify the transformations that they perform, or to
enable them to gencrate all transformations. However, it should be possible to
define an algebra of plan tranformations ... It may be possible to develop a body
of formal theory about the ways in which interacting subgoals can be deal with.

That is what I've done in this thesis.

Roger Schank has made a distinction between “neat” and “scruffy” styles of Al. Planning
research to date has been mainly scruffy: heuristic, ill-understood. unclear. Scruffy research is
hard to duplicate. It has taken me months of poring over Sacerdoti’s book to understand just
what he was doing and several misconceived implementations to replicate his results. This is
not his fault, or mine: most Al research is necessarily like that. When hacking at the fronticrs
of knowlege, if you wait to proceed until you understand clearly what you are doing, you will
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make no progress. Now, ten years after NOAH. I can present TWEAK as a simple, precise
algorithm, and prove it correct.

Neat and scruffy research on a particular domain should follow cach other in cycles. At
the end of this neat thesis. I will make some scruffy suggestions about how to go beyond the
crucial limitation of the domain-independent planners that have been implemented to date.

1.1 Non-linear conjunctive planning

The conjunctive planning problem, which has been a main focus of planning research
for the last ten years. is to achieve several goals simultaneously: to find a plan that makes a
conjunctive formula true after it has been executed. A mceans of achieving each conjunct sepa-
rately is taken as a given. Why is conjunctive planning hard? The problem lies in interactions
between the means of achieving the individual goals. The following classic problem, known
as the “Sussman anomaly”, illustrates the difficuity. Supposc that we have three blocks, a, b,
and c: initially ¢ is on a and a and b are on the table (situation 7 in the figure). We want to
have a stacked on b on ¢, or to achieve the conjunctive goal (and (on a b) (on b c)) (situation
#i). Let’s say you're only allowed to move one block at a time. If you try to put b on c first,
when you go to put a on b you fail, because c is on a and so blocks it from moving (situation
#i). On the other hand, if you try first to put a on b (removing ¢ to make a accessible,)
putting b on ¢ is made impossible by a, which is in the way (situation ).

- -

C b ¢ a

o IL ol o c —b__)

(0 (i0) i @)

The Sussman anomaly. (i) the initial situation; (ii) the goal situation; (i1i), (iv), the
consequences of the two incomplete linear plans.

T'll return to this cxample later in the thesis and show how non-linear planning can solve
it. The important idea. due to Sacerdoti. is that a plan (at least while it is being constructed)
does not have to specify fully the order of execution of its steps. In other words, a plan is a
partial order on steps, some of which can be unordered.
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1.2 Guide to this thesis

The next chapter explains how and why TWEAK works. The cxposition is intended to be
clear and precise, and so it is written rather in the style of a mathematics text. The chapter
is divided into four scctions: the first is an informal overview; the second explains what a
plan is; the third shows how to manipulate plans; and the fourth describes the overall control
structure of the planner.

Chapter three is “related and future work”. I analyze previous planning research using the
analytical tools developed in chapter two, showing that all domain-independent conjunctive
planners work the same way. I suggest that the restrictions on representations of actions that
these planners depend upon are their crucial limitation.

The last chapter presents conclusions and suggests an angle of attack upon the problems

raised in chapter three.



Chapter 2

TWEAK

TWEAK is a rational reconstruction of previous non-linear planners. This chapter de-
scribes the algorithm and proves it correct. TWEAK comes in three layers: a plan represen-
. tation, a way to make a plan achieve a goal, and a top-level control structure. Each layer is
described in more detail in one of the three sections of this chapter.

The plan representation is the most complex layer. The basic operation provided by this
representation determines whether a proposition will be true of the world after part of a plan
has been executed. An efficient algorithm for this operation depends on a subtle theorem
about incompletely defined plans, proved in section 2.1. 2.2 describes a nondeterministic
procedure which transforms a plan so that it achieves a goal that it did not previously. The
top-level control structure, described in 2.3 controls this nondeterminism. Because this is
difficult, a search is used, so that if the wrong choice is made, it is possible to back up.

2.1 The plan representation

In this section I will define plans, problems, and what it means for a plan to solve a
problem. I will present an criterion which allows TWEAK to reason about what is true in the
world as a plan is executed. Most of the mathematical rigor in the thesis is in this section;
accordingly. I've divided it in two: the first part explains all you need to know to understand
the rest of the paperthesis the second part proves the criterion correct. Inevitably most of
this section is composed of dry and obvious definitions.

TWEAK uses constraint posting in its basic operations. Constraint posting is the def-
inition of an object, a plan in this case, by successively specifying more and more partial
descriptions it must fit. Alternatively, constraint posting can be viewed as a search strategy
in which rather than gencrating and testing specific alternatives, chunks of the search space
are progressively removed from consideration by constraints that rule them out, until finally
every remaining alternative is satisfactory. The advantage of the constraint posting approach
is that one does not have to commit oneself to properties of object bcing scarched for before
there is information available with which to make a reasoned decision. This often reduces the
amount of backtracking necessary.

As TWEAK works on a problem, it has at all times a current plan, which is a partial
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specification of a plan that may solve the problem. The current plan could be completed
in many different ways, depending on what constraints are added to it; thus the current
plan represents the class of plans that are its completions. The current plan supplics partial
knowledge of the complete plan that will eventually be chosen; ideally all possibie complctions
of the current plan should solve the given problem. I will say “necessarily foo” if foo is true of
all possible completions of the current plan, and “possibly foo™ if foo is true of some completion
of the current plan. The number of completions of a plan is exponential in the number of
steps and in the number of variables, so computing whether foo is possible or necessary by
searching completions would be very expensive. Much of this section is devoted to describing
relatively cfficient algorithms that compute possible and necessary properties of an incomplete
plan. '

A complete plan is a total “time” order on a set of steps, which represent actions. The
plan is executed by performing the actions corresponding to the steps in the order given. A
step has a set of preconditions, which are things that must be true about the world for it to be
possible to take the action. A step also has postconditions, which are things that will be true
about the world after the corresponding action has been taken. Pre- and postconditions are
both expressed as propositions. Propositions can be positive or negative, and have a content,
which is a tuple of elements. Elements can be variables or constants. Functions, propositional
operators and quantification are not allowed: all propositions are function-free atomic. (In
section 3.2.1 T'll explain why.) Two propositions are negations of each other if one is positive
and one is negative and they have the same content.

Plans in TWEAK can be incomplete in two ways: the time order may be incompletely
specificd, using temporal constraints, and steps may be incompletely specified, using codesig-
nation constraints. A temporal constraint is a requirement that one step be before another;
thus a set of temporal constraints is simply a partial order on steps. A completion of a set of
temporal constraints C is any total order O on the same set of steps such that sCt implies
sOt.

In a complete plan, each variable that appears in a pre- or postcondition must be bound to
a specific constant. In exccution, that constant will be substituted for the variable when the
action is performed. Codesignation is an cquivalence relation on variables and constants used
to implement binding. Codesignation constraints are requirements of codesignation or non-
codesignation of elements; a variable is bound to a constant if the two codesignate. Distinct
constants may not codesignate. Two propositions codesignate if both are positive or both
are negative and if their contents are of the same length and if corresponding elements in
the contents codesignate. For example, the propositions (p a x) and (p a y) codesignate iff x
and y codesignate. You can constrain two possibly codesignating propositions to necessarily
codesignate by constraining corresponding elements codesignating; this amounts to unification
of the two propositions. You can constrain two possibly codesignating propositions necessarily
non-codesignating by choosing some index and constraining non-codesignation between the
two elements at that index in the content tuples of the two propositions. Codesignation
constraints can be maintained using an extension of the union-find algorithm.

TWEAK represents the state of the world with a set of propositions. This set changes as
steps are cxecuted. A plan has an initial situation. which is a set of propositions describing
the world at the time that the plan is to be executed. Associated with each step in a plan
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is its input situation, which is the set of propositions that are true in the world just before
it is execcuted. and its output situation, which is the sct of propositions that are true in the
world just after it is executed. In a complete plan. the input situation of each step is required
to be the same set as the output situation of the previous step. The final situation of a plan
has the same sct of propositions in it as the output situation of the last step. The time order
extends to situations: the initial and final situations are before and after every other situation
respectively. The input situation of a step is before the step and after every other situation
that is before the step; the output situation of a step is after the step and before any other
situation that is after the step.

Say that a proposition is true in a situation if it codesignates with a proposition that is a
member of the situation. Say that a step asserts a proposition in its output situation if the
proposition codesignates with a postcondition of the step. Say that a proposition is asserted
in the initial situation if it true in that situation. A proposition is denied in a situation if its
negation is asscrted there. It’s illegal for a proposition to be both asserted and denied in a
situation.

A step can be exccuted only if all its preconditions are in true in its input situation. In
this case, the output situation is just the input situation minus any propositions denied the
step, plus any propositions asscrted by the step. (This is not the same thing as the input
situation plus the propositions asserted by the step: if p were true in input situation and the
step asserts ~ p (the negation of p), then the output situation must not contain both p and
~ p; input and output situations must be consistent scts of propositions, since they describe
states of the world.) This model of execution does not allow for indirect or implied effects of
actions:; any changes in the world must be explicitly mentioned as postconditions.

I will use graphs, as in the figure, to illustrate plans. Steps are boxes; the preconditions
are put before the box and postconditions after. The steps may have labels inside, but these
are only mnemonic. Arcs represent the partial time order.

e { DA d
(kaow 5\ Toke (passe )

(know ) | tuke quals

_ classes i(,kaow j) - ‘1"“‘5 not (knew ‘3) (have MS)
(kaow o) g‘j'r pessce
iaeas

An incomplete plan.
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The sequence of situations resulting from ezecution of the completion.

During planning, incompleteness introduces uncertainty into the mearning of a plan. To
use a blocks world example, if v is a variable, after asserting (on block v), there’s no way to
tell ‘whether (on block v) is true or false, unless v codesignates with a particular constant. I
will now sketch the derivation of a criterion that tells you when a proposition is necessarily
true in a situation. Certainly a proposition is necessarily true in situation if it is necessarily
asserted in it. Once a proposition has been asserted, it remains true until denied. Thus a
proposition p is necessarily true in a situation if there is some previous situation in which it is
necessarily true. and there is no possibly intervening step that possibly denies it: for if there
is a step that is even possibly inbetween that even possibly denies p. we can find a completion
i which the step actually is inbetween and actually denies p. (A step possibly denies p by
denying a proposition g which possibly codesignates with p). There is an exception to this
rule, illustrated by the following odd plan:

P .fﬂq
2 3 |7

o
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If p and g are possibly codesignating. this plan has two classes of completions: one in
which p and ¢ actually codesignate. in which case p is asserted by step 3: and one in which
p and ¢ are noncodesignating. so that p is asserted by step 1. and is never denied. In cither
case, p is true in the final situation. cven though there is no step that necessarily asserts P
without an intervening step possibly denying it. All these observations together suggest the
following criterion, which I will prove at the end of this section:

Modal truth criterion: A proposition p is necessarily true in a situation s iff there exists a
situation ¢ necessarily equal or previous to s in which p is necessarily asserted and such that
there is no step C possibly between ¢ and s which denies a proposition g possibly codesignating
with p, unless there is a step necessarily between C and s which asserts r, such that grp=
r ~ p. The criterion for possible truth is cxactly analogous, with all the modalities switched
(read “necessary” for “possible” and vice versa).

\~f¢

Ce o8 0,

The necessary truth criterion. Solid lines indicate necessarily time-relatedness and dashed
lines possible time-relatedness; the dashed boz, a disallowed step; the dotied boz a step that
would make the dashed step legal.
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This criterion can be computed in polynomial time, though it does exponentially much
“work” by describing properties of the exponentially large sct of completions of a plan. The
remainder of TWEAK depends heavily on this theorem; its proof is surprisingly complex.

Now I will define problems and their solutions. A problem is an initial situation and a
final situation, which are two scts of propositions. A plan for a problem is one such that every
proposition in its initial situation is true in the initial situation of the problem. A goal is a
proposition which must be achieved (true) in a certain situation. The goals of a plan for a
problem are defined to be the propositions in the final situation of the problem, which must
be true in the final situation of the plan, and the preconditions of steps in the plan, which
must be true in the corresponding input situations. A complete plan for a problem solves
the problem if all its goals are achicved. Thus, a complete plan solves a problem if it can be
executed in the initial situation of the problem and if the final situation of the problem is a
correct partial description of the world after execution. The aim of TWEAK is to produce
a plan that necessarily solves the problem it is given. This plan may be incomplete; in this
case any of its completions can be chosen for execution.

Having read this far you know all you need to about plans. The dispensable remainder
of this section is devoted to proving the modal truth criterion. I will prove the criterion in
three steps. First, I prove the “time’s arrow lemma”, which says that only the steps executed
before a situation are relevant to what is true in that situation. This is used to prove a truth
criterion for complete plans that is analogous to the modal truth criterion. I use that to prove
the modal truth criterion.

Time’s arrow lemma: Let P and Q be complete plans whose initial situation and first n
steps are identical. p is true in the initial situation or the input or output situation of one of
the first n steps iff it is true in the corresponding situation in Q.

Proof: By induction on n. If P and Q have no steps, they have only one situation, which
is both initial and final, and the same in both. Certainly p is true in this situation in 2 iff
it is true in the corresponding situation in Q. Suppose now that the lemma is true for plans
whose initial situation and first n — 1 steps are identical; I will show that it holds for plans
whose initia] situation and first n steps are identical. Let £ and Q be such plans; certainly
then they also have the first n — 1 steps identical, so by the induction hypothesis p is true
in the initial situation and the input and output situations of the first n — 1 situations of ?
iff p is true in the analogous situation of Q. The only remaining situation we need check is
the output situation s of the nth step S. By definition, s is the input situation of § minus
any propositions denied by S, plus any propositions asserted by S. If p is ncither asserted
nor denied by S, then it is true in s just in case it is true in the input situation of S, which,
by the induction hypothesis, is iff it is true in the input situation of the analogous step of Q.
If p is asscrted or denied by S, it is also asserted or denied by the analogous step in @ and
so again is true in s iff it is true in the output situation of the nth step of 2. By mductlon,
then, the lemma holds for any n. O
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Truth criterion for complete plans: In a complete plan. a proposition p is true in a
situation s iff there exists a situation t previous or equal to s in which p is asserted and such
that there is no step between t and s which denies p.

Proof: 1t should be obvious that this criterien is correct. Informally, we start with the
initial situation and at cach step delete from the sct of propositions representing the world
what is denied by the step and add what is asserted by it. Evcrything else is preserved
untouched. '

The rigorous proot again uses inducticn on the length of plans. A plan with no steps has
only an initial and a final situation, and the two are cqual. A proposition is true in the initial
situation iff it is cqual to scmething in the initial situation. in which casc it is asserted there.
A proposition is true in the fzal fitenien i it s truc in the initial situation. In both cases,
there is no possibility of an intervening denying siep.

Q

A
- )
(s Nn-2 L
oS iy f
steps
— J

P

Constructions used in the proo/ f ike truth criterion for complete plane

Suppose now that the criterion is correct for complete plans of length n; I will show that
it is correct for complete plans of length n + 1. Let P be a plan of length n + 1, f the final
situation of P, S the last step in 2, 1 be the input situation of S, and Q the plan of length
n derived by removing S from P. p is true in a situation in 7 other than f just in case p is
true in the corresponding situation of C, by the time’s arrow lemma. Then by the induction
hypothesis, the criterion holds for every proposition and every situation in P except perhaps
7 (which is equal to the output situation of S). f is by definition ¢ minus things denied by S
plus whatever is asserted by §. Thus p is true in [ iff it is asserted by § or true in ? and not
denicd by S. In the former case, p is asserted in f; in the latter, by the induction hypothesis
there exists a situation ¢ before 7 in which p is asserted, and there is no step between ¢ and ¢
that denies p. This same ¢ is before f and there is no step between ¢ and f denying p. [

Modal truth criterion: A proposition p is necessarily true in a situation s iff there exists
a situation t necessarily equal or previous to s in which p is necessarily asserted and if there
is no step C possibly before s which denies a proposition g possibly equal to p and such that
there is no step W necessarily between C and s which asserts r, a proposition such that g~ p
implies r ~ p. The criterion for possible truth is exactly analogous, with all the modalities
switched (read “nccessary” for “possible” and vice versa).
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In proving this theorem, I will call situations ¢ necessarily before s that necessarily assert p
“winners;” steps C possibly before s that possibly deny p “clobberers,” and steps necessarily
between a clobberer and s that necessarily assert a proposition whose codesignation with p is
implied by the codesignation with p of the proposition the clobberer denies “white knights.”
A clobberer with a matching white knight is a “foiled clobberer;” one without is a “dastardly
clobberer.”

The white knight part of the criterion is an embarassing appendix: it would be much more
elegant if the modal criterion were identical to the criterion for complete plans, except with
some “possibly”s and “necessarily”s thrown in. The white knight clause is needed to make
the oply-if proof go through; we’ll see in the next section that it doesn’t actually do anything
for you.

Proof: Tl give the proof for necessary truth; possible truth follows by the fact that
something is possibly true iff its negation is not necessarily true. The criterion is composed
of two independent conjuncts: existence of a winner and absence of a dastardly clobberer.
We can distinguish three cases: those in which there is no winner; those in which there is
a dastardly clobberer; and those in which there is 2 winner and no dastardly clobberer. To
prove the critericn, which is a statement of equivalence, I need to show that in the first two
cases p is not necessarily true in & and that in the third case it is necessarily true.

The first case is that in which there is no winner; in this case I show that p is not necessarily
true in s, by exhibiting a completion such that p is not true in s. To construct.this completion,
first put after s every step possibly after s. For there to exist a completion of the resulting
plan, these constraints must not conflict. Ordering constraints can conflict with each other
only if they imply a < bA b < a for some a and b. This could happen only if a cyclic chain
of orderings were set up. Since each new constraint relates some step to s, this chain would
have to pass through s: some step would have to be made both before and after s. The new
constraints only put steps after s, so the cycle must run from s to some newly constrained
step S to some step that was already necessarily before s. But if S was already necessarily
before a step necessarily before s, S was already necessarily before s, contrary to hypothesis.

The next step is to constrain every variable that is not already constrained codesignating
with some specific constant to codesignate with a distinct “gensymmed” constant that does
not appear elsewhere in the plan. Again I need to show that all these constraints can be added
without conflict. The constraint v = ¢ could cause problems only if v # c is also necessarily
true. Since ¢ is not mentioned anywhere else in the plan, and since v is not already bound,
this could not happen.

Now a completion in which p is not true in s is made by taking any completion of this
modified plan. Such a completion exists, because there are no conflicts in the constraints. In
such a completion there is no step that necessarily asserts p and that is necessarily before s;
and any step that only possibly asserts p has been made not to assert it (but rather some
other proposition involving gensymmed constants) and any step that necessarily asserts p but
is only possibly before s has been put after s. So there is no situation before or equal to s
in which p is asserted, and by the truth criterion for complete plans p is not true in s in this
completion.

The second case is that in which there is a dastardly clobberer C. Again I will construct a
completion such that p is not true in s. This completion is made by putting C before s, then
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So to achieve p in s, you must find a situation t satisfying the body of the outermost
existential. This ¢ could be either a situation already in the plan or the output situation of a
step that you add to the plan. In cither case, vou must then guarantee the three conjuncts
of the body of the existential. The first can be satisficd by constraining ¢ to be before s.
To satisfy the second conjunct. you can’t change the set of things asserted in ¢, so you can
only constrain an existing asscrted proposition to codesignate with p. The third conjunct
cnsures that no step clobbers p. To satisfy it, you must guarantee the body of the universal
for every step C in the plan. There are four ways this can be done: you can constrain every
postcondition of C not to codesignate with the negation of p. you can put C before ¢ or after s,
or you can simply remove C from the plan. One could imagine also adding a step W asserting
g between C and 8. This is actually uscless: either p will end codesignating with g or not;
in the first case onc might as well add a step that asserts p and put C before it, and in the
second one might as well constrain p and ¢ non-codesignating.

The following diagram describes the process of making a plan achieve a goal:
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In this figure, V means to choose one of the alternate paths; A tells you to do all the paths;
3 means “choose a”; V tells you to apply the following path to every one; the verb phrases
tell you to take some action.

Because the modal truth criterion is sufficient as well as necessary, this achievement pro-
cedure encompasses all the ways to make a plan achieve a goal. In this respect TWEAK can -
not be improved upon.

Several operations in the procedure are postings of constraints. These constraints may
be incompatible with existing constraints: for example, you can’t constrain C < t if there is
already a constraint that C > t. The constraint maintenance mechanism signals failure in
such cases. and the top-level control structure backtracks.

The goal-achievement procedure has the useful property that so long as step addition and
removal are avoided, the new plan will continue to necessarily achieve any goals that it pre-
viously did. That's because the rest of the procedure operates only by adding constraints.
When constraints are added, things that were previously possibly true become either nec-
essarily true or necessarily false, but nothing that is necessarily true can change its truth
value.

Step addition adds new preconditions to the plan that need to be achieved, and the added
step may also deny, and so disachieve, old goals. This is unavoidable, and it can lead to infinite
looping. Therefore, TWEAK prefers constraint posting to step addition. TWEAK does not
make use of step removal at all. Every step is introduced to assert some goal proposition, and
so removing one will mnake negative progress. It is never the case that the only way to achieve
a goal is to remove a step.

Step addition involves choosing what step to add. Every step in a plan must represent
an action that is possible to execute in the domain in which the problem is specified. Thus,
along with a problem, the user of TWEAK must give a list of possible actions. To achieve a
goal p by addition, the added step must assert a proposition possibly codesignating with p.
The choice of steps, then, is among those that are allowed in the domain and that possibly
assert the desired goal.

2.3 The top-level control structure

TWEAK begins work on a problem with a first plan whose initial situation is the initial
situation of the problem and which has no steps or constraints. It then enters a loop in
which some goal not yet achieved is chosen and the procedure of the last section is applied,
yielding a new plan. When all the plan’s goals are achieved, the plan solves the problem.
Choosing which goal to achieve and which choices to make in the achievement procedure is
very difficult; certainly it is not always possible to choose right the first time. Therefore
the top-level control structure of TWEAK is a search through the space of alternate paths
through the goal achievement procedure.

It is important to understand that TWEAK's search is in the spacc of alternate ways to
achieve goals, not in the space of plans. The difference is crucial to efficiency. Searching the
space of plans is extremcly incfficient. TWEAK can do much better, because the achievement
procedure does in fact achieve goals, so thet progress is relatively quick. In effect, it uses its
understanding of the ways that goals can be achieved to speed up search.
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People have thought a lot about what sort of search to use; this work is reviewed in
section 3.4. Since none of the search strategies developed so far seem very good, I simply use
dependency-directed breadth-first search in TWEAK. I shan’t argue for breadth-first search;
it’s certainly too expensive for general use. However, the use of dependency-directed search
deserves some justification. '

Dependency-directed backtracking [Doyle] is more efficient than chronological backtrack-
. ing only if the search space is nearly decomposable into independent subparts, so that after a
failure in one part, only the work done on that part needs to be undone; work on other parts
can be saved. TWEAK does have this property when running in many domains. For example,
in the blocks world, if the goal is to build two disjoint structures, the search space can be
divided into the part concerned with building the one and the part concerned with building
the other. Failure in building the one structure will not affect partial successes achieved thus
far in building the other.

Because the step addition can make the plan grow arbitrarily large, the search may never
converge on a correct plan. In fact, there are three possible outcomes: success, in which
a correct plan is found; failure, when the planner has exhaustively searched the space of
sequences of plan modification operations, and every branch fails; and nontermination, when
the plan grows larger and larger and more and more operations are appiied to it, but it never
converges to solve the problem.

Lemmma: Each of the three outcomes is possible for some choice of problem.

Proof: A trivial example of success is a problem with a single goal which is true in the
initial situation. A trivial example of failure is provided by a problem that has at least one
goal that is not true in the initial situation and which is not possibly asserted by any available
action. An example of non-termination is given by the problem whose initial state is ~ g
and ~ h and whose goals are g and h with a conjunct planner that for goal g returns a
single-step plan with precondition ~ h and postcondition g and for goal h returns a step with
precondition ~ g and postcondition h. TWEAK loops on this problem, building plans that
are longer and longer chains of steps that alternately assert g and h. O

This is the central theorem of this thesis:

Correctness/completeness theorem: If TWEAK, given a problem, terminates claiming
a solution, the plan it produces does in fact solve the problem. If TWEAK returns signalling
failure or does not halt, there is no solution to the problem.

Proof: This follows directly from the use of the necessary truth criterion in comput-
ing the plan-solves-problem? predicate and in constructing the goal achieverent procedure.
TWEAK’s current plan always has the same initial situation as the problem given, and the
top-level loop continues until all the problem goals and all the subgoals are achieved, at which
point the plan must solve the problem. If there is a solution to the problem, it must be a plan
that in some way achieves the problem’s goals; and TWEAK examines all possible ways to
do so. The plan must also have all precondiiions satisfied; but TWEAK also tries all possible
ways to satisfy preconditions. Thus, if a solution exists, TWEAK will find it. O



Chapter 3

Past and future planning research

This chapter is “related and future work”. It is much longer than such sections are in
typical AI papers because conjunctive planning is an unusual subficld of Al in showing a clear
line of researchers duplicating and building on each other’s work. Science is supposed to be
like that, but for the most part AI hasn’t been. The two main points of the chapter are that
in retrospect all conjunctive planners work the same way and that the action representation
which they depend on is inadequate for real-world planning.

1 will restrict attention to domain-independent conjunctive planning, ignoring planners
and parts thereof that are domain-dependent or non-conjunctive. This may seem unfair at
times. There are two previous survey articles on this topic, [Saccrdoti-tactics] and [Tate-
expert]. The facts I will consider are much the same as those covered by the other papers; my
analyses of many points are different. The principal contribution of TWEAK is the rigor of
my formulation of non-linear constraint-posting planning. There is a series of three papers,
[WARPLAN], [Waldinger], [Rosenschein], building on each other, that treat linear planning
rigorously, and prove correctness of linear planners. Those papers were motivated by many
of the same considerations as this one: rigor requires simplicity, guarantees agreement about
* details, can unveil problems and suggest solutions. Thus these papers form the neat part of
the scruffy-neat research cycle for linear planning. The neat part of the cycle for nonlinear
planning begins with this thesis.

The first section in this chapter is a historical overview of domain-independent conjunctive
planning, showing how different planners build on one another, with particular emphasis on
the history of the ideas embodied in TWEAK. The other three sections are devoted to the
three levels of a conjunctive planner: representation, plan modification operations, and top-
level search strategies. The most interesting suggestions for future research are in section
3.2.1 on action representation; the most interesting analysis of past work is in section 3.3 on
plan modification operations.

20
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3.1 Chronology

There are two important “prehistorical” non-conjunctive planners that introduced tech-
niques that underlie all the conjunctive planning work. GPS [GPS], due to Allen Newell,
J.C. Shaw, and Herbert Simon, introduced means-ends analysis, which is to say step addition
or subgoaling: solving problems by applying an operator that would achieve some goal of
the problem, and taking the preconditions of the opcrator as new goals. STRIPS [STRIPS],
due to Richard Fikes and Nils Nilsson, contributed the action model—in which steps have
postconditions which are the only things that get changed by the step—that is used by all
domain-independent conjunctive planners.

Domain-independent conjunctive planning begins in 1973 with Sussman’s HACKER [HACKER).
This is ironic, in that HACKER was intended to be a learning program, more than a plan-
ner; Sussman happened to apply learning to planning as a domein. HACKER used many
techniques, described later, that have never been duplicated. Sussman ended his thesis with
the problem described in section 1.1, due to Allen Brown but widely known as “the Sussman
anomaly,” which HACKER could not solve without resort to what Sussman called a “hack”.

The urge to find a clean solution to the Sussman anomaly drove a serics of rapid develop-
ments over the next four years. David Warren's WARPLAN [WARPLAN] and Austin Tate’s
INTERPLAN [INTERPLAN-memo], INTERPLAN-1IJCAI], INTERPLAN-thesis], both of
1974, cleaned up Sussman’s ad-hoc “hack”: declobbering by promotion, in fact. Richard
Waldinger [Waldinger| further generalized promotion.

In 1975 came Sacerdoti’s NOAH [NOAH], |Sacerdoti-plans], the first nonlinear planner.
Besides his improvement in the representation of plans, Sacerdoti substantially expanded
the sct of plan modification operations. Tate (the same author of INTERPLAN) improved
on NOAH in 1976. NONLIN [NONLIN-TR}, [NONLIN-1IJCAI] had a backtracking top-level
control structure, so that it could find plans after NOAH would get stuck, and added to
NOABH’s set of plan modification operations.

After 1976, there was a great drought for many years. During this period, there was
one important piece of work on non-conjunctive planning: Mark Sicfik’s 1980 MOLGEN
[MOLGEN] made constraints a central planning issue for the first time. Conjunctive planning
was not advanced until a new spurt of work beginning in 1982.

All the new conjunctive planners were NOAH-based. Several researchers extended NOAH
by improving the representation of time, in quite different ways. (These improvements have
not been incorporated in TWEAK.) Vere’s DEVISER |[DEVISER)| treated actions as temporal
intervals with numecrical endpoints. James Allen and Johannes Koomen’s planner [Allen]
also treated actions as intervals, but was based on Allen’s non-numerical time logic. Drew
McDermott [McDermott-time] suggested using a time logic based on branching futures as
a basis for planning. David Wilkin’s SIPE [SIPE-AIJ], [SIPE-IJCAI] used MOLGEN-like
constraints and had a new technique for detecting clobbering.

3.2 Representation

A planner must represent time, actions the agent can take, and the world and the objects
in it. Domain-independent planners all base their represcntations on those of STRIPS, and



CHAPTER 3. PAST AND FUTURE PLANNING RESEARCH 22

with the exception of the introduction of constraints, have not progressed much beyond that
framework. Therefore, this section will be more concerned with future than with past work.

The rest of this scction is divided into four decreasingly interesting subsections. The first
discusses action representation; the second time; the third binding constraints; and the fourth
is a grab-bag miscellany section.

3.2.1 Actions

I think the most important area of future domain-independent planning research is the
extension of understood techniques to more expressive action representations. The TWEAK
action representation requires that all changes made by an action be explicitly represented
as postconditions; many actions can not be formalized in this representation. The effects of
some actions depend on the situation in which they are applied: for example, a push-push
toggle switch turns a light on if it is off, and off if it is on. TWEAK can not represent this
action, because no constant set of postconditions expresses its behavior. Other actions have
indirect effects: if block b is on block ¢ and we move a from room; to roomz, b will also move.
Again this can not be expressed.

Why. is TWEAK’s action representation thus impoverished? Because the modal truth
criterion depends on this simplicity. The “frame problem” [Raphael], [JanLert] is to find
efficiently-implementable truth criteria; TWEAK and similar planners solve the frame prob-
lem by so restricting the action representation that my very simple truth criterion holds.
There are conjunctive planners that do not make such restrictions, but to the extent that
they do not, their truth criteria are incorrect, and the planners themselves are only heuristic.

The restrictions on action representation make TWEAK almost useless as a real-world
planner. It is barely possible to formalize the cubical blocks world in the TWEAK represen-
tation; HACKER's blocks world. with different sized blocks, is impossible to formalize. Thus,
I think the foremost challenge of future planning research is to find truth criteria that will
allow conjunctive domain-independent planning to apply to real-world problems; I'd like to
see a black-box planner as part of every expert system in ten years.

I will use the rest of this subsection to show how my modal truth criterion can fail with
more expressive action representations. In the conclusion of this thesis, chapter 4, I'll suggest
a direction of research for finding truth criteria that might cope with such extensions.

Consider a blocks world in which we will allow zero, one, or two blocks to be on any given
block. (This example and its analysis are due to David McAllester, personal communication.)
Every block still must be on zero or one other block. We need a function space that takes
a block as an argument and returns an integer between zero and two inclusive that tells
how much room is left on top of the block. A precondition of (puton a b) will be that
(space b) be greater than zero, and the corresponding postcondition will be that (space b)
be one less than before. Note that this postcondition can not be expressed 1n the traditional
action representation, b_eéause it depends on the input situation. Consider a plan with three
unordered steps: (puton a d), (puton b d}, and (puton ¢ d), and suppose that space d is twe
in the initial situation. :
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A precondition of each step is that space d b at least one. Let us ask whether this
precondition p is satisfied in the input situation 1 of (puton a d). According to the modal
truth criterion. it is satisfied so long as there is a situation ¢ (the initial situation will do
nicely) nccessarily before ¢ in which p is necessarily asserted (all true) and that there is not
even possibly a step between ¢ and ¢ that denies p. Candidate clobbering steps are (puton b
d) and (puton c d); they are possibly between ¢ and i. Does one deny p? No, because in ¢
there is space for two. and each step only decrements the space by one. Yet the two steps
synergistically act together to clobber p. This possibility is not accounted for in the modal
truth criterion. Of course, we could try all possible orderings of the three steps and see if
p holds in 7 in every case; but this exponcential computation amounts to returning to linear
planning, and all the advantages of constraint-posting are lost. ) )

Suppose we allowed indirect effects of actions. These indirect cffects would have to be
derived by deduction from the direct effects, explicitly represented as postconditions. Call
the set of all propositions that follow from another set of propostitions the deductive closure
of the latter set. The semantics of executing a step in a situation will be to negate all the
propositions in the deductive closure of the postconditions and remove that set from the input
situation, add to the result the postconditions, and take the deductive closure of all that. It is

- again possible for two steps to act synergistically to assert or deny a proposition: if gA7T = p
and one asserts g and the other r, together they assert p (equivalently deny ~ p).’

This is the reason that TWEAK requires all propositions to be atomic. Non-atomic
propositions could be used, but would be simply treated as literals; the logical operators can’t
get their usual semantics without deduction.

3.2.2 Time

The reprezentation of time is crucial to planning: a plan is really a represcntation of part
of the future. The biggest advance in domain-independent conjunctive planning was probably
the recognition that the time order can be partial, at least until execution. This observation
first appears in print in [WARPLAN] p. 16, but the first implementation was in NOAH.

I have simplified the representation of plans from those used in NOAH and NONLIN.

" Those planners represent plans as directed acyclic graphs in which there were many different
types of nodes, only a fow of which represent anything much. My plans are simply partial
orders on actions.
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Much of the post-drought planning research in the last few years has focused on over-
lapping actions. All the old planners assume that actions are instantancous and atomic; in
the real world most actions take time, and several can happen at once. McDermott’s plan-
ner of [McDermott-time], DEVISER, and Allen’s planner are based on the NOAH/NONLIN
framework, but can represent and reason about actions that have durations and that can
be executed in parallel. It would be interesting to analyze these planners in the same way
I have analyzed TWEAK: particularly, to find a provable truth criterion that accounts for
overlapping actions and to see what plan modification operations it engenders.

Allen’s time logic can represent the constraint that two actions be disjoint in time without
committing to which order they are to be performed in. This might make it possible to defer
the choice of declobbering operation further than can be done in TWEAK, since one could
combine promotion and demotion into a single constraint, not commit.ing oneself until later
as to which is to be used. This decrcase in commitment might result in less search. In gencral,
one might represent time propositionally, allowing for instance gencral disjunctions between
several possible constraints to be expressed. This would trade off commitment against the
cost of deducing facts about a particular incomplete plan.

Plans are like programs in many ways; but programs have conditionals, iterations, and
dataflows, which domain-independent planners have not for the most part been able to gener-
ate. Rosenschein’s planner [Rosenschein] generates conditionals, but only by randomly adding
a branch on a random condition to the plan, which is not very helpful. NOAH had a feature
for representing simple iterations; however, this representation does not allow declobbering
between steps inside the loop and steps outside, and so can not be called conjunctive. The
Programmer’s Apprentice [Rich-TR], [Rich-representation] uses a “plan calculus” historically
derived in part from NOAH, which can represent conditionals, loops, and dataflow. No pro-
gram synthesizer has yet been written using this representation.

3.2.3 Binding constraints

MOLGEN was the first planner to highlight the use of constraints; its author, Stefik, in-
troduced the term “constraint posting”. Constraints in MOLGEN are arbitrary predicates
possibly on several variables. MOLGEN performs three operations on constraints: formula-
tion, propagation, and establishment. Formulation is making new coustraints, propagation
creates new from old constraints, and establishment is binding variables to values. MOLGEN
was the first planner to do propagation; unfortunately his propagation techniques are domain-
dependent and not even described in his thesis. Stefik describes a “build or buy decision”
in constraint establishment: either one can bind a variable to a constant already appearing
in the plan (“buy”), or one can bind it tc a new constant. In this case it is often necessary
to introduce new steps whose postconditions involve the constant, so as to guarantee proper-
ties of it; this is the “build” option. MOLGEN was first to introduce new steps to satisfy a
constraint.

1t is little recognized that HACKER uscd binding constraints. They were implemented as
special type preconditions on “formal objects” (variables). HACKER's clever techniques for
constraint establishment make use of the CONNIVER [CONNIVER| context mechanism and
have not been duplicated since. However, only the “buy” option was considered, and it is not
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clear how general the implementation was.

INTERPLAN and NONLIN don't have binding constraints. WARPLAN effectively inher-
its them from PROLOG. It is unclear how variables work in NOAH: they seem to be inherited
at least partly from QA4. the implementation language. NOAH has a special node-type in
plans called a SOME node which lists the possible bindings of a variable. NOAH seems not .
to use binding constraints beyond this.

SIPE’s constraints are modelled on MOLGEN's. SIPE's truth criterion takes into account
possible truths resulting from possibly cqual propositions, but does so only heuristically;
TWEAK was first to get this right. SIPE, like TWEAK, propagates constraints only via
equalities.

TWEAK uses only equality constraints, because preconditions aliready can represent pred-
icates on variables, so that there is little loss in expressive power. If one looks at the way
constraints are used in planning, almost all constraints correspond very naturally to precon-
ditions of steps. There are some exceptions to this in MOLGEN, all of them constraints that
have been created via propagation. Stefik’s build or buy decision translates in the TWEAK
framework into step addition versus simple achievement. Since preconditions are associated
with times, predicates on formal objects are also; this solves problems MOLGEN had with
time representation.

The difference in expresive power between MOLGEN or SIPE and TWEAK is that
TWEAK can not restrict the range of a variable to a finite set. There are two reasons I
haven’t put range restrictions into TWEAK: becausc constraint satisfaction then becomes
NP-complete (proof by reduction from graph coloring); and more seriously because the truth
criterion will fail if I allow them. This “pathological” plan illustrates the problem:

(pxu) (pyx) xefa, o3
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Here the binding constraints require that cither z be bound to a and y to b, or vice versa;
either way p = (p a b) holds in the final situation. Yet p is not necessarily asserted by any
particular step.

There is a “deep” reason variables are needed in the blocks world, in which they originated.
In [naive] I describe a problem solver that uses a TWEAK-like planner as a subroutine. This
problem solver views puton as both a POP and a PUSH. It is the PUSH aspect that is
exploited in achieving on goals, and the POP aspect that is exploited in achieving cleartop
woals. When puton is viewed as a POP, there is no explanation for what the second argument
(the place to put the block moved) is for. So the problem solver uses a variable to leave the
second argument unspecified. Whatever value the second argument takes on, the puton will
act as a POP.
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3.2.4 Other problems for future research

Representations of the world using non-assertional datastructures are simpler, more effi-
cient, and better reflect its structure than the assertional databases used in current domain-
independent planners. Many domain-specific planners use such representations effectively, and
1 see no inherent difficulty in using such simulation structures in linear domain-independent
planning. In constraint-posting planning the state of the world is not completely defined at
all times; this is easy to implement using assertional databases, in which it is easy to represent
unknown truth values. It is much harder to represent partial knowlege with non-assertional
datastructures. A hybrid approach, using both asscrtions and more direct representations,
may lead to simpler, more powerful and efficient planners.

An important problem in planning that is almost entirely open is that of coping with events
that are not planned for. These might be the actions of other agents or spontancous law-
governed physical happenings. DEVISER and Allen’s planner can plan around “scheduled”
unplanned events: these are specific events that will occur at known times. Many problem
solvers have plan executives that, when unexpected events occur, call the planner to derive a
new plan from the altered state of the world. In the real world, which has tigers in it, that
isn’t good enough; you have to prepare for contingencies during planning. Such plans need
conditionals.

Related problems are planning with incomplete or incorrect knowlege of the world and
with unreliable primitive actions. Another area of current rescarch is in planning for multiple
agents or multiple effectors that have to be synchronized [Rosenschein-multi-agent], [Georgeff],
[Fikes-directions].

3.3 Plan modification operations

In this section, I will treat first linear planners and then non-linear planners. That isn’t
quite the chronological order, as some linear planners postdate NOAH. There are two inter-
esting points to the section: one is the way the individual plan modification operations were
devcloped by generalization, splitting, and merging. The other is to see that all conjunctive
domain-independent planners work in substantially the same way, though they look very dif-
ferent, using apparently unrelated datastructures and algorithms. As time went by, features
were added and alternative implementations were tried, but the fundamentals are unchanged
from HACKER down to TWEAK. This has not been gencrally realized, even by the people
who wrote the planners. Forcing all the algorithms into the vocabulary of TWEAK modifi-
cation operations makes them easy to compare. However, many of the carly planning papers
are very difficult to read, and some of what follows may be inaccurate in detail.

This diagram summarizes the section, illustrating which parts of the achievement proce-
dure were invented when:
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The most important thing to understand about linear planners, which has not been ap-
preciated before, is that they work just the same way as non-linear ones, except that the
representation is awkward. The basic operation of all the linear planners is analogous to
declobbering by promotion and demotion. In a non-linear planner these just add temporal
constraints; in a lincar planner, a step must be picked up and moved to a different position
in the plan. .

There are two different versions of promotion that appear in linear planners. The first,
which I will call individual promotion, moves the clobberer forward over the clobberee. (Al-
ternatively, the clobberee could be moved backward before the clobberer; this is an uninter-
esteringly different operation.) In a non-lindar planner, promotion automatically also puts
everything before the clobberee before the clobberer and vice versa; individual promotion
doesn’t generally do so, with the result that a step can be separated from the steps that were
to achieve its preconditions, so that they must be reachieved. The other version of promotion
Tl call block promotion: it moves the clobberer, together with the steps that achicve its
preconditions, and the steps that achieve their preconditions, transitively, as a bleck. This
implies a strong linearity assumption: not only that the plan can be totally ordered, but also
that if you have goals g and h and S achieves g and T achieves h and S is before T, then all
the steps that achieve preconditions of S will be before all the steps that achieve preconditions
of T. In other words. the time order must respect the subgoaling hierarchy. Using only block
promotion, it is impossible to solve optimally the Sussman anomaly problem. The optimal
solution involves three steps: (puton c tabie), {puton b c), (puton a b). This plan violates the
strong linearity assumption: the first step achieves the precondition (cleartop a) for the last
step, but the middle step is not achieving a precondition of the last, but rather one of the
top-level goals.

HACKER has, in cffect, four plan modification operations. Step addition is used ini-
tially on cach of the conjunct goals, and the resulting steps are arbitrarily lincarly ordered.
HACKER recognizes four bug types, cach of which has a corresponding plan modification op-
eration. “Prerequisite Missing™ is a precondition that is not true anywhere before it is needed,
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and is patched with step addition. “Prerequisite Clobbers Brother Goal” is just clobbering,
and block promotion is applied. “Prerequisite Conflict Brothers™ is a “doublecross”: a pair
of steps each of which clobbers the other. HACKER has a plan modification opcration for
this which does not appear in any other planner: a RESOLVE expert is called, which will
replace the two steps with a single step that achieves the prerequisites which the two steps
were intended to achieve. In practice, it seems that the only cases the RESOLVE expert could
handle were pairs of steps that achieved the goals (spacefor a c) and (spacefor b c) (Sussman’s
blocks world allows.more than one block on a given block). The expert would replace the two
steps with a subplan that achicved (spacefor (both a b) cj.

HACKER had many nifty planning techniques that somehow got lost in the sands of
time. For example, HACKER'’s addition opcration is different from those of all subsequent
planners. Addition in later planners uses one of the possibly several steps that could achieve
a goal, perhaps saving the others as backtrack alternatives. HACKER instead puts all the
alternative steps into the plan, arbitrarily linearly ordered. This leads to the fourth bug
type, “Strategy Conflict Brothers,” in which a step in one strategy (alternative achieving
step) clobbers something in another strategy. In this case, HACKER applies promotion. This
“multiple addition” operation has many interesting properties. The principal use of it is
in achieving (spacefor a b); the two strategies are “compacting” the blocks on top of b and
“punting” blocks off of b that don’t need to be there. Although either of these strategies may
achieve an unachieved spacefor goal, neither is guaranteed to. Yet, if executed in the right
order (punt then compact), they will make space if it is possible to do so. This sort of synergy
and partial goal fulfiliment has never been duplicated.

Sussman called Allen Brown’s problem “anomalous” because it could not be solved using
block promotion. He presents a solution using individual promotion, but regards this as a
“hack.” Why? Sussman viewed HACKER as an automatic programming system, constructing
programs, not plans. A conjunction (of the original goals or of the preconditions to a step)
is achieved via a single subroutine. Promotion in HACKER was confined to permuting the
order of lines of a subroutine; this amounts to block promotion, since subroutines encapsulate
the subgoal hierarchy. In order to solve the Sussman anomaly, one must move program steps
across subroutine boundaries, which HACKER wouldn’t do.

It’s a pity, though, that the view of planning as automatic programming got lost in the
shuffie. HACKER's performance in any given domain would improve as time went by, because
the programs it wrote could be re-used on new problems. Sussman describes techniques for
generalization and subroutinization of programs so that less planning would need to be done
later. Compilation can be viewed as constant-folding the source code into the interpreter;
HACKER in effect constant-folded classes of problems into the planner. It would be interesting
to build a problem solver that constant-folded into TWEAK, and incorporated what has been
learned in the past ten years about generalization.

WARPLAN has two plan modification operations, step addition and an operation that
combines addition with individual promotion. The latter operation (“regression”) is to find
a step that will achieve the goal, then to search backward from the end for a place in the
plan where the step can be put without being clobbered. WARPLAN was able to solve the
anomalous problem because it doesn’t make the strong linearity assumption; it represents
plans as flat orders, without hierarchy. :
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Waldinger [Waldinger] generalizes Warren's technique. Rather than regressing a specific
action through the plan until it can be inserted. he regresses the goal to be achieved, and at
every step modifies the goal. The idea is that if we want to achieve g after § and can’t, to find
some h that can be achieved before S so that after S g will be achieved. h will be the same
as g under the assumption that actions have constant atomic postconditions; thus Waldinger
generalized Warren's technique, correct for a simple action representation, to extended action
. representations. Waldinger’s ideas were not implemented.

INTERPLAN has three plan modification operations: step addition and both versions
of promotion (not combined with addition). HACKER is able to discover bugs only by
(simulated) executicn. WARPLAN never introduces clobberings; the plan was always correct.
INTERPLAN and most subscquent planners are able to discover clobberings during planning.

Rosenschein [Rosenschein] describes a linear planner that uses both promotion and demo-
tion He also has an operation for introducing conditionals (if-then-clse branches) into plans:
it chooses an arbitrary proposition not provable or disprovable from the initial situation, and
puts a branch on this proposition at the beginning of the plan. Since Rosenschein’s top-level
control structure is backtracking search, this technique will cventually try every conditional
plan, but since the proposition is chosen at random, it is hardly cfficient.

With NOAH comes the great explosion in the set of plan modification operations. NOAH
classifies clobberings into three sets: in the first, two steps each clobber the other (a “double
cress™); in the second, the clobberer and clobberee are unordered; and in the third, the
clobberer is before the clobberee. The case (an “n-cross”) in which there is a set of more
than two steps that clobber each other, arranged in a cycle, is neglected. I don’t understand
Sacerdoti’s explanation of the plan modification operagion to patch double crosses; it seems
to be a version of step addition, possibly combined with declobbering by constraining apart.
The other two cases are handled by promotion and demotion with addition, respectively.
Sacerdoti’s description of his promotion operation is inconsistent; he gives a description of a
correct operation, but also describes one based on a datastructure called a Table of Multiple
Effects which is incorrect (as noticed by Tate).

“Eliminate Redundant Preconditions” is a step removal operation. Step removal is useful
because NOAH does not have a simple achievement operation. Thus, if two steps have the
same precondition, they may both be achieved by addition, and then one of the two steps
removed. “Use Existing Objects” binds variables to constants. Sacerdoti is very unclear on
when it is applied and how the binding is chosen. NOAH has a simple but entirely adequate
technique for achieving a disjunctive goal. Each of the disjuncts is planned for, until it is clear
that one can be achieved; then an operation is applied that removes the incomplete plans for
the other disjuncts.

Sacerdoti presents two “task specific® plan modification operations. “Tool Gathering”
optimizes plans relative to a notion of the cost of performing correct plans: a correct plan may
be made into a better, still correct one by some re-orderings. “Limitations of an Apprentice”
compensates for the inexpressibility in the STRIPS of many kinds of actions. The example
he gives is very similar (a resource conflict, requiring a global view to do declobbering) to the
blocks world example I analyze in section ??. Unfortunately, the details of the operation are
not given. o '

NONLIN was the first planner to use simple achievement; this is defined as in TWEAK,
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but without handling constraints. NONLIN alsc uses addition. promotion, and demotion.

SIPE introduced no new modification operations. but it docs have a new technique for
detecting clobbering. A particularly common sort of precondition is what Wilkins terms a
resource : a binary variable that must be set to one value (“available”) for an operation to be
applicable, and which will be sct to a different value during the operation, then “released™ or
resct at the end. Two unordered steps that try to use the same resource clobber each other;
SIPE then applies temporal declobbering. The techniques SIPE uses for resource clobbering
detection are only heuristic; more work is needed to understand this maneuver.

There’s one plan modification operation that may be new to TWEAK: declobbering by
constraining apart. I suspect that NGAH's double-cross removal operation, which I don’t
understand. may combinc step addition with declobbering by constraining apart; apart from
this, there scems to be no precedent.

Because the modal truth-criterion is sufficent as well as nccessary, there are no more
plan modification operations possible without cxtending the range of represented actions.
Once that is done, new operations will be possible; again they can be derived from the truth
criteria for the new representations. For example, the pathological plan on page 25 suggests
an operation of “achievement by constraining apart”: if the plan did not have the binding
constraint z # y, adding this constraint would achieve p in the final situation.

If the representation of time is extended to allow overlapping actions, a new operation
(“simultaneous achievment”) is possible. In this figure,

AN
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someone. is trying to stick two LEGO blocks together. Pushing the top block down on either
end will tend to make the block pivot around the center pair of posts, so that the two blocks
do not mate. The problem can be solved by applying both operations simultaneously, pushing
with a finger at cach end. (Another solution is to push in the middle, but that’s not very
interesting.)

Kristian Hammond describes [WOK] WOK, a planner which although domain-specific and
non-conjunctive has interesting things to say about goal interactions (the class of effects that
includes clobbcring}. WOK satisfies goals by introducing intcractions of known sorts. This
is the antithesis of the linear strategy: rather than assuming as a first approximation that
goals don’t interact, synergistic intcractions are used as a basic tool for achieving goals. It is
unclear how this approach can be applied to conjunctive planning, but it may be a useful line
of future research.

3.4 The top-level control structure

The top-level control structure-of almost every domain-independent conjunctive planner
is search. Search control is the aspect of domain-independent conjunctive planning that is
understood least. Most of the domains to which d-m-‘n-independent conjunctive planning has
been applied have been forgiving: i’ more than one plan modification operation is applicable
to a clobbering or unestablished goal, any of the possibilities will probably do. Thus, it hasn’t
been necessary to devote a lot of thought to which to choose. However, just about everyone
is convinced that in real domains the choices are critical, and a lot of schemes have been
proposed for making them. Since none of these have been adequately tested, little is known
about which is best. '

Almost every planner has a distinct control struciure. I've loosely grouped them in seven
classes, ordered roughly by the complexity of the backtracking algorithm. The classes are no
backtracking, explicitly represented alternatives, dependency-directed modification, chrono-
logical backtracking, dependency-directed backtracking, heuristic search, and metaplanning.
Many of the planners I discuss actually fit into several of these classes.

The simplest control structure avoids backtracking altogether. Plan modification opera-
tions are applied in a fixed order according to fixed criteria until a correct plan is found or
it is no longer possible to apply operations. This is not as bad as it sounds, because you can
usually make a good guess as to which modification operation to apply: usually, one should
prefer simple achievement to step addition, for example. HACKER uses this approach. NOAH
comes very close; it backs up only from alternative choices of variable bindings in SOME nodes
(see page 25). That NOAH solved many difficult problems shows that the choice of control
structure is unimportant in many domains.

A very simple solution to the problem of which modification operation to apply is to choose
all possible ones, splitting the plan into several explicitly represented copies. No planner fits
altogether in this class as it is very inefficient in general. If some additional principle decides
whether for a given choice to use this technique or to use search. the splitting technique may
be uscful. SIPE and a planning framework described by Hayes-Roth et al. [Hayes-Roth)] take
this approach. )

The simplest backtracking scheme is chronological: when a choice has to be made, one is
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chosen by some means and the others are saved away. If the plan can not be extended to a
solution by further modification. failure is signalled. The most recent choice point is backed
up to, and an alternative for the choice is used. When no choices remain, the next most
recent choice point is backed up to. and so on. WARPLAN, INTERPLAN, and NONLIN use
chronological backtracking.

Chronological backtracking results in the exploration of more blind alleys than necessary.
Dependency directed backtracking backs up at failure not to the most recent choice point,
but to one respousible for the failure. For a discussion of dependency-directed backtracking in
general, see [Stallman-and-Sussman] and [Doyle-TMS]. The first planner to use,dependency-
direction was Hayes's 1975 route planner [Hayes], which was not conjunctive. Hayes used
backtracking to recover only from execution error, rather than from planning error (dead
ends) as does TWEAK, although he explicitly considered the latter possibility. Thus his
implemented control structure can be termed “dependency-directed modification” rather than
backtracking. Hayes's conception of dependency-directed backtracking predates and scems to
be independent of its discovery by Stallman and Sussman, to whom it is usually credited.

Although Tate suggests [NONLIN-memo] using dependency-directed backtracking, the
first domain-independent conjunctive planner to implement it was that presented by deKleer et
al. [explicit). This linear planner is not otherwise interesting. Phil London’s planner {London-
planner] represents plans and world states using a TMS, the utility underlying dependency-
directed backtracking, but apparently does not use the TMS for backtracking. To do so,
the decisions taken in choosing one rather than another plan modification opcration—the
metaplan—must be represented, and London did not do so. TWEAK is the first non-linear
dependency-directed planner.

Heuristic search uses some numerical estimate of “goodness” to decide which order to try
choices in. Tate's INTERPLAN and NONLIN use heuristics to control their chronological
search. Since making a wrong choice can result in scarching a large dead-end subtree, it
would be nice to eliminate wrong choices without having to explore their consequences. Kibler
and Morris [Kibler] present a control scheme based on negative search heuristics that prune
obviousiy bad choices. However, these heuristics are domain-specific for the blocks world.
Siklossy and Roach [ref] use a similar strategy. Corkill [Corkill] describes a NOAH-like planner
in which control is distributed among several message-passing processors.

All the control structures discussed so far (with the possible exception of heuristic search)
are “syntactic”: they don’t depend on the specifics of the plan being constructed, but blindly
apply some simple algorithm for choosing among alternatives without considering what those
alternatives are. Since control of planning is very hard, such methods may be inherently weak.
If planning is hard, perhaps we should apply the full power of a problem solver to choosing
what to do next. This is the “metaplanning” approach. There is an increasing literature on
this ([Batali], [Davis], [Doyle-SEAN], [Stefik-metaplanning] [Wilensky]) most of which is quite
vague and none of which applies specifically to domain-independent conjunctive planning. I'll
discuss just two metaplanning systems. Doyle’s unimplemented SEAN uses (another copy of)
the same planner to do metaplanning as to do planning about the domain. The metaplanner
in turn is controlled by an identical metametaplanner and so on; Doyle discusses ways to
implement this apparently infinite regress.

MOLGEN has only one level of metaplanning, and the metaplanner is quite unlike the
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domain-level planner. The domain-level planner creates plans for MOLGEN's domain, ge-
netics experiment planning. It has operations that are analogous to the plan modification
operations of TWEAK. These operations are sclected by a metaplanner which chooses among
plan modification operations. The metaplanner is quite simple; it's perhaps grandiose to call
it a planner at all.

The idea of using a copy of TWEAK as a metaplanner is attractive: the plan modification
operations can be thought of as having well-defined preconditions (that the constraints they
impose not conflict with the existing ones, or that a suitable step exists to achieve a goal
in the case of addition) and postconditions (the insertion of the new constraint or step).
Unfortunately, TWEAK's action representation is too weak to represent the plan modification
operations.

Planners can be classified along a dimension orthogonal to search strategy, that of tech-
nique used for recover from exccution failures. This isn’t part of planning proper, but many
systems interleave planning with (simulated or actual) execution so that effectively a non-
backtracking planner performs scarch, failing during execution rather than planning, and
then returning to the planner to obtain a new plan to recover. HACKER and BUILD use
this approach. NOAH proper doesn’t, but its planner is connected to an execution system
that will re-invoke the planncr after execution failure, so that the system as a whole can
be put in this class. HACKER and BUILD make use of CONNIVER techniques similar to
dependency-direction in order to figure out which planning decision was responsible for the
failure and to try another alternative in the choice.

Planning and Al language design have strongly influenced each other. Many of the plan-
ners that do search inherit their search discipline from the language they were written in, and
many Al languages were designed to make writing the top-level control of planners easier.
PLANNER [PLANNER-TR|, [PLANNER-IJCAI| was intended as a language for writting
planners in; it was the first to supply backtracking automatically,. HACKER and BUILD
were written in and depend heavily on the abilities of CONNIVER [CONNIVER], a language

_written in reaction to the difficulties with chronological backtracking in PLANNER. WAR-
PLAN inherits its cearch from PROLOG. The planner of deKleer et al. was the first program
written in AMORD, and inherits its dependency-directed backtracking from AMORD’s TMS
[AMORD]. TWEAK, too, inherits its dependency-directed backtracking from Dependency-
Directed Lisp, a language specifically designed for TWEAK. DDL looks like ordinary Lisp
but has an implicit dependency-directed backtracking control structure. It will be described
in a forthcoming paper.
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Conclusions

I promised a scruffy ending to this thesis. In the last chapter I argued that solving
the frame problem for more expressive action representations is the outstanding problem in
- domain-indepéndent planning. I doubt that a neat general solution will be found soon; the
frame problem is very hard. I have examined a number of specific domains, and found that
for all of them it was easy to find a truth criterion, but that these criteria were quite different.
Perhaps then we should give up on domain-independent planning: the user of a planner must
specify, together with the problem and the set of available actions, a truth criterion to be
used.

But perhaps we can do better, at the expense of scme scruffiness. In other work [cliches],
I have been developing a theory of “intermediate” techniques, which are neither completely
general, nor completely domain-specific. The main idea is that there are “cognitive cliches”,
commonly occuring formal structures in the world, that have attached to them “intermediate
competence” that is specific not to a domain, but to a cliche. Intermediate competence is
applied by identifying instances of the associated cliche in the world. Thus, a cliche-based
system is domain-independent, as any cliche may show up in any domain, yet has to know
specific things abeut the domain it is running in. I envision a cliche-based constraint-posting
planner for extended action representaticns which would have truth criteria specific to cliches
that operators in the world.might instantiate. A planner with truth criteria for a few dozen
cliches might well cover most of the domains likely to be encountered.

An example cliche is resource . A resource (I use the term differently than does Wilkins)
consists of a state variable in the world which holds a quantity in some total order, together
with at least one consumer operator, which decreases, relative to the order, the value of the
state variable, and at least one dependent operator, which has as a precondition that the state
variable have a value greater than some threshold. There may also be producer operators
that increase the value of the state variable. Resources are found in many domains; puton in
the HACKER domain is both a consumer and a dependent for the space on any given block.
Associated with the resource cliche is a partial truth criterion: the value of the state variable
in a situation s is no less than its value in situation ¢ necessarily before s, minus the sum of the
amount of decrements due to consumers possibly between ¢ and s, plus the sum of the amount
of increments due to producers necessarily between ¢ and s. From this truth criterion we can
derive three patching operations: the precondition of a dependent operator can be achieved,

34
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if it is not already, by adding producers between t and s, by constraining consumers possibly
between ¢ and s to be before ¢ or after s. or by constraining the amounts of consumption or
production to be respectively small or large. In the HACKER blocks world, adding producers
of space amounts to the “punting” strategy (sce page 28), and increasing the amount they
increase space by suggests the “compacting” strategy.

Perhaps the most important contribution of this thesis is the introduction of the notion
of a provably correct modal truth criterion. Yet I wonder abont the psychological reality of
such criteria. Anccdotal evidence suggests that humans plan by doing something easy and
debugging the result when it fails. Sussman’s HACKER worked that way; unfortunately the
set of bugs that it could patch are ones that TWEAK never introduces, and so his specific
debugging techniques are of no use. It may be that the only solutions to the frame problem
we can devise are heuristic; then theories of plan debugging will become very important.



Acknowlegements

My intellectual debt to the great lineage of Al planning rescarchers is enormous and
obvious.

This thesis incorporates suggestions from many readers which made me reformulate over
and over again what it is that I was doing. Steve Bagley, Alan Bawden, Mike Brady, Gary
Drescher, Margaret Fleck, Walter Hamscher, Scott Layson, David McAllester, Kent Pitman,
Charles Rich, Mark Shirley, and Dan Weld contributed much.

Ken Forbus convinced me that my understanding of non-linear planning would make a
Master’s thesis.

Ed Giniger teaches me biology and compares stories about idiotic lab politics.

My office mate David McAllester put up with my randomness and is the ideal person to
bounce math ideas off of.

‘Jim Vanesse got me through hard times.

My supervisor Chuck Rich supported me through six thesis topic changes and believed in
me when I didn’t. His ability to debug me when wedged was vital.

‘Without Hazel Rovno, this thesis would never have been written.

36



References

[Allen] Allen, James F., and Koomen, Johannes A., “Planning Using a Temporal World
Model.” IJCAI-83.

[Batali] Batali, John, “Computational Introspection.” MIT AI Memo 701, February,
1983.

[naive] Chapman, David, “Naive Problem Solving and Naive Mathematics.” MIT Al
Working Paper 249, June, 1983.

[cliches] Chapman, David, “Cognitive Cliches.” Forthcoming.

[Corkill] Corkill, Daniel D., “Hierarchical Planning in a Distributed Environment.”
IJCAI-79, pp. 168-175.

[Davis] Davis, Randall, “Meta-Eules: Reasoning about Control.” Artificial Intelligence
15 (1980), 179-222.

[explicit] deKleer, Johan, Doyle, Jon, Steele, Guy L. Jr., and Sussman, Gerald Jay, “Ex-
plicit Control of Reasoning.” ACM SIGPLAN Notices Vol. 12, No. 8/ ACM SIGART
Newsletter No. 64, combined special issue, proceedings of the Symposium on Artificial
Intelligence and Programming Languages, August 1977, pp. 116-125. Also MIT Al
Memo No. 427, June 1977.

[AMORD)] deKleer, Johan, Doyle, Jon, Rich, Charles, Steele, Guy L. Jr., and Sussman,
Gerald Jay, “AMORD, a Deductive Procedure System.” MIT Al Memo 435, January,
1978.

[Doyle-TMS] Doyle, Jon, Truth Maintenance Systems For Problem Solving. MIT Al
Technical Report 419, January 1978.

[Doyle-SEAN] Doyle, Jon, A Model for Deliberation, Action, and Introspection. MIT
Al Technical Report 581, Cambridge Mass., May, 1980.

[BUILD] Fahlman, Scott Ellictt, “A Planning System for Robot Construction Tasks.”
Artificial Intelligence 5 (1974) pp. 1-49.

[STRIPS] Fikes, Richard E., ‘and Nilsson, Nils J., “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving.” Artificial Intelligence 2 (1971),
pp. 198-208.

37



CHAPTER 4. CONCLUSIONS 38

[Fikes-directions] Fikes. Richard E.. Hart, P.E., and Nilsson, Nils J., “Some New Di-
rections in Robot Problem Solving.” Chapter 23 in Machine Intelligence 7, Mecltzer
and Mitchie, eds., Edinburgh University Press, Edinburgh 1972.

[Georgeff] Georgeff, Michael, “A Theory of Action for MultiAgent Planning.” AAAI-
84, pp. 121-125.

[WOK] Hammond, Kristian J., “Planning and Goal Interaction: The use of past solu-
tions in present situations.” AAAI-83, pp. 148-151.

[Hayes] Hayes, Philip J., “A Representation For Robot Plans.” 4th IJCAL

[Hayes-Roth] Hayes-Roth, Barbara, Hayes-Roth, Frederic, Rosenschein, Stan, and Cam-
marata, Stephanie, “Modelling Planning as an Incremental, Opportunistic Process.”
IJCAI-79, pp. 375-383.

[PLANNER-TR] Hewitt, Carl, Description and Theoretical Analysis {Using Schemata)
of PLANNER: A Language for Proving Theorems and Manipulating Models in a Robot.
MIT AI Technical Report 258, April, 1972.

[PLANNER-1IJCAI] Hewitt, Carl, “Procedural Embedding of Knowlege in PLAN-
NER.” IJCAL71, pp. 167-182.

[JanLert] JanLert, Lars-Erik, “Modelling Change—the Frame Problem.” To appear

in The Frame Problem and Other Problems of Holism in Artificial Intelligence, Zenon * )

Pylyshyn, ed., Ablex Publishing, 1385.
[Kibler] Kibler, Dennis, and Morris, Paul, “Don’t be Stupid.” IJCAI-81.

[London-planner) London, Phil, “A Dependency-Based Modelling Mechanism for Prob-
lem Solving.” Computer Science Technical Report 589, University of Maryland, College
Park, Maryland, November 1977.

[London- -representation] London, Phil, "Dependeqcy Networks as a Representation for
Modelling in General Problem Solvers.” Computer Science Technical Report 698,
University of Maryland, College Park, Maryland, September 1978.

[McDermott-time) McDerﬁlott, Drew. “Generalizing Problem Reduction: A Logical
Analysis.” IJCAI-8S. .

[Milne] Milne, A.A., Winnie The Pooh. Dell Publishing Company, New York, 1984.
First copyright 1926.

[GPS] Newell A., Shaw, J.C., and Simon, H.A., “Report on a general problem-solving
program.” Procedings of the Internatzonal Conference on Information Processing, pp.
256-264, UNESCO, Paris 1960. Reprinted in Computers and Automation, July 1959.

[Raphael] Raphael, Bertram, “The Frame Problem in Problem-Solving Systems.” Pro-
ceedings of the Advanced Study Institute on Artificial Intelltgence and Heuristic Pro-
gramming, Menaggio, Italy, 1970.



CHAPTER 4. CONCLUSIONS 39

"[Rich-TR] Rich, Charles, Inspection Methods in Progra;nming. MIT AI Technical Re-
port 604, Cambridge Mass., June, 1981.

[Rich-representation] Rich, Charles, “A Formal Representation for Plans in the Pro-
grammer’s Apprentice.” IJCAI-81, pp. 1044-1052.

[Rosenschein] Rosenschein, Stanley J., “Plan Synthesis: A Logical Perspective.” IJCAI-
81, pp. 331-337.

[Roscnschein-multi-agent) Rosens;:hein, Jeffrey S., “Synchronization of Multi-Agent
Plans.” AAAI-82, pp. 115-119.

[NOAH] Sacerdoti, Earl D., A Structure for Plans and Behavior. SRI Al Technical
Note 109, August, 1975. Also American Elsevier.

[Sacerdoti-plans] Sacerdoti, Earl D., “The Nonlinear Nature of Plans.” 4th IJCAI, pp.
206-214.

[Sacerdoti-tactics] Sacerdoti, Earl D., “Problem Solving Tactics.” nth IJCAL !!!

[Stallman-and-Sussman| Stallman, Richard M., and Sussman, Gerald Jay, “Forward
Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided
Circuit Analysis.” MIT AI Memo 380, September 1976.

[MOLGEN)| Stefik, Mark Jeffrey, Planning with Constraints. PhD thesis, Stanford
University, January 1980. Also Staford Heuristic Programming Project Memo 80-2
and Standford Computer Science Department Memo 80-784.

[Stefik-metaplanning) Stefik, Mark, “P.la.nning and Metaplanning (MOLGEN: Part 2).”
Artificial Intelligence 16 (1981) pp. 141-170.

[CONNIVER) Sﬁssman, Gerald Jay, and McDermott, Drew Vincent, “From PLAN-
NER to CONNIVER—A genetic approach.” Proceedings of the Fall Joint Computer
Conference, 1972, pp. 1171-1179.

[HACKER] Sussman, Gerald Jay, A Computational Model of Skill Acguisition. MIT
AT Technical Report 297, August 1973. Also American Elsevier.

[INTERPLAN-memo] Tate, Austin, “INTERPLAN: A plan generation system which
can deal with interactions between goals.” Machine Intelligence Research Unit Mem-
orandum MIP-R-109, University of Edinburgh, Edinburgh, December 1974.

[INTERPLAN-IJCAI] Tate, Austin, “Interacting Goals and Their Use.” 4th IJCAL

|INTERPLAN-thesis] Tate, Brian Austin, Using Goal Structure to Direct Search in a
Problem Solver. PhD thesis, Univerity of Edinburgh, 1975.

[NONLIN-1JCAI] Tate, Austin, “Generating Project Networks.” 5th IJCAI, 1977.



CHAPTER 4. CONCLUSIONS 40

[NONLIN-TR] Tate, Austin, “Project Planning Using a Hierarchic Non-linear Plan-
ner.” Department of Artificial Intelligence Fesearch Report No. 25, University of
Edinburgh, Edinburgh, August 1976.

[Tate-GOST] Tate, Austin, “Goal Structure—Capturing the Intent of Plans.” ECAI-
84: Advances tn Artificial Intelligence, T. O’Shea, ed., Elsevier Science Publications
B.V. (North-Holland), 1984.

[Tate-expert] Tate, Austin, “Planning in Expert Systems”. Invited paper for the Alvey
IKBS Ezpert Systems Theme—First Workshep at Cosener’s House, Abingdon, Oxford,
3-5 March, 1984. Also D.A.l Research Paper 221, University of Edinburgh.

[DEVISER] Vere, Steven A., “Planning In Time: Windows and Durations for Activities
and Goals.” IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.
PAMI-5, No. 3, May 1983. pp 246-267.

[Waldinger] Waldinger, Richard, “Achieving Several Goals Simultaneously.” SRI Arti-
ficial Intelligence Center Technical Note 107, Menlo Park, July 1975.

[WARPLAN] Warren, David H. D., “WARPLAN: A System For Generating Plans.”
Dcpartment of Computational Logic Memo No. 76, Univerity of Edinburgh, Edin-
burgh, June 1974.

[Wilensky] Wilensky, Robert, “Meta-Planniug: Representing and Using Knowlege
About Planning in Problem Solving and Natural Language Understanding.” Cognitive
Science 5 (1981), pp. 197-233.

[SIPE-1IJCAI] Wilkins, David E., “Representation in a Domain-Independent Planner.”
IJCAIL8S.

[SIPE-A1J] Wilkins, David E., “Domain-Independent Planning: Representation aﬁd
Plan Generation.” Artificial Intelligence 22:3 (1984) pp. 269-301. Also SRI Interna-
tional Technical Note No. 266R, Menlo Park, California, May 5, 1983.



