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aOOaNftLIZATIOH OF GAUGE THEORIES 

by 

C. BECCHI * 
A. « K T * 
R. STQRA ? 

i r 
Abstract : Gauge theories are character!zee by the Slavnov identit ies which 
express their invariance under a family of transformations of the supergauge 
type which involve the Faddeev Popov ghosts. These identit ies are proved to al l 
orders of renormalized perturbation theory, within the BPHZ framework, when the 
underlying Lie algebra is semi-simple and the gauge function is chosen to be 
linear in the f ie lds in such a way that al l f ields are massive. An example, the 
SU2 Higgs Kibble model is anal/zed in detail : the asymptotic theory is formu­
lated in the perturbit ive sense* and shown to be reasonable, namely, the 
physical S operator is unitary and independent from the parameters which 
define the gauge function. 
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1 - Introduction 

In a previous ar t ic le [ l ] devoted to the renormalization of the 
Abelian Higgs Kibble model, we have developed a number of technical tools 
which w i l l be applied here to the renormalization of non abelian gauge 
nodels. 

Our analysis rel ies on the Bogoliubov Paraziuk Hepp Zimmermann [2 J 
version of renormalization theory. The extensive use of the renormalized 
quantum action principle of Lowenstein [3] and Lam [4] allows to push the 
analysis of the algebraic structure of gauge f ie ld models. 

Very few properties of the perturbation series are actually used 
here, namely, nothing more than the general consequences of local i ty [5], 
sharpened by the theory of power counting [5], which, through the fundamental 
theorem of renormalization theory [5] insure the existence of a basis [2J[6] 
of local operators of given dimension and of l inear relationships [2] between 
local operators of dif ferent dimensions. More precisely, we shall never use 
the information contained in the detailed structure of the coefficients invol­
ved in such re lat ions, thus forbidding ourselves to envisage no renormalization 
type theorems [7]. 

The algebraic structure of classical gauge theories [&] is then 
deformed by quantvQ corrections in a way which can be completely analyzed 
with the above mentioned economical means, through a systematic use of the 
implicit function theorem for formal power series [ l ] , provided that i t 1s 
r ig id enough : in technical terms, i f some of the cohomology groups [9] of 
the f in i te Lie algebra which characterizes the gauge theory, vanish. The 
analysis can thus be successfully carried out when this l i e algebra 1s semi-
simple - 1f the obstruction provided by the Adleir Bardeen [10] anomaly is 
absent. We shall thus carry out sost of our analysis in the «:er«-simple 
£ase, and only wa*e a few remarks concerning some of the phenomena *hicb 
occur when abelian components are involved. For instance, we have noted 
that the ful f i1 l^ent of discrete symmetries allows favourable simplif ications 
which in partlcu;*'* lead to complete analyses of massive electrodynamics [ l l ] 
in the Stueckelberq gauge and of the abelian Higgs Kibble model in charge 
conjugation odd gauges [ l ] . A complete analysis of abelian cases would 
require proving ^ n renormalization theorems [? ] , which would take us far 
beyond the technical )evel of the present wort. 

75/P.723 2 
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Another conservative l imitat ion, due to the present status of 
renormalIzation theory, is to discard the study of models in which massless 
f ields are Involved, which does not pose new algebraic problems [12] but 
would force us to rely on work in progress [ n j and to go into analytic 
details which would obscure the main line of reasoning. In the same s p i r i t , 
we have not included here the analysis needed to deal with non linear 
renormalizable gauge functions £l] , which would have made this ar t ic le 
considerably longer without adding much to our understanding. Simi lar ly , 
although the main subject of this paper has to do with algebraic properties, 
we have decided to include one important application which we have i l l us t ra ­
ted on a specif ic example. 

The heart of the Batter is to prove that one can f u l f i l l to al l 
orders of renormalized perturbation theory a set of ident i t ies , the so-called 
Slavnov ident1t ies, [ l ] [ l 4 ] , which express the invariance of the Faddeev 
Popov ( $ 7 T ) [l5j Lagrangian under a set of non linear f ie ld transformations [ l ] 
which exp l i c i t l y involve the Faddeev Popov Fermi scalar ghost f ie lds. Further­
more the theory should be interpreted whenever possible as an operator theory 
within a Fock space with indefini te metric involving the ghost f ie lds . 
When this interpretation is possible, the Slavnov identi t ies allow to define 
a "physical" subspace of Fock space within which the norm is posit ive def in i te. 
The res t r ic t ion of the S operator to this subspace is then both independent 
from the parameters which label the gauge function , and unitary in the 
perturbative sense. 

This ar t ic le Is divided Into two main sections, and a number of 
appendices devoted to some technical detai ls. 

Section 2 covers the algebraic discussion of the Slavnov Ident i t ies. 

Section 3 deals with a specif ic model (the SU2 Higgs Kibble model [ l6 ] ) 
for which the operator theory Is discussed. 

Appendix A summarizes a number of well known definit ions and facts 
about the cohomology of Lie algebras [ l / ] . 

Appendix B Is devoted to the resolution of some t r i v i a l cohomologles 
encountered In Section 1 . 

75/P.723 3 
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2 - Slavnov Identities 

A. The tree approximation 

Let G be a compact Lie group, 1^ i ts Lie algebra. Let | ^ j 
be a matter f ie ld nul t ip let corresponding to a fu l ly reduced unitary 
representation D of G , with the Infinitesimal version : 

(1) 

Let be a gauge f ie ld associated with 
the corresponding Faddeev Popov ghost f ie lds . 

We start with a classical Lagrangian of the form : 

(2) 

*f ' i i*v. 1s the most general dimension four local polynomial Invariant 
under the local gauge transformation : 

(3) 

with 

75/P.723 4 
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where I "Çil̂ ^^ a r e t h € structure constants of , | j some f ie ld 
translation paran*eters. The gauge function j ^ J * ^ n : * o s e n to be 
Hn*ar in the fields and their derivatives : 

(5) 

Indices of are raised and lowered by weans of an invariant non 
degenerate syweetric tensor. The role of the **uge tenn if. to remove the 
degeneracy of the quadratic part of » which Is cu' лес ted with 
gauge invariance. The f ie ld dependent di f ferent ial operator T Y T involved 
in the Faddeev Popov part of e£ is define J through the kerne < 

(6) 

THe «?sevtt1a1 property of th"K Lagranglan Is I ts invaHance under the follow­
ing inf ini tesimal transformations whicn we shall call the Slavnov transforma­
tions : 

(7) 

75/F.723 
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where the summation over repeated indices and the 'integration ove^ "-epeateci 
space time variables are understood. 

5 «X 1 S a space time independent infinitesimal parameter *p i 
commutes with | CP \ , j Q, . f . but anticomrrutes wit* I Ctf } , j C * 
and, for two transformations labelled by &<Aj , c ^ A ^ }

 5 n <- « 
anticommute. 

This invariance can be checked immediately, by using the compostinn 
law for gauge transformations 

(8) 

Conversely, i t is interesting to know whether is up to a divergence 
the most general Lagrangian leading to an action invariant jnder Slavncv 
transformations, and carrying no Faddeev Popov charge : 

(9) 

Let 

(10) 

and given a functional . let us denote 

i l l ) 

75/P.723 6 
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w h e r e f Y r CX'ilf is the variat ion of "J^under the Slavnov transformation 
of parameter &X (cf. Eq.7) . A remarkable property of *4 is . 

(12) 

This property actually staaarizes the group law as follows : 
l e t 

(13) 

Eq.(12) taplles : 

(M) 

Mhlch 1n t e n s of Eq.(13) reads : 

(•) 

(15) (b) 

(c) 

75/*.723 7 
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(15) 

(e) 

Eq.'(15a) is the Jacobi ident i ty. I f we choose a solution corresponding to 

, Eq.(15b ) and £q.(15c) assert that 0 is a repre­

sentation of Î ) 

I f is semi-simple, then al l solutions (cf . Appendix A) of £q,(i5o)are 

of the form 

(16) 

for some f ixed jQ^f . d «C 
* ft C 

Final ly Eq.(15e) states that C J ^ intertwines Upland (the 
adjoint representation of fp ) . In the semi-simple case i s thus 
equivalent to the adjoint representation i f j } does not vanish ident i ­
ca l l y , a requirement which belongs to the definit ion of \ Q jas a gauge 
f i e l d . We may then choose in this case without any loss of generality Eq.(13) 
to be Identical with Eq.(3,4,7). 

Let us now come back to the Lagrangian j £ . 

I f is Slavnov Invariant namely such that 

(17) 

a fo r t i o r i 

(18) 

Now. m£ 1s of the form 

(19) 

7Ç/P 723 
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where * * n v * r i a r t under gauge transformations, is by I t se l f a solu­
tion of Eq.(17). 3y Eq.(12) i t 1s obvious from Eq.{18) that 

{20} 

irt that 

{22} 

Writing out the general for* of P ^ ^ ^ yields i f X ( i s 

sea l - s t o l e 

where I ^ / y$ a numerical symmetrical matrix. I f j £ { has an abellan 
'nvariant part this 1s not the general solut ion, the mass term 
feeing le f t undetermined. 
Going back to Eq.(17,19) yields In the semi-simple case : 

(23) 

which 1s Identical with Tq.(2) modulo a r.-<lofInitio* of ^ and 
1» the abelian case, there may arise an ambiguity unless the gauge function 

€ t / £ } contains besides the terms a part which is invariant 
under & 

For instance in quantum electrodynamics In tSe SUeckelberg gauge 
[ l i ] , there may arise the Slavnov invariant photon- ^TT mass term : 

75/P.723 9 
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(24) 

This is nowever not the case in the t 'Hooft-Vel tmar £l8l gauge ^ i :r, 
contains an (X^ O/* term. 
\ similar phenomenon, whien occurs {n the aot'-^n Higgs '.ibL - -nodel 
produces quite spectacular complications fl j ' f one ma<es * comparison 
with its GU2 analog (cf . Section 3) ! 

This is jut one pathology associated « th th? -see 11 an part: o f ^ *hlch 
make I t unstable under defonr.at ion-*. 
"or tne reasons explained in the Introcu~\\z r- *e sha"*1 from ~c\* asr-uroe 
that \{ is semi-simple (and compact •; 

S» Perturbation theory : the Slavnov Ident i t ies. 

The problem is to find a renormalizable effect ive Lagrangian 

(25) 

whose lowest order term in is given by Eq.(2), assuming that al l the 
parameters in Eq.(2) have been chosen in such a way that a l l *ass parameters 
are s t r i c t l y posi t ive, and which is furthermore invariant in the renormalized 
fttnsa £lj under the Slavnov transform.!lion 

(26) 

75/P.723 
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(27) 

m J j ^ , • • JSrf a r e *•> be found as formal power series 
1n t± [l\ vhose lowest order teras are the corresponding tree parameters, 
MMly 

(28) 

with 

( » ) 

Cf. £qs.(4.5.7). 

Ill order to deal with radiat ive correct ions, let us add to ^ t f £ 
the external f ie ld and source teras [ l 9 J . 

( » ) 

where % Is is signed dimension two, $ T T charge • 1 , Fermi s ta t i s t i c^ , 
fc* 1s assigned dimension two, <J T T charge • 2 , Bose stat is t ics C J , 

^ , J are sources of the basic f ie lds : J of the Bose type, 5 , 
^ * of the Fermi type. 

Performing the Slavnov transformation Eq.(26) , and using the 
quantum action principle y ie ld 1n terms of the Green functional [l] ZQ 4 ^ j : 

11 
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/31) 

where stands fo" the sou'.'^ s *.*te***c 1 " i e 1 

O 

(32) 

J ^ ( x _ ) d x '-s the most general rfimepf. ion f i v e insertion carrying f i j 
^ T T charge - 1 , which is of the crm : 

(33) 

J* 
where >5 is the naive transformation E q . ' i l ; corresponding to Eq.(26), 
and i\Q lumps together all radiative corrections. 

Making expl ic i t the external f ie ld dependence, we shall write 

(34) 

Introducing a new classical f ie ld ^ 3 carrying ^ T T charge * 1 and 
1 'nearly coupled to ^ , the Lagrangian becomes : 

(35) 

Performing now the quantust variation of the •*e!d?-

75/P.723 
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,3a, 

She 3-4*nt;-i7? tion er^frc'v / "i 3 1 ds : 

f̂ -e*--; tae tree SU*no* t ram formal Ion ; * ^ generates the variat ion 

fs the Green functional corresponding to K f ^ 

^Hss, computing 

75/?.723 
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where we have y.ed tno .^'"-'çv i at ion 

we get 

(40) 

since 

(41) 

In terms of the vertex functional T (lft^)^ V(fy, ^ , , J which 
is the Legendre transform of 2 ^ £ T f ) w ^ respect to 3 - » 
Eq.(40) reads : ' 

(42) 

Eq.{42) leads to a consistency condition for Z \ • Indeed £0.(42- H a 
perturbed version of the equation 

75/P.723 14 
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* r th 3 perturbation of order ^ . £q.^3; i tse l* a quantum extenve" 1 

of : 

since f o r any f ie ld CL) 

(45} 

We ^ave seen in the previous section that Eq.(44) , as an equation for r*> 
possesses the general solution 

(46} 

where i is a numerical symmetrical matrix. 
This provides a solution to Hq.(43): 

(47} 

This is the general solution of tq.'..1)because Eq.(43) is a quantum perturbation 
Of £q.{44). 
Hence the general solution of Eq,(42) Is qUen by 

{AS) 

75/P.723 1 5 
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whtcn, taking into account the structure of the jjĵ  couplings can be wri t ten 

in the form 

¡49; 

yhere « C is o* the order of £ 3 

Substituting £q.(49) into Eq.(42) leads to 

(50) 

Recalling Eqs. (28),(29^ one has 

(51) 

hence, using Eq.(26), 

(52) 

We have thus obtained the consistency condition ; 

(53) 

Now, the most general form of £i is 

7S/P.723 
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(54) 

where dimensions and quaruun wMfoers are taken intc account by 

;s5) 

with 

(56) 

m i 

(57) 

for sow c-number coef f i c i en ts • ^ * J T • ^ mf 
Since^ due to power counting r C cannot depend on the external f ields 
( J f * / % } » the external f ie ld dependent part of the left hand side of 
£q.(53) . must be 0 ( * A ) . namely. 

(58) 

I t is shown in Appendix 8 , by cohonological methods, that» as a resul t , the 
external f ie ld dependent part of & is of the fens 

{59} 

75/F.723 1 7 
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" f f , ^ 
whr«re M * , | T f ä-<"' h " P'ir.ifn-tri/cd in tr--,, nf n e r i c a 1 cccf f ( 9 . . . 

» 5" - according to 

(60) 

with 

(61) 

^ «*» 
The coefficients can be chos=n and w i l l be 

chosen to be linear in Q) , ¿ 2 * 17 » a s shown in Appendix 8 . 

Now, we know from the quantum action principle that the external 
f ie ld dependent part of ^ is of the form [cf. Eqs.(33),34) : 

where jp^' , ^ g ) ^ are formal power series in ~t\, and in the coefficients 
of . From the previous observation that 77^' » TT^ are linear 1n 

A 4

% . A ^ , i t follows that T 7 ^ » 77^ are formal power series of the same 
typo os Û . . QL. 

Final ly the system 

(63) 

which Insures that (c f . Eq.(59) 

(64) 

soluble for J ? , j P as formal çower Merles in *K - r ^ i d s r l n ç TT , 7 7 \ 

18 
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as fonca! powe~ series in К , j R - ^ J ^ * . jEL,_ IP, t and c o m * . / ' 
with (62) *e see Ihdt, to luwt^t *.«̂ > umbhlng orue~ in Д, » ^ 4 - . J T ' » ^ ~, 

(65) 

Hence system '65 ass ies the form 

(66) 

*her* botr ( Э . , tr^Ofij (f-P]^J . This system ча> a un'qjf. 
solution 0 ( A ) *cr" P ^ f . \ £ 

Let *s now look at the external f ie ld -independent terms m Л 
which *s 0 ^ * К Д ) in the external f ie lds. The consistency condition нем 
reads 

(67) 

I .e . 

(68) 

where 

(69) 

If we can prove that j Д ^ С * } ^ * is of the 'onn 

(70) 

75/P.72J 
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comparing with £q.(33)ß4) which car, be c.*t i to vhe r:>rn. 

(71) 

where is Ç)q - ^£o'* v^-^ ,J^cfp 1 S 3 r ° r : ? V l ' P ^ e r ^.- ies r̂, the S e a t e d 
arguments, i t follows that is of the •'cmi 

(72) 

Since the equation 

(73) 

is soluble for 

(74) 

I ts solution leaves us with 

(75) 

Recalling that also (cf .Eq.(64)) 

(76) 

we conclude t! 

(77) 

hence 

20 
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win di we want to achieve. 

Now the consistency condition shows that 

<79) 

where 

(90) 

Thus, there r e n i n s to prove that any can be put in the form 

Using for the expansion {cf.£q.(54}) 

(62) 

since (80) implies 

{83) 

i discussion similar to that found at the end of section A (cf,Eqs.(17) ,(18)) 
shows that 

(84) 

where the numerical tensor 
Using now 

is symmetric in 0( and S 

75/P./23 
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yields 

(85) 

and 

(86) 

One can show [20] that the general solution of Eq.(86),the f i r s t cohomology 
condition for the gauge Lie algebra, which 1s nothing else than the Wess 
Zuroino [9] consistency condition, is 

(87) 

where £^ (x) • t n e Bardeen £lo] anomaly has the form 

(88) 

where is a total ly symmetric invariant tensor with Indices in 
the adjoint representation of JO and 

(89) 

Such an anomaly can only arise I f the tree Lagrangian contains € ^ y ^ or 
symbols and i f there 1s a non t r i v i a l 0 tensor. In the absence of such 

an anomaly, one has : 

(90)1 

which completes the proof of the Slavnov Identi ty 1n such cases. 

75/P.723 22 
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^ . The Fg^Ucev ^opov ijteobt e^uol; jr. : » ., • • 

I t w i l l be of interest ir* t*e Pawing to write down the Faddeev 
popov ghost equation of «otion ir- terr-s o f ,%e S^vnov ident i ty. I t follows 
from £q.(42) that once the Slavr.ov ident^r- been proved, 

m • 

and we know that the genera 1 solut ion of tMs equation is 

(92) 

where X ^ J * s a s j f i i i t i ical matrix. Taking the Legendre transform of 
£q.(92} y ie lds 

(93) 

which 1s therefore the equation of motion. One should also note that 
7*^t^ is inver t ib le in the tree approximation and therefore to a l l orders so 
that£q,(93) May bQ wri t ten in the for* 

{94} 

75,**. 722 
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2 - Physical Interpretation - An Example f161 

Giycn a gauge theory which has been reformat zed in such a way 
that a Slavnov identity holds, there remains to show that one can interpret 
i t in physical terms, which is not obvious since many ghost f i e lds are involved 
( £¿1. C . C . . . } . F i rs t one should specify the connection between the para­
meters lef t arbi trary in the Lagrangian, and physical parameters, (masses, 
coupling constants) through the ful f i l lment of suitable normalization conditions, 
•hen, once the theory has been set up within the framework of a fixed Feck space, 
one has to specify a physical subspace within which the theory is reasonable, 
e.g. the S operator is unitary and independent from unphysical parameters 
among which the ^ c f .Eq.(26) . 

In order to make this program expl ic i t we shall treat in some 
details the SU2 Higgs Kibble model [l6] in a way which parallels our treatment 
of the abelian Higgs Kibble model [ l ] . 

A. The Classical Theory. 

The basic fields are V * 9 I °*> ^ / ^*># C*# 

At the classical l eve l , the Lagrangian 1s Invariant under the Slavnov transfor­

mation : 

(95) 

75/?.723 
24 



- 321 -

where C are tne SU(2) structure constants, e plays the role 
cf a cothurni usr.utunt» and F Is the 0^ f ield translation parameter. 
This part icular choice of transformation lows iwclies the invariance under 
a global SIJ ? ' / w r t r y tr. in-, forming TV , cQ^». O , C as v^ctoro and 
leaving C invariant. Even i f this symmetry is to be preserved En.(95) is 
not the nost general trar»sformation fu l f i l l i ng the compatibility condi­
tions Eqs.£4,15 } , which depends on four parameters besides those which 
label the gauge function : e, F, and wave function renormalizations for the 

<T arvd C f ie lds . Given these parameters and introducing external _ 

s o u r c e ! ^ J s p X j ; ' 1" I } coupled to / 2 7 = / ^ , < T d ^ , , C m , C ^ 
tfce Slavnov identity resds : 

•96. 

rfe have seen that the most genera* action compatible withEq.(96) is of the 
form 

.97) 

with 

{98} 

where 

25 
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(99) 

and where the coefficients are so adjusted that the coeff icient of the term 
linear in 0* vanishes : 

(100) 

The theory thus doponds on ton parameters, four specifying the transformation 
law, one related with the f i e ld vacuum expectation value, f i ve specifying 
the external f ie ld Independent part of the Lagrangian, constrained by condition 
(14) , (15) . One can al ternat ively specify the following physical parameters : 

mt ' M ' m(>Tr > w n i c n 9< v e the positions of the poles 1n the transverse 
photon, o- , C,c propd'jaLois respectively : 

(101) 

(a) 

(b) 

(c) 

the residues of these poles : 

(102) 
(•) 

(b) 

26 
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(с; 

the value of the coupling constant 

(103) 

These normalization conditions together with£q.(100) which is equivalent to 

(НИ) 

f i x the values of , Z H , , A*, Jfc , p , e , F , leaving free 
two parameters in the def in i t ion of the* transformation laws. For simplici ty 
we shal l of course choose 

(105) 

These normalization conditions together with the Slavnov symmetry 
actually inply that the masses associated with the oGL* 7T channel are 
pairaise degenerate with those of the C Z channel. Thus, in view of the 
residual SU2 symmetry, a l l the ghost musses are degenerate. 

Within tne Fock space defined by the quadratic part of the Lagran­
gian, we shall define the bare physical^jibspace Generated by application on 
th€ vacuum of the asymptotic f ields OL^ , (X which explains that 

, Jt are considered as 'ghosts*. 

According to this def in i t ion , i t is easy to see [ 2 l ] that the matrix 
elements of the S operator between bare physical states do not depend on 
the gauge parameters K . 171^ . 

8. Radiative Correct ion • Slavnov Ident i t ies, Wormali7at*o" Conditions. 

How, according to the analysis of section 2 , i t is possible to 
f ind an ef fect ive Lagrangian such that the Slavnov identi ty (96) holds to 
a l l orders (where now p is to be determined as a formal power series 1n H ). 
me also know that the Faddeev Popov equation of motion is : (c f . Eq.(94)) 

75/F.723 
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(106) 

where 7C is some formal power series in "fe . 
The theory depends on ten formal power series whose lowest order terms 
specify the tree approximation Lagrangian. Eight of them can be f ixed by 
imposing the normalization conditions (101, 102, 103, 104). These norma­
l izat ion conditions are enough to interpret the theory in the i n i t i a l Fock 
space, because, as a consequence of the Slavnov ident i ty , the ghost mass 
degeneracy s t i l l holds : 
Expressing the Slavnov identity 1n terms of the vertex functional 17 yields : 

(107) 

In part icular, one gets the following information on the two point functions : 

(108) 

where 

(109) 

75/P.723 
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0« tfic c t f ^ r * a ^ t*ie T T e c ^ c i c - 3: set te* ne 'ds • 

(110) 

! t follows lihac : 

wMcti shows that this c*termi nant has a double zero at 

I. Ffrys*ca? S 3pe-»tor : Gauge In»ariance-

According to the LS2 asymptotic theory, the physical S operator 
is 91»» in tfce perturbati ve seme *r terms of the Green's functional 
I - . b y : 

(112) 

wfcert 

(113) 

7S/P.723 
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In the above formula, 0**m , K°* ; O-ui* K ^ ^ r e the canoni-
cally quantized asymptotic f ields and di f ferent ial operators involved in their 
equations of motion, derived from the asymptotic Lagrangian determined by J"* , 
which in the present case, can be read off from the tree approximation. 

We want to prove : 

(U4) 

Owing to Lowenstein's actior, : ^ n c i p l e , [3] , one has 

(115) 

where ^ is one of the parameters JC , W^rr a n d ^ s a dimension 
four Insertion obtained by differenciating Jdx £t^(x) with respect to A . 
Using the Slavnov ident i ty , we are going to show that ^ can be wri t ten as : 

(116) 

where the Z j ^ s a r e s u c n t n a t 

(117) 

and therefore leave unaltered the physical normalization conations (101 a,b , 
102 a,b , 103) . 1? tte following these insertions w i l l be ca v l ed non physical. 
On the other hanc t,\e ^ 's are symmetric insertions, namely 

(118) 
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Thus applying E 75. (116,117) to the physical normalization conditions 
(101 a,t> , 10c * ,b , 103} , yieldb 4 )-near homogeneous system of equations 
of the for* 

(119) 

for which we are going to see that [ l l , l ] 

(120) det 

since this w i l l prove to be true in th» trsa appro*]station. Hence i t follows 
that 

(121) 

and the gauge invariance of the S operator follows from Eqs.(112,113,115, 
116, 117). 

The decomposition of given in £q.(116) follows f i r s t from the 
Slavnov Identi ty : 

(122) 

Hence 

(123) 

Noticing that 

(124) 
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we define oy 

(125; 

which is a dimension four insert ion as follows from Lowenstein's action 
principle [3] . 
Hence 

(126) 

thus 

(127) 

where is a dimension four symmetric insert ion. We are thus le f t with 
finding a basis of symmetrical insertions. Since we know that, given the 
Slavnov identity *£e& depends on nine parameters, namely four to specify 
the couplings with the external f ields and f ive to specify the remaining part 
of the Lagrangian, there are nine Independent symmetrical insert ions. 

We shall f i r s t construct the four missing unphysical insert ions. 
The method consists 1n constructing insertions which are realized by di f feren­
t ia l operators as a consequence of the action pr inciple, and study their 
commutators with zf • 

F i rs t consider [ l l ] , [ l ] 

(128) 

and define 
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(129) 

where as usual the dots Indicate the suostraction of the disconnected part. 
Has : 

(130) 

These Lunmutators have obviously f in i te l imits as £ - » 0 . Consequently 
the in f in i te part of is symmetric. Substracting the in f in i te parts, 
we get in the l imi t £-#>0 some Z i « ' s ( i * 7 T T CLK ) such that 

(131) 

Furthermore 

(132) 
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where 

(133) 

Let now 

(134) 

where the symmetrical insertions 

(135) 

respectively to'fncide with Jdx 3 * ? * ) « ^ ^ ÔIKJ J^U 3"c*> <^j«£^ under appli­

cation of Z I p h y $ and restr ic t ion at ^ « 0 . 

After what w.v, seen before the f in i te part A ° of A . is non physical and 
sat isf ies Eq. ( 131).From these commutation relations one can check that 

(136) 

*re symmetrical, (and obviously non physical) . 

In the same way one can check that 
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(137) 

1$ symmetrical (obviously non physical). Finally Z j ^ defined by 

(138) 

w h i c h can be r e a l i z e d b y p e r f o r m i n g a 0 " f i e l d t r a n s l a t i o n , i s c e r t a i n l y 

s y m m e t r i c a l and n o n p h y s i c a l . 

T h e s e f o u r s y m m e t r i c a l non p h y s i c a l i n s e r t i o n s a r e i ndependen t as can be 

checked i n t h e t r e e a p p r o x i m a t i o n ( A . has a O* te rm w h i c h t h e o t h e r s 

do n o t h a v e ; ¿ 1 . has a 1 1 ^ t e r m , no t c o n t a i n e d i n t h e o t h e r s ; £ j . 

. v$, t e rm w h i c h i s n o t i n £ J u ' ) . 

T o comp le te t he b a s i s o f s y m m e t r i c a l i n s e r t i o n s t h e r e remains t o f i n d f i v e 

o t h e r s w h i c h a r e i ndependen t on t he p h y s i c a l n o r m a l i z a t i o n p o i n t s . A c c o r d i n g 

t o t he g e n e r a l a rgument i . e . t he i m p l i c i t f u n c t i o n theorem f o r f o rma l power 

s e r i e s [ l ] , we know t h a t t h e r e a r e f o u r o f them whose t r e e a p p r o x i m a t i o n s a r e 

t h e f o u r terms o f o ^ W . ( 9 8 ) . A f i f t h one i s / \ ^ . T h e i r independence on 

t h e n o r m a l i z a t i o n p o i n t s , i . e . E q . ( 1 2 0 ) can be d e c i d e d a t t h e t r e e l e v e l and 

can i n d e e d be v e r i f i e d . T h i s comp le tes t h e p r o o f . 

0. R a d i a t i v e C o r r e c t i o n s : U n i t a r i t y o f t h e P h y s i c a l S O p e r a t o r . 

U s u a l l y , t he u n i t a r i t y o f t h e S o p e r a t o r f o l l o w s f rom the r e l a t i o n ­

s h i p be tween t ime o r d e r e d and a n t U i m c o r d r r e d p r o d u c t s , t o g e t h e r w i t h the h c r -

m i t i c i t y o f t he L a g r a n g i a n . H e r e we a r e i n v e s t i g a t i n g t h e u n i t a r i t y o f t he 

p h y s i c a l S o p e r a t o r so t h a t we have to show the c a n c e l l a t i o n o f ghos t s i n 

i n t e r m e d i a t e s t a t e s . F u r t h e r m o r e t h e L a g r a n g i a n i s no t h e r m i t i a n . We s h a l l 

h o w e v e r show t h a t the u n i t a r i t y o f t h e S o p e r a t o r can be d e r i v e d f rom the 

u s u a l r e l a t i o n be tween t ime o r d e r e d and a n t i - t i m e o r d e r e d p r o d u c t s , thanks t o 

an a d d i t i o n a l symmet ry p r o p e r t y o f t h e L a g r a n g i a n , and t h e S l a v n o v I d e n t i t y . 

T o g e t h e r w i t h 

(139) 
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we introduce 

(140) 

where T ar.d T respectively denote time ordered and anti-time ordered 
products. 
We f i r s t define the S operator in the fu l l Fock space (including the ghosts) 
through the LSZ formula : 

(141) 

where 

which is the straightforward extension of *0 . . 
phys 

One has : 

(142) 

and 1f the Lagrangian is hemi t ian, 

(143) 

Let now be the projector on the bare physical subspace. By 
application of Wick's theorem one obtains : 

(144) 

where 

(H5) 

the Index g Indicating that the sunwation 1$ restr icted to the ghost f ie lds , 
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and i t s } being the positive frequency part of the asymptotic ghost f ie ld 
commutators. 

Ue are now f irst going to see that 

where £ * f is the coeff ic ient of fy* in £ ^ " , 

(147) 

otherwise. 

This Is • consequence of the corresponding property at the Lagrangian level : 

where 

(149) 
(all classical fields) 

otherwise. 

This property is due to the fact that the ^ operation and the 
hermltlan conjugation transform the Slavnov identity in the same way, leave 
the normal 1 zation conditions unchanged (the *Q and f operations are defined 
1n a natural way on T ) , and that the theory 1s uniquely defined by the 
normalization conditions and the Slavnov identity. (101, 102, 103, 104, 105, 96). 

Thus ^-phys * s ^ a f t *1ncfc the asymptotic Lagrangian 1s 
hermltlan, which follows from (146) , hence (142) can he rewritten 

(150) 

where 
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(151) 

with 

(152) 

Let us consider 

(153) 

Then 

(154) 

Introducing 

(155) 

whose variat ion under a Slavnov transformation reduces on mass shell to Cm % 
and using the restr icted ' t Hooft gauge [22] defined by 

(156) 

1n which the ghost propagators have only simple poles [23] , allows to rewrite 

(157) 
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Now aaking use of the Slavnov identity on the ghost mass shell and of the 
vanishing source res t r ic t ion a l lwb jY ] to reduce (154, 157) to 

(1S8) 

which upon integration with respect to ^ leads to : 

(159) 

Since the expectation value between physical states of the time ordered 
product of an arbitrary mater of gauge operators is disconnected [2l] 

(160) 

i . e . 

(161) 

Similar ly , one can prove that : 

(162) 

which shows that the physical S operator E Q 5 obeys perturbati ve 
uni tar i ty . 
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Conclusion 

Gauge theories can be characterized by the fulf i l lment of Slavnov 
identit ies when the underlying Lie algebra is semi-simple, i .e. is s u f f i ­
ciently r ig id against perturbations. Then, simple power counting arguments 
are suf f ic ient to prove that, indeed Slavnov identities can be f u l f i l l e d , 
in the absence of Adler Bardeen anomalies. 

In part icular, we have shown, on the Su? Higgs Kibble model 
whose part ic le interpretation can be completely analyzed that the gauge 
Independence and unitar i ty of the physical S-operator follow. 

I t is believed that both the lack of r ig id i ty of the underlying 
Lie algebra and the possible occurrence of Adler Bardeen anomalies can 
only be mastered by more sophisticated tools based on a closer analysis 
of the consistency conditions involving the behaviour of the theory under d i ­
latat ions [7] ,[20] . 

The analysis of gauge independent local operators, although not 
touched upon here [ l ] should also be tractable in terms of the methods 
used here. 
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APPENDIX A : Cohoroology of Lie Algebras 

This appendix is a br ief summary of definitions and results 
needed here which are not easily found in classical text books [24] . 

Definit ion : Let w be a Lie algebra with structure constants - C * ^ y i 
which is the sum of a semi-simple algebra "Z> and an abelian 
algebra A cochain of order XX with value in a representation 
space V on which i\ acts through a completely reduced representation : 

1s a to ta l ly antisymmetric tensor bui l t on \ \ whose components 

are elements of V . The set of such cochains is called C M . 
We define the coboundary operator cL 

(Al) 

by : 

(A2) 

1n which capped Indices arc to be omitted. 
The fundamental property 1s : 

(A3) 
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• consequence o* t:<* caauUt ion re I a Hons 

(M) 

and the Jacobi ident i t ies. ^ 

An eieaent I * of C ( V ) is called a cocyde if 

(AS) 

The set of cocycles is denoted Z ' C V ) . 

An element X * of C i s called a coboundary i f 

( A € ) 

for some 

Obviously every coboundary is a cocycle (cf . Eq.(A3) ) . 
The converse is not always true. 
However in the present case where the representation is fu l ly 

reduced, the D«ra*»etri ration of all coboor;uries con be found as follows . 
we f i r s t spl i t P into an invariant and a non invariant part : 

( A 7 ) 

sudi that 

Mere we have defined 

( A 8 ) 

Mhcre Indices aro raised and lowered by aoans of a non dogonorato Invariant 
s j — (i ica) tensor. 
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The rest r ic t ion of Eq.(A5)to 1^ yields through multiplication by " t ^ 
and summation over : 

(A9) 

where 

(A10) 

(Use has been made of the commutation -.ween the tZ 5 ; . 

Next we look at • The coc.- f/.e condition recuces *:c 

(A l l ) 

We define the two operations 

(A12) 

and 

!A13) 

( 0 ^ transforms I ? according to the sun of H . adjoint representations of 
b and t ? )• 
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One can check that 

(A14) 

anc furthermore 

(A15) 

Thus if 

(A16) 

Hence 

(A17) 

Reducing the antisymmetrized prr-ouct of M adjoint representations according 
to 

(A18) 

with 

we f ind that 

;A19) 

and J . ^ is arbi t rary. 

To sum up, in the case of a completely reduced representee*on 
and a Lie algebra which the of a semi-simple and an abe'i:>n a '<~-bra» 
every cocycle 1s a coboundary tc tota l ly invariant cochains. w'her Q is 
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semi-simple however there is no such cochain f 0 r ri- <\, 2, . ;ir. tn-.s 
last case, the invariance which implies the cocycie condition and the r.oi 
degeneracy of the Ki l l ing f o ^ yield the r e s u l t . 
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APPENDIX B 

Me want to show here that the equation : 

(B l ) 

lapl les the structure : 

(B2) 

Froa this resul t i t follows that Eq.(59) which is a perturbation of order 
of Eq.(B2) Is a consequence of the consistency condition Eq.(58) which 1s 
a perturbation of the sawe order of Lq . (B l ) . 
Let us recal l the notations 

(B3) 

where : 

(B4) 

Since ^ is an invariant tensor i t can always be chosen of the form : 
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(65 ) 

Also : 

(B6) 

, , T T , T T ^ are given by : 

(B7) 

with 

(B8) 

Following those def ini t ions, we shall reduce (Bl) and (B?) to c numbers. 
F i r s t , substituting Eqs.(B3), (B6). and Eq.(B7) into Eq.(Bl) yields : 

(B9) 
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(B9) 

which in terns of the coefficients writes : 

(BIO) 

(811) 3 

(B12) 

where, for convenience, we have replaced of A V £ of Lq.(D9) by of*. , 

F1nelly : 

<W3) 

"here is defined by : 
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(B14) 

In Eqs.(BlO), ( D U ) , (D12) we have followed the conventions Introduced 1n 
Appendix A . Thus, taking Into account the def ini t ion of the coçydt 
condition given in Appendix A and putting : 

(BIS) 

we see that Eq.(BlO), (811), (B12) can be wri t ten as : 

(B16) 

(B17) 

(BÎ8) 

Comparing the coboundary operators which operate on a n d ^ - a 
we see that : 

(819) 
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Hence, taking into account Eq.(B17), Eq.(B18) assvnes the for* : 

(WO) 

F ina l ly Eq-(B13) writes 

(B21) 

In audi the save nay m for Eq.(tl) ejqnresslag Eq.(l2) in tens of i ts 
coefficients yields : 

(K2) 

(SO) 

(824) 

lie are now going to show that Eqs.(B22), (823}, (B24) .^^25^ are consequences 
of the resul ts of Appendix A , and that consequently T * , © , 2T can be 
chosen linear In F # 0 y ZL . 

F i r s t , Eq.(S22) is Indeed a consequence of Eq.(B16) since the cochaln J? 
takes values In the adjoint representation of which Is seal-s lap le 
so that . Then, owing to the relat ion : 
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(B26) 

Eq.(B17) becomes : 

(B27) 

Since no antisymmetric invariant tensor of rank two on exists i f P? 1s 
semi-simple we see that Eq.(B27) and Eq.(B20) imply Eq .{B23) and Eq.(B24) 
respectively. 
Final ly substituting Eq.(B23) into Eq.(B21) we get : 

(B28) 

Now considering *( a s a c o c h » i n of order one with values in the 
tensor product of the adjoint representation with i t se l f and applying the 
coboundary operator d we get : 

( B » ) 

Comparing with Eq.(B22) : 

(B30) 

we see that Eq.{B28) has the form : 

(B31) 

75/P.723 52 



- 349 -

Since no invariant tonoor of rank on^ on exist" if j f^ is v ^ ' i -
simple» Eq.(B31) can be solved according to 

(B32) 

The possibi l i ty of choosing T \ <L , @ linear in JTf (fi), 
stems from the exp l ic i t construction given in Appendix A . 
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