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ROOAMALIZATION OF GAUGE THEORIES
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Abstract : Gauge theories are characterized by the Slavnov identities which
express their invariance under a family of transformations of the supergauge
type which involve the Faddeev Popav ghosts. These identities are proved to all
orders of renormalized perturbation theory, within the BPHZ framework, when the
underlying Lie algebra is semi-simple and the gauge function is chosen to be
linear in the fieldsin such a way that all fields are massive. An example, the
SU2 Higgs Kibble model is anaiyzed in detail : the asymptotic theory is formu-
lated in the perturbative sense, and shown to be reasonable, namely, the
physical S operator is unitary and independent from the parameters which
define the gauge functionm.
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1 - Introduction

In a previous article [1] devoted to the renormalization of the
Abelian Higgs Kibble model, we have developed a number of technical tools
which will be applied here to the renormalization of non abelian gauge
models.

Our analysis relies on the Bogoliubov Parazivk Hepp Zimmermann [2]
version of renormalization theory. The extensive use of the renormalized
quantum action principle of Lowenstein [3] and Lam [4] allows to push the
analysis of the algebraic structure of gauge field models.

Yery few properties of the perturbation series are actuslly used
here, namely, nothing more than the general consequences of locality [5}.
sharpened by the theory of power counting [5], which, through the fundamental
theorem of renormalization theory [5] insure the existence of a basis [2] [6]
of local operators of given dimension and of linear relationships [2] between
local cperators of different dimensions. More precisely, we shall never use
the information contained in the detailed structure of the coefficients invoil-
ved in such relations, thus forbidding ourselves to envisage no renormalization
type theorems [7]

The algebraic structure of classical gauge theories [8] is then
deformed by quani.w corrections in a way which can be completeiy analyzed
with the above mentioned economical means, through a systematic use of the
implicit function theorem for formal power series [1]. provided that it is
rigid encugh : in techni<al terms, if some of the cohomology groups [9] of
the finite Lie algebra which characterizes the gauge theory, vanish. The
analysis can thus be successfully carried out when this Lie algebra is semi-
simple - if the obstruction provided by the Adler Bardeen [10] anomaly is
absent. We shall thus carry out =ost of our analysis in the seri-simle
case, and only make a few remarks concerning some of thc phenomena which
occur when abelian components are involved. For instance, we have noted
that the fuifillment of discrete symmetries allows favourable simplifications
which in particuia~ lead to complete analyses of massive electrodynamics [11]
in the Stueckelberg gauge and of the abelian Higgs Kibble model in charge
conjugation pdd jauges [1] . A complete analysis of abelian cases would
require proving non renorsalization theorems f?] , which would take us far
beyond the technical level of the present work.
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Another conservative limitation, due to the present status of
renormalization theory, is to discard the study of models in which massless
ﬂelds are involved, which does not pose new algebraic problems [12] but
would force us to rely on work in procqress [13] and to go into analytic
details which would obscure the main Vine of reasoning. In the same spirit,
we have not included here the analysis needed to deal with non linear
renormalizable gauge functions [l] , which would have made this article
considerably longer without adding much to our understanding. Similarly,
although the main subject of this paper has to do with algebraic properties,
we have decided to include one important application which we have illustra-
ted on a specific example.

The heart of the matter is to prove that one can fulfill to all
orders of renormalized perturbation theory a set of identities, the so-called
Slavnov identities,[l] [14]. which express the invariance of the Faddeev
Popov (Q’n) [15] Lagrangian under a set of non linear field transformations [1]
which explicitly involve the Faddeev Popov Fermi scalar ghost fields. Further-
more the theory should be interpreted whenever possible as an operator theory
within a Fock space with indefinite metric involving the @ﬂ' ghost fields.
When this interpretation is possible, the Slavnov identities allow to define
a "physical® subspace of Fock space within which the norm is positive definite.
The restriction of the S operator to this subspace is then both independent
from the parameters which label the gauge function [ll]. and unitary in the
perturbative sense.

This article is divided tnto two main sections, and a number of
appendices devoted to some technical details.

Sectien 2 covers the algebraic discussion of the Slavnov fdentities.

Section 3 deals with a specific mode) (the SU2 Higgs Kibble mode) [16})
for which the operator theory is discussed.

Appendix A summarizes a number of well known definitions and facts
about the cohomology of Lie algebras [1/].

Appendix B 1{s devoted to the resolution of some trivial cohomologies
encountered in Section 2 .

75/P.723 3
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2 - Slavnov Identities

A. The tree approximation

Let 6 be a compact Lie group, b its Lie algebra. Let {‘f‘}
be a matter field multiplet corresponding to a fully reduced unitary
representation D of G , with the infiniti¢cimal version :

o {w) - tla, ., {w)e I’)
Let {a } be a gauge field associated with b

{ C‘} { C_‘} . the corresponding Faddeev Popov ghost fields.

We start with a classical Lagrangian of the form :

Lo ({9}, {an} {cdd.

=d, (19} })-
149, & (mT) |

{inv. is the most general dimension four local polvnomial invariant
under the local gauge transformation :

6 0.9% [[ 8,0 0] ) ds

(3)

&0 )[4, % )| @, (9) 4

with

75/P.723 4
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=)

hY } < {‘{‘ :
(4) 5..,‘15) ?q(x)= 5(1'3) Cab L‘”ﬁlh "]

z s
ugey) Qe (1= S S(x2) &0+

- BY \ \
+ 9+, th‘ (x) &(x-4)

b 1 2 the st t"t‘fh ST‘-\W field
verez v;‘ are structure constants of 9, 1 g [ some fie

translation parameters. The gauge function { 9‘}%1‘: e shasen to be
iinear in the fields and their derivatives :

* ga = g: ae‘a}t * g: fa

Indices of b are raised and lowered by means of an invariant non
degenerate symmetric tensgr. The role of tha jauge term is to remove the
degeneracy of the quadratic part of ihw.' which is cu rected with
gauge invariance. The field dependent differential operator m involved
in the faddeev Popov part of £ is defined through the xernei

«p «
(6) ’mx, = S@P“) %(z)

The essential property of this Lagramqgian §s 1ts invariance under the follow-
ing infinitesimal transformations which we shal) call the Slavnov transforma-
tions :

§q (x)= §X &, ., 4.(0) C (41 = SAS @ (x)
o §a,, 68 5%(”@&{:) Gl3)z 334 O, ()
§ Cu(x)= 84 G, (x)= dA 4 C (x)

§ &)= 8 LG T,)m=814 )

5
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where the summation over repeated indices and the integratira aver rapeatec

space time variables are understood.

SA is a3 space time independent infinitesimal narametor wri -

commutes with {('Pa}’ { CLq } , but anticomrutes witn ( Cd }, f {__“; !

. . e ) |8 o
and, for two transformations iabelled by é.lq‘, , OAy, é.)\‘ ine @ 2
anticommute.

This invariance can be checked immediately, by using the comoosition
law for gauge transformations

d@ (_ s
(8) 8@,(-;,) ’ 5&)@(3) = g ¥ o(x-4) Owg(w

Conversely, it is interesting to know whether ;e is up to a divergence
the most gereral Lagrangian leading to an action invariant under Slavncy

. . w
transformations, and carrying nc Faddeev Popov charge @‘}

(9) Q*"¢ . -C

and given a functional q(l_g) + let us denote
an o dAsF(¥)= SV} SYm F(Y)

75/7.723 6
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where&Y = &14]’%5 the variation of Y'under the Slavnov transformation
of parameter &  (cf.Eq.7) . A remarkable property of S is .

(12) d‘f}"'(&') = (m 5)‘(1.) gcucx) ?(g)
This property actually summarizes the group law as follows
3<9Q= S (G:b c?b+q:)5¢-_-= dA 4@,
- P E..qf & ):
$a,,= $2(& ay, T+ qfa.8,): 514,

)
§C, =821 5T, = 824G,

tet

(13

L 4
- §C.=82 G (9.a)=dA4C,

£q.(12) twplies :
a X X =
A ﬁf‘ =4 Q‘& = 4 C‘ =0

(14)

which in terms of Eq.(13) reads :
b } rE Tr_. &8
w ETETHETTE,

ww [0506°] & o =0

] .

p _ & ‘Pex -0
Sy ¥ $n

& BY
EA =0

(©) [6‘, 0

75/P.723 7
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(d) (9‘ ‘1?- epq" &"qu)q =0

L (5P ) <

Eq.(15a) is the Jacobi identity. If we choose a solution corresponding to

(15)

h , £q.(15b ) and Eq.{15¢) assert that e‘ is & repre-
sentation of

If is semi-simple, then all solutions (cf. Appendix Aj of Eq.{i5d are
of the form

(16) q, - (edcl X

for some fixed iq-} . < o o

Finally £q.(15e) states that q intertwines ePXand EPX (the
adjoint representation of ). In the semi-simple case is thus
equivalent to the adjoint representation if { q; } does not vanish identi-
cally, a requirement which belongs to the definition of as a gauge

field. We may then choose in this case without any loss of generality Eq.(13)
to be {dentical with Eq.(3,4,7).

Let us now come back to the Lagrangian ‘f .
If f is Slavnov invariant namely such that

) 4[1(;)&::0
a fortiori

(18) d“[f Ll(x)d=z =0
Now, £ is of the form

Z= %, (19.3.0a,1)r o K Eary)

+0ZF ({0} fa,})r LP5acad, &)

5/ 723
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where f , iavarianrt under gauge transformations, is by itself a solu-
tion of £q./17). By Eq.{12} it is obvious from Eq.{18) that

apyé

{20} L. = 0

and that

(21 j’ (an}"z (Ka)i dx = O

o
Writing out the general forw of Kz: yields if h is
semi-simple

G KTl G T M & 1)
N xy P « ry P

o
where T'. o! s 3 mmerical symmetrical matrix. If b has an atelian
‘nvarimmt part \& this is not the general solution, the @TT mass term
being left undeterwmined.
Going back to £q.{17,19) ylelds in the semi-simple case :

@ L= L, (§ 9 } 'gaqa}) +
+C T, (MPT)-2.6 ™G,

which is fdentical with [g.(2) modulo a ~~“ofinition of Sd and "o
In the abelian case, there may arise an ambiguity unless the gauge function g“
(u € R ) contains besides the 2“;2,‘ terms a part which is invariant
under

For instance in quantus electrodynamics in the Stiackelberg gauge
[11]. there may arise the Slavmov invariant photon- @n m2ss term

75/p.723 5
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M —
Clt a . CC
2

This is nowever not the case in the t'Mcoft-Veltmar [181 JAauge whizh
o

contains an a}t a'“ term.

A simitar ghenomenon, wnich occurs in the ape” tan Higgs “ibtle mede!

{24}

X . . N e .
produces guite spectacular complication; i1, °f cre makes » comparison

with its SU2 analog {cf. Section 3} !

k4
This ds uut one pathciogy associated - th th® apeliar part: -F g, which
make 1% unstable under deformations.
For tnhe reasons explained in the Introcy it w2 shall from ocow oroascume

that is semi-simple (and compact :;

B. Perturbation theory : the Slavnov identi*ies.

The problem is to find a renomaiizatla effective Lagrangian
( = 1
(25) a‘:g (Q%},iaw},gc‘g,gcdj)

whose lowest order term in *L 1s given by £q.{2), assuming that all the
parameters in £q.(2) have been chcsen in such a way that all mass parameters

are strictly positive, and which {s furthermore i{nvariant in the renormalized
sense [1] under the Slavnov trans{ovmmation

s, = $2 Nz[(T;;‘Pj +Q1)C‘15 §A B,

2

§C = 48X G, =42 %j‘@;

r o _
w §C =8 % N !:FdPECPCU;‘ $a F,

zhere

to
75/P.723
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i} = te), fan}]

At
P& Q 3/.. o =5«ﬁ

: 4 T‘
and 91 . .P Q are to be found as formal power series
in ﬁ, [1] whose Iu-est order terms are the corresponding tree parameters,
namely

(27)

f‘ - . T O(t)
+ o(%)

]
fde

() P,
Ge = §. +0®)
:.E.' = 4P,

(29) f. 4 C,
%= %

cf. £qs.(4.5.7).

In order to deal with radiative corrections, let us add to ‘Pqﬁ
the external field and source terss [19].

. . = af P Jp—
(30) X‘P‘.+S"E_, +3"'@‘-+ 13 C,+ £ Cy

where x‘ is assigned dimension two, §n charge + 1 , Ferml statistics,
S“ ts asstgned dimension two, @ TT charge + 2 , Bose statistics ; T °,

g . are sources of the basic fields : J ~of the Bose type, E‘ .
g of the Fermi type.

Performing the Slavmov transformation Eq.{26) , and using the
quantum action principle yield in terms of the Green functional [1] Z (; '2)

w3 11
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g""

$Z ( j ér 615, o
.

s agternzi Tiel o

where g stands for the souvw:s and

. — b)
d = § 3"‘, L 3“5
h - f oyt 5}

O(n)dx is the most general dimer<ion five insertion czrrving
PTITV charge -1 , which is of trhe orm

(33) jdx A(x)= fdx [ ’5 fg-o-é( f +§ P >+anfxf

(32}

[ an )
)

——b

where ﬁ is the naive transformation Eg. 11; corresponding to fo.{26)
and ﬂQ lumps together 211 radiative corrections.

Haking expiicit the external field dependence, we shall write

Ds B, + X0, +5%0
{34} .
Q: Q°+ X‘QL"'E.{Qd

Introducinq a new classical fipld B carrying éTT charge + 1 and
sinearly coupled to A , the Lagranglian becomes

'2'&) ‘, -,
35) .'f;\“ = 034,“}?4- TP O
)
= d)eﬁ +§:6a

Zerforming now the quantum variation of the “izlds -

12
75/P.723
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- "~ (P .
é;i:2§;(1[) = é;‘jt r\ég [ é;’d. } éijt;§/i2}) C‘;; } (jt}
_ A
3, oCq ()= SA f‘£ )-gsq _3&0:; ﬁ()g)d;}(_l)
§Cum= §A (G P ) ()

me guanTlm 37t imciis) iaids

- A [ ; Y
B2 AT NPR)= [ax Sy 2 [T 0. B)
IR PUCIRE S S AT NN

: Zc(g"Z’P)

2
o™ 3 3 the tres Slawnov transformaiiaon ;é generates the variation

orresganeiag fo

§d.= SA Ny (-4, +FQ;)
38} 5@: 8)\ Nz (4Pq‘ﬁQd)
SC.(:O

:f('l P

arg ZC (3' '2 ’ !3) is the Green functional corresponding to '“

Thus, computing

# B2 (G ) [ [T 0 260

13
759,723
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where

we have used tne ainreviation
- £,
5(3,7}“ Z‘ J’ &/ J/“'!

[5G e 200)-
e T[S B (0P
= - fax [ (g e yE 48572, Jedlh mgm)}wa.
EACY),

(41) fdxalgé;m J/“:) Zc (], 7,ﬁ)=0

In terms of the vertex functional J (Y{ 7): P(‘qu‘,&;,?) which

is the Legendre transform of ZC(J' '2 ) with respect to
£q.(40) rcads :

J#[srg: ;T ] 0=
m):fdx [44(-‘(¢;f+3"l?,- +§B)+r40+ O(xA)](x)

£G.(42) ‘eads to a consistency condition for A . Indeed £5.{42" ‘s 2
perturbed version of the equation

75/P.723 14
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0y

- )y i - ¢ b
;u.fa::[cfc, {fdz Yo (3)] Gu ¢y ffa’z .fj,},f @)

stnce for any field w

{ () N
(45) {’(‘)I'(HI,QLJ Ju{g(:’().‘.O(n)

wix) J 9

We have seen ir the previous section that Eq.(44) , as an equation for SC <H
possesses the general solution

(7)

(n) wx’ ¢
sy 0 {éx)a[x::r g-(' 5 : Qfeg(x)d'x
atat’

r
where I-‘ is a numerical symmetrical matrix.
This provides a solution to Iq.(43F

(a7] Cgc.r . I”m'g:";a'; I

Tnis is the gener:zl solution of Lq. 4 because £4.[43) s a quantum perturdation
of £q.(45).
Hence the genera! solution of Eq.{42) {5 3tven by

(n) «’ ¢ [ (n)
(48) S‘C‘kf[[)dx::r' gﬂ' da/‘.;&:g)dx+ o(/ﬁ’-’)

75/P.723 15
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whicn, tak'ng into account the structure of the E!. couplings car he written

in the form

[ (n)
é“f;)d’ r g Jf {x)dx.u /C(/fr)*

(@')
where R is 07 the order of A .

Substituting £q. (49} into Eq.(42) leads to
& Gt \?)
{50) fdx {'.,(x) fd; é(}) g“ cha,fdi’ (!)
= fdx Otx) + O{t'A)

Recalling Egs. (28),(29) one has

(51) g: P, - g: f‘ + O(%)
Hence, using £q.{26),

¢ (n) ¢
Ge ey [Ay Ly (3)2 4 Gi & O(4)

(52)

- 4°C + O(%)
We have thus ubta1nLu the consistency condition
dx ,3’?&32@)1‘4[‘(‘/\”0
(53) J (2)
.- dﬂﬁzw o(%4)
Now, the most general form of A is

16
75/P.723
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Ah}= (A( }(X} +(C Asi\?é\c {}\ ‘fx)+
L - PE
+ (C Ca C)' $ ?)(I)A PI K

S DN P

where lisensions and Guantums ~wsbers are takem intc account Sy

TORNAR (z)--[ 4> C. ‘,,+C Z C](:c)

(56) Z":/‘ =Z%P, 3/‘
od J o _
(s7) D..(X)a-gi- I" ad (CP C, C; )(x)

for some c-mmber coefficients @‘P . qu r . I'.‘ ,UJ’J

Since, due to power counting # cannot depend on the external fields
(¥ 3 } , the external tieid dependent part of the left hand stae of

£.(53) , mstve O(RAD) . nmery,
a . 0 o
(58) 4F{J‘ﬁ- + 5 P,,)wd JxAu)--C@é)

1t is shown in Appendix 8 , by cohomological metnods, that, as a result, the
externa: fleid dependent part of A 13 of the {zra

(59} {(fﬁak B, ) mde=— < M[b’ (PoTl), + 5 (P4, Joxs cix
+0/(%4)

75/v.7123 17
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-«
whire Tr ;’T Beoparametrizeg in o teew of nuerica! coefft cTents =
A‘ ‘-h.d o SJ
7 N z accoraing to
' P “ A

Tr .. ¢ C‘ + ZL C“
(60) ‘J J
A
AY = E
M- [L*7EC,
with
A A o

(61) Z.—

/sl/"=Z /53/‘

~ - o~

The coefficients @ Z T‘ can 52 choszn and wili be
chosen to be linear in @ Z F as shown in Appendix & .

Now, we know from the quantum acZion principle that the external
field dependent part of A is of the form {cf. £qs5.(33),

)ﬁ'& D+ E«A.)(xk-drjp!(y‘f + 5 -P. )&x) +
+ 1{/(2’ Q. + 5 Q‘)(x)a’x

where Q Q« are formal power series in t and in the coefficients
of R,P(?# . From the previous observation that 7T T’: are linear 1n

A‘ ' Ad' it follows that 7T Tr are forma1 power series of the same

typo as Q" ’
Finally the system

(63 m T, =

which insures that (cf. Eq.(59)

o Jyia. . sta)wo(ta)

‘s soiuble far P .P as formal power neries in '3\' shis tdering T‘: -’FL

T5/P.723 18
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4] )
wnk B2 BB
as forma! powe~ series in t , :P‘-..,.»,“ ) g g : 2NT COMRT

<
with {52) we see Lrat, to lowest cor vgnishing oroe” ia ,? 2.

~

[
(65) TT‘- = J?‘-.P‘

Ty c 2
12(- 2 =@d(x’ P"'J"}

whers both O ; ars O(ﬂ (?-P}‘l) 1S system has a2 untqus
solution O{ﬁ) fer P } » ‘-

Let us now lcok at the external field indenendent terms 1n 4:3
which ‘¢ Q('ﬁb} in the externa! fields. The consistency condition nom
reads

(67) ﬁz[R 3-.- - f&A (x)+O ('A'A }
i.e.

o 4 lde(4R% A= O(%4)
. a A }

(69) 8, = ) 7:3—

if wa can prove :r-at‘] Aobt)dix is of the farm

. o \
(70) }dxéﬁz),;‘jdx&cw-r 0 /'t A
M

T5/P.725
19
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comparing with £q.(33'@34; which can e o .4 ivte the “orm

m Be=z -4 off + A Q (%, u,g)
where t§°= tgo#‘éi-d:‘ﬁ# 15 3 formit power ifiex

arguments, it follows that Qo is of the form

Since the eguation
J ‘t -, . o nﬁfi
(73) aﬁff L' - QG(X’.«,ﬁ)zaf)

is soluble for

w  dg £ 0(k)

1ts solution leaves us with

(75) 4, = 0 (*4)

Recalling that also (cf.Eq.(64))
o D;= 0(kD), Qo= C(x4)

we cenclude &t

() A: O(%8)

nence

8 125 - O

20

nothe 'ndicates
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which we ¥ant to achieve.

Now the comsistency conditiomn shows that

(19) ﬂlxﬂ o= de(A) ﬂq + O(%ka4)

where

80) 44 g=°

Thus, there remains to prove that any Aq can be put in the form
~

(81) Aa A 5

Using for Aﬁ the expansion {cf.fq.(54})

A‘,{u)z A“{x)c_'(x)fq,(x)A xy2 A(J}C (2)+
+ GGG )G )E, x) AT

(82}

since (80) implies
2
83) 4N, =
/S

a discussion similar to that found at the end of section A {cf.Eqs.(17),(18))
shars that

4,589
A =0
(84) 4 2,
ap
A#"ﬁ'» I J(x 2) 077 (z;)
a3y
where the mmerical tensor r is symetric in & and & .

44, -

21
Is/P 123
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x3
#5) ) R

A “ “ Jx- Ay =0
(86) {uz) A‘?‘J)" ‘{#q) Aé(")' f ¥ (x-4) 4(5}

One can show [20] that the general solution of £q.(86kthe first cohomology
condition for the gauge Lie algebra, which is nothing else than the Hess
Zumino [9] consistency condition, is

o A
(87) A"(z)z cs;“z) Aé + 9. (%)

where g“ (x) , the Bardeen DO] anomaly has the form

. Apyd v .
(88) g“(x)= Qﬂeﬂvr,[l) "”a“aff a; +F N'Cl,g 0; a;]
o i

the adjoint representation of
“syd 4 apdp ¥8§ L wgdp $p afd o BY
o F s 2 [D DA DS,

Such an anomaly can only arise {f the tree Lagrangian contains Gﬂv‘.r or
~X$ symbois and 1f there is a non trivial 0 tensor. In the absence of such
an 3anomaly, one has :

- 4 - - A
(”)g‘ﬂé""" Cc( (x) 5"{,(’) Aé =d A¢

which completes the proof of the Slavnov identity in such cases.

where

is a totally s?-znetric invariant tensor with indices in
and

75/P.723 22
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-. ine Facdeey Popey Ghosl egucelion o0 mioun

It will be of interest in “ne ‘. i‘owing to write down

-

the Faddeev

Ponoy ghost equation of sotion ir fermy 3¢ me Slaynov identity. It fo'lows

from £g.{42) that once the Slavrov identit. ~:: Leen proved,

(s [c{c‘l" g: Iy f}(:)dx =0

and we know that the general solution of this equaticn is

o &wl-Twgis T

« ;(X)

of
where r o’ is a symmetrical matrix. Taking the Legendre transform of

£5.{92} yields

193} T", g: J):-(z) ZC (Jt 7): g.((l)

. which (s therefore the @ Tr equation of motion. One should also note that
‘siis invertible in the tree approximation and therefore to all orders so

thatiqg.{93) may be written in thc forw

) J,:,,,‘ Z (4.0)-(r) §Fw

23
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3 - Physical Interpretation - An Example le}

Given a gauqe tneory which has been repormatized in such 3 way
tmat a Slavnov identity nolds, there remains to chow that one can interpret
it in physical terms, which is not obvious since many ghost fields are involved
{ aa_, C. E ...3. First one should specify the connecticn between the para-
meters left arbitrary in the Lagrangian, and physical parameters, {masses,
coupling constants} through the fulfillment of suitable normalization conditions.
vhen, once the theory has been set up within the framework of a fixed Fock space,
one has to specify a physical subspace within which the theory is reasonable,
e.g. the 5 operator is unitary and independent from unphysical parameters
anong which the ' cf.£q.(26).

In order to make this program explicit we shall treat in some
details the SU2 Higgs Kibble model [16] in a way which parallels our treatment
of the abelian Higgs Kibble model [l] .

A. The Classical Theory. .
The basic fields are Y = {0", T, a,,/., Cu, E;}’d:4‘8,3

At the classical level, the Lagrangian is invariant under the Slavnov transfor-

ST 2 §A[-£ £PT TG, + 2 (0+F)E, [z AT,
§o=dx[-£ n"&‘,J dA &

(95) - -
$0,-42[3.C,- e8P0, 3]s N Z,
§C,= Ja[% MG, ]
dc, - 4 [9”@“

254R,725

JaA &,

&g,

+
>
2

LY

24
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£ “s5

ef 2 counlling cor.tant, and F 1s the O field transiation parameter.,

where are the SU(2) structure constants, e plays the role

This particutar choice of transformation laws implies the invariance under
a glabal SH 2 - mmetry tran.iorming 7_r . g,.. C. _&_- as vectors and
leaving 0’ invariant. Even if this symmetry is to be preserved £n.(95) is
not the most general trancformation law fulfilling the compatibility condi-
tions £gs. 14,15 ), which depends on four parameters besides those which
tabe! the gauge function : e, F, and wave function renormalizations for the

g and € Fieles. awen these parameters and mtroduc.ng externa’

fields " §" coupled to 2} 9« ,z }
and swni—ces 32 ,,a‘J’.JqE f EJ CWP‘QG{W Yj { :’l'/uc‘d:qu
e Slavnov men"t', reads

CFEZ (L) [ [T00L e Trdig» Tlobs

—S(x)JM-§m(a fons + P52, ) ]Z(f?).
=0

e have seen that the most geners: action compatiblie withfq. (96) is of the
form

‘97) f&’(x}Jx- _/J' {;f (1)- 5?")54("’ fd}Q&)m Cp(J]
+ V) Lh)s )"(x)?{xu )’7"1? /) + .?(a)i’ /x)j

fi’."— G}vq 24D@DF¢

m e£48. X (@) [ 2 e

I5/p.723
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=
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l’\n
Oy
4
*_40
~~
Q
J

w
]
\SL/
=N

/)7-’;1':5 .Y (a; §(x-y) st e eqmla‘,ﬂ (:)HL;))
+ 229-. (a BT (x) + g"‘ﬁ(cmw)) $te-g)

and where the coefficients are so adjusted that the coefficient of the term
linear in @ vanishes : '

2 X
f- — = 0]

!

(100)

The theory thus depends on ten parameters, four specifying the transformation
Jaw, one related with the field vacuum expectation value, five specifying

the external field independent part of the Lagrangian, constrained by condition
{14) , (15) . One can aiternatively specify the following physical parameters :

m o M, Maw which give the positions of the poles in the transverse
photon, @ , C,CT propagators respectively :

(o) Trar (m})=0
(101) (b) T, (M)=0
(e) Tee (m;_): 0
the residues of these poles :
W T (mi)e 2,

® (M= Z,

7R4P 151 26
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. ! 2\ 4
(C, T:'I ( m")_ j-c_
the value of the coupiing constant
2 2 P
103 T MHj=E
wn L (mdmin)

These normalization conditions together withiq.(100) which is equivalent to
(104) < 0o>=0

R a :

fix the valuves of Za B, ta'. A, X, e.e. F . leaving free
two parameters in the definition of the transformation laws. For simplicity
we shall of course choose

(10s) Z = Z, -1

These normalization conditions together with the Siavnov symmetry
actually imply that the masses associated with the a&', ? channel are
pairwise degenerate with those of the C T channel. Thus, in view of the
residual 5U2 cymmctry, all the ghost masses are degenerate.

Within tne Fock space defined by the quadratic part of the Lagran-
gian, we shall define the bare physicn!;ﬁ)space ?'c‘ncrated by application on
the vacuum of the asymptotic fielss A , O which explains that
c.,U. 2. i are considered as “ghosts®.

According to this definition, it is easy to see [21] that the matrix
elements of the S oprrator between bare physical states do not depend on

the gauge parameters ¥ , m“.

2. Radiative Correctior< - Slawnov ldentities, Mormalirzation Conditinng.

Now, according to the analysis of section 2 , it is possible to
find an offective Lagrangian such that the Slavnov identity (96) holds to
21l orders {where now P is to be deterwined as a formal power series in R )
Me also know that the Faddeev Popov equation of motion is : (cf. Eq.(94))

27
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(106) [9/‘5’(&) *f"(d'?’z) JZC (9. n)= %E (=)

where 7-2 is some formal power series in ﬁ .

The theory depends on ten formal power series whose lowest order terms
specify the tree approximation Lagrangian. Eight of them can be fixed by
imposing the normalization conditions (101, 102, 103, 104). These norma-
lization conditions are enough to interpret the theory in the initial Fock
space, because, as a consequence of the Slavnov identity, the ghost mass

degeneracy still holds :
Expressing the Slavnov identity in terms of the vertex functional I" yields :

Jofd T $, Ted T, T ST S, T+

(107) w0
- a -
+ “Co r Jj’?x)r * c%dz)r[a Q‘/‘(x)+.f72;[12]]-c

In particular, one gets the following information on the two point functions :

~ AL

T (B) T3 (P)+ f”,‘,ag’pv 7;1(;»‘) +p 2 (P)=0

(108)
o) T, (D+ Zop (DT, (8- B, ()=
T ()= f’;,,,.(ﬁ)
w L (B g B (p)
;J( )= - Bu by TZﬂa«(P)
Tg (P)= ;zr‘ (P)
s B () - ;'_3121“ f%. o (P)
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On *he cther marnd the G TT ecuition 30 action 178 yiatde -

. (P)

ol R

(110) FT;{PL)— P, (p)=%

it follows tia: :

N (:f‘ S\ B Rl T2 B d-ed] 0
T, ot

which shows that this ceterminant has 2 double zero 2t

2
Pz"’ mﬂr

L. Tre Pryzical $ Dperator @ Gauwge [neariance.

According toc the (SZ asysptotic theory, the physical S operator
is jiver in the perturbative semse r terms of the Green's functional

z-expiz‘ . by :

my S, = S..(3) IJ:O

R
(113) + Q.‘,. (x) :; vaa”é;) }: = (3 ' 7) I

'l:O

L, Z(39)

29
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N o T-‘n .2 W
In the above formela, O™ |, K' O._‘/,' =~ }‘Pare the canori-
cally gquantized asymptotic fields and differential operators invelved in their
equations of motion, derived from the asymptotic Lagrangian determined by F s

which in the present case, can be read off from the tree approximation.

We want to prove :

8 SP‘"yS = asfhls - O

(114) >
° Myn ox

Owing to Lowenstein's actioan s-inciple, [3] » one has

w22, 2(40)=0,Z(3.0)

2,
where A is one of the parameters J mw and AA is a dimension
four fnsertion obtained by differenciating fdx .'f,f;[x) with respect to A
Using the Slavnov identity, we are going to show that AA can be written as :

s 5 .
ol ,0 St s

0
where the A;'s are such that

(117) ZP*’:-" Ai Z (}.7):0 , {=A,...5

and therefore leave unaltered the physical normalization conc:tions (101 a,b ,

102 a,b , 103) . In the following those ‘nsertions will be <2°7ed non physical,
s

Or the other hane the AL 's are symmetric insertions, namey

w3 O, Z(dN)0  ist.s

75/P.723
30
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Thus applying 233.{1i6,117} to the pnysical normalization conditions

{101 &,b , 10C a,5 , 1C3) , yreldu 4 iinear homogeneous system of equatiuns
of the form

) . .
S, _S»J .
(119) Z C)LAE -0  jzd...5

twd

for which we are going toc see that [11.1}
(120) det “ JA YR | #0

since this will prove to be true in th: tr:z approximation. Hence it follows
that

S.t .
(121) C, =0 {sd,....5

and the gauge invariance of the S opsrator follows from Eqs. (112,113,115,
116, 117).

The decomposition of AA given in £q.(116) follows first from the
Slavnov identity :

22y Os= alfz. =(33'3)Z+% JA)Z
Hence

(3, )2 =-2(E 6, e Z

=;“'- [4,, 8] Z

(123)
Moticing that

(124) fdn E?’)éﬁ,) = - [fdx (J-?‘)Jﬂxfl?x)éa’&))' f]

1579.723
31
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A0
A
we define 4 S, oy

) [
1235 = f’. 7 ; '“;;,1 { ] v
{ l/_\L } de {J‘J)éﬂx)*a"‘woa“(” 2

L

which is & aimensicn four insertion as foliows from Lowenstein's action
< hl

principle [3; .

Hence

P) e . -
o [D,- 28 &, 3] =0
thus
o S
(127) A)=§—§ A,(-f-A}

where AA is a dimension four symmetric insertion. We are thus left with
finding a basis of symmetrical insertions. Since we know that, given the
Slavnov identity ‘feéﬁ depends on nine parameters, namnely four to specify
the couplings with the“externai fields and five to specify the remaining part
of the Lagrangian, there are nine independent symmetrical insertions.

We shall first construct the four missing unphysical insertions.
The method consists in constructing insertions which are realized by differen-

tial operators as a consequence of the action principle, and study their
commutators with

First consider [11] [1

0 . *P jc/x See .

(128) ” §oxne) T ()

£
ﬁz
QQ4.= —K: fdx %?x«ré‘) a/“ J

and define Af . Lw (7?', a.). b

15/%.704 32
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’ & £ -
wy N Z=:FQ:Z

where as usual the dots indicate the substraction of the disconnected part.
oo has

(130) [Af,a’]Z fQZ-_[-J’lQ]Z
ff"l‘ f(z+£)<(3.,m) z CeT
fdx §laee) 3 {T.&A)Z ¢ Qg

These commutators have ob\iiously finite limits as £ 0 . Consequently
the infinite part of A‘- is symmetric. Substracting the infinite parts,
we get in the limit E€-»O some A;'s (i =T, A, ) such that

E%0d . Z =T
o) [A‘-' f]z= b3 ﬁ’ () Jx) ¢

—af N -
fdx E(l) =) JJ'(‘{)Z Q.

Furthermore

)2 Az] DAL ZJ:

- 2 ﬁ: [orbpgtd,, otz /Jw
‘ZH -{d,b[J'(‘p)I‘“(p)S%+3'($‘) ]A;?ip) Jidc;{"z l

2 'fdx T Tas, +L )3 glz ‘1;

75/P.723 33
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where

iﬁif 2 - C, . £
(133) ot (P> dG'(P) 53"(-?)‘ Q{ L

\}":?290

e ﬂ

| (D=4 [arl PP

0% (3 8) ) S O T s
Let now

(134)A A- M)A ];(ma)A

where the symmetrical insertions

0, - jdx J'?X)S:r"(x + X0 nss ]

(139) \gdx[a'(x)cga.% +d’7“) 74 +‘g(x)<;—
+ Jix ﬂg‘ﬂx + ¥ 0 c;r(x)]

respectively colncide with Jdx U(x)cga x) ond p{x T‘l)é‘ o« under appli-
1 T

cation of 2. phys. 2nd restriction at J-O

oe
After what was seen before the finite part A of A {s non physical and
satisfies£q.(131).From these commutation re]atwns one can check that

L e
AZ:S = J’dr [dex) eri- -f(lx) 53'40‘)] + Aa,r

are symmetrical, (and obviously non physical).

(136)

in the same way one can check that

75/9.723 34
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= fdx [g“(x) gf?:) + 3'(‘:) { 'l“)}

os .
{s symmetrical (obviously non physical}. Finally A~ defined by
os
am A Z- [axTwE

which can be realized by performing a O field translation, is certainly
symmetrical and non physical.

These four symmetrical nom physical insertions are independent as can be
checked in the tre: approximation A:s has a G2 term which the others
do not have ; A; has a TCY ters-. not contained in the others ; 0)
has as. S.tzumidn is not in A:' ).

To coxplete the basis of symmetrical insertions there remains to find five
others which are independent on the physical normalization points. According
to the general argument i.e. the implicit function theores for formal power
series [l]. we know that there are four of them whose tree approximations are
the four terms of oLy, (98). A Fifth one is A: . Their independence on
the normalization points, i.e. £q.{120) can be decided at the tree level and
can {ndeed be verified. This completes the proof.

oS

(137) As

4

D. Radiativc Correctionz : Unitarity of Lhe Physical S Operator.

Usually, the unitarity of the S operator follows from the relation-
ship between time orderced and antitime ordered products, togyether with the her-
miticity of the Lagrangian. Here we are investigating the unitarity of the
physical S operator so that we have to show the cancellation of ghosts in
intervediate states. Furthermore the Lagrangian is not hermitian. We shall
however show that the unitarity of the S operator can be derived from the
usual relation between time ordered and anti-time ordered products, thanks to
an additional sysmetry property of the Lagramgian, and the Slavnov identity.
Together with

o E(J)- < ool fel451 3200

35
75/9.723
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we introduce

(140) Z(g): < ?exp E-é— de#jf}t(x) +J(x)zV(x)]}>

where T and T respectively denote time ordered and anti-time ordered
products.

We first define the S operator in the full Fock space (including the ghosts)
through the LSZ formula :

wy S=2 Z (3’)13,0
where 2 = !exp jdxdyw:"(x) K,:;‘ja 63

=)

which is the straightforward extension of phys”

One has :

(142) ZZ(J)Z 2(3)=41'

and 1f the Lagrangian is hermitian,

o  TZM=(Zzg))

Let now Eib be the projector on the bare physical subspace. By
application of Wick's theorem one obtains :

(144) ZP"‘P Z(J)expﬂ ZP")-*Z(J): E,
where |
- T D3 3
(145) A=l J(dX[JJs K 5+* K ‘{;{a}(")
the index g 1indicating that the summation is restricted to the ghost fields,

36
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and Lts;_’ being the positive frequency part of the asymptotic ghost field
commutators.

e are now first going to see that

wo [Z(1)]-EZ(J)

where gi"' is the coefficient of ?ﬂ‘ff in J ¥ .

This is a consequence of the corresponding property at the Lagrangian level :

v L - €Ly

H =
where
gc-C
€C.-¢
e Bn- Rt @n aassial fielss)
m= -q;f otherwise.

This property is due to the fact that the g operation and the
hermitian conjugation transform the Slavnov identity in the same way, leave
the normalization conditions unchanged (the ’e and 4 operations are defined
in a natural way on L' ) . and that thc theory is uniquely defined by the
normalization conditions and the Slavnov tdentity. (101, 102, 103, 104, 105, 96).

Thus thys fs hermitian since the asymptotic Lagrangian 1s
hermitian, which follows from (146) , hence (142) can be rewritten

w0 Z, Z(Dlesp A" ] [Za 2] -

75/P.723 37
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c < «
as1) A=k /a/x[c{:, /<3.S‘f,‘ K’J;:}](x)
with
(152) j::- \?;73

Let us consider

(153) U (X)) = exp AAR®

Then

o 3, S, () umsﬂs(g) |, =

Introducing - Phys (g) UQ u (A) SP")-‘ (3) JJ._. °
-g - e al‘ad#
*ae T (M)

whose variation under a Slavnov transformation reduces on mass shell to q. ,
and using the restricted 't Hooft gauge [2@ defined by

(156) I (mi)=0

ax
in which the ghost propagators have only simple poles [23] , allows to rewrite

= { ﬁ \th!x ( K Sy ¥ i2:%;5 CES +
(157) +j§ (7{5,% K)SS— Jg + {5[72&* K;j%+

(155)

+ 8 (R R) §+ & (RSiuR), dr|e
38
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Now making use of the Slavnov identity on the ghost mass shell and of the
vanishing source restriction aliows [1] to reduce (154, 157) to

3 S (UM SLL (D), =
S, G T (R R) (Jefe| st @]

which upon integration with respect to J leads to :

Soe () U S5 (D, =

= D &) exp]d; dx [33 (K Sem R’ggfg}(x)} S:;s J)

(159)

|

I

Since the expectation value between physical states of the time ordered
product of an arbitrary mmber of gauge operators is disconnected [21]

as) S, st s = Eo

i.e.
(161) E,, S E,, S+Eo = Eo

Similarly, one can prove that :

e E,SYE,SE, = E

which shows that the physical S operator E° S [Eg obeys perturbative
unitarity.

39
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Conclusion

Gauge theories can be characterized by the fulfiliment of Slavnov
identities when the underlying Lie algebra is semi-simple, i.e. is suffi-
ciently rigid against perturbations. Then, simple power counting arguments
are sufficient to prove that, indeed Slavnov identities can be fuifilled,
in the absence of Adler Bardeen anoralies.

In particular, we have shown, on the SU2 Higgs Kibble model
whose particle interpretation can be completely analyzed that the gauge
independence and unitarity of the physical S-operator follow.

It is believed that both the lack of rigidity of the underlying
Lie algebra and the possible occurrence of Adler Bardeen anomalies can
only be mastered by more sophisticated tools based on a closer analysis
of the consistency conditions involving the behaviour of the theory under di-
latations [7] ,[20] .

The analysis bf gauge independent local operators, although not
touched upon here [}] should also be tractable in terms of the methods
used here.
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APPENDIX A : Cohomology of Lie Algebras

This appendix is a brief summary of definitions and results
needed here which are not easily found in classical text books [24] .

o«
Definition : Let h be a Lie algebra with structure constants .F P ,

¥
which is the sum of a semi-simple algebra ‘3 and an abelian
algebra d% A cochain of order N with value in a representation
space V on which acts through a completely reduced representation :

< ol
hs hist
is a totally antisymmetric tensor built on I’Z whose components

I_,«(.....,(,t bt

. n

are elements of V . The set of such cochains is called C (V)
n
We define the coboundary operator d.

crv) £ ™)

(A1)
v Y. "Z“' ket | Ay T"v'-:‘\u'- % ne4
n SEREE 98 (_) - t )
(A2) (d. r) : kit M
ned -~ A -]
kel o o Aol ] ne4
+Z. -) £%, I
ke lz4

in which capped indices are to be omitted.
The fundamental property is :

(A3) 4™ 4" 0

42
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2 consequence ¢ e commutation relations
) [ t'l, EP]___:‘;'(PY tl

and the Jacobi identities. n
An element T of C (V) is called a cocycle if

(45) d"T'-o

n
The set of cocvcles is denoted Z (V) .

An element I, of Cn (\V) is called a coboundary if
n-4 2
{A8) r = d. I'
A n-4
for some T = C (V)

Obvious iy every coboundary is a cocycle [cf. Eq.(A3)).

The cocrverse is not always true.

However in the present case where the representation is fuliy
reduced, the daramctrization of all cobouricrics con be found as follows .

We first spiit I' into an invarisnt and a non invariant part

() T. 11, + Pb
such that

tzrh=0 ) tzrb #o

Here we have defined

(A8) t2= td tut

where indices aro raised and lowored by moans of a non degonorate invariant
symmetrical temsor.

Y Rt 43
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The restriction of fq (A5)to I’b yields through multipiication by th
and summation over d1

n-4 2
R
(A9) T’b = d L
where
P ey d“"'dh—4 é: rdd“.--.dh-‘
(T") « I,
(A10) = ‘E_"
Lol
(Use has been made of the commutatior « ‘< b= ween the = & .

Next we look at Ey . The coc o ¢ conGition recuces "o

i k+f‘. (‘dkdt ﬂia\‘..ék,..g{émo@(ﬂﬁ

jaa
w2 (=) L = O
P T p ) =

We define the two operations

et

n " -
"Tf . C(Vv)— T (Vi

(AL2) ' %o dy, m_}?q,(... Ay a
(rfr) -
and . n n,
: . .
'A13) doe oy oy dn - !,c_f.(.f*ofk S ALY
("efT) Ty &)

{ ef transforms I’ according to the sum of YU adjoint representations of

h and t? ).

75/P.723 44
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Jne can check that
™io © n s At
{A14) I'. d + &0

an¢ furthermore

n npp mnf n
{Al5) d o e = I od
Thus {f d‘“ Th

R

{A16} ef r

-4 R ™
A - Q o I?'Lb

2 nd et Rt P
(A17) {“8) l—; = d o efol I

Lo

Reducing the antisymmetrized procuct of ¥l adjoint representations according

b
(A18) T‘#: P: +rq
with " . (ne)sz:# 0
( e) rl? =%, &
we find that b
‘A19) T'

b
_A 4 T T
6 )

]
and IL is arbitrary.

To sum up, in the cass 7f a completely reduced representation
and a Lie algebra which 'z the -

.m of a semi-simple and an abeii:n o ~obra,
every cocycle is a coboundary u: tc totally invariant cochains, #her
75/P.723
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semi-simple however there is no such cochain for fl:-%, 2 i s

1ast case, the invariance which implies the cocvcie condition and the ngi

degeneracy of the Kiiling form ield the resyly’.

75/P.723
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APPENDIX 8

We want to show here that the equation :

4% (30 PoestRm)+s(reoa, () + 54 Bto)z
=Y u)[(A () & %.13) -4 (5)8_ \P (x) -
- -(?(a)émwf W )A‘-(x)}
+&?"){ Aﬂlg) Caly) .‘(")'*P (3)5— A (?'-)'_.] =0

implies the structure : CP( d)

J ll)A (x) + Ly )A¢[¥)— [d (X?x)P (x)+£’ (x) .E(K))*
+4 (X(x)n:_(xn &(xﬂT (x))] s

2 zX‘(x)[(TT-!;)é +m(3)%(-)i’l.(x)+(f’.(g)£ +P S_)IT(,)]
-ﬁlx)(Tl'(;)S ]i(x)+]?(g)5 TT(x))

From this result it follous that £q.({59) which 1s a perturbation of order "TA
of £q.(B2) 1s a consequence of the consistency condition £q.(58) which s

a perturbation of the same order of tq.(Bl).

Let us recall the notations

(83) é‘, ‘K)- t; [ ¢J. E‘J(X) + qj E‘ (x)

where :

) 4 g
Bop= e

o
Since qp is an invariant temsor it can always be chosen of the form :

T5/P.723 47
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(85) ‘i:= q 5(:

Also :

° B . _ _
) P, (x)= 2 ?« (CaTy)tx
A. » Ad' TI: » T\; are given by :

)
" e [ 42EE
4
2

with

(88)
ol o
Z &}‘=Z¢y B/"

Following these definitions, we shall reduce (B1) and {B?) to ¢ numbers.
First, substtituting Eqs.(B3), (B6), and Eq.(B7) into fq. (Bl) yields :

R AG T CN % P""z:j 98580
+ 4 X( )l:t ZN @ C1 F")’ a c;PZ J(C.‘C(;Cx)(")
(89) + re e
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1 RN [WP et LT, -
« 1 \NYr py -
(89) ; PZA ¥ Z £\,5 ]gf'ca’("}

#8002 A g, *"](d 25Ty Cs) () =0

which in terms of the coefficients writes :

.. oy &y Ay -
(1) -3 [Z(') 5, mfg o é;(:) ﬁ L 7:0
(B11)3 | 3 M “a
o ey _ U.@ k
JECHOT N "C.,.«.. ,
+ I‘; L ) =0

Y

(812) Za-c. u,_, o .- al5

[Z(—)“‘ N “d-g Z(—) &‘M‘ .
Z(— “‘@d‘a dat "4“‘3 %

where, for conventence, we have replaced clP Y, § or Ly.(09) Ly o( o(z.

d,, o,

Finally :

[(Z‘Zﬁ) (sz )J «ﬁZ«\r

(m) WwY ool A
»-2@%&9&*2*; 9, ]"O

o
where z is defined by :
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o Y £ yo 5— P2
wo (G°ZF), = e Zy+ £, &,

In £qs.(B10), (B11), (B12) we have followed the conventions introduced in
Appendix A . Thus, taking into account the definition of the cocycle
condition given in Appendix A and putting :

.(tyrdw)} =0 ?krg «py
fe ) . [t} @F]
(815) (t ® )"’ [ °<PJ k
(te de)q = tafb Zb
) 4
(¢! Zd),f’ = (2% 2
we see that £q.(B10), (B11), (B12) can be written as :

wo (@D

oy oy ol ooy ol
(B17) (d. @) : I‘) > &tj = O

oy (3 ¢ ; 4
ey (@2Z) Z(-) o R CELTT Rl

isd ab b~

Comparing the coboundary operators which operate on @ab and Zo.
we see that :

wohdy S ¢ o omily | )
o19) (d.a'@ 2:‘;¢3ﬁ= [d,g(@}_)](: « é:(—) 0-4@; o t:c E
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Hemce, taking into account £q.(B17), Eq.(B18} assumes the forms :
vhd;dz

w [(Z-0F)] -0

Fimally Eq.(B13] writes

(821} (d‘Z)‘:,‘:. -QQ(@":'{ ]‘;‘/’3'):0

In such the same way as for Eq.(81) expressing Eq.(B2) in terms of its
coefficients yields :

- I',l"““" G

@ G- [ @)""‘ Lot

ZZ‘ P (VTR v S |
@ e ]
(825) Z::Pz 2 [(,642 )P .q (@:.p_ f-,v-tP) }

Me are now going to show that Eqs.(B22), (823}, (BA4), (82:1 are consequences

of the results of Appendix A , and that comsequently T, @ Z- can be
chosen lincer ia r‘ ®. 2: .

First, £q.(822} is indeed 2 comsequence of £q.{B16) since the cochain I"
takes values 1in the adjoint represemtation of which 15 semi-simple
so that I“, . Then, aring to the relation :

W, oy

(824)
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(B26) [d (]" E )}“;d; hl;(d f')e(n(;eta L_A -_-..I;d‘d\dat%-

Eq.(B17) becomes :
2
o |L(0-TE)]
J|

Since no antisymmetric invariant tensor of rank two on I? exists if I’[ is
semi-simple we see that Eq.(B27) and Eq.(B20) imply Eq .({B23) and Eq.(B24)
respectively.

Finally substituting Eq.(B23) into Eg.(B21) we get :

- (wz) 2 (d @) (I.,«Pa’ dP‘; )

LB
Now considering r n as a cochain of order one with values in the
tensor product of the adjoint representation with itself and applying the
coboundary operator d we get :

AP nad R py o PRAY ~ FXAAY UPAKN « dpRNY
‘””@4 P)q;' '{:7“ rzp")tqp‘[:\ ""FJ rq - ’E\ rq ‘s:a Iv[

2 d4 d;“3
"%

Comparing with Eq.(822) :

dpy «a\"pzr PAG ¥~ BAN «p B DAY ~ PYA M
O i A N R R A
{‘ J“r pY .

we see that Eq.(B28) has the form :

A A Af,
(831) [d‘(Z-f-?—q {@-T‘})]'l =0
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Since no invariant tensor of rank one on h exist if h ie nomi-
simple, £q.(B31) can be solved according te

«, o = ;3 ~% = o
sz .2 (T Z>rz -29 <®2P‘ T P)

(B32)

~ L) Pl
The possibility of choosing T‘, Z ,@ linear in f, @, Z

stems from the explicit construction given in Appendix A .
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