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Abstract
Evaluation of team communication can provide critical insights into team dynamics, cohesion, trust, and performance on joint
tasks. Although many communication-based measures have been tested and validated for human teams, this review article
extends this research by identifying key approaches specific to human-autonomy teams. It is not possible to identify all ap-
proaches for all situations, though the following seem to generalize and support multi-size teams and a variety of military
operations. Therefore, this article will outline several key approaches to assessing communication, associated data requirements,
example applications, verification of methods through HAT use cases, and lessons learned, where applicable. Some approaches
are based on the structure of team communication; others draw from dynamical systems theory to consider perspectives across
different timescales; other approaches leverage features of team members’ voices or facial expressions to detect emotional states
that can provide windows into other workings of the team; still others consider the content of communication to produce insights.
Taken together, these approaches comprise a varied toolkit for deriving critical information about how team interactions affect,
and are affected by, coordination, trust, cohesion, and performance outcomes. Future research directions describe four critical
areas for further study of communication in human-autonomy teams.
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1 Introduction

Communication is the primary mechanism through which
teams exchange information, coordinate actions, develop
strategies, and execute plans (Salas et al. 2005). However,
there is major gap in our understanding regarding best prac-
tices for how to effectively study and assess communication in
human-autonomy teams. It is a critical need because commu-
nication, regardless of its modality, forms the foundation of
effective teamwork and is a key factor in understanding the
success or failure of teams (Mesmer-Magnus and DeChurch
2009; Salas et al. 2008). Thus, evaluation of communication

can provide critical insights into elements of team cohesion,
team trust, and even help describe the reasoning behind team
performance. Although it is clear that communication is fun-
damental to human-autonomy team success, it is currently
unclear what communication analyses are most useful for un-
derstanding team states and outcomes in various scenarios,
tasks, and team configurations. Therefore, the purpose of this
article is threefold: (1) identify key measures of communica-
tion for human-autonomy teams; (2) describe how the mea-
sures can be applied; (3) discuss how those measures are as-
sociated with cohesion, trust, performance, or other outcomes
in human-autonomy teams. The following subsections pro-
vide an introduction to the space of human-autonomy
teaming, team trust and cohesion, and a background on com-
munication research.

1.1 Defining human-autonomy teams

Before delving into communication assessments, it is impor-
tant to understand the terminology associated with human-
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autonomy teams. For this scope, human-autonomy teams in-
volve one or more humans and one or more autonomy-
enabled systems, or intelligent agents (IA), who coordinate
and work interdependently over time in order to reach a com-
mon goal or complete a task (McNeese et al. 2018). An IA is
an entity that possesses the capability to sense, observe and act
on the environment, and intelligently respond to unexpected,
dynamic events (Johnson et al. 2018; Mercado et al. 2016). In
future military operations, there is the potential for interaction
with a wide variety of embodied IAs—from small ground, air,
surface or subsurface unmanned vehicles or robots to large
weaponized unmanned vehicles, troop or cargo carriers, and
even computer-based IAs that assist with decision-making,
planning, or communication. The reason these are called au-
tonomy-enabled systems is to denote the multiple types of
autonomy (e.g., mobility, planning, decision-making, weapon
system, and intelligent computer agent) that often make up an
embodied IA, such as a robot or unmanned vehicle. Each type
of autonomy could have a variable level of automation which
refers to how functions are distributed among humans and the
system or agent (Parasuraman et al. 2000; Lewis et al. 2018).
Seminal work by Sheridan and Verplank (1978) suggests a
continuum of automation levels ranging from where the user
performs the task manually with no assistance from the agent,
to full automation in which the system or agent governs its
own actions, goals, and decisions. Systems with fully auton-
omous capabilities are, in a sense, more adaptable, capable,
independent, and interdependent than traditional automation
and can arguably represent evolved forms of automation
(Endsley 2015; Endsley 2017; Hancock 2017). Although
IAs will continue to advance and acquire more capabilities,
the goal of using these systems is not to replace the human, or
to provide more “complex tools” for humans to use, but rather
to effectively “team” autonomy with humans so they achieve
synergy and are able to work cooperatively in complex, dy-
namic environments (Phillips et al. 2011; Johnson and Vera
2019). For example, the US military is researching how
human-autonomy teams can maintain overmatch in unpredict-
able adversarial environments including intelligence, surveil-
lance, and reconnaissance (Harris and Barber 2014; Kattoju
et al. 2016) as well as lethality (Brewer et al. 2018; Schaefer
et al. 2019a) while reducing the cognitive burden on Soldiers.
A significant challenge is integrating humans and autonomous
systems into interdependent, heterogeneous teams that are
able to achieve appropriate levels of team trust and cohesion.

1.2 Team trust and cohesion

As we move toward integration of autonomous IAs working
collaboratively with human teammembers, it becomes imper-
ative to calibrate the trust in the team and formulate an appro-
priate level of team cohesion for effective team performance
to ensue. With team trust, team members place less emphasis

on personal interests, minimizing the effects of uncertainty
and vulnerability toward their teammates (De Jong and
Elfring 2010). This allows team members to take risks that
facilitate cooperation and overall effectiveness (Colquitt et al.
2007). A lack of trust, in contrast, causes breakdowns in goal-
directed teamwork and causes members to place greater em-
phasis on personal interests over team interests (Joshi et al.
2008). When integrating autonomy into the team, it is impor-
tant to understand that human-autonomy trust functions dif-
ferently from trust between humans (Baker et al. 2018), but
well-calibrated trust in autonomy is still positively correlated
with team performance (McNeese et al. 2019). To understand
and contextualize trust and performance in a human-autonomy
team, then, it is critical to evaluate the communication of the
team, as this provides a window into the team’s coordination,
information sharing, decision-making, and more (Baker et al.
2019; Baker et al. 2020a, b; Schaefer et al. 2019a).

Team cohesion, while described in many different ways,
generally comprises attraction or bonding within a group that
emerges as a function of the group’s shared experiences, iden-
tities, or goals (Salas et al. 2015). Research suggests that how
team members feel about a task influences teamwork (Salas
and Cannon-Bowers 2000), and that team cohesion, or the
ability to work as a team, has a direct impact on team behav-
iors and performance (Beal et al. 2003). In military contexts,
research has demonstrated a positive relationship between co-
hesion and team performance (Ahronson and Cameron 2007;
Oliver et al. 1999) that is mirrored in across academic, orga-
nizational, and other contexts as well (Beal et al. 2003;
Chiocchio and Essiembre 2009). Because team cohesion and
trust are emergent states that relate to performance, it will be
key to understand how they emerge and evolve in human-
autonomy teams, especially as a function of the team’s
communication.

The development of more effective human-autonomy
teams will require a focus on the interaction patterns among
teammembers. To perform optimally, these human-autonomy
teams will need to exhibit a shared understanding of mission-
relevant aspects of their goals, tasks, intentions, teamwork,
and environment (Ososky et al. 2012) that can develop
through the kinds of dynamic, adaptive interactions that are
characteristic of human teams (Sycara and Sukthankar 2006).
Thus, analysis of how information is communicated and what
is communicated can provide critical insights into team
dynamics needed to calibrate trust. For example, Dzindolet
et al. (2003) found that when people are provided explanations
for errors made by an automated decision aid, they show a
closer alignment between the system’s reliability and their
trust in the system; in contrast, when people do not receive
such explanations, there is poorer trust calibration, sometimes
resulting in distrust of a reliable aid. In addition, when human
teammembers are informed about the reliability limitations of
the IA, they are able to calibrate appropriate use of the system
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at the appropriate time (e.g., automated combat identification
system; Wang et al. 2009). These results indicate that a static
understanding of an autonomy’s reliability is not a viable sub-
stitute for timely and relevant communication, which is criti-
cal to increasing human-autonomy trust and performance
(Schaefer and Straub 2016).

1.3 Communication

Communication involves the transmission of information
both within and across teams, and as such there are a
multitude of factors that affect how well a team commu-
nicates. Within human-autonomy teams, the autonomy
introduces unique capabilities and challenges into a team.
Much of that challenge stems from how interactions with
the autonomy affect communication patterns. People use
communication as a way to share information (Mesmer-
Magnus et al. 2011), set goals (Marks et al. 2001), self-
correct (Salas et al. 2008), and engage in teamwork.
However, many autonomous systems in task-oriented
team environments cannot yet engage in naturalistic
communication, although research is working toward this
end (Bisk et al. 2016; Marge et al. 2016; Demir et al.
2020; Thomason et al. 2020). Improving the capability of
autonomy to more effectively communicate intentions to
human team members, such as designing user displays to
allow IAs to communicate intent, are key challenges in
human-autonomy team communication (Schaefer et al.
2017). Communication in human-autonomy teams may
also rely on alternative methods other than speech to
communicate. For example, research has shown the ben-
efits of using visual, gesture, tactile or haptic feedback,
or other non-verbal auditory cues to initiate bidirectional
communication (Barber et al. 2015; Hill 2017; Elliott
et al. 2016).

Communication theories and models provide critical
foundations for understanding human-autonomy team
communication (see Baker et al. 2019). The information-
theory model of Shannon (1948) laid important ground-
work, conceptualizing the transfer of information from a
sender to a receiver. Berlo (1960) built on this by
highlighting the importance of the communication chan-
nel. Sacks et al. (1974) pioneered a system for breaking
down a conversation into sequences of turn-taking. Clark
and Brennan (1991) outlined how we use language to
establish a common understanding, in a landmark manu-
script that tied communication to cognition. Seminal
works such as these reveal historical foundations that
can contribute to a clearer understanding of communica-
tion in human-autonomy teams, especially as communica-
tion assessment approaches are developed to address key
research gaps.

2 Communication assessment approaches
for human-autonomy teams

As there are many approaches for communication assessment,
it is important to weigh the characteristics of each assessment
in order to elicit the most useful data from a given human-
autonomy team interaction. This section describes eleven ap-
proaches for assessing communication in human-autonomy
teams. The first four approaches are based on the structure
of team interactions. The following two approaches draw from
dynamical systems theory to consider perspectives across dif-
ferent timescales. After that, two approaches leverage features
of team members’ voices or facial expressions to detect emo-
tional states that can provide windows into other workings of
the team. The final three approaches fall under the umbrella of
linguistic synchrony, offering insights into the content of a
team’s communication. Although this is not an exhaustive list
of approaches that can be used for assessing human-autonomy
team communication, it provides many ways to understand
team communication using different types of input data.

Discussion of each communication assessment approach
comprises the following four areas: (1) a description of the
approach, (2) the method by which the approach is carried
out, (3) applications or considerations for using the approach,
and (4) a description of current directions in developing and
applying these approaches to human-autonomy teams.
Table 1 provides a brief overview of each of the approaches
described in this paper and describes the types of data or team
interactions that are best studied with each approach.
Following Table 1, we begin discussing communication as-
sessment approaches by describing the four approaches based
on the structure of team communication. These approaches
primarily rely on understanding how information is sent and
received.

2.1 Structural analysis

2.1.1 Aggregate communication flow modeling

Team communication patterns provide a window into how a
team completes tasks, achieves goals, and coordinates infor-
mation (Sacks et al. 1974; Kiekel et al. 2001; Tiferes et al.
2016). Communication flow, or the measurement of how in-
formation is passed throughout a team, can allow one to eval-
uate a team’s coordination behaviors (Fischer et al. 2007).
When aggregated, communication flow can be visually repre-
sented to reveal how teams share information, which in turn
may relate to how teams experience trust and team cohesion.
These insights will be important to the development of
human-autonomy teams as they will aid us in understanding
how communication affects, and is affected by, intelligent
systems, team structures, and task demands. For example,
Fischer et al. (2007) demonstrated structural differences in
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the communication patterns of successful and unsuccessful
teams, revealing that successful teams in search-and-rescue
operations had a more equal distribution of communication,
whereas unsuccessful teams tended to involve a few team
members dominating the discourse. This finding was echoed
by Hung and Gatica-Perez (2010), who found that highly
cohesive small groups demonstrated a balanced amount of
discussion among team members, whereas teams with one
person dominating the conversation demonstrated little cohe-
sion. This suggests sender-receiver information can be used to
predict the cohesiveness of a team. Research will need to
investigate the extent to which these communication links
can relate to perceptions of team cohesion in both novel and
intact human-autonomy teams. Furthermore, it will be impor-
tant to understand how team communication patterns relate to
their performance in a given scenario or context. This will
shed additional light on how their communication can affect
cohesion, as well as trust, given that some aspects of both
cohesion and trust are affected by team outcomes.

There are two related advantages to evaluating team com-
munication flow in aggregate. First, depending on the com-
munication modality, it can be objectively derived. For exam-
ple, in the case of event logs that contain a sender, receiver,
and timestamp, this data (and accompanying aggregate flow
maps) can be instantly collected and generated for review.
Second, it is easily interpretable. Aggregating a team’s com-
munication flow over time can reveal a clear picture of the
proportion of team interactions accounted for by each sender-
receiver pair, providing a window into the relative importance
of each pair.

To produce aggregate communication flow models for a
given team, the user first needs information about the sender
and receiver of each communication event, as well as
timestamps for each communication event. Communication
events can be defined based on the communication modality
utilized by the team and by the level of analytical detail needed.
The operationalization for each of these characteristics rests
with the researcher and the research question at hand. For a
study using verbal interactions, a communication event might
be defined as an uninterrupted phrase uttered by a single speak-
er, the “sender” defined as the speaker, the “receiver” as the
intended listener, and the “timestamp” as the time that the
speaker began to speak. For interactions through a chat mes-
senger, the process of defining these terms is easier, as the
needed data can usually be exported automatically. However,
it should be noted that chat messages may not be read until a
later time, so some consideration must be made as to what is
used as a timestamp. Regardless, the needed data will usually
take the form of an audio recording, an audio transcription, or
an event log, such as an exported chat log from an instant
message application. After preparing a dataset that contains
the sender, receiver, and timestamp for all communication
events, the user can then evaluate the number of

communication events accounted for by each sender-receiver
pair across a given time period. Then, the user can create a flow
map based on those proportions; using any graphic design soft-
ware, the user represents each possible sender along with lines
going from each possible sender to each possible receiver, with
line widths corresponding to the proportion of communication
accounted for by each sender-receiver pair. Some research ef-
forts are underway to automate the process of generating flow
maps and produce them real time based on team communica-
tion (Baker et al. 2020a, b).

This approach can be applied to teams of varying sizes and
compositions, so long as there is information being sent and
received between the teammates. The teammembers that send
and receive data will populate the flow map, so this approach
can also account for autonomous teammates if the autonomy
is also sending and receiving communication. One extra chal-
lenge that can be experienced with human-autonomy teams,
such as military teams, is the use of open communication
channels such as intercom systems, where teammates monitor
multiple channels and multiple possible receivers can hear, or
not hear, a sender’s message. This can make it more challeng-
ing to positively identify all recipients of a sender’s
communication.

One use case for this approach involved the Wingman
manned-unmanned team (Brewer et al. 2018), which is com-
posed of a robotic weaponized system and a single-manned
command and control vehicle containing several human crew
members. A dataset was collected from a Wingman gunnery
crew, and clear differences were identified between the
sender-receiver pairs exhibited during gunnery engagements
versus during inter-engagement time (Baker et al. 2020a, b).
Results using this approach showed that crews significantly
restricted the diversity of who spoke to whom while on-task.
In addition, the Soldier crew demonstrated a simpler, more
rigid aggregate communication pattern consisting of fewer
sender-receiver pairs, whereas the Marine crew exhibited a
looser pattern characterized by more sender-receiver pairs
(Fig. 1). Review of the transcribed data suggests that these
patterns were related to the way that communication was used
by the teams; the Soldier crew’s communication was more
task-related and direct, where the Marine crew’s communica-
tion was more flexible and geared toward ensuring that all
crew members maintained awareness of what was going on.
Performance data from the gunnery event indicated that the
Soldier crew scored higher on the gunnery qualification
course, suggesting that the optimal communication configura-
tion for this type of human-autonomy gunnery task may in-
volve limiting the number of unique sender-receiver pairs.

This approach may be applicable to team cohesion.
Because aggregate communication flow depicts the propor-
tion of team communication accounted for by each pair of
team members, team cohesion can be determined by follow-
ing the strength of communication among teammembers over
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an extended time horizon (Hung and Gatica-Perez 2010). For
example, aggregate communication flow can be used to iden-
tify time periods in which a team member becomes isolated
from others (i.e., by communicating less often), and if this
isolation is not due to specific task demands, an intervention
can be implemented to avoid negative effects on team
cohesion.

More work is needed to make the process of generating
sender-receiving data more efficient, especially for verbal in-
teractions. Automated transcription software is promising, but
the latest software can struggle in environments with multiple
speakers, background noise, or other suboptimal factors
(Krausman et al. 2019). Further development in the detection
and correct identification of senders (and recipients) will allow
this approach to get closer to real time. Generating sender-
receiver data real time from verbal communication will allow
flow maps to be produced automatically for a given time pe-
riod, allowing those observing a team (e.g., for training, test
and evaluation, or research development) to see how teams are
communicating at a composite level.

By design, flow maps are rapidly produced and easily inter-
pretable, so aggregate communication flow is valuable in sce-
narios where immediate communication data is warranted. One
such application is to military after-action reviews, which are
key to supporting training and improving future operations in
human-autonomy teams (Brewer et al. 2019). However, the
strength of this approach begets two limitations. First, because
it is an aggregate measure, it does not provide any information
about changes in communication flow throughout the window
of measurement, which can reveal stability, perturbations, or
other dynamical properties (Cooke and Gorman 2009).
Second, aggregate communication flow does not rely on deeper
statistical analysis, and thus the insights provided are limited in
scope. Other communication assessment approaches therefore
expand on this by involving additional metrics to paint a clearer
picture of the exchange of information within a team. Social
network analysis (Section 2.1.2) takes the same data used in
aggregate communication flow and applies additional metrics
such as centrality. Following that, relational event models
(Section 2.1.3) use similar data to identify particular structural

and temporal biases in the sequencing of communication over
time. Then, we discuss anticipatory information pushing
(Section 2.1.4), which also uses similar data to understand
how preemptively sending information within a team relates
to their trust and performance.

2.1.2 Social network analysis

Social network analysis (SNA) is an approach to understand-
ing the relationships between actors in a network. It has been
applied in a wide variety of fields including sociology, math-
ematics, and epidemiology and has also been used to analyze
team performance (Balkundi and Harrison 2006; Borgatti
et al. 2009; Shaw 1964; Walker et al. 2006). SNA provides
a set of tools that may be useful for understanding the com-
munication patterns that constrain and facilitate information
flow and coordination in human-autonomy teams. Of partic-
ular interest is the group of measures related to centrality
(Freeman 1978; Katz et al. 2004). Centrality generally de-
scribes the amount of connectedness which a team member
has within a network.Measures of centrality may be useful for
determining the prominence of an actor within a human-
autonomy team’s communication process. For example,
whether an IA or a human teammate has high individual cen-
trality in a team’s communications can have implications for
team coordination and performance. Humans may be more
limited in resources for processing communications frommul-
tiple sources simultaneously (Wickens 2008) and high central-
ity may put them at risk of mental overload when communi-
cation volume or task complexity is high (Shaw 1964).
However, a human’s capacity for integrating context and
interpreting ambiguous information gives them potential for
performing well in highly central roles in team-level decision-
making tasks and leadership activities. IAs may not be limited
in the same way as humans by their information processing
rates and available channels, but exhibit brittleness in ambig-
uous or unanticipated situations (Endsley 2017) and be may
less suited for highly central roles in tasks where they are
likely to perform poorly. However, IAs may be well suited
for highly central roles in which the task is straightforward and

Fig. 1 Aggregate communication patterns exhibited by Army and
Marine crews during a Wingman human-autonomy gunnery task.
Arrows start at sender (speaker) and point to receiver (intended recipient).

The diagrams feature three crew member roles as well as “Crew,” which
indicates that a communication event was not targeted at a specific crew
member. Thicker lines indicate a greater proportion of communication
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requires data processing capacity (e.g., receiving and compil-
ing messages containing resource quantities or teammate
locations).

In addition to characterizing human-autonomy team com-
munication and coordination, SNA may be useful for exam-
ining other aspects of teamwork like cohesion and trust. SNA
can reveal aspects of the actual relations between teammates
in contrast to what is formally delineated by organizational
structure. For example, examining the centrality of actors in
a network may reveal that the team leader is receiving an
overwhelming quantity of communications during critical pe-
riods, suggesting that more initiative needs to be pushed to
subordinate leaders. Examination of the direction and qualita-
tive content of communications could also reveal communi-
cation imbalances or bottlenecks, such as an IA receiving a
high volume of messages, but rarely passing it on to other
teammates, or a change in communication networks following
a breach of trust. Furthermore, SNA is not limited to analyzing
explicit communications, but has historically been used in
combination with survey-based approaches to measure sub-
jective evaluations of other relational qualities like trust, influ-
ence, and affect. This can be used to generate other types of
networks such as trust networks and teammate affinity net-
works (Borgatti et al. 2018). Such networks may provide ad-
ditional insight into trust or cohesion measures (particularly
between individual nodes) within the network.

A social network consists of a set of actors (“nodes”) and
relationships (“links”) (Wasserman and Faust 1994). Links
can be directed or undirected and can be assigned values and
other attributes (Barrat et al. 2004). Entities in the network
should be explicitly defined for the team communication
dataset under consideration. For example, nodes may repre-
sent team members and links may represent explicit direction-
al communications between agents weighted according to the
number of transmission (e.g., Barth et al. 2015). Once network
entities are defined, the team interactions can be analyzed.
Captured data should, at a minimum, include message senders
and receivers, but it may also be prudent to capture other
aspects such as message length, content, and message times.
Communications can be captured using voice recording soft-
ware, text chat systems, or in some cases, estimates can be
derived through observation or questionnaires, so this ap-
proach can accommodate the various communication modal-
ities that may be used by an IA. Other elements such as the
communication medium can also be useful for analyzing mul-
timodal communications within a team. Once the team com-
munications are recorded and formatted, measures can be
computed to characterize the team’s social network. If such
high-resolution communication data are not available, surveys
about teammates’ interactions with fellow teammates can pro-
vide insight into the structure of relations within the team.
Such survey methods lose the richness embedded in timing
of interactions (e.g., enabling reconstruction of multiple

snapshots of the network over time) and are prone to cognitive
biases in informant recall (Krackhardt 2014). Examples of
social networking software include UCINET (Borgatti et al.
2002), statnet (Handcock et al. 2008), and igraph (Csardi and
Nepusz 2006). SNA measures can be on either the individual
actor-level or on the global network-level, and can be an ag-
gregate of a single time span or split into epochs for compar-
isons over time (Borgatti et al. 2018). These respective mea-
sures may provide insight into how node-level, graph-level, or
dynamic features of the network contribute to team trust and
cohesion.

SNA can be applied to teams of various sizes from small to
very large. One key area of research has focused on the rela-
tionship between various social network analysis measures of
centralization and outcomes for individuals or groups. In high-
ly centralized team communications, one or a few actors are
involved in proportionally more communications than the rest
of the team. Examining network-level measures like centrali-
zation of team communications can provide a team-level view
of communication structure. Some research on the relation-
ship between team centralization in all-human teams has sug-
gested that less centralized structures may foster interdepen-
dence, coordination, rapid information sharing, and improved
performance in complex tasks (Barth et al. 2015; Brown and
Miller 2000; Shaw 1964), but other research has shown that
high centrality of actors with access to resources may also
improve performance (e.g., well-connected leaders;
Sparrowe et al. 2001). Other research has suggested that high-
ly centralized communications can result in communication
bottlenecks which can cause errors and delays in information
transfer between teammates and result in coordination defi-
ciencies (Roberts et al. 2019).

Communication bottlenecks may play an important role in
understanding team workload—a conceptual relationship be-
tween task demands, the team capacities, and task performance
that emerges on the team-level (Funke et al. 2012). For example,
communication bottlenecks may result in poor task reallocation
and workload distribution. However, team communications that
display a more decentralized structure and high network density
may distribute information processing demands throughout a
team and enhance the team’s overall workload capacity but
increase individual workload in the form of communication
overhead (MacMillan et al. 2004). Different communication
network characteristics seem to be related with how a team
performs in a specific task and under different levels of demand.
For example, one study in command and control simulation
found that both centralized hierarchical teams and decentralized
peer-to-peer teams adopted communication patterns akin to a
“small-world network” structure—a balance between local and
global connectedness—when given the freedom to do so. This
adaptation allowed for short distances between actors (e.g., ac-
cess to information and resources) without the coordination
costs of a fully connected network (Watts and Strogatz 1998;
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Stanton et al. 2012). However, teams that fail to form adaptive
communication structures in response to changing tasks may
perform poorly in workload peaks. Thus, examining team com-
munication network structures aggregated across specific events
may help to characterize how they adapt their communications.
SNA has also been used in combination with other human fac-
tors approaches to understand other team and system-level phe-
nomena within sociotechnical systems such as distributed cog-
nition (Plant and Stanton 2016) and distributed situation aware-
ness (Stanton et al. 2006). However, SNA approaches have yet
to be fully embraced for examining communications in human–
autonomy teams.

SNA is an established methodology in many fields.
However, it is not clear which findings from human-human
teams will carry over into human-autonomy teams. Examining
human-autonomy communications within various contexts will
provide insight to the usefulness and generalizability of SNA.
More work is needed to understand whether SNA measures
relate to aspects of human-autonomy teamwork, such as trust
and cohesion. One key consideration is how to treat the unique
qualities of IAs in relation to humans within a team’s network.
For example, in human-human relations, trust is bidirectional
(Grossman and Feitosa 2018). In human-autonomy teams, hu-
man teammates can certainly have trust in the IA (deVisser et al.
2019). However, trust does not reciprocate from the IA to the
human, which could affect how SNA measures are collected or
computed. Similar considerations should be made of
communication-based data.

2.1.3 Relational event models

Although SNA has historically focused on descriptive mea-
sures of time-aggregated networks, relational event models pro-
vide a model-based approach for analyzing dynamic networks.
A static representation of a network illustrates the structure of a
set of relationships within an observed population; however,
many different types of interactions underlie these relation-
ships. Aggregation of interaction data obscures time-ordered
information, edge weights, and changes of actor sets within a
population (Quintane et al. 2014). By representing the network
as a timestamped series of discrete, directed interactions called
relational events, the relational event model preserves the rich-
ness of these interaction dynamics within networks (Butts
2008). This is a contrast to models of static, time-aggregated
representations of the network. Because higher-order group
constructs such as trust and team cohesion arise as a
function of interaction dynamics (Marks et al. 2001;
Schecter 2017), relational event models are well posi-
tioned to provide insight into the emergence and evolu-
tion of such states (Leenders et al. 2016).

The relational event nomenclature refers to a set of discrete
actions in which one entity directs a social action to another
entity or set of entities. This relational event framework can be

represented as a=(i, j, k, t), where a represents a discrete event
(i.e., an interaction), i is the sender of that event, j is the re-
ceiver of the event, k is the type of event (one may consider
different types of interactions such as face-to-face communi-
cation, phone calls, emails, etc.), and t is the time of the event.
Although a represents a single event, a series of relational
events is represented in history At. The goal of the relational
event model is to model this sequence of events At. Results
from relational event models demonstrate interaction rates as a
function of sender and/or receiver attributes, recent communi-
cation activity, and structural features of the network.

Data compatible with the relational event model are simple
in structure: this method requires only a log of sender and
receiver data. If exact timestamp data are unavailable, interac-
tions can be modeled ordinally instead. Building on a frame-
work for traditional event history models, the relational event
model posits the joint likelihood of event history At; that joint
likelihood is simply the product of the likelihoods of each
discrete relational event a. The conditional likelihood for the
ith event in At is equal to the hazard for relational event ai
(following terminology used in the survival analysis subfield
where “hazard” refers to the likelihood of a given event hap-
pening per unit of time). This hazard depends on a set of
specified sufficient statistics, which may include sender attri-
butes, receiver attributes, network statistics including the de-
gree centrality, triadic closure, and past events that may be
relevant to the given event (e.g., immediately reciprocating a
communication act or the propensity of an individual to keep
sending messages to the same partner). The model ultimately
indicates how the relational event history (i.e., observed se-
quence of interactions) may be biased towards or against spe-
cific types of interactions.

There are several options for relating emergent states such
as trust or cohesion to relational event model results. By using
self-reported states as individual attributes, the model can be
used to investigate directly how those states shape the propen-
sity for an individual to send or receive interactions (e.g.,
someone who reports higher trust may send messages at
higher rates, or discrepancies between individuals’ ratings of
group trust may be associated with fewer messages ex-
changed between them). By measuring rates of triadic
closure, the model also allows us to evaluate the rate of
structurally cohesive interactions. Finally, relational event
model coefficients can be used to infer trust measures at
the group level. In the latter approach, one would measure
emergent states across a population of teams and run an
identical relational event model on each team’s communi-
cation. By relating those model coefficients to team-level
states, links between interaction dynamics and team states
can be identified (Pilny et al. 2014). Because team states
emerge and evolve as a function of interactions, using
features of those interactions to infer team states offers
promising potential (Leenders et al. 2016).
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Like many novel statistical methodologies, the growth in
popularity of the relational event model depends, in part, on
the availability of data compatible with the model. Although
social network analysis has existed for nearly a century
(Moreno and Jennings 1938), dynamic models are a recent
development. As such, most social network data collected
throughout the twentieth century reflected the field’s then-
limited methodological capabilities. Coincident with social
network data collected explicitly in the relational event format
over the last decade, similar behavioral logs have grown con-
siderably in recent years due to the proliferation of electronic
storage of cell phone records, email records, online interac-
tions, and other electronic communication (Leenders et al.
2016). Scholars have used the relational event model to ana-
lyze radio communication networks during disaster response
(Butts 2008), cooperative and hostile actions among nation
states (Brandes et al. 2009), small teams playing cooperative
games in laboratory environments (Leenders et al. 2016; Pilny
et al. 2016; Schecter and Contractor 2016), intra-team interac-
tions during a NATO exercise (Schecter 2017), interactions
among college students over 6 months (Pilny et al. 2017), and
individual contributions and bug fixes in a code repository for
open-source software (Quintane et al. 2014).

Recent work on human-human teams working with an au-
tonomous vehicle during a series of training exercises demon-
strates how relational event modeling provides insight into
team behavior in military contexts (Baker et al. 2020a, b).
This paper used transcript data from a series of gunnery exer-
cises to highlight distinctions between teams’ message trans-
mission patterns. Additionally, it demonstrated how centrali-
zation patterns diverge during dry fire and live fire exercises.
As autonomy becomes increasingly integrated into these mil-
itary teams, relational event models will help us to understand
how the introduction of that autonomy shapes team commu-
nication dynamics.

Although relational event modeling has been valuable for
understanding team interaction dynamics, greater availability
of human-autonomy team interaction data will help us to de-
termine how well our understanding of human-human team
dynamics will translate to human-autonomy team dynamics.
Data in which autonomy directly and naturalistically commu-
nicates with humans would be ideal (Demir et al. 2020),
though more simplistic interactions (e.g., an IA sending an
alert to a teammate) may also provide useful insight.
Coupling those interaction data with high-resolution state dy-
namics will help us continue to understand how interaction
dynamics shape team state dynamics.

2.1.4 Anticipatory information pushing

We now transition from an approach that considers the timing
and sequencing of interactions to one that considers flows
across relationships. This approach considers a team

member’s anticipatory information pushing (AIP) as a means
to understand team trust, thus maintaining a focus on how
team members send and receive information. In this case,
information pushing involves information provided to a team-
mate after a request is made for it, whereas anticipatory infor-
mation pushing specifically does not involve an explicit re-
quest. Therefore, AIP is a pre-emptive behavior in which a
team member anticipates an information need of another
teammate and provides that teammate with the necessary in-
formation they need before they ask for it. This is exemplified
when “the right information (gets) to the right person in the
right amount of time, in order to overcome an unexpected
roadblock” (Demir et al. 2019; p. 146). Related concepts are
found in transparency research, which has found that IAs can
improve team trust, performance, and situation awareness by
providing humans with information about the IAs’ goals,
plans, and decisions (Lakhmani et al. 2016; Stowers et al.
2016; Chen et al. 2018). For AIP, if information is passed
preemptively, it might lead to higher levels of trust among
teammates, especially in military settings, as the quality of
the team’s communication can mean the difference between
life and death. Furthermore, because traditional methods of
evaluating trust have been primarily static methods (e.g., ques-
tionnaires before or after a task, or interrupting a task), it may
be possible to use AIP behaviors as an unobtrusive, continu-
ous index for team trust.

Information pushing in human-autonomy teams has been
measured in an unmanned aerial vehicle (UAV) synthetic task
environment (Cooke and Shope 2004; Cooke et al. 2013;
McNeese et al. 2018; Johnson et al. 2020a, b). This UAV task
environment includes three teammates with heterogeneous
and interdependent roles (pilot, photographer, and navigator)
performing an aerial reconnaissance task under routine and
degraded conditions. To perform well, the team must commu-
nicate with one another via text chat and safely navigate their
simulated UAV along a series of waypoints while taking pho-
tographs of targets. Analyses of the communications in this
task environment have suggested that pushing information is
associated with better performance and team situation aware-
ness (Demir et al. 2017). However, compared to all-human
team, teams that had an IA as a pilot did not push information
as effectively, suggesting a weakness in the IA’s ability to
effectively anticipate the information needs of teammates
(McNeese et al. 2018). This approach to analyzing communi-
cation could gain further fidelity by focusing specifically on
AIP, rather than information pushes in general. The text-based
communication data can be coded for AIP by examining
whether teammates pushed information to another teammate
without first being prompted by the other teammates. The
frequency of information pushing within the team (e.g., from
an IA to a human, or from any teammember to any other team
member) can then be compared to how teammates self-
reported their trust towards each other, which can be
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accomplished with standard regression analysis procedures.
Applying this approach to a given human-autonomy team
can allow one to determine whether higher frequencies of
AIP from a synthetic teammate to a human teammate correlate
with higher levels of reported trust (Huang et al., 2020a, b, c).

This approach could also be used to contextualize or un-
derstand team performance. Research in the past has shown
that teams that do more AIP perform better overall. A study
conducted byWeber and Aha (2003) showed that in a military
setting, teams that received information just in time during the
plan authoring phase had overall better plan execution.
Campion and colleagues (2012) looked at how information
pushing in the context of health information exchange can
result in a better overall experience for doctors in comparison
to existing healthcare systems that rely only on information
pull methods. In a study using a military context, Entin and
Serfaty (1999) found that teams who were trained to change
coordination behaviors when presented with high-stress situ-
ations experienced improved performance, with increased
AIP from subordinates to leaders as well as better anticipation
of teammates’ information needs.

This approach can ostensibly be applied to any type of
human-autonomy team that utilizes a communication modal-
ity that can be leveraged for AIP. In order for the results of this
approach to be valid, there needs to be some variation in the
reported levels of team trust, in order to determine how AIP
behaviors fluctuate in the context of corresponding trust fluc-
tuations. Otherwise, limited variation can lead to faulty data
analysis. Another lesson learned from previously conducted
research is that the pushing of information in human-
autonomy teams may be less than in human-human teams
(Demir et al. 2017). Therefore, future research is needed to
shed light on how low levels of AIP in human-autonomy
teams versus high levels of AIP in human-autonomy teams
leads to differences in trust levels among human teammates
towards autonomous teammates.

There are some limitations to this approach as there are not
that many autonomous agents in existence that are capable of
(a) being able to communicate with a human teammate and (b)
able to replace a human teammate and do everything the re-
placed human teammate was responsible for doing. Therefore,
measuring trust towards an autonomous teammate and corre-
lating that trust with howmuch AIP occurs is currently limited
to settings that involve autonomous agents with sufficient in-
telligence. Furthermore, communication is not always words
(auditory/speaking or visual/text-chat communication).
Sometimes it is symbolic, such as icons on a screen, so rec-
ognizing when an autonomous agent is doing AIP using sym-
bolic communication can be difficult. However, it is clear that
more research is needed to understand how and when auton-
omy should engage in AIP, as well as how the role of the
autonomy might determine optimal AIP behaviors. Previous
research (Cooke and Shope 2004; Cooke and Gorman 2009;

Cooke et al. 2012) has laid the foundation for how actual
autonomy in a team setting would need to communicate with
human teammates in order for the team to be an effective team
overall. For example, as was mentioned earlier, autonomous
agents have to be able to recognize the needs of human team-
mates and give them information in an appropriate amount of
time based on those anticipated needs (Demir et al. 2017).
Research designs that utilize different communication modal-
ities will be especially relevant to this area, and as IAs become
more advanced and capable of engaging in anticipatory infor-
mation pushing, this approach will become more useful.

2.2 Dynamical systems approaches

The preceding four communication assessment methods have
primarily focused on the structure and timing of team interac-
tion. Other methods can evaluate team interactions with an
emphasis on different timescales of the team’s lifespan. The
following two approaches build on this perspective by draw-
ing from dynamical systems theory (Abraham and Shaw
1992; Gorman et al. 2017).

2.2.1 Distributed dynamic approach of team cognition

The theory of interactive team cognition (ITC; Cooke 2015;
Cooke et al. 2013) suggests that team cognition is best mea-
sured at the team level through the analysis of the interactions
among team components, including humans and non-human
entities. The team interactions tie closely to the team compo-
sition, task context, interaction modality, and time scale.
Traditional human-autonomy teaming research has focused
on dyad relationships that involve one human and one IA.
However, in many real-world applications, team components
include not only one end-user and one IA but also multiple
end-users and even other stakeholders (e.g., managers and
engineers; Ho et al. 2017), as well as multiple IAs with either
similar or different roles. The communication among these
individuals and entities influences both human-human rela-
tionships and human-IA relationships. Moreover, the commu-
nications span over a long time frame as stages of an IA
progress from concept and prototype development, testing
and training, deployment, to retirement. Most literature has
only covered the stage of concept and prototype development
(Hancock et al. 2011; Hoff and Bashir 2015; Lee and See
2004; Schaefer et al. 2016), without considering the stages
in the IA’s life cycle where the technical readiness of the IA,
the organizational acceptance of the IA, and the stakeholders’
context of interaction with the IA all vary.

Because these issues will likely influence the generalizabil-
ity and boundaries of research findings regarding human-
autonomy communications, it is highly recommended to con-
sider factors such as the stage of an IA, the team composition,
interaction modality, and interaction duration in studies. In
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addition, the distributed dynamic approach of team cognition
aims to examine communication from a holistic perspective
with an emphasis on distributed dynamic team cognition.
Each stakeholder’s cognition (e.g., trust) toward an IA does
not only affect his or her own performance; it may also impact
other stakeholders’ cognition toward the IA, and even the
stakeholder’s attitude toward other stakeholders who share
(or do not share) similar cognition. Interpersonal cognition
and human-autonomy cognition mutually influence each oth-
er (Huang et al., 2020a). To understand these interconnected
relationships among stakeholders and IAs, it is critical to study
team cognition at different stages.

This distributed and dynamic team cognition approach is cus-
tomizable and provides a holistic view of team effectiveness, as
long as the threshold for the model components is defined. It can
also be used to identify the source of issues in human-autonomy
teaming because the approach investigates the team composition,
interaction modality, and interdependencies in a network. The
source of an issue could be a crew member or the IA, and could
relate to the characteristics of the stakeholders or their functional
tasks on the human-autonomy team. As an example, an issue
could involve trust issues toward using an IA; this could be
caused by the interpersonal relationship among the crew mem-
bers, or by a specific task interaction that may warrant attention.
An individual’s interaction types and data may contribute to
different aspects of the issues. For example, speech content type
and flow patterns may indicate the interpersonal aspects of the
trust. Increasing action duration and error rates may point to
outcome-based trust issues.

The distributed dynamic approach of team cognition as-
sesses communications in human-IA teaming while account-
ing for three aspects: (1) the stage of the IA’s life cycle, (2)
multiple stakeholders and IAs on a team, and (3) features of
tasks and interactions among the individuals and entities. This
approach has roughly five steps (Huang et al., 2020a):

Step 1: Identify the area of interest and the topic of interest It
is important to identify the area of interest regarding human-
IA teaming because context comes with many assumptions
and rules as a background. One such example comes from
the military context, the Next-Generation Combat Vehicle
(NGCV) Cross Functional Team (CFT), which envisions
manned and autonomous combat vehicles forming a team to
support lethality of each unit as well as to improve the unit’s
safety and security. With the area of interest identified, the
topic of interest (e.g., team trust, situation awareness, work-
load, resilience, and cohesion) will narrow the scope of rele-
vant literature to review and subsequently inform which find-
ings to replicate and which gaps to fill. Literature has shown
limitations in its findings in human-human team trust and
human-autonomy trust, such as its lack of consideration of
stage, coverage of team components, and dynamic measures.

Step 2: Identify the stakeholders and the artificial entities
involved This step defines the size of the team and its compo-
nents. The analysis level of team size and components will
determine the types of tasks and interactions to be included in
the human-IA teaming. Communication with the sponsor may
help determine priority interests. Interviews with subject mat-
ter experts are used to identify the relevant and key individuals
on the chosen team level. For example, Ho et al.’s (2017)
work illustrated a multi-stakeholder example involving the
end-users (i.e., pilots), engineers (i.e., developers and techni-
cal personnel), and managers (i.e., trainers and high-level de-
cision makers).

Step 3: Analyze the communicationmodality and interactions
among the individuals and entities through each dyad on the
team After further defining the subtopic of team trust as a
phenomenon among interdependent team members that will
help the team achieve their goals, the interdependent function-
al tasks need to be examined for each type of stakeholder. The
interdependency and interaction analysis will produce an in-
teraction taxonomy with communication modality (Huang
et al., 2020a, b, c): (a) verbal communication—oral and text
natural language through interviews, text messages, emails,
technical testing reports, radio communication, documented
daily conversations, internal forum posts, etc.; (b) visual
interaction—gazing patterns; and (c) physical interactions—
button pushes, hands on the wheel, tactile force, and so on.
The communication modality depends on the time frame,
types of stakeholders, and their tasks. Based on the commu-
nication modality and interaction taxonomy, collect interac-
tion data that are accessible and analyze each type of data to
cross-validate the findings (Huang et al., 2020b). This multi-
method approach is recommended because the methods cap-
ture different aspects of complex team cognition and provide a
more complete picture of the topic within the given context.
For example, the three layers of trust (i.e., dispositional trust,
learned trust, and situational trust; see Hoff and Bashir 2015)
require different types of data to best fit each construct.
Choosing the appropriate data and analysis method depends
on both the literature and the accessibility of the data in the
given context. A comparison of available methods using em-
pirical data was developed to provide further guidance in this
regard (Huang et al., 2020b).

Evaluation of verbal communication during a human-
autonomy team operation should account for elements of the
interaction (for a related interaction taxonomy, see Huang
et al., 2020a, b, c). Using this taxonomy, the communication
content theme and frequency can be coded to indicate whether
the stakeholder trusts other individuals and entities on the
team. There are two ways to code verbal data quantitatively
and systematically: Coding Streams of Language (Geisler and
Swarts 2019; Huang et al., 2020a) and Structural Topic
Modeling (Lee and Kolodge 2018). A specific codebook for
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the distributed dynamic approach is in development to identi-
fy the kinds of communication themes, frequency, and chang-
es across phases for the context of Next-Generation Combat
Vehicles and to compare the results with the two coding
methods.

Step 4: Plot the team analysis in a network Communication
data within a chosen period should be aggregated and plotted
as a network of trust using nodes to indicate the involved team
component and links to indicate trust relationships. The im-
pact of managers’, trainers’, and engineers’ trust toward the IA
on the end-users’ trust toward the IA can be noted on the
network to account for the higher-level influencing factors
that are beyond the dyad relationship between an end-user
and an IA.

Step 5: Analyze the trust network on a dynamic timeline The
communication-based trust network can be sampled and plot-
ted along the timeline of an IA’s life cycle or a specific stage.
For example, in the stage of concept development, data sam-
ples can be chosen from the beginning phase of a mission, the
perturbation phase, and the post-perturbation (i.e., recovering)
phase. After we analyze sufficient interaction data samples as
described in Step 3 and identify reliable interaction patterns
for a team cognition topic (e.g., trust), real-time communica-
tion transcription services (e.g., Microsoft Azure cloud solu-
tion and Zoom auto transcription) may enable real-time detec-
tion of trust indicators. Comparing the trust network at differ-
ent phases allows us to compare and contrast the team trust
state at these phases and then determine intervening strategies.

Team trust is one example of applying this distributed and
dynamic team cognition approach on a human-IA team
(Huang et al., 2020a). The process can be customized to ad-
dress alternative constructs. For team cohesion, these steps
would be revised by defining team cohesion based on litera-
ture, determining team level, identifying cohesion-related
stakeholders and relevant artificial entities, analyzing stake-
holders’ interdependent tasks and their interactions types and
frequencies, developing a team cohesion codebook for the
interactions, and finally showing them on a cohesion network
along the timeline.

Critical to this model are the topics of team situation aware-
ness, team workload, and team resilience, in addition to team
trust. Team situation awareness may focus on the successful
usage of critical information in their interactions. Team work-
loadmay be reflected in their response time or communication
content with teammates. Team resilience may be broken down
to which team component is unable to execute necessary in-
teractions to recover from the perturbations on what task so
that the whole team fails, or which team component is able to
fill in extra functions through the interactions to cover another
team component’s functions so that the entire team succeeds.
The key is to identify the essential features of the topic and

operationalize it through communication data and patterns.
This approach can be applied to different teams by following
the steps.

This distributed and dynamic team cognition approach is
relatively newer and more sophisticated than traditional ways
of studying team cognition. The approach could expand the
previous research fields by including the interactions among
multiple stakeholders and multiple autonomies, and the im-
pact of a dyad relationship on the other dyads in a network.
This approach applies to any type of team and is customizable
in terms of team size, time frame, and research topics. The
richness of interaction modality allows the approach to use the
available types of interaction data to overcome the constraints
of data availability in different cases.

A current limitation of this method is that there is a lack of
an established database of interaction patterns for the topics of
interest. Additionally, task analysis and interaction analysis
are labor-intensive for identifying communication patterns
and their relationship with target variables at the beginning
of the process. There are three potential ways to overcome
these limitations. First, reliable communication pattern stan-
dards and their connections with the target team variables
should be investigated through more empirical studies, so that
it will be easier for future studies to use the pattern options and
apply them to other topics in other contexts. Second, context-
free communication patterns should be identified. For exam-
ple, the duration of communication in different scenarios can
be measured through a talk pedometer called LENA technol-
ogy, which was initially used to measure children’s talking
volume without dealing with the contents (Wang et al. 2017;
Odean et al. 2015). The context-free measures could reduce
the amount of labor required to analyze all the communication
contents. In the last decade, researchers have been using dy-
namics techniques to analyze patterns of content-free social
science data (Amazeen 2018; Gorman et al. 2010). The dy-
namics analysis techniques allow for analyzing many interac-
tion data types that traditional surveys and statistics cannot do.
For example, the damping model could describe patients’ im-
proving accuracy of pain estimation (Finan et al. 2010) and
may apply to users’ improving trust calibration. Finally, auto-
mated transcription techniques, real-time data analysis, and
automated data visualizationmay further improve the efficien-
cy of this approach for researchers and practitioners.

2.2.2 Quantifying exploratory communication

This section expands on using a dynamical systems approach
to team communication by providing a means to quantify how
teams find new ways of coordinating and communicating.
Whereas behavior may “exploit” previously effective solu-
tions, behavior may also “explore” solutions which may po-
tentially be effective. Exploration and exploitation tradeoffs
have been researched across several domains including
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machine learning (Kaelbling et al. 1996), animal foraging
(Cook et al. 2013), and cognitive systems (Hills et al. 2015).
For instance, work by Rolf et al. (2011) showed that efficient
motor learning in infants could be accounted for by treating
exploratory movements as goal-directed, rather than random.
Their key insight was that feedback from exploration could be
rapidly exploited to further approximate a target movement.
Team communication may also be thought of in terms of
exploration and exploitation, in which new ways of coordinat-
ing are discovered by varying communication to meet shared
goals. Therefore, this method focuses on quantifying novel or
exploratory communication to identify those patterns in
human-autonomy teams. Although exploratory communica-
tion has not been explicitly defined, there are numerous defi-
nitions of exploration throughout the literature, whereby ex-
ploratory communication may be defined as communication
with properties unique to a collective’s interaction history
(Hills et al. 2015).

Newly formed human-autonomy teams must learn to work
together, which means identifying communication that works
for that team. This process involves exploring communication
to develop trust, cohesion, and accomplish team-level goals.
For instance, a human teammate may be able to verbalize
commands to an intelligent agent or query them for more
information. By exploring communication with that agent,
the human teammate may learn that agent’s boundaries for
appropriate reliance. Conversely, if a teammate explores and
that exploration is attributed as a communication error, trust in
that teammate may decrease. Teammates that deliberately ex-
plore together, perhaps indicated by attractor reconstruction
(e.g., Gorman et al. 2010), may also be more cohesive, where-
as more unstable exploration may indicate a lack of cohesion.
Finally, because exploration is typically motivated by an in-
tent to meet a shared goal, patterns should correspond gener-
ally with task novelty. A high-performing team may learn the
appropriate communication processes necessary for meeting
these goals more quickly. The communication patterns asso-
ciated with efficient learning are likely to be non-linear, mak-
ing non-linear dynamical systems methods appropriate.

Because teams may be required to communicate in new
ways to adapt to novel or challenging circumstances, explor-
atory communication may be directly indicative of team-level
adaptation and resilience. There is evidence that teams which
have “metastable” coordination, or coordination that shifts be-
tween stable and unstable patterns with ease, are highly adap-
tive in the face of roadblocks (Demir et al. 2018). The first
approach described in this section treats variability as an index
of exploration and may be applied to measure the flexibility of
a team’s communication pattern in general, whereas the second
approach addresses patterns of exploration specifically.

Non-linear dynamical systems analyses assume that events
over time are sampled from a dynamical system which may
only be in one state at a time. Therefore, communication

should be measured over time and interpolated as needed to
produce a time series with a consistent sampling rate (e.g.,
100Hz) and a defined set of possible states. A phase space,
or a set of possible trajectories for the team’s communication,
will need to be constructed if the measured communication is
not a continuous numeric variable. This can be done by
decomposing the signal into a set of dimensions and states
corresponding to each possible combination. Because explor-
atory communication generally refers to goal-directed com-
munication variability, it is imperative that the aspects of com-
munication measured are most relevant for the task or variable
of interest. Although these may be specific to the task, some
examples include communication flow, communication mo-
dality, current task, and communication content. Note that the
set of possible dimensions such as communication content
may need to be condensed into more tractable units such as
the information conveyed or themes. For a detailed example
of this process applied to team communications data, see
Gorman et al. (2019).

Next, the team’s behavior may be captured by using attrac-
tor reconstruction. Attractor reconstruction involves firstly es-
timating the length of a set of related events in the time series,
tau which is indicated by either the first point in time that is
minimally correlated with the series or by calculating the aver-
age mutual information for that series. Then, an embedding
dimension must be determined by identifying the number of
dimensions that minimizes the percent of false nearest neigh-
bors in the phase space. If the embedding dimension is less than
or equal to three, then the phase space may be plotted and
visualized. Attractor reconstruction is typically followed by
calculating the largest Lyapunov Exponent to determine stabil-
ity and recurrence quantification analysis to describe the pre-
dictability of a team’s overall coordination pattern, represented
as a recurrence rate and percentage of determinism. In addition
to attractor reconstruction, several other methods for describing
variability within a time series are available (Amazeen 2018),
many of which show promise in the human-autonomy team
context.

Another approach is to use qualitative coding to identify
exploratory communication. For this method, it is critical to
identify what exactly counts as exploratory. In controlled ex-
periments, teams are often formed from individuals who do
not know each other, and even familiar teams may lack expe-
rience working together on the specific task. Therefore, it may
be safe to assume that initial team communications are explor-
atory in some experimental contexts. For experienced teams
performing familiar tasks (e.g., a military squad that has
trained together), some investigation into the team’s routine
communication practices may be needed to scope communi-
cation that has already been explored. One approachmay be to
assume a trained team as familiar with pre-defined essential
coordination and to treat non-essential coordination as explor-
atory. Once data have been coded and translated into a set of
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relevant states, dynamical methods may be applied. The dif-
ference between the first approach and this one is that this
approach operationalizes exploratory communication as the
signal itself, rather than the variability of an overall commu-
nication signal.

A frame of reference is critical for making sense of commu-
nication dynamics analyses. Although a communication pat-
tern may be different (i.e., more or less stable) than another,
this information does not address which pattern is better for that
specific task or better for improving a variable associated with
team effectiveness. In that sense, dynamical methods are excel-
lent for describing a pattern and taking into account differences
in communication over time which traditional static measures
do not, but the association between variables such as trust and
cohesion must be developed and validated with solid ground-
ing in the context of teamwork. All teams are likely to exhibit
exploratory communication, particularly when they are unfa-
miliar. However, exploratory communication is constrained
primarily by the redundancy and degrees of freedom offered
by the communicationmodality (e.g., natural language) used as
well as the team interdependencies from which coordination is
likely to emerge. Therefore, the proposed method is most ap-
propriate for dynamic and complex tasks for which there are
many possible solutions to achieving team-level goals. The
teamwork context should contain enough variation to motivate
exploration in teammates’ behavior, and that variation should
have impact at the team-level rather than the individual-level.

There is some evidence that different training regimes such
as perturbation training (Gorman et al. 2010) which constrain
team coordination facilitate exploration and adaptive perfor-
mance. Additionally, research showed that mixing up team
composition after a retention interval had similar effects
(Gorman and Cooke 2011). In general, it appears that diversi-
fying the constraints in teamwork may be a critical component
to preparing teams for unexpected conditions to the extent that
it affects how team coordination evolves. More development is
needed to understand more broadly the patterns of exploratory
communication associated with team effectiveness as well as
how to instantiate those patterns through work systems design.

Notably, IAs do not explore communication in the same
ways as humans, which may influence human-autonomy
teams to coordinate more rigidly (Demir et al. 2018). In the
short term, intelligent agents are unlikely to be able to explore
communication in a goal-directed way. They will typically
rely on fixed programming or training data to coordinate in a
team. Future intelligent agents may have machine learning
capabilities that allow for their communication to evolve over
time. Measuring exploratory communication in teams with
these agents may be useful for assessing the performance of
these algorithms. Given progress in modeling exploratory
communication, machine learning capabilities may benefit
from extending the explore-and-exploit tradeoff to the com-
munication behaviors of intelligent agent teammates.

2.3 Emotional states

The preceding assessment approaches have all shared a focus
on the sequencing and interaction patterns of team communi-
cation events. These approaches rely on data that preserve the
sequence of team communication events over time, such as
transcribed audio, text or chat logs, or event logs, such as those
exported from simulator systems. However, other assessment
methods can leverage features of the team’s interactions to
provide insights into team states such as trust or cohesion.
The next section describes an approach for performing emo-
tional feature processing using facial features, followed by an
approach for detecting emotional states using vocal features.

2.3.1 Facial expression analysis

One of the strongest indicators for emotions is the human face.
We can read emotions in others based on changes in key facial
features such as eyes, brows, lids, nostrils, and lips. The hu-
man face includes over 40 structurally and functionally auton-
omous muscles, each of which can be triggered independently
of each other (but are likewise innervated by a single nerve,
therefore referred to as the facial nerve). The facial nerve
emerges from deep within the brainstem and branches off to
all muscles like a tree. Here, facial muscle activity is highly
specialized for expression—it allows us to share social infor-
mation with others and communicate both verbally and non-
verbally. Facial expressions are only one of many indicators
of human emotion, but they might be the most apparent ones.
Humans can produce thousands of variations; however, there
is only a small set of distinct facial configurations associated
with certain emotions, irrespective of gender, age, cultural
background, and socialization history (to an extent). These
are joy, anger, surprise, fear, contempt, sadness, and disgust.

Computer-based facial expression analysis attempts to
mimic our human coding skills as it captures raw, unfiltered
emotional response towards any type of emotionally engaging
content. As such, emotional feature processing involves the
detection of human emotional states from specific features of
the face (e.g., specific movements of the face which reveal
changes in universal emotions). Facial expressivity has been
shown to be related to appraisal and coping mechanisms, as
well as stress, fatigue, and trust. Past studies have found that
automatic computations of facial expressivity are comparable
to manual annotations of emotional expressions (Neubauer
et al. 2017) and have been utilized in a number of both clinical
and experimental studies (DeVault et al. 2014; Scherer et al.
2016); Venek et al., 2016; Parra et al. 2017; Batrinca et al.
2013; Chollet et al. 2015). Therefore, the platform provides
evidence that automatic behavior trackers have the ability to
support clinical assessments and provide researchers with
much needed objective assessments of behavioral indicators
of stress, trust, or even team cohesion, though to date, research
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into these possibilities has been largely exploratory. However,
we anticipate that facial expression measurements will pro-
vide corroborative support for other relevant behavioral and
physiological measures that indicate changes in emotional
state, trust, or team cohesion such as communication metrics,
electrodermal activity (EDA), or heart rate variability (HRV).

Facial expressions can be assessed three different ways.
First, tracking of facial electromyography (fEMG) records the
activity of facial muscles with electrodes attached to the skin
surface. fEMG detects and amplifies the electrical impulse gen-
erated by the respective muscle fibers during contraction. For
example, the corrugator supercilii (e.g., eyebrow wrinkler) is a
small, narrow, pyramidal muscle near the eyebrow, generally
associated with frowning. The corrugator draws the eyebrow
downward and towards the face center, producing a vertical
wrinkling of the forehead. This muscle group is active to pre-
vent high sun glare or when expressing negative emotions such
as suffering. In addition, the zygomaticus is a muscle that ex-
tends from each cheekbone to the corners of the mouth and
draws the angle of the mouth up and out, typically associated
with smiling. Therefore, when facial expressions are apparent,
so too are the associated electrical impulses that result from
movement.

The second method involves live observation and manual
coding of facial activity using the Facial Action Coding
System (FACS). The FACS represents a standardized classi-
fication system of facial expressions for expert human coders
based on anatomic features. Coders examine videos of an
individual’s face and describe any occurrence of facial expres-
sions as combinations of elementary components called
Action units (AUs). Each AU corresponds to an individual
face muscle or muscle group and is identified by a number
(AU1, AU2, etc.). All facial expressions can be broken down
into their constituent AUs. To use an analogy, facial expres-
sions can be likened to “words,” while AUs are the “letters”
that make up those words. Table 2 illustrates which AUs can
be calculated to reveal changes in universal emotions. For

example, the universal emotion “anger” is composed of evi-
dence from AUs 4, 5, 7, and 23, which together can be aver-
aged to reveal the overall evidence of a specific emotion,
within an individual frame of data.

The third (and quickest method) utilizes computer vision
algorithms to automatically detect a human face and employ
feature detection to detect facial landmarks such as eyes and
eye corners, brows, mouth corners, and the nose tip. With the
feature detection, an internal face model is adjusted in posi-
tion, size, and scale to match the respondent’s actual face, as if
an invisible virtual mesh was put onto the face of the respon-
dent. Whenever the respondent’s face moves or changes ex-
pressions, the face model adapts and follows. The feature
classification then translates the landmark facial features into
action unit codes, emotional states, and other affective
metrics.

The individual’s facial expressivity can be quantified auto-
matically through several open-source or paid software licenses.
For example, some commercial software (e.g., iMotion’s Facet)
provides automatic extractions for emotions such as anger,
sadness, joy, and contempt on a frame by frame basis.
Additionally, the OpenFace software platform (Baltrušaitis
et al. 2018) provides automatic assessments of single action unit
(AU) evidence, which can then be used to calculate universal
emotions following the FACS calculations mentioned above
(Ekman and Friesen 1978). These two technologies are widely
used in the affective computing literature; however, they require
offline analysis (i.e., video of an individual’s face is processed
after they engaged in a task). As such, there are additional tech-
nologies that allow for real-time analysis of facial expressivity
(e.g., Visage Technologies). For all software systems, partici-
pants’ facial expressions should be continuously recorded via a
webcam embedded in their monitor or mounted atop their com-
puter screen while they are engaging in a task of interest (e.g., a
team coordination task). We note that the software packages
discussed thus far are not meant to be exhaustive, but merely
provide examples of the software that can be utilized for these
analyses.

Many metrics to measure operator state exist and typically
include questionnaire assessment; however, these are taken
after an operator performs a task, requiring them to remember
how they felt in a given moment, and possibly reflecting sub-
jective biases. Additionally, unimodal streams of data may not
accurately capture all aspects of an affective state or decision.
In this context, it is vital that IAs not only accurately perceive
human affective states but also respond appropriately to avoid
misinterpreting social cues during collaboration to improve
decision-making and performance (Scheutz et al. 2006).
Most of the published research on computer vision approaches
to operator state detection have focused on fatigue assessment
and typically relied on analyses focused on eye tracking and
head movements (Dong et al. 2011; Gu and Ji 2004; Zhang
and Zhang 2006). In contrast, the relationship between team

Table 2 Facial expression emotion calculation from single AUs
(Ekman and Friesen 1978)

Emotion classification Action units that comprise an emotion

Anger 4+5+7+23

Contempt R12A+R14A

Disgust 9+15+16

Fear 1+2+4+5+7+20+26

Happiness 6+12

Sadness 1+4+15

Surprise 1+2+5B+26

AUs correspond to individual muscles or groups of muscles which can be
used to calculate and categorize universal emotions
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cohesion and facial expressivity has not been studied thor-
oughly. Therefore, we posit that these methods for measuring
emotional response will provide more directed insight on un-
derstanding affect-based trust and team cohesion. This line of
research is critical because it will be necessary to develop
autonomy-enabled systems that can robustly perceive and re-
spond to our emotions as we interact with them if human-
autonomy teams are to be successful (Bartlett et al. 2004).

Through a large review of the literature, it has been found
that there are six identified types of trust that impact human-
autonomy teams: trust propensity, trustworthiness, affect-
based trust, cognitive-based trust, situational trust, and learned
trust (Schaefer et al. 2020). Facial data evaluation provides an
additional means to evaluate affect-based trust within human-
autonomy teams. Affect-based trust is an emergent attitudinal
state in which the individual makes attributions about the mo-
tives of the automation (McAllister 1995; Burke et al. 2007).
Analyses using these features may be important to human-
autonomy teams because these data (e.g., emotions, body pos-
tures, and facial expressions) can provide insights into behav-
ioral patterns which have been linked to affiliation, empathy,
and assessments of team member trustworthiness.

Human-autonomy teaming presents an interesting case be-
cause human-human teams may communicate non-verbally
through changes in emotional expression (i.e., constant search
for information from our partners’ faces). For example, if an
individual worries about a particular decision they made or
need to make, they may seek confirmation or alternate solu-
tions from non-verbal features of their partner. Alternatively,
if something negative impacted the state of the team and one
team member responds appropriately (e.g., some sort of neg-
ative affective response) whereas the other does not (e.g., they
smile in response to a team failure), then trust and eventual
cohesion may suffer. Within the human-autonomy teaming
domain, it is important to acknowledge that humans may not
get the same kind of non-verbal feedback that they normally
would from a human equivalent. Given scenarios such as
these, additional considerations should be made with regard
to the communicative design of human-agent teams.

2.3.2 Vocal feature assessment using neural networks

Individual emotional regulation and sensitivity to the emo-
tional state of others on a team can be helpful when establish-
ing team trust and cohesion. Most humans do this to some
degree by interpreting facial expressions and vocal content
in context. Good teamwork often consists of knowing when
to pass along information and knowing when this information
will not be helpful due to the constraints of the recipient’s state
(Lingard et al. 2004). Although the content of speech may be
useful for detecting emotional state, this is most often com-
municated through vocal features such as the spectral and
temporal characteristics of speech relative to one’s neutral

speech. Stress can cause the muscles in the body to tighten,
and this extends to the chest, throat, neck, jaw, and vocal cords
(Hansen and Patil 2007).

Recently, neural network models have been shown to be
able to effectively detect emotional state from the acoustic
features of speech (Casale et al. 2008; Koolagudi and Rao
2012; Stuhlsatz et al. 2011). This capability has utility for
teams consisting of humans and intelligent agents, as this al-
lows adaptive autonomous assistance in response to stress and
work overload. This capability has already been used for cus-
tomer service applications like automated telephone atten-
dants as well as for aid in psychiatric diagnoses of depression
and post-traumatic stress disorder (Banerjee et al. 2017;
Cannizzaro et al. 2004; Vergyri et al. 2015; Vidrascu and
Devillers 2005; Vogt et al. 2008; Yacoub et al. 2003).

The ability to adapt one’s behavior according to the needs
of the team would seem to correspond to the trust and cohe-
sion within a team and, by extension, to increased team per-
formance. However, it has not been proven that improving the
ability to detect and adapt behavior to emotional states will
lead to increases in team performance or team outcomes.
Thus, a first step is to establish a correlation between positive
emotional states with other measures of trust and cohesion. It
is presumed, but also unconfirmed, that positive emotional
states will also correspond to improved team performance
and, conversely, that poorly performing teams will have great-
er rates of frustration and negative emotions. A future goal is
to identify when the human members of a team are experienc-
ing a higher workload so that IAs can implement adaptive
assistance. It is hypothesized that team trust, cohesion, and
performance (as assessed by other measures) will improve as
a function of the implementation of adaptive autonomous aids.
Because the development of technical adaptations is beyond
the scope of this work, the initial goal here is to simply estab-
lish a correlation between measures of emotional state and
team trust and cohesion.

Neural network models are derived by training a model on
a labeled set of data, in this case digital auditory data (e.g.,
.wav files) recorded from speech. Typically, the first step is to
extract, as input, acoustic features from the speech signal.
These features usually include information about the spectral
content, the log-energy content, the pitch period, and statisti-
cal information about their averages, minima, and maxima.
Derivatives of these features provide information about fea-
ture changes over time (El Ayadi et al. 2011; Schuller et al.
2003). The task of the algorithm then is to estimate the param-
eter weights of these features with respect to the probability of
an outcome, and by optimizing these weights, the algorithm is
trained to accurately classify the speech input into categories
of emotional state. Models can be optimized using mathemat-
ical techniques, such as the use of hidden nodes, convolution,
and sequential features like recurrent bidirectional networks
and long short-term memory. These allow the model to
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incorporate contextual information about speech, adjusting
parameters based on what occurs directly prior to, and after
the current speech content. The processing power required for
such models depends on the model, but many algorithms can
be implemented on standard CPUs (computer processing
units) and GPUs (graphic processing units). Implementing
the model requires access to a set of labeled speech files and
time for the initial model training. Real-time implementation
would require the use of a trained model, recording capabili-
ties, processing capabilities that enable the extraction of fea-
tures, and continuous reading of ongoing speech. Currently,
such models are able to correctly identify 4–7 emotion cate-
gories at rates of 70% or more.

This method has been demonstrated to work and has
been used for multiple applications such as detecting
severe depression (Cannizzaro et al. 2004) and interac-
tive voice systems (Yacoub et al. 2003). However, there
are still some technical challenges to implementation of
this model. First, there is the acquisition and labeling of
a dataset of speech recordings for use in model training.
Although prelabeled sets exist, most are small (Bou-
Ghazale and Hansen 2000; Burkhardt et al. 2005;
Fiscus et al. 1993; Swain et al. 2018; Ververidis and
Kotropoulos 2003; Ververidis and Kotropoulos 2006).
Most existing sets use “acted” emotional speech (Liu
et al. 2018; Vogt and André 2005). In real-world con-
texts, most speech is neutral, so it becomes the task of
the model to identify anomalies, of which there are few
to train on. Furthermore, most of the studies conducted
have been in quiet environments with only a few ex-
ceptions (Huang et al. 2019). A potential complication
for initiating this methodology for human-autonomy
teams is that the environments are noisy. Finally, most
models are somewhat accurate for the detection of mul-
tiple emotional states, but they have been most success-
ful at discriminating between positive and negative emo-
tions (Casale et al. 2008). In the context of team per-
formance, this may be sufficient to enable IAs to detect
when aid is needed.

The model currently under development for use in
human-autonomy teams is a convolutional recurrent neu-
ral network model that incorporates long short-term mem-
ory and an attention layer. It is loosely based on the mod-
el proposed by Huang and Narayanan (2017). The model
is trained on noisy, field study audio-recordings and, rath-
er than learning multiple emotional states, and is trained
to identify only stress states. The current implementation
of the model has been trained on an existing speech
dataset called the IEMOCAP dataset (Busso et al. 2008).
Current efforts include the development of a labeled
dataset from recent US Army field studies using the
Wingman human-autonomy lethality platform in a gun-
nery task (Schaefer et al. 2019a; Schaefer et al. 2019b).

After training and validation, future efforts will include
the development of a continuously operating model for
real-time analysis of team performance.

2.4 Linguistic synchrony

The preceding two sections have illustrated how features of
vocal and facial expressions could be leveraged to understand
team trust and performance. These features can be captured
real time, so while the approaches are in development, they are
highly promising as opportunistically sensed metrics.
Whereas the preceding two approaches relied on behavioral
aspects of communication, the approaches described in this
section utilize the content of communication to produce
insights.

In teams, members must form a common understanding of
their goals, roles, and procedures (Klein et al. 2005). To build
this understanding, members must use strategies to transmit
and encode relevant information (Wilson and Sperber 2012).
In doing so, people engaged in a conversation (speakers) may
exhibit similar lexical (i.e., word choice) and syntactic (i.e.,
sentence structure) properties in their utterances, presumably
because greater lexical and syntactic alignment improves ef-
ficiency in communication (Semin 2007). In fact, many
scholars have examined linguistic similarity among speakers,
revealing positive associations with cohesion (Dong 2005;
Heuer et al. 2020), trust (Scissors et al. 2009), and task per-
formance (Dong et al. 2004; Foltz et al. 2003; Fusaroli et al.
2012; Gorman et al. 2003; Richardson et al. 2019; Yilmaz
2016). Here, we outline approaches which have yielded some
promising results in human-human teams, including their
computation, relevant findings in the literature, and how they
may be adapted and improved for understanding cohesion,
trust, and performance in human-autonomy teams. The lin-
guistic synchrony metrics detailed here are designed to reflect
different states and processes pertaining to communicating
and encoding knowledge. Described here are three metrics:
Language Style Matching (LSM: Niederhoffer and
Pennebaker 2002), Latent Semantic Similarity (LSS:
Landauer and Dumais 1997), and Conversation Level
Syntax Similarity Metric (CASSIM: Boghrati et al. 2018).

LSM can be viewed as an analysis approach which focuses
on the rate at which speakers use content-free words (i.e.,
words which, by themselves, do not carry any semantic mean-
ing). The LSM approach assumes that explicit information
becomes burdensome when communicating about a topic at
length, and therefore speakers will tend to omit explicit details
once common ground has been established, resulting in great-
er communication efficiency (Gonzales et al. 2010). LSM
relies on the proportion of function words used in a
conversation—the greater the similarity between speakers in
their use of function words, the greater degree of linguistic
synchrony. Function words include nine lexical categories:
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articles, adverbs, conjunctions, negations, impersonal pro-
nouns, personal pronouns, prepositions, verbs, and quantifiers
(Gonzales et al. 2010). To compute LSM between speakers,
the following formula is used:

LSM ¼
∑9

i¼1 1−
pis1−pis2
�
�

�
�

pis1 þ pis2

� �

9

where i represents each of nine function word categories (see
above), s1 and s2 represent each speaker for the dyadic com-
parison, and pisn represents the proportion of function words
within a category used by the speaker. Note that the difference
between proportions is absolute, that LSM represents an un-
weighted average across the word categories, and that the
possible values of LSM range from 0 (absolutely no
matching) to 1 (perfect matching). Although the computation
itself is simple and intuitive, it relies on the use of a
reference—a dictionary—to accurately tag each word with
its associated category, which has been made easy by tools
such as the Linguistic Inquiry andWord Count software pack-
age (LIWC: Pennebaker et al. 2001).

In contrast, LSS can be viewed as an analysis approach
which focuses on the explicit details of a conversation, and that
the semantic coherence between speakers’ utterances, or be-
tween a speaker’s utterance and known topics, reflects coher-
ence and shared comprehension (Landauer and Dumais 1997).
Rather than rely on pre-specified word categories, LSS relies
on the use of Latent Semantic Analysis (LSA: Landauer et al.
1998) to construct word meanings based on their co-
occurrences with other words. First, conversation transcripts
need to be formatted in amatrix, with each column representing
a document (e.g., an utterance), each row representing a term
(e.g., a word or bigram), and each cell representing the number
of times the term appears in a corresponding document. Using
this matrix, LSA applies Singular Value Decomposition to re-
duce the dimensionality of the matrix, a method akin to princi-
ple components analysis. At this stage, the analyst must choose
the number of topics (or factors) to extract from this matrix,
which may be informed by several criteria that will not be
explored here in detail; we instead refer the reader to existing
resources (e.g., Evangelopoulos et al. 2012; Landauer et al.
2013). Once factorization is performed on the original matrix,
one can then reconstruct the original document-term matrix,
with cell values representing each term’s relevance to each
document in semantic space. The consequence of this transfor-
mation is that terms which may have never appeared in a doc-
ument will, nevertheless, reveal themselves as relevant to a
document by virtue of their associations with other termswhich
do appear in the document. Finally, the analyst can correlate,
via cosine similarity, terms and documents with each other—if
documents represent unique utterances, the cosine similarity
between utterances represents their coherence in semantic

space, or their Latent Semantic Similarity. Because LSS is
based on correlations, values can range from −1 (anti-
synchrony) to 1 (perfect synchrony).

CASSIM, the third approach, can be viewed as an analysis
approach which focuses on the format in which information is
communicated (Boghrati et al. 2018); several reports indicate
that semantic and syntactic information is processed differently
(Dapretto and Bookheimer 1999; Hagoort 2003), and that syn-
tactic variation has meaningful implications for comprehension
(Bock 1982). Below, we introduce the methods underlying
each of these linguistic synchrony metrics. CASSIM is a fully
automated process of estimating syntactic similarity (Boghrati
et al. 2018) that directly analyzes syntactic structures by
extracting constituency parse trees (see Fig. 2 for an
example), which depict the breakdown of a sentence (S) into
its substructures: noun phrases (NP), verb phrases (VP), and
prepositional phrases (PP), which themselves comprise specific
word categories, such as determiners (DT), third-person singu-
lar present verbs (VBZ), nouns (NN), and prepositions (IN).

With the structure of the sentence represented as a graph,
one sentence can then be compared to the structure of other
sentences, which CASSIM accomplishes using the edit dis-
tance, an algorithm that computes the number of changes re-
quired to convert one sentence structure to another—the fewer
edits required, the more similar the syntactic structure. The
changes can take three possible forms: insertions, deletions,
and renaming. After extracting constituency parse trees and
computing edit distances between sentences, CASSIM sub-
tracts distance scores by 1 so that larger values (1 is maxi-
mum) represent greater similarity, while lower values (0 is
minimum) represent lower similarity. If computing similarity
at the level of an entire conversation, CASSIM employs the
Hungarian Algorithm to find optimal pairings of sentences for
computing similarity.

Several accounts have focused on how linguistic synchro-
ny functions to build interpersonal trust, cohesion, and perfor-
mance. For instance, LSM has been linked to greater social
support in teams (Heuer et al. 2020), greater cohesion

Fig. 2 Constituency-based parse tree visualization, which shows the
nested structure of a sentence, comprising each of its syntactic
components

Hum.-Intell. Syst. Integr.



(Gonzales et al. 2010), and better performance (Gonzales et al.
2010; Yilmaz 2016). There is also evidence from research on
linguistic entrainment, or the use of similar words at similar
rates between speakers, which suggests that entrainment on
high frequency words (similar in computation to LSM:
Rahimi, Kumar, Litman, Paletz, & Yu, 2017) corresponds to
greater performance (Friedberg et al. 2012; Nenkova et al.
2008). Similarly, LSS has been used to predict positive social
dynamics, such as greater interpersonal attentiveness
(Babcock et al. 2014), and greater team performance (Dong
et al. 2004; Foltz et al. 2003; Gorman et al. 2003; Martin and
Foltz 2004). Although CASSIM has yet to be evaluated as a
predictor of team performance, initial results demonstrate its
ability to discriminate between related and unrelated text re-
sponses (Boghrati et al. 2018), and that subordinates will ad-
just their syntax to accommodate superiors (Boghrati and
Dehghani 2018).

Although these linguistic synchrony metrics are typically
used to understand dyadic communication, researchers also
apply these methods to multi-party dialogues, which they ac-
complish by averaging across dyadic contributions to team
communications (Litman et al. 2016; Rahimi et al. 2017), or
comparing each member to the group as a whole (Gonzales
et al. 2010). There are no known limitations on team size,
structure, or composition with respect to using these metrics;
however, researchers ought to be vigilant about the constraints
of their own study design when interpreting the meaning and
relevance of these linguistic synchrony metrics. For instance,
analyses could be conducted across teams, across members
within teams, or within members over time. Such flexibility
will result in several distinct models depending on the dimen-
sions of interest and any contextual information available
(e.g., roles, hierarchy, task constraints). As a specific example,
Yu et al. (2019) used LSM to explain variation in the degree to
which team members self-reported experiencing conflict dur-
ing a cooperative board game, the results of which indicated
that teams who experienced greater change in their degree of
LSM also self-reported less conflict. By contrast, Gonzales
et al. (2010) used a static measure of LSM, rather than change
in LSM across the task, to characterize communications dur-
ing a group coordination task, the results of which indicated
that teams with higher LSM performed better on the task.
These examples illustrate a small divergence compared to oth-
er uses of these same underlying linguistic synchrony metrics,
especially when considering how these metrics become incor-
porated in larger causal models.

Beyond the flexibility with which these metrics can be
analyzed, there are inconsistencies in understanding the im-
portance of linguistic synchrony in team processes. For in-
stance, some scholars have found that greater LSM is associ-
ated with worse performance (Heuer et al. 2020), is not asso-
ciated with performance at all (Munson et al. 2014), and that
its associations with performance are moderated by other team

features (Gonzales et al. 2010; Yilmaz 2016). Drawing strong
conclusions regarding the role of linguistic synchrony in team
performance is difficult at this time, because very little evi-
dence was obtained using the samemethods for collecting and
analyzing data. However, automated transcription technolo-
gies are becoming better and more widely available, reducing
the burden of analyzing naturalistic communication data.
Therefore, an influx of communication data from research
on teams will help clarify the relationship between linguistic
synchrony and team performance.

In human-autonomy teams, the applicability of these
methods will depend on the role of an IA, which can take
two forms: as communication observer and as communication
participant. An observing autonomywould be poised to assess
linguistic similarity in real time and provide feedback to those
with vested interests. However, a participating autonomy
would need more sophisticated capabilities, such as under-
standing how these linguistic features correspond to team pro-
cesses and the external environment, or understanding how to
produce natural language to make lexical, semantic, and syn-
tactic features comparable across entities. The dependence on
natural language is particular to LSM, which relies on
matching words to a specific dictionary, and CASSIM, which
appears to be only reasonable for comparing syntax within a
modality (e.g., natural language to natural language). On the
other hand, LSS relies on the association between generically
defined “terms” and “documents,” making it amenable to un-
derstanding the semantic relevance of behaviors (Chen et al.
2019; Niebles et al. 2008), which could include any non-
linguistic communication.

As our ability to capture accurate real-time communication
data becomes more tenable, collecting large corpora of
human-autonomy team communication data will enable more
rigorous testing of these metrics. Even with our current ana-
lytic capabilities, it is worth evaluating the performative dif-
ference between completely accurate transcriptions and fully
automated speech recognition transcriptions; in fact, early re-
search demonstrated only a 10% reduction in predicting per-
formance when using automated transcriptions with a 57%
error rate (Foltz et al. 2006).

As more capable conversational agents are developed, these
metrics can inform autonomy about how to actively engage in
the grounding process. To achieve this, autonomy must be able
to incorporate information beyond transcripts, such as where
people are looking (Altmann and Kamide 2007; Knoeferle and
Kreysa 2012; Staudte et al. 2014) or gesturing (Beilock and
Goldin-Meadow 2010; Galati and Brennan 2014; Goodwin
1986). For autonomy to be fully participatory, it must also have
the capacity to learn to adapt its own communication to its
human teammates to ensure optimal efficiency and efficacy
of bidirectional human-autonomy communication (Marathe
et al. 2018). Importantly, autonomymust also understand when
similarity is an appropriate indicator; for instance, scholars are
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beginning to explore joint action dynamics beyond synchrony,
such as complementarity (Dale et al. 2013) and antisynchrony
(Wallot et al. 2016). Until autonomy develops these capacities
to engage in timely, transparent, and socially dynamic
communication—the products of team members’ attempts to
build common ground and achieve mutual goals—analyzing
human communication in teams will enable us to push human-
autonomy teaming forward.

3 Discussion

Human-autonomy military teams will need to leverage the
kinds of flexible, adaptive interactions characteristic of human
teams to maintain decisive overmatch in the dynamic future
battlefield. With more effective communication assessment
tools, and more datasets to draw from, a clearer picture will
emerge of human-autonomy team communication, offering a
better understanding of metrics or patterns that define effec-
tive teams and teaming in various contexts. The following
sections will synthesize the key information presented
throughout this article. First, we provide a comparison of the
approaches to support the selection of the best approach (or
approaches) for a given scenario. Then, we distill the direc-
tions for future research provided throughout the manuscript
into four critical areas for further study.

3.1 Comparing and selecting approaches

Selecting the most appropriate approaches for a given scenario
will depend on characteristics of the scenario and the re-
sources available to the researcher. To this end, Table 3 pro-
vides a comparison of the characteristics, data/resource re-
quirements, and constraints of each approach as well as vari-
ous considerations for implementing each. Data required de-
scribes the types of data needed to implement the approach.
Minimum sample size provides general estimates of the min-
imum amount of data that should be collected and analyzed to
produce usable insights using each approach. We note that
those estimates are aimed at providing the reader with a gen-
eral idea of the requirements of each approach; specific sce-
narios may warrant other requirements. Similarly, Team size
provides the reader with estimates of the sizes of teams that are
appropriate for each approach. Required resources outlines
software or hardware packages that are associated with, or
are otherwise essential to, the approach. Curation or pre-
processing required describes, if applicable, any processing
that must be done to the collected data before it can be used in
analysis. Constraints/limitations provides insight into any
constraints or limitations specific to the approach that may
be relevant to its application.Considerations for implementing
approach offers additional miscellaneous information that re-
lates to utilizing the approach.

The relative strengths of each approach guide their selec-
tion and application for certain scenarios. For datasets that, at
minimum, contain information about the senders, receivers,
and timestamps of communication messages, several assess-
ment methods are useful: aggregate communication flow, so-
cial network analysis, and relational event models. Aggregate
communication flow and social network analysis can be used
even without message timestamps, but due to this, they pro-
vide less nuanced data than approaches that can leverage in-
teraction timing for more in-depth analyses. If senders, re-
ceivers, timestamps, and message content are all available,
analyses of anticipatory information pushing and exploratory
communication become possible, as they rely on the addition-
al context provided by the content of the team’s communica-
tion to produce findings. In addition, while message content is
not strictly required for social network analysis, it improves
the breadth of analyses that are possible using the approach.

It is often important to understand team dynamics over
time: how teams change from one interaction to the next,
how their coordination is affected by given scenarios, how
they adapt their behaviors and interactions throughout the
course of a task, and so on. Several approaches have a key
focus on such dynamics and time-ordered interactions. Of the
analyses that can leverage merely senders, receivers, and
timestamps, relational event modeling is uniquely suited to
provide such insights. If more data types are available such
as message content, self-report data, or even interviews or
system logs, the distributed dynamic approach of team cogni-
tion and the approach for quantifying exploratory communi-
cation become highly useful methods for evaluating commu-
nication interaction patterns over time. These two approaches
are rooted in dynamical systems analysis, providing a theoret-
ical foundation geared toward understanding team dynamics
and cognition in depth.

For scenarios in which only one data type is available (or
feasible for capture), the voice, facial expression, and linguis-
tic synchrony approaches are especially useful. Vocal feature
assessment can be performed so long as an audio stream or
audio recordings are available for processing. Facial expres-
sion analysis minimally relies on video recordings, so in sce-
narios in which at least one camera is available to point at a
crew member, this approach can be implemented, and more
cameras for more crew members extends this capability. The
linguistic synchrony approaches all use text data, so if a given
scenario involves team interactions through a chat system,
those approaches are especially useful. Spoken interactions
can be transcribed to text, so even if the only available data
involves audio recording, those approaches can also be imple-
mented. It is often time-intensive to accurately transcribe au-
dio recordings, but if it can be done, the reliance of linguistic
synchrony methods on the content of the communication can
result in useful insights into the team’s usage of words, utter-
ances, and syntactic structures.

Hum.-Intell. Syst. Integr.



Ta
bl
e
3

C
om

pa
ri
so
n
be
tw
ee
n
ap
pr
oa
ch
es

an
d
th
ei
r
ch
ar
ac
te
ri
st
ic
s

A
pp
ro
ac
h:

St
ru
ct
ur
al

an
al
ys
is

D
at
a
re
qu
ir
ed

M
in
im

um
sa
m
pl
e
si
ze

T
ea
m

si
ze

R
eq
ui
re
d
re
so
ur
ce
s

C
ur
at
io
n
or

pr
e-
pr
oc
es
si
ng

re
qu
ir
ed

C
on
st
ra
in
ts
/li
m
ita
tio

ns
C
on
si
de
ra
tio

ns
fo
r

im
pl
em

en
tin
g
ap
pr
oa
ch

A
gg
re
ga
te
C
om

m
un
ic
at
io
n

Fl
ow

Se
nd
er

an
d
re
ce
iv
er

fo
r

ea
ch

co
m
m
un
ic
at
io
n

ev
en
t

A
ro
un
d
15

in
te
ra
ct
io
ns

tim
es

th
e
nu
m
be
r
of

te
am

m
em

be
rs

C
om

m
on
ly

5
or

fe
w
er
;l
ar
ge
r

te
am

s
ar
e
po
ss
ib
le

bu
tr
es
ul
tin
g
fl
ow

m
ap
s
be
co
m
e

m
or
e
co
m
pl
ex

Se
e
fo
ot
no
te
1
.

G
ra
ph
in
g/
de
si
gn

so
ft
w
ar
e
to

pr
od
uc
e

fl
ow

m
ap
s
(e
.g
.,
R

pa
ck
ag
e
‘i
gr
ap
h’

2
,

Po
w
er
Po

in
t,
et
c.
)

If
re
co
rd
in
gs

or
ob
se
rv
at
io
n
ar
e

us
ed
,t
he
se

m
us
tb

e
co
de
d

to
id
en
tif
y

se
nd
er
s/
re
-

ce
iv
er
s
of

ea
ch

co
m
m
un
ic
a-

tio
n
ev
en
t

D
at
a
is
ag
gr
eg
at
ed
,s
o
tim

e
or
de
r
of

sp
ec
if
ic

in
te
ra
ct
io
ns

is
no
t

co
ns
id
er
ed
.T

hu
s,
le
ss

nu
an
ce

th
an

m
or
e-
an
al
yt
ic
al
ap
-

pr
oa
ch
es

Fl
ow

m
ap
s
pr
ov
id
e
qu
ic
k,

ea
si
ly

in
te
rp
re
ta
bl
e

su
m
m
ar
y
in
fo
rm

at
io
n

ab
ou
tt
ea
m
’s

co
m
m
un
ic
at
io
n
pa
tte
rn

So
ci
al
N
et
w
or
k
A
na
ly
si
s

Se
nd
er

an
d
re
ce
iv
er

fo
r

ea
ch

in
te
ra
ct
io
n

ev
en
t;
tim

es
ta
m
ps

an
d

m
es
sa
ge

co
nt
en
ta
re

op
tio
na
lb

ut
re
co
m
m
en
de
d.

A
lte
rn
at
el
y,
ne
tw
or
k

m
em

be
rs
m
ay

se
lf
-r
ep
or
tt
ie
s
in

th
e

ne
tw
or
k.

A
ro
un
d
15

in
te
ra
ct
io
ns

tim
es

th
e
nu
m
be
r
of

te
am

m
em

be
rs
.S

el
f-
re
po
rt
s
of

ne
tw
or
k
tie
s
sh
ou
ld
re
ly
on

su
rv
ey
s
fr
om

ea
ch

te
am

m
em

be
r.

C
om

m
on
ly

5
or

m
or
e;
la
rg
er
te
am

s
en
ab
le
th
e
us
e
of

a
la
rg
er

nu
m
be
r
of

an
al
ys
is

te
ch
ni
qu
es

R
pa
ck
ag
es

su
ch

as
‘i
gr
ap
h’

2
or

‘s
na
’3
,1

If
re
co
rd
in
gs

or
ob
se
rv
at
io
n
ar
e

us
ed
,t
he
se

m
us
tb

e
co
de
d

to
id
en
tif
y

se
nd
er
s/
re
-

ce
iv
er
s
of

ea
ch

in
te
ra
ct
io
n

ev
en
t

D
at
a
is
ag
gr
eg
at
ed
,s
o
tim

e
or
de
r
of

sp
ec
if
ic

in
te
ra
ct
io
ns

is
no
t

co
ns
id
er
ed
.C

le
ar
ly

de
lin

ea
tin

g
m
es
sa
ge

re
ci
pi
en
ts
ca
n
be

ch
al
le
ng
in
g
in

re
al
-w

or
ld

te
am

se
tti
ng
s
an
d
ca
n
po
-

te
nt
ia
lly

im
pa
ct
ou
tp
ut
s

M
or
e
nu
an
ce
d
an
al
ys
is

po
ss
ib
le
co
m
pa
re
d
to

fl
ow

m
ap
s.
M
ay

be
ap
pl
ie
d
to

an
y
di
re
ct
ed

in
te
ra
ct
io
n,
in
cl
ud
in
g

co
m
m
un
ic
at
io
n,

re
so
ur
ce

al
lo
ca
tio

n,
ro
le
/ta
sk

as
si
gn
m
en
ts
,

et
c.

R
el
at
io
na
lE

ve
nt

M
od
el
s

Se
nd
er

an
d
re
ce
iv
er

fo
r

ea
ch

in
te
ra
ct
io
n

ev
en
t.
T
im

in
g
m
ay

be
ex
ac
t(
A
-B

oc
cu
rr
ed

at
tim

e
X
,B

-C
oc
-

cu
rr
ed

at
tim

e
Y
)
or

or
di
na
l(
A
-B

oc
cu
rr
ed

fi
rs
t,
B
-C

oc
cu
rr
ed

se
co
nd
...
)

A
ro
un
d
30

in
te
ra
ct
io
ns
,u
p
to

se
ve
ra
lt
ho
us
an
d.

A
tl
ea
st
3,
up

to
se
ve
ra
lh

un
dr
ed

R
pa
ck
ag
e
‘r
el
ev
en
t’
4
.

A
bi
lit
y
to

id
en
tif
y

tim
e
at
w
hi
ch

in
te
ra
ct
io
ns

oc
cu
rr
ed

1
.

If
re
co
rd
in
gs

or
ob
se
rv
at
io
n
ar
e

us
ed
,t
he
se

m
us
tb

e
co
de
d

to
id
en
tif
y

se
nd
er
s/
re
-

ce
iv
er
s
of

ea
ch

in
te
ra
ct
io
n

ev
en
t

M
od
el
ca
lc
ul
at
io
n
sl
ow

s
w
ith

la
rg
e
n;

so
m
e
m
od
el
te
rm

s
as
su
m
e
in
di
vi
du
al
s’

aw
ar
en
es
s
of

on
go
in
g

in
te
ra
ct
io
ns

(m
ay

no
tb

e
fe
as
ib
le
fo
r
si
tu
at
io
ns

w
ith

m
an
y
ac
to
rs
)

M
ay

be
fl
ex
ib
ly

ap
pl
ie
d
to

an
y
di
re
ct
ed

in
te
ra
ct
io
n,

in
cl
ud
in
g

co
m
m
un
ic
at
io
n,

re
so
ur
ce

al
lo
ca
tio

n,
ro
le
/ta
sk

as
si
gn
m
en
ts
,

et
c.

A
nt
ic
ip
at
or
y
In
fo
rm

at
io
n

Pu
sh
in
g
(A

IP
)

T
ex
td

at
a;
se
lf
-r
ep
or
t

A
ro
un
d
15

in
te
ra
ct
io
ns

tim
es

th
e
nu
m
be
r
of

te
am

m
em

be
rs

A
tl
ea
st
2

T
oo
ls
th
at
m
ay

ap
pl
y

re
gu
la
r
ex
pr
es
si
on
s,

su
ch

as
E
xc
el
or

R
,

to
se
ar
ch

th
ro
ug
h

in
te
ra
ct
io
n
co
nt
en
t

ar
e
re
co
m
m
en
de
d.
1

In
te
ra
ct
io
n

co
nt
en
tm

ay
ne
ed

to
be

tr
an
sl
at
ed
,a
t

le
as
tp

ar
tia
lly
,

an
d
th
en

co
de
d

to
de
te
rm

in
e

re
qu
es
ts
an
d

in
fo
rm

at
io
n

ex
ch
an
ge
s.

It
m
ay

be
co
m
pl
ic
at
ed

to
fi
t

as
su
m
pt
io
ns

ab
ou
t

in
fo
rm

at
io
n
re
qu
es
ts
an
d

sy
st
em

at
ic
co
de
bo
ok
s
w
ith

un
st
ru
ct
ur
ed

na
tu
ra
l

la
ng
ua
ge
,p
ar
tic
ul
ar
ly

if
re
qu
es
ts
m
ay

be
im

pl
ie
d.

U
se
r
sh
ou
ld

co
ns
id
er

th
e

co
nt
ex
ts
in

w
hi
ch

A
IP

is
us
ef
ul
,w

he
n
pu
sh
in
g
is

lik
el
y
to
oc
cu
r
as

a
re
su
lt

of
an
tic
ip
at
io
n,
an
d

w
he
n
ot
he
r
co
ns
tr
ai
nt
s

(e
.g
.,
in
te
rf
ac
es
)
lim

it
pu
sh
in
g
or

pu
lli
ng

po
ss
ib
ili
tie
s.

A
pp
ro
ac
h:

D
yn
am

ic
al

sy
st
em

s
D
is
tr
ib
ut
ed

D
yn
am

ic
A
pp
ro
ac
h
of

T
ea
m

C
og
ni
tio

n

V
ar
ie
d
ty
pe
s
of

co
m
m
un
ic
at
io
n
an
d

in
te
ra
ct
io
n
da
ta
,

in
cl
ud
in
g
re
la
te
d

sy
st
em

lo
gs

ov
er

th
e

le
ng
th

of
a
m
is
si
on

pl
us

fo
llo

w
-u
p
in
te
r-

vi
ew

s

D
ep
en
ds

on
th
e
in
te
ra
ct
io
n

da
ta
ty
pe
s
an
d
ta
sk

co
nt
ex
t:

ca
n
st
ar
tf
ro
m

on
e
te
am

’s
in
te
ra
ct
io
ns

ov
er
a
m
is
si
on

an
d
bu
ild

up
on

it

A
tl
ea
st
3
m
em

be
rs

w
ith

di
ff
er
en
t

ro
le
s,
up

to
se
ve
ra
l

hu
nd
re
ds
.T

he
si
ze

de
pe
nd
s
on

po
pu
la
tio

n
of

in
te
re
st

A
cc
es
s
to

th
e

co
m
m
un
ic
at
io
n

da
ta
;W

or
d,
E
xc
el
,

SP
SS

;Z
oo
m

re
co
rd
in
g
an
d

au
to
-t
ra
ns
cr
ip
tio

ns
fo
r
in
te
rv
ie
w
s

Id
en
tif
y
an
d
cl
ea
n

th
e
ac
ce
ss
ib
le

da
ta
ty
pe
s
an
d

de
ve
lo
p
a

co
de
bo
ok

fo
r

th
e
da
ta

T
he

ou
tp
ut

fo
rm

at
de
pe
nd
s

on
th
e
te
am

co
gn
iti
on

to
pi
c
an
d
ac
ce
ss
ib
le

re
le
va
nt

da
ta
.

G
oo
d
fo
r
m
ul
ti-
st
ak
eh
ol
de
r

te
am

co
gn
iti
on

ex
pl
or
a-

tio
n.
E
st
ab
lis
he
d
pa
tte
rn
s

ca
n
be

us
ed

fo
r
co
n-

tr
ol
le
d
fo
llo

w
-u
p
st
ud
ie
s

E
xp
lo
ra
to
ry

C
om

m
un
ic
at
io
n

A
na
ly
si
s

Se
nd
er
,r
ec
ei
ve
r,

m
es
sa
ge

co
nt
en
t,
an
d

tim
es
ta
m
ps

fo
r
ea
ch

V
ar
ie
s
de
pe
nd
in
g
on

th
e
da
ta

ty
pe

us
ed

fo
r
an
al
ys
is
;

ag
gr
eg
at
e
co
m
m
un
ic
at
io
n

A
tm

in
im

um
,a

dy
ad

is
re
qu
ir
ed
.V

er
y

la
rg
e
te
am

s
ar
e

St
at
is
tic
al

pr
og
ra
m
m
in
g

la
ng
ua
ge

su
ch

as

R
eq
ui
re
s

ap
pr
op
ri
at
e

fo
rm

at
tin
g
fo
r

R
eq
ui
re
s
a
re
as
on
ab
ly

in
ta
ct

hi
st
or
y
or

kn
ow

le
dg
e
of

pr
io
r
co
m
m
un
ic
at
io
ns

Fl
ex
ib
le
m
et
ho
d
fo
r

qu
an
tif
yi
ng

ev
ol
ut
io
n
in

a
te
am

’s
pr
oc
es
s
an
d

Hum.-Intell. Syst. Integr.



T
ab

le
3

(c
on
tin

ue
d)

ev
en
t;
an
y
ad
di
tio
na
l

re
le
va
nt

co
m
m
un
ic
at
io
n

di
m
en
si
on
s
w
ith

tim
es
ta
m
ps

re
qu
ir
es

15
in
te
ra
ct
io
ns

pe
r

te
am

m
at
e
at
m
in
im

um
an
d

tim
e
se
ri
es

an
al
ys
is
m
ay

re
qu
ir
e
m
an
y
m
or
e
ev
en
ts

or
m
or
e
tim

e.

po
ss
ib
le
al
th
ou
gh

th
is
m
ay

im
pa
ct

th
e
an
al
yt
ic
al

ap
pr
oa
ch

(e
.g
.,

st
ru
ct
ur
al
vs
.

dy
na
m
ic
al

sy
st
em

s)

M
at
la
b
or

R
.

‘E
co
no
m
et
ri
cs
’5
is

re
co
m
m
en
de
d
fo
r

M
at
la
b
an
d

‘e
nt
ro
py
’6
an
d

‘t
id
yv
er
se
’7

pa
ck
ag
es

re
co
m
m
en
de
d
fo
r

R
1

se
nd
er
,

re
ce
iv
er
,

tim
es
ta
m
p,
an
d

or
de
r.
M
us
t

co
di
fy

ex
pl
or
at
or
y

co
m
m
un
ic
a-

tio
n8

w
ith

in
th
e
te
am

.T
en
ds

to
be

le
ss

m
ea
ni
ng
fu
lw

he
n

th
e
in
te
ra
ct
io
n
da
ta

co
ns
is
ts
on
ly

of
no
m
in
al

ta
sk
s.

ad
ap
ta
tio

n.
E
ff
ec
tiv

e
le
ve
ls
of

ex
pl
or
at
io
n

m
ay

va
ry

ba
se
d
on

co
nt
ex
t.

A
pp
ro
ac
h:
E
m
ot
io
na
ls
ta
te
s

Fa
ci
al
E
xp
re
ss
io
n
A
na
ly
si
s

Fa
ci
al

el
ec
tr
om

yo
gr
ap
hy
,

liv
e
ob
se
rv
at
io
n,
or

co
m
pu
te
r-
vi
si
on

al
go
-

ri
th
m
s

T
he
re

is
no

m
in
im

um
.E

ac
h

pe
rs
on
’s
fa
ci
al
ex
pr
es
si
on

ca
n
be

an
al
yz
ed

on
a
fr
am

e
by

fr
am

e
ba
si
s
bu
ti
ti
s

re
co
m
m
en
de
d
th
at
th
e

sa
m
pl
in
g
ra
te
is
at
le
as
t5

0
fr
am

es
pe
r
se
co
nd

C
an

be
us
ed

in
di
vi
du
al
ly

or
w
ith

a
te
am

of
an
y

si
ze
,a
s
lo
ng

as
ea
ch

re
le
va
nt
te
am

m
em

be
r’
s
fa
ce

is
re
co
rd
ed

in
di
vi
du
al
ly

A
ny

ty
pe

of
w
eb
ca
m

or
ca
m
er
a
th
at
ca
n

de
te
ct
an
d
re
co
rd

an
in
di
vi
du
al
’s
en
tir
e

fa
ce
.A

pp
ro
pr
ia
te

lig
ht
in
g
is
al
so

re
qu
ir
ed

to
en
su
re

fa
ci
al
fe
at
ur
es

ar
e

de
te
ct
ed

N
o pr

e-
pr
oc
es
si
ng

is
re
qu
ir
ed
.

V
ar
io
us

so
ft
-

w
ar
e
to
ol
s
ar
e

av
ai
la
bl
e
th
at

ca
n

ba
tc
h-
pr
oc
es
s

vi
de
o
fi
le
s
on

a
fr
am

e
by

fr
am

e
ba
si
s

In
di
vi
du
al
di
ff
er
en
ce

fa
ct
or
s

m
ay

pr
ed
is
po
se

in
di
vi
du
al
s
to

be
m
or
e
or

le
ss

ex
pr
es
si
ve
.T

he
re
fo
re
,

ba
se
lin
e
m
ea
su
re
s
sh
ou
ld

be
ta
ke
n
an
d
an
al
ys
es

co
nd
uc
te
d
on

in
di
vi
du
al

ch
an
ge
s
fr
om

ba
se
lin

e
to

ta
sk

sh
ou
ld

be
co
nd
uc
te
d.

T
hi
s
ap
pr
oa
ch

sh
ou
ld

be
us
ed

w
ith

ot
he
r

m
ea
su
re
s
of

st
at
e
or

af
fe
ct
su
ch

as
su
bj
ec
tiv
e

or
ph
ys
io
lo
gi
ca
l

m
ea
su
re
s
to

cr
os
s-
re
fe
re
nc
e
re
su
lts

V
oc
al
Fe
at
ur
e
A
ss
es
sm

en
t

us
in
g
N
eu
ra
lN

et
w
or
ks

L
ab
el
ed

sp
ee
ch

re
co
rd
in
gs

U
si
ng

a
tr
ai
ne
d
m
od
el
,l
es
s

th
an

a
m
in
ut
e
fo
r
re
al
-t
im

e
fe
ed
ba
ck

C
an

be
us
ed

in
di
vi
du
al
ly

or
w
ith

a
te
am

of
an
y

si
ze
,a
s
lo
ng

as
ea
ch

re
le
va
nt
te
am

m
em

be
r’
s
vo
ic
e
is

re
co
rd
ed

in
di
vi
du
al
ly

M
ic
ro
ph
on
e
in
pu
t,

C
PU

pr
oc
es
so
r,

so
m
e
fo
rm

of
di
sp
la
y

T
he

cu
rr
en
t

m
od
el

pa
ra
m
et
er
s
ca
n

be
re
fi
ne
d
by

ad
di
tio
na
l

tr
ai
ni
ng
,

ho
w
ev
er
,t
he

ge
ne
ri
c
m
od
el

is
al
re
ad
y

tr
ai
ne
d

A
pp
ro
ac
h
is
ne
w
er
,s
o

ev
id
en
ce

of
ge
ne
ra
liz
ab
ili
ty

is
cu
rr
en
tly

lim
ite
d

R
eq
ui
re
s
ad
di
tio

na
lt
ra
in
in
g

in
no
ve
lc
on
te
xt
s.
G
U
I

ne
ed
s
re
fi
ni
ng

A
pp
ro
ac
h:

L
in
gu
is
tic

sy
nc
hr
on
y

L
an
gu
ag
e
St
yl
e
M
at
ch
in
g

Sp
ee
ch

or
te
xt

da
ta

in
vo
lv
in
g
tw
o
or
m
or
e

in
di
vi
du
al
s

N
o
m
in
im

um
si
ze

fo
r

co
m
pu
ta
tio

n.
L
SM

is
ba
se
d
on

pr
op
or
tio
ns
,s
o

re
se
ar
ch
er
s
sh
ou
ld

de
te
rm

in
e
nu
m
be
r
of

ut
te
ra
nc
es

to
pr
od
uc
e

st
ab
le
pr
op
or
tio

n
es
tim

at
es
.

T
ar
ge
te
d
at
dy
ad
s,

bu
tm

et
ho
d
ca
n
be

co
m
pu
te
d
am

on
g

al
lp

os
si
bl
e
dy
ad
s,

so
te
am

si
ze

no
t

lim
ite
d
to

2

L
IW

C
9
;R

pa
ck
ag
e

‘l
in
gm

at
ch
’1
0

If
di
al
og
ue

tr
an
sc
ri
pt
s
do

no
ti
de
nt
if
y

se
nd
er
s
an
d

re
ce
iv
er
s,
th
ey

m
us
tb

e
co
de
d

to
do

so

B
ec
au
se

an
al
ys
is
re
lie
s
on

tr
an
sc
ri
pt
s,
th
e
lin

gu
is
tic

sy
nc
hr
on
y
ap
pr
oa
ch
es

ar
e

be
st
su
ite
d
fo
r
la
te
r

fe
ed
ba
ck

ra
th
er

th
an

re
al
-t
im

e
in
si
gh
ts

C
an

be
us
ed

to
ex
am

in
e

sy
nc
hr
on
y
fo
r
an
y
w
or
d

ca
te
go
ri
es
,t
ho
ug
h
it
is

m
os
to

ft
en

us
ed

to
an
al
yz
e
fu
nc
tio

n
w
or
ds

L
at
en
tS

em
an
tic

Si
m
ila
ri
ty

Sp
ee
ch

or
te
xt

da
ta

in
vo
lv
in
g
tw
o
or
m
or
e

in
di
vi
du
al
s

C
or
pu
s
ne
ed
s
m
or
e

do
cu
m
en
ts
(e
.g
.,
ut
te
ra
nc
es

or
sp
ea
ke
rs
,d
ep
en
di
ng

on
an
al
ys
is
)
th
an

di
m
en
si
on
s

(o
r
“t
op
ic
s”

th
at
re
pr
es
en
t

cl
us
te
rs
of

w
or
ds

th
at
m
ak
e

se
ns
e
to
ge
th
er
);
so
m
e

re
se
ar
ch
er
s
re
co
m
m
en
d
at

le
as
t3

00
di
m
en
si
on
s
(e
.g
.,

D
on
g
20
05
).

T
ar
ge
te
d
at
dy
ad
s,

bu
tm

et
ho
d
ca
n
be

co
m
pu
te
d
am

on
g

al
lp

os
si
bl
e
dy
ad
s,

so
te
am

si
ze

no
t

lim
ite
d
to

2

R
pa
ck
ag
es

‘l
in
gm

at
ch
’1
0
,

‘l
sa
’1
1 ;
Py

th
on

If
di
al
og
ue

tr
an
sc
ri
pt
s
do

no
ti
de
nt
if
y

se
nd
er
s
an
d

re
ce
iv
er
s,
th
ey

m
us
tb

e
co
de
d

to
do

so

R
eq
ui
re
s
a
la
rg
e
co
rp
us

to
pr
od
uc
e
m
ea
ni
ng
fu
l

to
pi
cs
.

H
ig
hl
y
fl
ex
ib
le
m
et
ho
d,
so

re
su
lts

w
ill

va
ry

de
pe
nd
in
g
on

ho
w

se
m
an
tic

sp
ac
e
is
cr
ea
te
d

Hum.-Intell. Syst. Integr.



T
ab

le
3

(c
on
tin

ue
d)

C
on
ve
rs
at
io
n
L
ev
el

S
yn
ta
x
S
im

ila
ri
ty

M
et
ri
c

(C
A
S
SI
M
)

Sp
ee
ch

or
te
xt

da
ta

in
vo
lv
in
g
tw
o
or

m
or
e

in
di
vi
du
al
s

N
ot

ye
te
st
ab
lis
he
d

T
ar
ge
te
d
at
dy
ad
s,

bu
tm

et
ho
d
ca
n
be

co
m
pu
te
d
am

on
g

al
lp

os
si
bl
e
dy
ad
s,

so
te
am

si
ze

no
t

lim
ite
d
to

2

Py
th
on
;C

A
SS

IM
1
2

If
di
al
og
ue

tr
an
sc
ri
pt
s
do

no
ti
de
nt
if
y

se
nd
er
s
an
d

re
ce
iv
er
s,
th
ey

m
us
tb
e
co
de
d
to

do
so

V
er
y
tim

e
in
te
ns
iv
e.

R
el
at
iv
el
y
ne
w
ap
pr
oa
ch

w
ith

lim
ite
d
ev
id
en
ce

fo
r

ut
ili
ty

in
di
al
og
ue
.

C
an

be
us
ed

w
ith

an
y

sy
nt
ax

pa
rs
er
,m

ea
ni
ng

it
ca
n
be

us
ed

to
an
al
yz
e

an
y
la
ng
ua
ge

w
ith

an
ex
is
tin

g
sy
nt
ax

pa
rs
er

1
T
hi
s
ap
pr
oa
ch

re
qu
ir
es

id
en
tif
yi
ng

se
nd
er
s/
re
ce
iv
er
s
of

in
te
ra
ct
io
ns
.T

hi
s
ca
n
be

do
ne

us
in
g
a
sy
st
em

ca
pa
bl
e
of

id
en
tif
yi
ng

se
nd
er
s/
re
ce
iv
er
s
(s
uc
h
as

th
ro
ug
h
ch
at
lo
gs

or
cu
ei
ng

of
m
ic
ro
ph
on
es

by
ea
ch

m
em

be
r)
;o

th
er
w
is
e,
au
di
o/
vi
de
o
re
co
rd
in
g
or

ob
se
rv
at
io
n
ca
n
al
so

be
us
ed

to
id
en
tif
y
se
nd
er
s/
re
ce
iv
er
s
af
te
r
th
e
fa
ct

2
ht
tp
s:
//c
ra
n.
r-
pr
oj
ec
t.o
rg
/w
eb
/p
ac
ka
ge
s/
ig
ra
ph
/in

de
x.
ht
m
l

3
ht
tp
s:
//c
ra
n.
r-
pr
oj
ec
t.o
rg
/w
eb
/p
ac
ka
ge
s/
sn
a/
sn
a.
pd
f

4
ht
tp
s:
//c
ra
n.
r-
pr
oj
ec
t.o
rg
/w
eb
/p
ac
ka
ge
s/
re
le
ve
nt
/in

de
x.
ht
m
l

5
ht
tp
s:
//w

w
w
.m
at
hw

or
ks
.c
om

/p
ro
du
ct
s/
ec
on
om

et
ri
cs
.h
tm

l
6
ht
tp
s:
//c
ra
n.
r-
pr
oj
ec
t.o
rg
/w
eb
/p
ac
ka
ge
s/
en
tr
op
y/
en
tr
op
y.
pd
f

7
ht
tp
s:
//c
ra
n.
r-
pr
oj
ec
t.o
rg
/w
eb
/p
ac
ka
ge
s/
tid

yv
er
se
/in

de
x.
ht
m
l

8
O
ne

ex
am

pl
e
is
to

de
co
m
po
se

th
e
da
ta
in
to

a
st
at
e
sp
ac
e
co
ns
is
tin

g
of

ev
er
y
po
ss
ib
le
co
m
bi
na
tio

n
of

se
nd
er
s
an
d
re
ce
iv
er
s.
T
he
se

m
ay

be
sy
m
bo
lic
al
ly

la
be
le
d.
T
he
n,
co
de
s
co
ul
d
be

de
fi
ne
d
at
ce
rt
ai
n

le
ve
ls
of

de
vi
an
ce

(e
.g
.,
en
tr
op
y)

in
th
e
tim

e
se
ri
es

9
Pe
nn
eb
ak
er
,F

ra
nc
is
,&

B
oo
th

(2
00
1)

1
0
ht
tp
s:
//m

is
er
m
an
.g
ith

ub
.io
/li
ng
m
at
ch
/

1
1
ht
tp
s:
//c
ra
n.
r-
pr
oj
ec
t.o
rg
/w
eb
/p
ac
ka
ge
s/
ls
a/
ls
a.
pd
f

1
2
ht
tp
s:
//g

ith
ub
.c
om

/U
S
C
-C
S
SL

/C
A
S
S
IM

Hum.-Intell. Syst. Integr.

https://cran.r-project.org/web/packages/igraph/index.html
https://cran.r-project.org/web/packages/sna/sna.pdf
https://cran.r-project.org/web/packages/relevent/index.html
https://www.mathworks.com/products/econometrics.html
https://cran.r-project.org/web/packages/entropy/entropy.pdf
https://cran.r-project.org/web/packages/tidyverse/index.html
https://miserman.github.io/lingmatch/
https://cran.r-project.org/web/packages/lsa/lsa.pdf
https://github.com/USC-CSSL/CASSIM


3.2 Critical areas for further study

The capabilities of IAs and human-autonomy teams are con-
stantly improving. Although communication has long been a
focus in the domain of human-autonomy teaming and human-
robot interaction, IAs are only now becoming capable enough
to understand, interact, and adapt more naturalistically with
human teammates. As human-autonomy teams become better
at interacting, coordinating, and achieving shared goals, it will
become even more crucial to leverage communication as a
window into their functioning. In many cases, the approaches
described in this paper have been primarily developed and
tested on human teams; consequently, the literature on
human-autonomy team communication assessment, along
with our understanding of best practices, will improve as the
approaches are further implemented in this context.

Many of the approaches in this paper share key needs for
further development spurred by current constraints and limi-
tations. To this end, we have distilled the directions for devel-
opment and future research identified throughout this paper
into four critical areas for further study of communication in
human-autonomy teams:

1. More efficient data collection methods are needed.
Compared to assessment approaches that rely on physiol-
ogy or behaviors, communication-based assessments can
provide rich information about team interactions, but this
is often at the expense of the time needed to collect and
process the data. Many of the methods in this paper rely
on audio transcription, task analysis, or interaction analy-
sis, which are time-consuming and laborious. However,
the development of better automated systems for tran-
scription, event logging, and so on will speed up the rate
at which communication assessments can be carried out,
ideally to real time, therefore negating a primary draw-
back to these approaches and opening up significant ave-
nues for understanding team interactions as they happen.

2. How do the unique qualities of autonomy affect team
interactions? Future autonomous teammates are posited
to have ever-increasing intelligence that will allow for
both independent and interdependent team operations in
high-risk, complex environments. It is likely that these
IAs will have a variety of potential communication char-
acteristics that deviate from standard human communica-
tion paradigms. Whatever the case, it is critical to under-
stand how the characteristics of the autonomy can influ-
ence team interactions, to make better (and faster) predic-
tions about the performance of human-autonomy teams.

3. How do different communication modalities affect
human-autonomy teamwork? Human-autonomy teams
can use verbal, touch/haptic, gestural, or other interac-
tions, or even multi-modal interactions. As such, it will
be important to build our understanding of how the

modalities of those interactions affect team dynamics
such as common grounding, shared cognition, trust, and
cohesion. This may unlock further possibilities for
implementing communication assessment approaches to
novel modalities and scenarios, deepening our ability to
characterize how the team is performing over time.

4. What are the patterns of communication associated with
team effectiveness in different team structures and
contexts? Autonomy can play many roles within a team,
and human-autonomy teams can be deployed for many
scenarios. What are the most effective communication
patterns for a given human-autonomy configuration? For
a given scenario? Because IA capabilities are often so
specific to their contexts, it is sometimes difficult to gen-
eralize findings across scenarios, but the communication
assessment methods described in this article are suited to
answering these questions. With more data and further
implementation of these approaches, we will be better
equipped to understand how communication patterns as-
sociated with a variety of team outcomes may generalize
across teams and contexts.

4 Conclusion

In this article, we presented elevenmethods for assessing team
communication that are applicable to human-autonomy
teaming. For each, we described the process for assessment,
how the approach related to team states and outcomes, con-
siderations for application, and current efforts to develop and
apply the approaches to human-autonomy teams. Although
not all methods will be useful to all human-autonomy teaming
scenarios, each method presents a different window into the
core functioning of a team.Many of these assessment methods
have been developed primarily for human-human teams, but
their applicability to human-autonomy teams is promising,
especially given the goal of flexible, adaptive, human-like
autonomous systems that will be integrated into future
human-autonomy teams. In human-only teams, the literature
relating communication, trust, and performance is abundant,
whereas the literature on those relationships in human-
autonomy teams has not kept pace. Therefore, our presenta-
tion of a variety of communication assessment approaches
supports efforts to expand our understanding of communica-
tion, trust, team cohesion, and performance in human-
autonomy teams.

The greatest advantage of analyzing communication is that
it can be measured unobtrusively, relying on recordings of the
team’s speech, chat messages, vocal features, or other data
that can be captured real time. This is key to addressing the
latest needs for naturalistic, objective, and continuous assess-
ments for human-autonomy teams. Future research into

Hum.-Intell. Syst. Integr.



communication in military human-autonomy teams should
leverage the assessment methods discussed in this article,
yielding valuable insights into the four critical areas for future
research and paving the way for more capable, flexible, and
effective teams.
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