Skip to main content
Log in

A Ultra-Low Specific On-Resistance and Extended Gate SJ LDMOS Structure

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

A new structure of extended gate (EG) SJ LDMOS is proposed in this paper to overcome the substrate assisted depletion (SAD) effect in the structure of Super-Junction lateral double diffused metal oxide semiconductor (SJ LDMOS). Different from other surface SJ structures, the SJ layer of the structure is located in the body of the drift region. Gate oxide and silicon layer form the EG Structure-Oxide-Semiconductor structure that is similar to Metal–Insulator–Semiconductor capacitor. The the N-drift of the EG structure can obtain the charge compensation to overcome the SAD effect, and a nearly rectangular electric field is achieved. In the on-state, the EG structure has two conductive channels and the accumulation layer is formed on the drift region. By accumulating high concentration electrons in the channels, the specific on-resistance (RON,sp) is greatly reduced. When the drift length is 24 μm, 431.4 V breakdown voltage (VB) and 9.8 mΩ cm2 RON,sp are achieved, and the figure of merit is 18.9 MW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Amato, V. Rumennik, Comparison of lateral and vertical DMOS specifific on-resistance,” IEDM Tech. Dig. Washington, DC, USA, Dec. 1985, pp. 736–73. 191081 (1985). doi: https://doi.org/10.1109/IEDM

  2. S.G. Nassif-Khalil, C.A.T. Salama, Super-junction LDMOST on a silicon-on-sapphire substrate. IEEE Trans. Electron Devices 50(5), 1385–1391 (2003)

    Article  CAS  Google Scholar 

  3. X.-B. Chen, J.K.O. Sin, Optimization of the specifific on-resistance of the COOLMOS. IEEE Trans. Electron Devices 48(2), 344–348 (2001)

    Google Scholar 

  4. B. Zhang, W.T. Zhang, M. Qiao, Z. Li, Theory and optimization of power superjunction devices. China Sci. Mech. Phys. Astron. 46(10), 8–25 (2016)

    Google Scholar 

  5. L. Liang, H. Huang and X. Chen, A variation laterl doping layer and lightly doped region compensated superjunction LDMOS. In: 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, 120–123 (2016)

  6. S. Guo, H. Huang, X.B. Chen, Study of the SOI LDMOS with low conduction loss and less gate charge. IEEE Trans. Electron Devices 65(4), 1645–1649 (2018). https://doi.org/10.1109/TED.2018.2806921

    Article  CAS  Google Scholar 

  7. X. Luo et al., Ultralow ON-resistance high-voltage p-channel LDMOS with an accumulation-effect extended gate. IEEE Trans. Electron Devices 63(6), 2614–2619 (2016). https://doi.org/10.1109/TED.2016.2555327

    Article  CAS  Google Scholar 

  8. X. Luo et al., Ultralow on-resistance SOI LDMOS with three separated gates and high- k dielectric. IEEE Trans. Electron Devices 63(9), 3804–3807 (2016). https://doi.org/10.1109/TED.2016.2589322

    Article  CAS  Google Scholar 

  9. B. Zhang, W. Wang, W. Chen, Z. Li, Z. Li, High-voltage LDMOS With charge-balanced surface low on-resistance path layer. IEEE Electron Device Lett. 30(8), 849–851 (2009). https://doi.org/10.1109/LED.2009.2023541

    Article  CAS  Google Scholar 

  10. Hu. Chenming, Optimum doping profile for minimum ohmic resistance and high-breakdown voltage. IEEE Trans. Electron Devices 26(3), 243–244 (1979). https://doi.org/10.1109/T-ED.1979.19416

    Article  Google Scholar 

  11. L. Wu, Q. Ding, Y. Zhang, Y. Huang, L. Zhu, B. Lei, A lateral double-diffusion metal oxide semiconductor device with a gradient charge compensation layer. J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07579-8

    Article  Google Scholar 

  12. L. Wu, Y. Huang, Y. Wu, L. Zhu, B. Lei, Investigation of the stepped split protection gate L-Trench SOI LDMOS with ultra-low specific on-resistance by simulation. Mater. Sci. Semicond. Process. 101, 272–278 (2019). https://doi.org/10.1016/j.mssp.2019.05.035

    Article  CAS  Google Scholar 

  13. L. Wu, H. Yang, Y. Zhang, Y. Song, N. Yuan, B. Lei, Y. Wu, A superjunction LDMOS with steps buried oxide. J. Electron. Mater. 47, 6929–6934 (2018)

    Article  CAS  Google Scholar 

  14. S. Honarkhah, S. Nassif-Khalil, C. A. T. Salama, Back-etched super-junction LDMOST on SOI. In: Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850), Leuven, Belgium, 117-120 (2004). doi: https://doi.org/10.1109/ESSDER.2004.1356502

  15. B. Duan, Y. Yang, B. Zhang, New superjunction LDMOS with N-Type charges’ compensation layer. IEEE Electron Device Lett. 30(3), 305–307 (2009). https://doi.org/10.1109/LED.2009.2012396

    Article  Google Scholar 

  16. B. Duan, Z. Cao, X. Yuan, S. Yuan, Y. Yang, New superjunction LDMOS breaking silicon limit by electric field modulation of buffered step doping. IEEE Electron Device Lett. 36(1), 47–49 (2015). https://doi.org/10.1109/LED.2014.2366298

    Article  CAS  Google Scholar 

  17. W. Chen, B. Zhang, Z. Li, Optimization of super-junction SOI-LDMOS with a step doping surface-implanted layer. Semicond. Sci. Technol. 22(5), 464–470 (2007). https://doi.org/10.1088/0268-1242/22/5/002

    Article  CAS  Google Scholar 

  18. B. Duan, Z. Cao, S. Yuan, Y. Yang, Complete 3D-reduced surface field superjunction lateral double-diffused MOSFET breaking silicon limit. IEEE Electron Device Lett. 36(12), 1348–1350 (2015). https://doi.org/10.1109/LED.2015.2493080

    Article  CAS  Google Scholar 

  19. W. Zhang et al., Optimization and experiments of lateral semi-superjunction device based on normalized current-carrying capability. IEEE Electron Device Lett. 40(12), 1969–1972 (2019). https://doi.org/10.1109/LED.2019.2948198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Fund of Hunan Provincial Education Department (No. 19K001) The Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, the School of Physics & Electronic Science, Changsha University of Science & Technology, Changsha, 410114, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Chen, J., Yang, H. et al. A Ultra-Low Specific On-Resistance and Extended Gate SJ LDMOS Structure. Trans. Electr. Electron. Mater. 22, 211–216 (2021). https://doi.org/10.1007/s42341-021-00302-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00302-7

Keywords

Navigation