Skip to main content
Log in

Abstract

The reproducing kernel particle method (RKPM) is a widely used meshless method that has been extensively applied in numerical analysis. The drawback of RKPM is that when different kernel functions are chosen during the computation process, there are different calculation accuracy, and significant discreteness. To address this issue, the radial basis function is introduced to RKPM, and the radial basis reproducing kernel particle method (RB-RKPM) is proposed. The negative impacts of different kernel functions on calculation accuracy can be eliminated by RB-RKPM, which possesses some advantages, such as good convergence, high computational accuracy and efficiency. Furthermore, the RB-RKPM is applied to the damped elastic dynamics problems (DEDPs), the governing equations for the DEDPs are derived based on the weak integral formulation, and the time is integrated by using the Newmark-linear acceleration method. Finally, the correctness of the proposed method in analyzing the DEDPs is verified through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Abdoun F, Azrar L, Daya EM, Potier-Ferry M (2009) Forced harmonic response of viscoelastic structures by an asymptotic numerical method. Comput Struct 87(1–2):91–100

    Article  Google Scholar 

  • Azizpooryan M, Noormohammadi N, Boroomand B (2022) Equilibrated basis functions for static analysis of in-plane heterogeneous laminated composite plates in boundary and meshfree approaches. IJST Trans Mech Eng 46(4):957–984

    Google Scholar 

  • Barcelos HM, Loeffler CF (2019) The direct interpolation boundary element method applied to smoothly inhomogeneous Laplace’s problems. Eng Anal Bound Elem 105:155–164

    Article  MathSciNet  MATH  Google Scholar 

  • Chen XZ, Yu HT (2022) A multiscale method coupling peridynamic and boundary element models for dynamic problems. Comput Method Appl M 401(B):115669

    Article  MathSciNet  MATH  Google Scholar 

  • Chen JS, Pan C, Wu CT (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Method Appl Mater 139(1–4):195–227

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng YM, Chen MJ (2003) A boundary element-free method for linear elasticity. Acta Mech Sin Proc 35(2):181–186

    Google Scholar 

  • Cheng YM, Li JH (2006) A complex variable meshless method for fracture problems. Sci China Ser G 49:46–59

    Article  MATH  Google Scholar 

  • Cheng YM, Wang WF, Peng MJ, Zhang Z (2014) Mathematical aspects of meshless methods. Math Probl Eng 2014:756297

    Article  Google Scholar 

  • Cheng YM, Bai FN, Liu C, Peng MJ (2016) Analyzing nonlinear large deformation with an improved element-free Galerkin method via the interpolating moving least-squares method. Int J Comput Mat Sci 5(4):1650023

    Google Scholar 

  • Cheng H, Peng MJ, Cheng YM (2017) A fast complex variable element-free Galerkin method for three-dimensional wave propagation problems. Int J Appl Mech 9(6):1750090

    Article  MathSciNet  Google Scholar 

  • David RW, Ben VR, Jae HL, Boyce EG (2023) A nodal immersed finite element-finite difference method. J Comput Phys 477:111890

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2017) Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput Math Appl 73(6):1270–1285

    Article  MathSciNet  MATH  Google Scholar 

  • Dumont NA (2023) The consistent boundary element method for potential and elasticity: part II -machine-precision numerical evaluations for 2D problems. Eng Anal Bound Elem 149:92–111

    Article  MathSciNet  MATH  Google Scholar 

  • Freundlich J, Sado D (2023) Dynamics of a mechanical system with a spherical pendulum subjected to fractional damping: analytical analysis. Nonlinear Dynam 111(9):7961–7973

    Article  Google Scholar 

  • Gao HF, Wei GF (2019) Numerical solution of potential problems using radial basis reproducing kernel particle method. Results Phys 13:102122

    Article  Google Scholar 

  • Granger D, Ross A (2009) Effects of partial constrained viscoelastic layer damping parameters on the initial transient response of impacted cantilever beams: experimental and numerical results. J Sound Vib 321(1–2):45–64

    Article  Google Scholar 

  • Guan PC, Sun CT (2014) The isoparametric reproducing kernel particle method for nonlinear deformation of plates. Eng Anal Bound Elem 42:67–76

    Article  MathSciNet  MATH  Google Scholar 

  • Huang ZC, Peng HY, Wang XG, Chu FL (2023) Finite element modeling and vibration control of plates with active constrained layer damping treatment. Materials 16(4):1652

    Article  Google Scholar 

  • Jankowska M, Kołodziej J (2016) A study of elastic-plastic deformation in the plate with the incremental theory and the meshless methods. J Mech Mater Struct 11(1):41–60

    Article  MathSciNet  Google Scholar 

  • Kalamkarov AL, Kolpakov AG (2001) A new asymptotic model for a composite piezoelastic plate. Int J Solids Struct 38(34–35):6027–6044

    Article  MATH  Google Scholar 

  • Kostopoulos V, Korontzis DT (2003) A new method for the determination of viscoelastic properties of composite laminates: a mixed analytical–experimental approach. Compos Sci Technol 63(10):1441–1452

    Article  Google Scholar 

  • Kumar N, Singh S (2010) Experimental study on vibration and damping of curved panel treated with constrained viscoelastic layer. Compos Struct 92(2):233–243

    Article  Google Scholar 

  • Li SF, Hao W, Liu WK (2000) Mesh-free simulations of shear banding in large deformation. Int J Solids Struct 37(48–50):7185–7206

    Article  MATH  Google Scholar 

  • Liu D, Cheng YM (2020) The interpolating element-free Galerkin method for three-dimensional transient heat conduction problems. Results Phys 19:103477

    Article  Google Scholar 

  • Liu S, Li J, Chen L, Guan YJ, Zhang CS, Gao FZ, Lin J (2019) Solving 2D Poisson-type equations using meshless SPH method. Results Phys 13:102260

    Article  Google Scholar 

  • Liu Z, Gao HF, Wei GF, Wang ZM (2020a) The meshfree analysis of elasticity problem utilizing radial basis reproducing kernel particle method. Results Phys 17:103037

    Article  Google Scholar 

  • Liu Z, Wei GF, Wang ZM (2020b) The radial basis reproducing kernel particle method for geometrically nonlinear problem of functionally graded materials. Appl Math Model 85:244–272

    Article  MathSciNet  MATH  Google Scholar 

  • Ma BA, He JF (1992) A finite element analysis of viscoelastically damped sandwich plates. J Sound Vib 152(1):107–123

    Article  MathSciNet  MATH  Google Scholar 

  • Ma X, Zhou B, Li YJ, Sf X (2022) A Hermite interpolation element-free Galerkin method for elasticity problems. J Mech Mater Struct 17(1):75–95

    Article  MathSciNet  Google Scholar 

  • Moita J, Araújo A, Martins P, Soares CM, Soares CM (2011) A finite element model for the analysis of viscoelastic sandwich structures. Comput Struct 89(21–22):1874–1881

    Article  Google Scholar 

  • Peng PP, Fu YD, Cheng YM (2021) A hybrid reproducing kernel particle method for three-dimensional advection-diffusion problems. Int J Appl Mech 13(7):2150085

    Article  Google Scholar 

  • Peng LX, Chen SY, Wei DY, Chen W, Zhang YS (2022) Static and free vibration analysis of stiffened FGM plate on elastic foundation based on physical neutral surface and MK method. Compos Struct 290:115482

    Article  Google Scholar 

  • Rallu A, Hans S, Boutin C (2018) Asymptotic analysis of high-frequency modulation in periodic systems. Analytical study of discrete and continuous structures. J Mech Phys Solids 117:123–156

    Article  MathSciNet  Google Scholar 

  • Reddy JN (1989) An Introduction to the finite element method. J Press Vess Trans ASME 111(3):348–349

    Article  Google Scholar 

  • Sabahi MA, Saidi AR, Khodabakhsh R (2022) An analytical solution for nonlinear vibration of functionally graded porous micropipes conveying fluid in damping medium. Ocean Eng 245:110482

    Article  Google Scholar 

  • Salehi A, Ahmadi I (2022) Transient thermal and mechanical stress analysis of 2D-functionally graded finite cylinder: a truly meshless formulation. IJST Trans Mech Eng 46(3):573–598

    Google Scholar 

  • Sanchez PE (1980) Non-homogeneous media and vibration theory, vol 320. Springer, pp 57–65

    Google Scholar 

  • Sepehri-Amin S, Faal RT, Das R (2020) Analytical and numerical solutions for vibration of a functionally graded beam with multiple fractionally damped absorbers. Thin Wall Struct 157:106711

    Article  Google Scholar 

  • Sichani AB, Mehring C (2023) Boundary element method for modeling droplet deformation in secondary atomization. Eng Anal Bound Elem 152:51–65

    Article  Google Scholar 

  • Sun WX, Qu WZ, Gu Y, Zhao SD (2023) Meshless generalized finite difference method for two-and three-dimensional transient elastodynamic analysis. Eng Anal Bound Elem 152:645–654

    Article  MathSciNet  Google Scholar 

  • Timesli A (2022) Optimized radius of influence domain in meshless approach for modeling of large deformation problems. IJST Trans Mech Eng 46(2):541–551

    Google Scholar 

  • Vasques CMA, Mace B, Gardonio P, Rodrigues JD (2006) Arbitrary active constrained layer damping treatments on beams: finite element modelling and experimental validation. Comput Struct 84(22–23):1384–1401

    Article  Google Scholar 

  • Wang JG, Liu GR (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Method Appl M 191(23–24):2611–2630

    Article  MathSciNet  MATH  Google Scholar 

  • Wang BH, Ma YQ, Cheng YM (2019) The improved complex variable element-free Galerkin method for bending problem of thin plate on elastic foundations. Int J Appl Mech 11(10):1950105

    Article  Google Scholar 

  • Wu CL, Zhang LL, Cui JH, Yin HM (2023) Three-dimensional elastic analysis of a bi-material system with a single domain boundary element method. Eng Anal Bound Elem 146:17–33

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Zhu JL (2013) A projection iterative algorithm boundary element method for the Signorini problem. Eng Anal Bound Elem 37(1):176–181

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Song KZ, Lu MW, Liu X (2000) Meshless methods based on collocation with radial basis functions. Comput Mech 26:333–343

    Article  MATH  Google Scholar 

  • Zhang LW, Zhu P, Liew KM (2014) Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos Struct 108:472–492

    Article  Google Scholar 

  • Zhou XQ, Yu DY, Shao XY, Wang SJ, Zhang SQ (2015) Simplified-super-element-method for analyzing free flexural vibration characteristics of periodically stiffened-thin-plate filled with viscoelastic damping material. Thin Wall Struct 94:234–252

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2020MA059).

Author information

Authors and Affiliations

Authors

Contributions

TL: Methodology, Software, Formal Analysis, Writing-Original Draft. GW: Data Curation, Conceptualization, Writing–Review & Editing. YZ: Funding acquisition, Validation, Investigation.

Corresponding author

Correspondence to Gaofeng Wei.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article. The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wei, G. & Zhang, Y. Radial Basis Reproducing Kernel Particle Method for Damped Elastic Dynamics Problems. Iran J Sci Technol Trans Mech Eng (2023). https://doi.org/10.1007/s40997-023-00701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40997-023-00701-6

Keywords

Navigation