Skip to main content
Log in

Nano-Al2O3 Particle Incorporated in Al Matrix Composite by Vortex-Free High-Speed Stir Casting

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Vortex-free high-speed stir casting (VFHSC) methodology can achieve uniform dispersion of particles in melt without air entrapment for fabricating particle reinforced composites, and it has been proved to be feasible for preparing micron-composites by this methodology. In this work, in order to study deeply on particles in nano-size magnitude in composites by this methodology, the preparation of 1.5 vol.% Nano-Al2O3p/Al–Cu–Mg–Si composite is also investigated. The proper stirring parameters for ideal particle dispersion are determined to prepare the materials. Porosity of the composite can be limited to 0.147 % under the VFHSC methodology. The composition and microstructure of ingots, including the incorporation of Al2O3 particles as well as the morphology of precipitated phases, are examined by OM, XRD, SEM, TEM, HRTEM and EDS. The nano-particles are incorporated ideally in the matrix with restricted aggregation and sedimentation, and the well-bounded Al2O3–Al interface possesses semi-coherent interface. Moreover, the VFHSC 1.5 vol.% Nano-Al2O3p/Al–Cu–Mg–Si composite exhibits obvious strengthening, limited ductility reduction, higher hardness as well as better wear resistance than those of matrix, validating the efficacy of the VFHSC methodology on fabricating 1.5 vol.% Nano-Al2O3p/Al–Cu–Mg–Si composite. The work proves that incorporating nano-particles in Al matrix by VFHSC methodology is feasible and efficient. The work presented in this paper proposes a viable approach for the fabrication of nanocomposites using the stir casting method, thereby offering valuable insights for further research on stir casting technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Z. Zaiemyekeh, G.H. Liaghat, H. Ahmadi et al., Effect of strain rate on deformation behavior of aluminum matrix composites with Al2O3 nanoparticles. Mater. Sci. Eng. A 753, 276–284 (2019). https://doi.org/10.1016/j.msea.2019.03.052

    Article  CAS  Google Scholar 

  2. B. Saleh, J.H. Jiang, A.B. Ma et al., Effect of main parameters on the mechanical and wear behaviour of functionally graded materials by centrifugal casting: a review. Met. Mater. Int. 25, 1395–1409 (2019). https://doi.org/10.1007/s12540-019-00273-8

    Article  Google Scholar 

  3. Y.F. Song, X.F. Ding, X.J. Zhao et al., The effect of SiC addition on the dimensional stability of Al-Cu-Mg alloy. J. Alloy. Compd. 750, 111–116 (2018). https://doi.org/10.1016/j.jallcom.2018.03.257

    Article  CAS  Google Scholar 

  4. R. Roy, Nanocomposites: retrospect and prospect. MRS Online Proc. Libr. 286, 241–250 (1992). https://doi.org/10.1557/PROC-286-241

    Article  Google Scholar 

  5. S. Komarneni, Feature article. Nanocomposites. J. Mater. Chem. 2, 1219–1230 (1992). https://doi.org/10.1039/JM9920201219

    Article  CAS  Google Scholar 

  6. M.P. Reddy, F. Ubaid, R.A. Shakoor et al., Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process. Mater. Sci. Eng. A 696, 60–69 (2017). https://doi.org/10.1016/j.msea.2017.04.064

    Article  CAS  Google Scholar 

  7. J.M. Shockley, E.F. Rauch, R.R. Chromik et al., TEM microanalysis of interfacial structures after dry sliding of cold sprayed Al-Al2O3. Wear 376–377, 1411–1417 (2017). https://doi.org/10.1016/j.wear.2016.12.052

    Article  CAS  Google Scholar 

  8. Y.S. Yang, F.Z. Zhao, X.H. Feng, Simulation for carbon nanotube dispersion and microstructure formation in CNTs/AZ91D composite fabricated by ultrasonic processing. Metall. Mater. Trans. B 48, 2256–2266 (2017). https://doi.org/10.1007/s11663-017-1047-0

    Article  CAS  Google Scholar 

  9. N. Sirajudeen, M.A. Rahman, Influence of aging and mass fraction of Al2O3 on mechanical properties of Al6082/Al2O3 composite produced by stir casting. Met. Sci. Heat Treat. 62, 205–209 (2020). https://doi.org/10.1007/s11041-020-00536-x

    Article  CAS  Google Scholar 

  10. Besekar, M. Kathiresan, R.J. Immanuel, Friction stir processing of recycled titanium reinforced A356 composite developed through stir casting. Trans. Indian Inst. Met. (2023). https://doi.org/10.1007/s12666-023-03208-5

    Article  Google Scholar 

  11. R. Arunachalam, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting—Furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019). https://doi.org/10.1016/j.jmapro.2019.04.017

    Article  Google Scholar 

  12. J. Karloopia, S. Mozammil, P.K. Jha, Influence of in situ titanium diboride particulate reinforcement on mechanical properties of aluminum–silicon based metal matrix composites. J. Miner. Met. Mater. Soc. 72, 2927–2936 (2020). https://doi.org/10.1007/s11837-020-04245-x

    Article  CAS  Google Scholar 

  13. S. Mozammil, J. Karloopia, P.K. Jha, Studies on porosity of Al-4.5%Cu-2.5pTiB2 in situ composites. Mater. Sci. Forum. 928, 51–5 (2018). https://doi.org/10.4028/www.scientific.net/MSF.928.51

    Article  Google Scholar 

  14. S. Mozammil, J. Karloopia, R. Verma et al., Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J. Alloy. Compd. 793, 454–466 (2019). https://doi.org/10.1016/j.jallcom.2019.04.137

    Article  CAS  Google Scholar 

  15. J. Karloopia, S. Mozammil, P.K. Jha, Machinability, modelling and statistical analysis of in-situ Al–Si–TiB2 composites. J. Compos. Sci. (2019). https://doi.org/10.3390/jcs3010028

    Article  Google Scholar 

  16. J. Karloopia, S. Mozammil, P.K. Jha, An experimental study on friction stir welding of Al-Si-TiB2 metal matrix composite. Mater. Proc. 5, 17260–17269 (2018). https://doi.org/10.1016/j.matpr.2018.04.137

    Article  CAS  Google Scholar 

  17. J. Karloopia, S. Mozammil, P.K. Jha, The abrasive wear behavior of in situ processed aluminum alloy metal-matrix composites. Met. Matrix Compos. (2022). https://doi.org/10.1007/978-3-030-92567-3_1

    Article  Google Scholar 

  18. M. Balakrishnan, I. Dinaharan, R. Palanivel et al., Influence of friction stir processing on microstructure and tensile behavior of AA6061/Al3Zr cast aluminum matrix composites. J. Manuf. Process. 38, 148–157 (2019). https://doi.org/10.1016/j.jmapro.2018.12.039

    Article  Google Scholar 

  19. S. Naher, D. Brabazon, L. Looney, Computational and experimental analysis of particulate distribution during Al–SiC MMC fabrication. Compos. Part A Appl. Sci. Manuf. 38, 719–729 (2007). https://doi.org/10.1016/j.compositesa.2006.09.009

    Article  CAS  Google Scholar 

  20. Q.Y. Hu, H.D. Zhao, F.D. Li, Microstructures and properties of SiC particles reinforced aluminum-matrix composites fabricated by vacuum-assisted high pressure die casting. Mater. Sci. Eng. A 680, 270–277 (2017). https://doi.org/10.1016/j.msea.2016.10.090

    Article  CAS  Google Scholar 

  21. Z.R. Hu, Z.K. Wu, S.C. Luo et al., Large scale production of graphene aluminum composites by stir casting: Process, microstructure and properties. J. Mater. Res. Technol. 27, 681–691 (2023). https://doi.org/10.1016/j.jmrt.2023.09.298

    Article  CAS  Google Scholar 

  22. P. Zhang, W.Y. Zhang, Y.H. Du et al., High-performance Al-1.5 wt% Si-Al2O3 composite by vortex-free high-speed stir casting. J. Manuf. Process. 56, 1126–1135 (2020). https://doi.org/10.1016/j.jmapro.2020.06.016

    Article  Google Scholar 

  23. W.Y. Zhang, Y.H. Du, P. Zhang, Vortex-free stir casting of Al-1.5 wt% Si-SiC composite. J. Alloy. Compd. 787, 206–215 (2019). https://doi.org/10.1016/j.jallcom.2019.02.099

    Article  CAS  Google Scholar 

  24. W.Y. Zhang, Y.H. Du, P. Zhang et al., Air-isolated stir casting of homogeneous Al-SiC composite with no air entrapment and Al4C3. J. Mater. Process. Technol. 271, 226–236 (2019). https://doi.org/10.1016/j.jmatprotec.2019.04.001

    Article  CAS  Google Scholar 

  25. Y.H. Du, P. Zhang, W.Y. Zhang et al., Distribution of SiC particles in semisolid electromagnetic-mechanical stir-casting Al-SiC composite. China Foundry. 15, 351–357 (2018). https://doi.org/10.1007/s41230-018-8086-2

    Article  Google Scholar 

  26. S.I. Martynov, L.Y. Tkach, Simulation of particle aggregate dynamics in a viscous fluid. Comput. Math. Math. Phys. 55, 282–290 (2015). https://doi.org/10.1134/S0965542515020141

    Article  Google Scholar 

  27. G.C. Chen, X.C. Li, Effect of TiC nano-treating on the fluidity and solidification behavior of aluminum alloy 6063. J. Mater. Process. Technol. (2024). https://doi.org/10.1016/j.jmatprotec.2023.118241

    Article  Google Scholar 

  28. C.Y. Yue, B.W. Zheng, M. Su et al., Effect of Cu/Mg ratio on the intermetallic compound and hot tearing susceptibility of Al–Cu–Mg alloys. Inter. J. Metalcast. 18, 417–430 (2024). https://doi.org/10.1007/s40962-023-01033-6

    Article  CAS  Google Scholar 

  29. J. Schmitz, I. Egry, J. Brillo, Anisotropy in wetting of oriented sapphire surfaces by liquid Al–Cu alloys. J. Mater. Sci. 49, 2286–2297 (2014). https://doi.org/10.1007/s10853-013-7925-1

    Article  CAS  Google Scholar 

  30. X. Li, B.Q. Xiong, Y.A. Zhang et al. Influence of Silicon Addition on Precipitation Behavior in an Al-Cu-Mg Alloy. In: H. Weiland, A.D. Rollett, W.A. Cassada, (eds) ICAA13 Pittsburgh. Springer, Cham. (2012). https://doi.org/10.1007/978-3-319-48761-8_198.

  31. H.Z. Tan, Research on preparation and properties of nNano-Al2O3p/Al composites. M.Eng thesis. Beijing Jiaotong University, (2023). https://doi.org/10.26944/d.cnki.gbfju.2023.002031

  32. A. Budiyanto, B. Sugiarto, B. Anang, Multidimensional CFD Simulation of a Diesel Engine Combustion: A Comparison of Combustion Models. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 190. Springer, Berlin, Heidelberg. (2013). https://doi.org/10.1007/978-3-642-33750-5_5.

  33. S. Amirkhanlou, B. Niroumand, Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Trans. Nonferrous Met. Soc. China 20, s788–s793 (2010). https://doi.org/10.1016/S1003-6326(10)60582-1

    Article  Google Scholar 

  34. N. Valibeygloo, R.A. Khosroshahi, R.T. Mousavian, Microstructural and mechanical properties of Al-4.5wt% Cu reinforced with alumina nanoparticles by stir casting method. Int. J. Miner. Metall. Mater. 20, 978–985 (2013). https://doi.org/10.1007/s12613-013-0824-2

    Article  CAS  Google Scholar 

  35. X.M. Fan, L.J. Xu, S.Z. Wei et al., Mechanical properties and strengthening mechanism of the hydrothermal synthesis of nano-sized α-Al2O3 ceramic particle reinforced molybdenum alloy. Ceram. Int. 46, 10400–10408 (2020). https://doi.org/10.1016/j.ceramint.2020.01.038

    Article  CAS  Google Scholar 

  36. Z.Z. Xu, Y.T. Zhao, X.Z. Kai et al., Microstructures and mechanical properties of the in-situ formed nanocomposites of (ZrB2 + Al2O3) and AA7055 alloy. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2022.132021

    Article  Google Scholar 

  37. M.S. Szczerba, S. Kopacz, M.J. Szczerba, A study on crystal plasticity of face-centered cubic structures induced by deformation twinning. Acta Mater. 197, 146–162 (2020). https://doi.org/10.1016/j.actamat.2020.07.040

    Article  CAS  Google Scholar 

  38. J.H. Zhang, A.Q. Wang, T.T. Liang et al., The prediction of Al2Cu/Cu interfacial structure and properties: a first-principles study. Phys. B Condens. Matter. (2023). https://doi.org/10.1016/j.physb.2023.414931

    Article  Google Scholar 

  39. H.Y. Yang, K.Q. Li, Y.Q. Bu et al., Nanoprecipitates induced dislocation pinning and multiplication strategy for designing high strength, plasticity and conductivity Cu alloys. Scr. Mater. (2021). https://doi.org/10.1016/j.scriptamat.2021.113741

    Article  Google Scholar 

  40. A. Mazahery, M.O. Shabani, Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting. Trans. Nonferrous Met. Soc. China 23, 1905–1914 (2013). https://doi.org/10.1016/S1003-6326(13)62676-X

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 50974010), the Beijing Natural Science Foundation (No. 2162036) and the Natural Science Project of Beijing Jiaotong University (M21L00920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Du, Y., Zhang, W. et al. Nano-Al2O3 Particle Incorporated in Al Matrix Composite by Vortex-Free High-Speed Stir Casting. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01345-1

Keywords

Navigation