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Topological actions of wreath products

Sergiy Maksymenko

Abstract. Let G and H be two groups acting on path connected topological spaces
X and Y respectively. Assume that H is finite of order m and the quotient maps
p : X → X/G and q : Y → Y/H are regular coverings. Then it is well-known that
the wreath product G ≀ H naturally acts on W = Xm × Y , so that the quotient map
r : W → W/(G ≀ H) is also a regular covering. We give an explicit description of
π1(W/(G ≀H)) as a certain wreath product π1(X/G) ≀∂Y

π1(Y/H) corresponding to a
non-effective action of π1(Y/H) on the set of maps H → π1(X/G) via the boundary
homomorphism ∂Y : π1(Y/H) → H of the covering map q.

Such a statement is known and usually exploited only when X and Y are con-
tractible, in which case W is also contractible, and thus W/(G ≀ H) is the classifying
space of G ≀H .

The applications are given to the computation of the homotopy types of orbits
of typical smooth functions f on orientable compact surfaces M with respect to the
natural right action of the groups D(M) of diffeomorphisms of M on C∞(M,R).

1. Introduction

Recall that for two groups G and H their unrestricted1 wreath product G ≀ H is the
semidirect product Map(H,G)⋊H corresponding to the natural left action of H on the
group Map(H,G) of all maps H → G (with respect to the point-wise multiplication) by

(hα)(g) = α(gh)

for h ∈ H , α ∈ Map(H,G), and g ∈ G.
It is well known that given a left action of G on a set X and a left action of H on a set

Y , there is a natural left action of the wreath product G ≀H on W = Map(H,X)×Y by
(α, h)(φ, y) =

(
(hα)φ, hy

)
, where α ∈ Map(H,G), φ ∈ Map(H,X), h ∈ H , y ∈ Y , and

(hα)φ : H → X is given by k 7→ α(kh)φ(h), k ∈ H , see Lemma 4.0.1 below. Usually, such
an action is studied for the case when G and H are finite and freely act on contractible
topological spaces X and Y , e.g. [36, Theorems 3.3 & 6.2], [1, Sect. 2.3.1], [6,17,18]. In
that case W can be identified with Xm×Y , where m is the order of H , and is contractible
as well with respect to the usual product topology. Moreover, the above action of G ≀H

1The restricted wreath product is defined similarly, but instead of all the set Map(H,G) one should
take its subset FMap(H,G) consisting of maps α : H → G with “finite support” i.e. such that α(h)
differs from the unit of G only for finitely many elements h of H . We will consider only the case when
H is finite, and in this situation the notions of restricted and non-restricted wreath products coincide.
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2 SERGIY MAKSYMENKO

on W also turns out to be free. Therefore, the quotient W/(G ≀H) is usually regarded
as the standard model for the classifying space B(G ≀H) of the group G ≀H .

If H is infinite one would need to specify a topology on Map(H,X) to make W a
suitable topological space. However, it seems that in general there is no good canonical
choice of such a topology, and therefore many authors consider measurable actions and
investigate other properties of G ≀H like amenability, e.g. [2,5,10].

On the other hand, if X and Y are not contractible, and thus π1(X/G) and π1(Y/H)
might differ from G and H , the homotopy type of the quotient W/(G ≀ H) is not well
studied.

The main result of the present paper (Theorem 4.2.1) explicitly expresses the fun-
damental group π1

(
W/(G ≀ H)

)
via the fundamental groups π1(X/G) and π1(Y/H) as

a wreath product corresponding to a certain non-effective action of π1(Y/H) on the set
Map(H, π1(X/G)), under additional assumptions that H is finite and each G and H has
a discrete orbit with trivial stabilizer. The latter conditions are weaker than requiring
those actions to be free. In particular, we get the following statement (Corollary 4.2.2).

Theorem 1.1. Suppose X and Y are path connected topological spaces, the actions
of G and H are properly discontinuous, that is the corresponding quotient maps p : X →
X/G and q : Y → Y/H are regular coverings, and H is finite and consists of m elements.
Let also ∂

Y
: π1(Y/H) → H be the boundary homomorphism of the covering map q. Then

G ≀H freely acts on W = Xm × Y , the corresponding quotient map r : W →W/(G ≀H)
is also a regular covering, and we have isomorphisms

π1(W/(G ≀H)) ∼= π1(X/G) ≀∂
Y
π1(Y/H),

see Example 3.3 for the definition of the right-hand side wreath product, and

πk(W/(G ≀H)) ∼= πkW ∼= (πkX)m × πkY, k ≥ 2.

If X and Y are simply connected, then the corresponding boundary homomorphisms
∂

X
: π1(X/G) ∼= G and ∂

Y
: π1(Y/H) ∼= H of the covering maps p and q are isomorphisms,

and we get an isomorphism π1(X/G) ≀∂
Y
π1(Y/H) ≡ G ≀H . This gives a well-known fact

that π1(W/(G ≀H)) = G ≀H .
Applications of this theorem concern with the right action of the group of diffeomor-

phisms D(M) of a compact surface M on the space C∞(M,P ) of smooth maps from
M to a one-dimensional manifold P = R or S1, see Corollary 6.2. We will give one
more proof that if M is orientable and differs from S2, then there exists a large subset
F(M,P ) ⊂ C∞(M,P ) (including all Morse functions) such that for every f ∈ F(M,P )
its orbit Of (f) has the homotopy type of the quotient (S1)k/G of some torus (S1)k by a
certain free action of some finite group G. In fact, we will present an explicit construc-
tion of such an action. That result was initially established by the author in [29, 31]
for maps f ∈ F(M,P ) with trivial G (which includes maps taking distinct values at
distinct critical points, and in particular generic Morse maps). Then it was extended by
E. Kudryavtseva [22–24] to the case of non-trivial G and maps with singularities locally
equivalent to xm ± y2 (which includes thus all Morse maps), and further by the author
in [33] to all f ∈ F(M,P ).
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1.2. Structure of the paper. Section 2 contains preliminary results and defini-
tions. Section 2.1 starts from the exponential law allowing to pass between paths in
certain functional spaces and homotopies between maps in those spaces. Further, for
a pointed pair of topological spaces (X,A, x), we discuss the definition of homotopy
groups and also homotopy sets π1(X,A, x) and π0(X, x) having in general no “natural”
groups structures. Section 2.2 presents several examples when such groups structures
exist. In Section 2.3 we show that if there is an action of some group G on X such
that the stabilizer of x is trivial and its orbit Gx is discrete (see Definition 2.3.1),
then π0(Gx) can be canonically identified with G, and π1(X,Gx, x) admits a natu-
ral group structure such that the following part of exact sequence of homotopy sets:
π1(X, x) → π1(X,Gx, x) → π0(Gx) of (X,Gx, x) will consist of homomorphisms, see
Lemma 2.4.1. In particular, many standard facts about the maps of relative π1-sets and
covering maps can be extended to the case of π1(X,Gx, x). This construction, of course,
is a variant of the concept of monodromy , see e.g. [40].

That group structure might be useful as well for discrete dynamical systems. Namely,
if φ : X → X is a homeomorphism of a path connected topological space X, then it
yields an action of Z on X. Hence, if x ∈ X is a non-periodic point and its orbit
Zx = {φk(x)}x∈Z is discrete, then π1(X,Zx, x) has a group structure which can be
regarded as a certain invariant of φ, see Section 2.5.

In Section 3 we recall the definition of a wreath product and discuss several particular
cases of that construction. Also, in Section 3.4 we consider certain commutative diagrams
related with homomorphisms of wreath products.

Section 4 describes a natural action of wreath product G ≀H on W = Map(H,X)×Y
obtained from actions of groups G and H on sets X and Y respectively, Lemma 4.1.1.
We also prove our main result, Theorem 4.2.1, which gives an explicit expression of
π1
(
W/(G ≀ H)

)
via π1(X/G) and π1(Y/H), when X and Y are topological spaces, and

the action of G and H are weakly discontinuous at some points x ∈ X and y ∈ Y , see
Definition 2.3.1.

Theorem 4.2.1 is used further in Section 5 for the proof that a certain class of short
exact sequences arises from actions of wreath products on tori, Lemma 5.4. In particular
in Remark 5.3 we also fulfill lacking arguments for [33, Theorem 2.5].

2. Preliminaries

In what follows the arrows →֒ and →→ will mean a monomorphism and an epimor-
phism respectively. A diagram is a functor from the category of partially ordered sets into
some category, while a morphism of diagrams is a natural transformation of the corre-

sponding functors. For instance, let p : A1
α1−→ · · ·

αk−1

−−−→ Ak and q : B1
β1

−→ · · ·
βk−1

−−−→ Bk be
two sequences of homomorphisms of groups. Then by a morphism γ = (γ1, . . . , γk) : p →
q we will mean a collection of homomorphisms γi : Ai → Bi, i = 1, . . . , k, making com-
mutative the following diagram:

A1
α1

//

γ1
��

A2
α2

//

γ2
��

· · ·
αk−1

// Ak

γk
��

B1
β1

// B2
β2

// · · ·
βk−1

// Bk
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A morphism γ is an epimorphism (resp. monomorphism, isomorphism) if each γi is so.
We will say that γ is a morphism relatively i-th term if Ai = Bi and γi = idAi

.

2.1. Homotopies in spaces of maps.

Exponential law. Let T,X be topological spaces. By C
(
T,X

)
we will denote the set

of all continuous maps from T to X. A compact open topology on C
(
T,X

)
is a topology

generated by sets of the form [K, V ] = {f ∈ C
(
T,X

)
| f(K) ⊂ V }, where K runs over

all compact subsets of T and V runs over all open subsets of X.
If S is one more topological space and F : S × T → X is a continuous map, then for

each s ∈ S we define the map Fs : T → X by Fs(t) = F (s, t), t ∈ T . The following well
known statement is called the exponential law :

Lemma 2.1.1 (e.g. [12, Theorem 3.4.8]). Let S, T , X be topological spaces such that
S is Hausdorff and T is locally compact and Hausdorff. Then we have a well-defined
homeomorphism (called the exponential map):

E : C
(
S × T,X

)
→ C

(
S, C

(
T,X

))
, E(F )(s) = Fs,

where F ∈ C
(
S × T,X

)
, s ∈ S, and all the spaces of continuous maps are endowed with

the corresponding compact open topologies. �

Given a subset U ⊂ C
(
T,X

)
, define the following subset of C

(
S × T,X

)
:

CU(S × T,X) := {F ∈ C
(
S × T,X

)
| Fs ∈ U for all s ∈ S}.

Corollary 2.1.2. Under assumptions of Lemma 2.1.1, for every subset U ⊂ C
(
T,X

)
,

endowed with the induced compact open topology, the map E yields a homeomorphism

E : CU (S × T,X) → C
(
S,U

)
,

where C
(
S,U

)
is regarded as a subset of C

(
S, C

(
T,X

))
.

Proof. It suffices to show that E
(
CU(S × T,X)

)
= C

(
S,U

)
.

Let F ∈ CU (S × T,X), so Fs ∈ U for all s ∈ S. Then by Lemma 2.1.1 the map
f = E(F ) : S → C

(
T,X

)
, f(s) = Fs, is continuous. Moreover, f(S) ⊂ U , by assumption

on F , i.e. f ∈ C
(
S,U

)
. Thus, E

(
CU(S × T,X)

)
⊂ C

(
S,U

)
.

Conversely, let f ∈ C
(
S,U

)
. Then by Lemma 2.1.1, f = E(F ), where F ∈ C

(
S ×

T,X
)

is given by F (s, t) = f(s)(t). In particular, Fs = f(s) ∈ U for all s ∈ S, so

F ∈ CU (S × T,X). Thus, E
(
CU (S × T,X)

)
= C

(
S,U

)
. �

Paths and homotopies. Let I = [0; 1]. Every continuous map α : I → X is called a
path in X. In this case the points α(0), α(1) ∈ X are the ends of α, and one also says
that α(0) and α(1) are connected by the path α. If α(0) = α(1), then α is a loop at the
point α(0). Also, given two subsets A,B ⊂ X, denote by

P(X,A,B) := C
(
(I, 0, 1), (X,A,B)

)

the set of all paths α : I → X such that α(0) ∈ A and α(1) ∈ B.
Notice that the relation on X to “be connected by a path” is an equivalence relation.

The corresponding equivalence classes are called path components of X, and the set of
all such classes is denoted by π0X.
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A homotopy is merely a continuous map F : I × T → X of a topological product of
T by the segment I. In this case, it is also said that F is a homotopy between the maps
F0, F1 : T → X.

Let U ⊂ C
(
T,X

)
be a subset. Then, by definition, each element F ∈ CU (I × T,X)

is a homotopy F : I × T → X satisfying Fs ∈ U for all s ∈ I. We will call such F a
homotopy in U . Also, say that two maps f, g ∈ U are homotopic in U if there exists a
homotopy F in U such that F0 = f and F1 = g. Evidently, the relation to “be homotopic
in U” is an equivalence relation on U , and we will denote by π(U) the corresponding set
of equivalence classes, called homotopy classes.

Corollary 2.1.3. Suppose T is locally compact and Hausdorff. Then for every
subset U ⊂ C

(
T,X

)
the exponential map E induces a bijection

π(U) ≡ π0U (2.1)

between the set homotopy classes of maps in U and the set of path components of U
endowed with the compact open topology.

Proof. By Corollary 2.1.2, we have a homeomorphism E : CU(I × T,X) ∼= C
(
I,U

)

of the space of homotopies in U onto the space of paths in U . In particular, two maps
f, g ∈ U are homotopic in U if and only if they are conected by a path in U , i.e. belong
to the same path component of U . This gives the required bijection (2.1). �

Let k ≥ 1, T1, . . . , Tk ⊂ T and X1, . . . , Xk ⊂ X be two collections of subsets, and
U := C

(
(T, Tk, . . . , T1), (X,Xk, . . . , X1)

)
be the subspace of C

(
T,X

)
consisting of maps

γ : T → X of (k + 1)-tuples, i.e. γ(Ti) ⊂ Xi for all i = 1, . . . , k. Then the corresponding
set of homotopy classes π(U) is usually denoted by [(T, Tk, . . . , T1), (X,Xk, . . . , X1)].

Homotopy groups and sets. For the convenience of the reader not familiar with homo-
topy groups we will briefly recall their definition, see e.g. [15, Chapter 4.1], and further
discuss the cases when they are not actually groups.

For n ≥ 1 let Dn be the unit n-disk in Rn centered at the origin, Sn−1 = ∂Dn be the
corresponding n-sphere, and q = (1, 0, . . . , 0) ∈ Sn−1. Identifying Rn with Rn×0 ⊂ Rn+1

we can assume that q is a common point of all those spheres and disks, and therefore we
will use the same point q for all n.

Now let X be a topological space, A ⊂ X a subset, and x ∈ A a point. Then the
following sets of homotopy classes:

πn(X, x) := [(Sn, q), (X, x)], n ≥ 0, (2.2)

πn(X,A, x) := [(Dn, Sn−1, q), (X,A, x)], n ≥ 1, (2.3)

are called the n-th homotopy set of X and (X,A) respectively at the point x. Notice
that there is an infinite (to the left) sequence of maps called the long exact sequence of
(X,A, x), e.g. [15, Theorem 4.3]:

· · · → πn(A, x)
in−→ πn(X, x)

jn
−→ πn(X,A, x)

∂n−→ πn−1(A, x) → · · ·

· · · → π1(A, x)
i1−→ π1(X, x)

j1
−→ π1(X,A, x)

∂1−→ π0(A, x)
i0−→ π0(X, x)

and defined as follows. Let i : A ⊂ X be a natural inclusion.



6 SERGIY MAKSYMENKO

• Then in associates to the homotopy class of each map γ : (Sn, q) → (A, x) the homotopy

class of the composition i ◦ γ : (Sn, q)
γ
−→ (A, x)

i
−→ (X, x).

• Also, note that there is a continuous map φ : Dn → Sn such that φ(∂Dn) = q and φ
homemorphically maps IntDn onto Sn \ q. In particular, φ can be regarded as a map
of triples φ : (Dn, Sn−1, q) → (Sn, q, q). Then jn associates to the homotopy class of
each map of pairs γ : (Sn, q) → (X, x) the homotopy class of the following composition
regarded as a map of triples:

γ ◦ φ : (Dn, Sn−1, q)
φ
−→ (Sn, q, q)

γ
−→ (X,A, x).

• Finally, ∂n associates to the homotopy class of the map of triples γ : (Dn, Sn−1, q) →
(X,A, x) the homotopy class of its restriction γ|(Sn−1,q) : (S

n−1, q) → (A, x) regarded
as a map of pairs.

It is known that the above long sequence is exact in the “homotopy” sense, i.e. if P
a
−→

Q
b
−→ R is a part of that sequence and γ ∈ Q is any element, then b(γ) is homotopic in

R to a constant map if and only if γ = a(β) for some β ∈ P .
Moreover, the sets πn(A, x), πn(X, x) for n ≥ 1 and πn(X,A, x) for n ≥ 2 have

natural group structures such that the maps in for n ≥ 1 and jn, ∂n for n ≥ 2 are
homomorphisms and the above infinite sequence is also exact in the “algebraic” sense up

to the term π1(X, x), i.e. if P
a
−→ Q

b
−→ R is a part of that sequence, and Q stands before

π1(X, x) in that sequence, then image(a) = ker(b).
The reader is referred to [15, Chapter 4.1] for the definition of multiplication in

those homotopy sets, and we will recall now only the multiplication in π1(X, x) and
discuss other homotopy sets of dimension 1 and 0. It will be convenient to replace in
the definitions D1 = [−1; 1] with I = [0; 1]. Then S0 := ∂I = {0, 1}.

Fundamental group π1(X, x). Define the following map φ : I → S1, φ(t) = (cos(2πt), sin(2πt)).
Evidently, φ(0) = φ(1) = q, and φ homeomorphically maps (0; 1) onto S1 \ q. One easily
checks that we have a bijection

φ∗ : C
(
(S1, q), (X, x)

)
→ C

(
(I, ∂I), (X, x)

)
≡ P(X, x, x),

φ∗(γ) = γ ◦ φ : I
φ
−→ S1 γ

−→ X,

which also induces a bijection on the corresponding homotopy classes of maps. Hence,
we get another description of π1(X, x) as the set of homotopy classes of loops at x:

π1(X, x)
(2.2)
:= [(S1, q), (X, x)]

φ∗

≡ [(I, ∂I), (X, x)].

Say that two paths α, β : I → X are composable, if α(1) = β(0). Then for a pair of
composable paths α, β : I → X one can define their composition α ♯ β : I → X by the
following standard formula:

(α ♯ β)(t) =

{

α(2t), t ∈ [0; 1
2
],

β(2t− 1), t ∈ [1
2
; 1].

(2.4)

In particular, if α, β ∈ P(X, x, x) are loops at x, then α ♯ β ∈ P(X, x, x) is also a loop
at x. It is well known and is easy to see that the homotopy class of α ♯ β in P(X, x, x)
depends only on the homotopy classes of α and β, and the operation of composition of
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loops induces a certain group operation on the set π1(X, x) of their homotopy classes.
The group π1(X, x) is called the fundamental group of X at x.

However, in general, neither of the latter three terms of the long exact sequence:

· · ·
j1
−→ π1(X,A, x)

∂1−→ π0(A, x)
i0−→ π0(X, x) (2.5)

has some natural group structure under which the corresponding arrows are homomor-
phisms.

The set π1(X,A, x). Evidently, for n = 1 the general definition (2.3) reduces to the
following one: π1(X,A, x) = [(I, 1, 0), (X,A, x)]. Note that, if α, β : (I, 1, 0) → (X,A, x)
are two paths started at x and finished in A, then in general, α and β are not composable.
This illustrates an absence of some “evident” group structure on π1(X,A, x) related with
compositions of paths.

The set π0(X, x). Due to definition (2.2), π0(X, x) := [(S0, q), (X, x)]. Since every
continuous map γ : (S0, 0) → (X, x) sends 0 to x, it is uniquely determined by its value
γ(1) ∈ X. Moreover, the correspondence C

(
(S0, 0), (X, x)

)
→ X, γ 7→ γ(1), is evidently

a bijection. Also, if F : I×S0 → X is a homotopy in C
(
(S0, 0), (X, x)

)
, then F (I×0) =

{x}, and F |I×1 is just a path between two points F0(1) and F1(1). This implies that
π0(X, x) can be identified with the set of path components of X.

From that point of view the presence of a base point x in π0(X, x) might look arti-
ficial. Therefore, sometimes it is omitted and this agrees with the notation π0X from
Section 2.1. However, for the “exactness” of the above long exact sequence of (X,A, x)
the base point is essential.

Let us also describe the maps from (2.5).
• The mapping j1 : π1(X, x) → π1(X,A, x) associates to each loop α : (I, ∂I) → (X, q)

at x the homotopy class of α regarded as a path α : (I, 1, 0) → (X,A, x).

• The map ∂1 : π1(X,A, x) → π0(A, x) associates to each homotopy class of a path
γ : (I, 1, 0) → (X,A, x) the path component of A of the point γ(1) ∈ A.

• Finally, the map i0 : π0(A, x) → π0(X, x) associates to each path component A′ of A
the path component of X containing A′.

Corollary 2.1.4. For a subset A ⊂ X and a point x ∈ X there are the following
identifications:

π0P(X, x,A) = π1(X,A, x), π0Ω(X, x) = π1(X, x),

where Ω(X, x) := P(X, x, x) is the space of loops at x.

Proof. The proof is a direct consequence of definitions and (2.1):

π1(X,A, x) := [(I, 1, 0), (X,A, x)] ≡ π(P(X, x,A))
(2.1)
= π0P(X, x,A).

Similarly, π0(X, x) := [(I, 1, 0), (X, x, x)] ≡ π(Ω(X, x))
(2.1)
= π0Ω(X, x). �

2.2. Group structure on π1(X,A, x). We will consider here several situations in
which π1(X,A, x), π0(X, x), π0(A, x) are groups and the corresponding arrows between
them are homomorphisms.
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Example 2.2.1. Let X be a topological group. Then the path component Xe of
the unit e of X is a normal subgroup of X, and one can naturally identify π0X with
the quotient group X/Xe. One can also define a point-wise multiplication of loops
α, β : (I, ∂I) → (X, e), and it is well known and is easy to see that on the level of ho-
motopy classes that multiplication coincides with the multiplication in π1(X, e). More
generally, if A ⊂ X is a subgroup, then one can also define a point-wise multiplica-
tion of paths α, β : (I, 0, 1) → (X, e, A) and on the level of homotopy classes this turns
π1(X,A, e) = π0P(X, e, A) into a group such that the corresponding exact sequence of
(X,A, e):

· · · → π1(A, e)
i1−→ π1(X, e)

j1
−→ π1(X,A, e)

∂1−→ π0(A, e)
i0−→ π0(X, e)

consists of homomorphisms. It is well known and easy that π1(X, e) and π1(A, e) are
abelian, and the image of j1 is contained in the center of π1(X,A, e).

Example 2.2.2. Let p : X → Y be a fibration between path connected spaces, i.e.
p satisfies homotopy lifting property. Let also x ∈ X, y = p(x) ∈ Y , and A = p−1(y).
Then that homotopy lifting property implies that p induces a bijection pk : πk(X,A, x) ∼=
πk(Y, y) being an isomorphism of groups for k ≥ 2. For k = 1 we have a bijection p1
between π1(X,A, x) and the group π1(Y, y). This allows to endow π1(X,A, x) with a
groups structure from π1(Y, y) via p1. However, the boundary map ∂1 : π1(X,A, x) →
π0(A, x) is still not a homomorphism, since π0(A, x) is not a group.

Example 2.2.3. Suppose that in the previous example p : X → Y is a regular
covering map, which means that A is discrete, so p1 : π1(X, x) → π1(Y, y) is injec-
tive, and the image of p1 is a normal subgroup of π1(Y, y). Then the quotient group
G = π1(Y, y)/p1

(
π1(X, x)

)
can be naturally identified with A = π0A so that the bound-

ary map ∂1 : π1(X,A, x) → π0(A, x) ≡ G becomes a homomorphism.

In particular, the non-trivial part π1(X, x) ֒
j1

−−→ π1(X,A, x)
∂1−→→ π0(A, x) of the long

exact sequence of pair (X,A, x) turns into π1(X, x) ֒
j1

−−→ π1(Y, y)
∂1−→→ G. In this case we

have a natural action of G on X so that X/G can be identified with Y and A with the
orbit Gx of x.

2.3. Weakly discontinuous actions. Suppose now that a discrete group G acts
from the left on a topological space X by homeomorphisms. For a point x ∈ X its
G-orbit will be denoted by Gx. Our aim is to show that the standard arguments from
the theory of covering spaces allow to prove that π1(X,Gx, x) still has a group structure
under more general settings. This should probably be known for specialists, however the
author did not find any such exposition in the literature.

For a point a ∈ X denote by [a] its path component in X.

Definition 2.3.1. Say that a G-action is weakly discontinuous at a point x ∈ X
(WD at x) if it satisfies either of the following equivalent properties:

(WD1) the natural map σx : G
g 7→ gx

−−−−−→ Gx
a 7→ [a]

−−−−−→ π0(Gx, x) is a bijection;

(WD2) the path component of x in Gx consists of that point x only, and the stabilizer
of x is trivial;
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(WD3) every continuous path α : I → Gx is constant, and if gx = g′x for some g, g′ ∈ G,
then g = g′.

One also checks that every WD-action at x is effective (since distinct elements of G
differently act on Gx) and is also WD at any other point y of the orbit Gx.

Definition 2.3.2. Say that G acts properly discontinuous (PD) if either of the
following equivalent conditions holds:
(PD1) the action is free and the quotient map p : X → X/G is a covering, where X/G

is endowed with the corresponding quotient topology;
(PD2) each x ∈ X has an open neighborhood Vx such that gVx ∩ hVx = ∅ for g 6= h.

A neighborhood Vx in (PD2) is called wandering (with respect to this action of G) or
simply G-wandering .

Evidently, every PD action is WD at each point x ∈ X and the restriction of p to
every G-wandering neighborhood is a homeomorphism onto. Moreover, it is well known
and is easy to see that if X is Hausdorff and G is a finite group freely acting on X, then
this action is also PD, e.g. [4, 11.1.3].

In fact, there are several definitions of properly discontinuous actions involving com-
pact subspaces and adopted to the actions on locally compact Hausdorff spaces, e.g.
[7, I, page 4, Remark]. We will use only the one equivalent to (PD1).

2.4. Group structure on π0P(X, x,Gx). Let X be a path connected topological
space and x ∈ X. Suppose we are given an action of a group G on X being WD at x.

1) Then there is a natural map

δ
X,x

: P(X, x,Gx) → G

defined as follows. Let α ∈ P(X, x,Gx), so it is a path α : I → X such that α(0) = x
and α(1) = gx ∈ Gx for some g ∈ G. Since the action is WD at x the stabilizer of x is
trivial, and therefore such g is unique. Moreover, it also depends only on the homotopy
class [α] of α in π0P(X, x,Gx) ≡ π1(X,Gx, x).

Indeed, if {αt}t∈[0;1] ⊂ P(X, x,Gx) is a homotopy in P(X, x,Gx), then {αt(1)}t∈[0;1]
is a path in Gx which must be constant, since the path components of G are single-
tons (by WD property at x). Hence, the correspondence α 7→ g is a well-defined map
δ
X,x

: π1(X,Gx, x) → G such that α(1) = δ
X,x
([α])x.

2) Further, one can define the following operation of concatenation of paths:

P(X, x,Gx)×P(X, x,Gx) → P(X, x,Gx)

in the following way. Let α, β ∈ P(X, x,Gx) and g = δ
X,x
(α), so α(1) = gx for a

unique g ∈ G which can be regarded as a homeomorphism of X. Then the composition

g ◦ β : I
β
−→ X

g
−→ X is also a path in X, and (g ◦ β)(0) = gx = α(1). Hence, α and g ◦ β

are composable, and we define the product of elements α, β ∈ P(X, x,Gx) by

α · β := α ♯ (g ◦ β) ≡ α ♯ (δ
X,x
(α) ◦ β). (2.6)

Lemma 2.4.1. Suppose X is path connected and the action of G on X is WD at
some x ∈ X. Then the following statements hold.
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(1) π1(X,Gx, x) has a group structure such that the composition

δ
X,x

= σ−1
x ◦ ∂1 : π1(X,Gx, x)

∂1−−→ π0(Gx, x)
σ−1
x−−−→ G

is a homomorphism. In particular, we get a short exact sequence:

π1(X, x) ֒
j1

−−−→ π1(X,Gx, x)
δ
X,x

−−−→ G. (2.7)

(2) Suppose that this G-action is also WD at some other point y ∈ X. Let γ : I → X
be any path with γ(0) = x and γ(1) = y. Then the natural bijection

γ∗ : π1(X,Gx, x) → π1(X,Gy, y), γ∗(α) = [γ−1 ♯ α ♯ (δ
X,x
(α) ◦ γ)],

is an isomorphism of groups inducing an isomorphism of the following short exact
sequences:

π1(X, x)

∼= γ∗
��

� � // π1(X,Gx, x)

γ∗∼=
��

δ
X,x

// // G

π1(X, y)
� � // π1(X,Gy, y)

δ
X,y

// // G

(3) Assume that another group H acts on a path connected topological space Y and
that action is WD at some y ∈ Y . Let also f : X → Y be a continuous map such
that f(x) = y. Suppose also that there exists a homomorphism φ : G→ H such that
f is φ-equivariant on the orbit Gx of x, i.e. f(gx) = φ(g)y for all g ∈ G. In
particular, f(Gx) ⊂ Hy. Then the natural map

f∗ : π1(X,Gx, x) → π1(Y,Hy, y), f∗([α]) = [f ◦ α], (2.8)

is not necessarily a homomorphism however it induces the following commuta-
tive diagram in which the left vertical arrow f∗ is a homomorphism:

π1(X, x)

f∗
��

� � // π1(X,Gx, x)

f∗
��

δ
X,x

// // G

φ

��

π1(Y, y)
� � // π1(X,Hy, y)

δ
Y,y

// // H

(2.9)

If f is φ-equivariant on all of X, i.e. f(gx′) = φ(g)f(x′) for all g ∈ G and x′ ∈ X,
then (2.8) is a homomorphism, so (2.9) is a morphism of short exact sequences, i.e.
all vertical arrows there are homomorphisms.

Proof. (1) A standard verification shows that the above operation ♯ at the level
of homotopy classes of paths in P(X, x,Gx) turns π0P(X, x,Gx) = π1(X,Gx, x) into
a group with the following multiplication: [α] · [β] := [α ♯ (δ

X,x
(α) ◦ β)]. Moreover, it

directly follows from the definition that if δ
X,x
(α) = g and δ

X,x
(β) = g′, i.e. α(1) = gx

and β(1) = g′x, then (α·β)(1) = (gg′)x. In other words, δ
X,x
([α]·[β]) = δ

X,x
([α])·δ

X,x
([β]),

so δ
X,x

is a homomorphism, and its kernel is evidently π1(X, x). This gives the short exact
sequence (2.7).

Statement (2) is also standard.
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(3) The left square of (2.9) is known to be commutative. Suppose f is equivariant on
Gx. We need to check commutativity of the right square of (2.9). Let α ∈ P(X, x,Gx)
and g = δ

X,x
(α), so α(1) = δ

X,x
(α)x. Then

(f ◦ α)(1) = f(gx) = φ(g)y,

whence φ(g) = δ
Y,y
(f ◦ α). In other words, φ ◦ δ

X,x
= δ

Y,y
◦ f∗.

Suppose that f is φ-equivariant on all of X, that is f ◦ g = φ(g) ◦ f : X → Y for all
g ∈ G. Let also α, β ∈ P(X, x,Gx). Then

f ◦
(
α · β

)
= f ◦

(
α ♯ (δ

X,x
(α) ◦ β)

)
= (f ◦ α) ♯ (f ◦ δ

X,x
(α) ◦ β)

= (f ◦ α) ♯ (φ(δ
X,x
(α)) ◦ f ◦ β)

(2.9)
== (f ◦ α) ♯ (δ

Y,y
(f ◦ α) ◦ f ◦ β)

= (f ◦ α) · (f ◦ β).

Hence, f∗([α] · [β]) = [f∗(α)] · [f∗(β)], so f∗ is a homomorphism. �

Consider several particular cases of the constructions of Lemma 2.4.1. Suppose that
we are given an action of G on X being WD at some x ∈ X. We will regard elements of
G as homeomorphisms of X.

Example 2.4.2. Let g ∈ G and φ : G→ G be the inner automorphism of G induced
by g, i.e. φ(k) = g◦k◦g−1, k ∈ G. Then the homeomorphism g : X → X is φ-equivariant:

g
(
k(y)

)
= (g ◦ k ◦ g−1)

(
g(y)

)
= φ(k)

(
g(y)

)
, k ∈ G, y ∈ X.

Hence, by Lemma 2.4.1(3), it induces an isomorphism of the following short exact se-
quences:

π1(X, x)

g∗

��

� � // π1(X,Gx, x)

g∗

��

δ
X,x

// // G

k 7→g◦k◦g−1

��

π1(X, gx)
� � // π1(X,Gx, gx)

δ
X,gx

// // G

(2.10)

Example 2.4.3. LetK be a normal subgroup ofG, so it also acts onX, φ : G→ G/K
be the quotient homomorphism, Y = X/K the quotient space endowed with the quotient
topology, f : X → Y the quotient map, x ∈ X, and y = f(x).

Then G/K naturally acts on Y . Indeed, let y′ ∈ Y . Then f−1(y′) = Kx′ is the
K-orbit of some point x′ ∈ X. Now if g ∈ G, then

gKx′ = Kgx′, (2.11)

since K is normal. Hence, gKx′ depends only on the adjacent class φ(g) of g in G/K,
and thus we get an action of G/K on Y .

Moreover, the identity (2.11) can also be written as φ(g)(f(x′)) = f(gx′) which means
that f is φ-equivariant.

Finally, the G/K-stabilizer of y is trivial, since so is the G-stabilizer of x.
Suppose, in addition, that the path component of y in its G/K-orbit consists of y

only, that is the G/K-action on Y is WD at y. Then, again by Lemma 2.4.1(3), we get
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a morphism of the following short exact sequences:

π1(X, x)

f∗
��

� � // π1(X,Gx, x)

f∗
��

δ
X,x

// // G

φ
��
��

π1(X/K, y)
� � // π1(X/K, (G/K)y, y)

δ
Y,y

// // G/K

(2.12)

2.5. Dynamical systems. Let X be a path connected topological space, x ∈ X
be a point, and φ : X → X be a homeomorphism, so the iterations of φ define an action
of Z on X. If this action is WD at x, then one can define the group π1(X,Zx, x). We
will consider below few computations of that group, but first let us discuss the situations
when such points exist.

Remark 2.5.1. a) Clearly, the condition that the stabilizer of x is trivial means that
x is non-periodic, i.e. x 6= φn(x) for all n ∈ Z \ 0.

Note that existence of non-periodic points is a very typical situation. Even more, for
“good” spaces like CW-complexes, homeomorphisms with only periodic points, and in
particular, periodic homeomorphisms, are “rare” in the corresponding homeomorphism
groups: having all points periodic is an unstable property. One might also mention
a result by D. Montgomery [35] claiming that every homeomorphism of a connected
manifold with all periodic points is itself periodic.

b) Assume further that x is non-periodic. Then a Z-action is WD at x if {x} is the
path components of x in its orbit Zx.

This condition is also typical for “good” spaces. It may fail in some “pathological”
cases, e.g. when the orbit Zx or all X has anti-discrete topology (consisting only of two
sets: X and ∅).

On the other hand, if the one-point set {x} is closed in Zx (which holds e.g. when X
is a T1-space), then {x} is the path components of x in Zx. Indeed, as noted above, since
φ is a homeomorphism, for each n ∈ Z the one-point set {φn(x)} is also closed in Zx.
Now let α : I → Zx be a path in the orbit, with α(0) = x. Then for each n ∈ Z the set
An = α−1(φn(x)) is closed in I, and so we get at most countable partition I = ⊔n∈ZAn

of I into closed subsets. By Sierpiński’s theorem, (see e.g. [9] for details), this is possible
only when all of these sets are empty except one of them, which means that A0 = I, and
so α is a constant path.

For instance, it follows from the above discussion that a Z-action is WD at each
wandering point x of φ.

Example 2.5.2. Let α ∈ (0, 1) and φ : S1 → S1, φ(w) = we2πiα, be the rotation of
the circle.

1) Suppose α = a/m is rational, with a,m ∈ N and gcd(a,m) = 1. Then φ generates
a free action of Zm on S1. One easily checks that for any w ∈ S1 the short exact
sequence (2.7) for (S1,Zmw,w) is isomorphic with mZ →֒ Z →→ Zm. In particular,
π1(S

1,Zmw,w) = Z.
2) If α is irrational, then φ generates a free action of Z. One easily checks that now

for any w ∈ S1, the short exact sequence (2.7) for (S1,Zw,w) is isomorphic with

Z⊕ 0 →֒ Z2 →→ 0⊕ Z.
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This will also follow from Lemma 2.5.4 below, since φ is embeddable into a flow on S1,
i.e. an action of R and Z is a subgroup of R.

Example 2.5.3. Let φ : S1 → S1, φ(w) = w, be the complex conjugation. Then
φ defines an action of Z2 on S1 with two fixed points ±1. That action is WD at each
w ∈ S1 \ {±1}, and one checks that the short exact sequence (2.7) for (S1,Z2w,w) is
Z →֒ Z⋊̃Z2 →→ Z2 and corresponds to a unique non-trivial Z2-extension Z⋊̃Z2 of Z.
Recall that, by definition, Z⋊̃Z2 is the semidirect product of Z and Z2 corresponding

to the canonical isomorphism Z2

∼=
−→ Aut(Z). More precisely, Z⋊̃Z2 is the Cartesian

product of sets Z × Z2 with the following operation: (a, δ)(b, ε) := (a + δb, δε), where
a, b ∈ Z and δ, ε ∈ {±1} = Z2. One can also regard Z⋊̃Z2 as the following group of
integer (2× 2)-matrices:

{(
1 0
a δ

)
| a ∈ Z, δ ∈ {±1}

}
.

Consider also one explicit computation of the sequence (2.7) for flows, i.e. actions of
R. Let F : X × R → X be a flow on a topological space X, and G ⊂ R be a subgroup
distinct from R. Let also x ∈ X be a point and Gx = {F(x, τ) | τ ∈ G} be its G-orbit.

Lemma 2.5.4. Suppose that the path component of x in Gx is {x} and either
(a) x is non-periodic, or
(b) x is periodic of some period θ > 0 such that θ 6∈ G.

Then the action of G is WD at x, and the short exact sequence (2.7) splits, i.e. it is
isomorphic with

π1(X, x) ֒
α 7→ (α,0)

−−−−−−−−→ π1(X, x)×G
(α,τ) 7→ τ

−−−−−−−→→ G.

Proof. Since G ( R, the path component of 0 ∈ G must be {0}. Then each of the
conditions (a) and (b) imply that the stabilizer of x with respect to G is trivial. As the
path component of x in Gx is {x}, we see that the action of G is WD at x.

Let us compute the short exact sequence (2.7): π1(X, x) ֒
j

−→ π1(X,Gx, x)
δ
X,x

−−→→ G.
For each τ ∈ G define the following path γτ : (I, 0, 1) → (X, x,Gx) by γτ (t) = F(x, tτ),
so it goes along the trajectory of x from x to F(x, τ).

One easily check that δ
X,x
(γτ ) = τ and γτ ♯ γτ ′ = γτ+τ ′ for all τ, τ ′ ∈ G. Therefore,

K = {[γτ ]}τ∈G is a subgroup of π1(X,Gx, x) which is isomorphically mapped K onto G
by δ

X,x
.

It suffices to show that K commutes with π1(X, x). This will imply that π1(X,Gx, x)
splits into the direct product of π1(X, x) and K.

Let α : (I, ∂I) → (X, x) be a loop at x and τ ∈ G. Define the homotopy F : I2 → X

by F (s, t) = F(α(s), tτ). Denote by J = ∂I2 \ (I × 0) the arc being the union of the left,
top and right sides of I2. Then it is evident that [F |I×0] = [α], while [F |J ] = [γτ ♯ α ♯ γ

−1
τ ].

Thus, α is homotopic to γτ ♯ α ♯ γ
−1
τ in π1(X, x), whence π1(X, x) commutes with K. �

3. Wreath products

3.1. Definitions. Let µ : X ×K → X be a right action of some group K on a set
X. To simplify notation we will also write xk instead of µ(x, k). For each k ∈ K denote
by Rk : X → X, Rk(x) = xk, the shift of X by k. Evidently, Rl ◦ Rk(x) = Rl(xk) =
xkl = Rkl(x).
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Let also G be another group. Then the set Map(X,G) of all maps X → G is a group
with respect to the point-wise multiplication, and we also have a natural left action

κ : K ×Map(X,G) → Map(X,G), κ(k, α) = α ◦Rk : X
Rk−→ X

α
−→ G,

of K on Map(X,G). It is indeed a left action, since

κ(k, κ(l, α)) = κ(k, α◦Rl) = α◦Rl◦Rk = α◦Rkl.

The semidirect product Map(X,G) ⋊µ K associated with this action is called the
(unrestricted) wreath product of G and K corresponding to µ and will be denoted by
G ≀

µ
K or even G ≀

µ,X
K if we need to specify X. More precisely, the multiplication in G ≀

µ,X
K

is defined as follows: if α, β : X → G are two maps and k, l ∈ K, then

(α, k)(β, l) := (α · (β◦Rk), kl),

where · means the point-wise multiplication of maps, i.e. (α · (β◦Rk))(x) = α(x)β(xk)
for all x ∈ X.

Let 1G and 1K be the units of G and K respectively, and eG : X → G be the constant
map into the unit 1G ∈ G. Then (eG, 1K) is the unit of G ≀

µ,X
K, and the inverse of (α, k) is

((α◦Rk−1)−1, k−1), where (α◦Rk−1)−1 : X → G is the point-wise inverse of α◦Rk−1 : X → G,
so (α◦Rk−1)−1(x) = (α(xk−1))−1 for all x ∈ X.

Again, the restricted wreath product is defined similarly, but one should replace
Map(X,G) with its subset FMap(X,G) of functions α : X → G whose support , X \
α−1(1G), is finite.

We will be interested in the following two particular cases of this construction for the
situation when X itself is a group and K acts on X by left shifts.

3.2. Regular wreath products of groups corresponding to effective actions.

Suppose X = K and the action µ : K ×K → K is just the multiplication in K. In this
case

G ≀
µ,K
K := Map(K,G)⋊µ K

is denoted simply by G ≀K and usually called the regular wreath product of G and K.

Example 3.2.1. Let K be a finite group of some order m ≥ 1. Then Map(K,G)
can be identified with the m-th Cartesian power Gm of G, whose coordinates are enu-
merated by elements of K, and G ≀K is the product of sets Gm ×K with the following
multiplication:

(
{ak}k∈K , g

)(
{bk}k∈K , h

)
=

(
{akbkg}k∈K , gh

)
(3.1)

where ai, bj ∈ G, k, l ∈ K.

Example 3.2.2. In particular, if K = Zm is a finite cyclic group of some order
m ≥ 1, then G ≀ Zm can be regarded as the product of sets Gm × Zm with the following
multiplication:

(a0, . . . , am−1; p)(b0, . . . , bm−1; q) = (a0bp, a1b1+p, . . . , am−1bp−1, p+ q), (3.2)

where ai, bj ∈ G, p, q ∈ Zm, and all indices are taken modulo m.
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Example 3.2.3. Similarly, let K = Zm×Zn be the product of two finite cyclic groups
of orders m,n ≥ 1. Then Map(Zm × Zn, G) can be identified with mn-th Cartesian
power Gmn of G, whose elements can be regarded as (m × n)-matrices with entries in
G. Moreover, G ≀ (Zm × Zn) is the product of sets Gmn × Zm × Zn with the following
multiplication:

(
{ai, j}i∈Zm, j∈Zn

; p, q
) (

{bi, j}i∈Zm, j∈Zn
; r, s

)
=

=
(
{ai, j bi+p, j+q}i∈Zm, j∈Zn

; p+ r, q + s)
)
, (3.3)

where ai, j , bi, j ∈ G, p, r ∈ Zm, q, s ∈ Zn, and all first and second indices are taken
modulo m and n respectively.

3.3. Wreath products corresponding to non-effective actions. There is an
extensive literature on wreath products, see e.g. [3,34,39] and references therein. Most
of them correspond to effective actions, see also [16]. However, it was recently proved
by the author, [33], that for typical smooth functions f on with isolated critical points
of compact surfaces M , the fundamental groups of their orbits with respect to natural
actions of the diffeomorphism groups D(M) are “built” from wreath products correspond-
ing to certain non-effective actions of Z, see Sections 5,6. We will define below those
“building blocks”.

Assume now that X is a group and let δ : K → X be a homomorphism. Then we
have a natural right action µ : X ×K → X of K on X (as a set) by right shifts given
by µ(x, k) = xδ(k). In this case the corresponding wreath product G ≀

µ,X
K will also be

denoted by G ≀
δ : K→X

K or simply by G ≀
δ
K. Again, it is the set Map(X,G) × K with the

following multiplication: if α, β : X → G are two maps and k, l ∈ K, then

(α, k)(β, l) := (α · β◦Rδ(k), kl).

Notice that if δ has a non-trivial kernel, then the corresponding action µ is non-effective.
Evidently, the regular wreath product G ≀K is the same as G ≀

idK

K, i.e. it corresponds

to the identity isomorphism of K.

Lemma 3.3.1. LetK,X and Y be any groups. Then every homomorphism φ : X → Y
induces a homomorphism

φ∗ : G ≀
φ◦δ : K→Y

K −→ G ≀
δ : K→X

K, φ∗(α, k) = (α ◦ φ, k),

for α : Y → G and k ∈ K. Moreover, (idX)
∗ = id

(G ≀
δ : K→X

K)
, and if ψ : Y → Z is another

homomorphism of groups, then (ψ ◦φ)∗ = φ∗ ◦ψ∗. In particular, if φ is an isomorphism,
then so is φ∗.

Proof. Note that for every k, k′ ∈ K we have that

Rφ(δ(k)) ◦ φ(k
′) = φ(k′)φ(δ(k)) = φ(k′δ(k)) = φ ◦Rδ(k)(k

′). (3.4)
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Hence, if (α, k), (β, l) ∈ G ≀
φ◦δ : K→Y

K = Map(Y,G)⋊K, then

φ∗
(
(α, k)(β, l)

)
=

(
(α · β◦Rφ(δ(k))) ◦ φ, kl

)
=

(
(α ◦ φ) · (β◦Rφ(δ(k)) ◦ φ), kl

)

(3.4)
=

(
(α ◦ φ) · (β◦φ ◦Rδ(k)), kl

)
= φ∗(α, k)φ∗(β, l).

Thus, φ∗ is a homomorphism. All other statements are evident. �

Example 3.3.2. Let K = Z, X = Zm and δ : Z → Zm, δ(k) = k mod m, be the
natural modm epimorphism. Then the group G ≀

δ : Z→Zm

Z will be denoted by G ≀
m
Z. It can

be regarded as the product of sets Gm×Z with the multiplication given precisely by the
same formula (3.2) in which p, q now belong to Z.

Example 3.3.3. Similarly, let δ : Z2 → Zm×Zn, δ(k, l) = (k mod m, l mod n). Then
the group G ≀

δ
Z will be denoted by G ≀

m,n
Z2. It can be regarded as the product of sets

Gmn × Z2 with the multiplication given precisely by the same formula (3.3) in which
p, q, r, s now belong to Z.

Example 3.3.4. More generally, let K = Zm1
× · · · × Zmn

be the product of n
finite cyclic groups of orders m1, . . . , mn ≥ 1, and m = m1m2 · · ·mn be their product.
Define also the homomorphism δ : Zn → K, δ(k1, . . . , kn) = (k1 mod m1, . . . , kn mod
mn). Again for any group G the set Map(K,G) can be identified with m-th Cartesian
power Gm = Gm1 ×· · ·×Gmn of G. Then similarly to 3.2.3 and 3.3.3 one can define two
wreath products: G ≀K and G ≀

µ
Zn. They correspond respectively to the effective action

of K and the non-effective action of Zn on Gm1 × · · ·×Gmn by independent cyclic shifts
of coordinates. We will also denote

G ≀
µ
Zn := G ≀

m1,...,mn

Zn.

3.4. Short exact sequences. We will need to consider several operations over
short exact sequences related with previous examples. First define the following short
exact sequences:

c0 : 1 →֒ 1 →→ 1, c1 : Z ֒
id

−−→ Z →→ 1, cm : mZ −֒−→ Z
modm

−−−−−→→ Zm, (3.5)

for m ≥ 2. Further, given two short exact sequences p : A →֒ B →→ C and q : K →֒ L→
→M , one can define their product

p× q : A×K →֒ B × L→→ C ×M.
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Also, for a short exact sequence q : K ֒
α

−−→ L
β

−−→→ M and m ≥ 1 we have the following
exact (3× 3)-diagram:

qm :
� _

��

Km × 0� _

��

� � // Lm × 0� _

��

// // Mm × 0� _

��

q ≀ cm :

��
��

Km ×mZ � � α′

//

��
��

L ≀
m
Z

β′

// //

p
��
��

M ≀ Zm

��
��

cm : mZ
� � // Z // // Zm

(3.6)

where p : L ≀
m
Z = Lm ⋊ Z → Z is the projection onto the last coordinate, and

α′(a1, . . . , am, mk) = (α(a1), . . . , α(am), mk),

β ′(b1, . . . , bm, l) = (β(b1), . . . , β(bm), l mod m),

ai ∈ K, bi ∈ L for all i = 1, . . . , m, and k, l ∈ Z. The middle horizontal sequence will
be denoted by q ≀ cm. Thus, (3.6) can be viewed as a short exact sequence of its rows:
qm →֒ q ≀ cm →→ cm.

More generally, let m1, . . . , mk ≥ 1 be natural numbers, and m = m1 · · ·mk. Then
one has the following exact (3× 3)-diagram:

pm :
� _

��

Km × 0� _

��

� � // Lm × 0� _

��

// // Mm × 0� _

��

p ≀ cm1,...,mk
:

��
��

Km ×
k∏

i=1

miZ
� � α′

//

��
��

L ≀
m1,...,mk

Zk β′

// //

p
��
��

M ≀
k∏

i=1

Zmi

��
��

k∏

i=1

cmi
:

k∏

i=1

miZ
� � // Zk // //

k∏

i=1

Zmi

(3.7)

where α′ and β ′ defined in a similar way, and the middle horizontal sequence denoted by
p ≀ cm1,...,mk

. Again, (3.7) can be regarded as a short exact sequence

pm →֒ p ≀ cm1,...,mk
→→

k∏

i=1

cmi

of its rows.

4. Actions of wreath products

Suppose that we are given a left action of a group G on a set X and a left action
of a group H on a set Y . Let also Map(H,X) be the set of all maps H → X and
W = Map(H,X)× Y .

For each h ∈ H denote by Rh : H → H , Rh(k) = kh, the right shift of H by element
h. The following statement is well-known. We recall precise formulas in the proof, since
they will be used in our main result.
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Lemma 4.0.1 (cf. [1, Sect. 2.3.1]). 1) The wreath product G ≀ H acts from the
left on W by the following rule: if (φ : H → G, h) ∈ G ≀ H = Map(H,G) ⋊ H and
(α : H → X, y) ∈ W , then

(φ, h) • (α, y) =
(
φ · α◦Rh, hy

)
, (4.1)

where φ · α◦Rh : H → X is the point-wise (in H) multiplication, i.e. the map given by

(φ · α◦Rh)(k) = φ(k) · α(kh), k ∈ H.

2) Let x ∈ X, y ∈ Y , x : H → {x} ⊂ X be a constant map into the point x, and
w = (x, y) ∈ W . Suppose that the G-stabilizer of x and the H-stabilizer of y are trivial.
Then the (G ≀H)-stabilizer of w is also trivial, and

(G ≀H)w = Map(H,Gx)×Hy. (4.2)

3) If the actions of G and H are free, then the action of G ≀H is also free.

Proof. 1) First let us check that (4.1) is a left action. Let (α, y) ∈ W , and
(φ, k), (ψ, l) ∈ G ≀H . Recall that (φ, k)(ψ, l) = (φ · ψ◦Rk, kl). Hence,

(φ, k) •
(
(ψ, l) • (α, y)

)
= (φ, k) •

(
ψ · α◦Rl, ly)

)

=
(
φ · (ψ · α◦Rl)◦Rk, k(ly)

)

=
(
φ · ψ◦Rk · α◦Rl◦Rk, (kl)y

)

=
(
φ · ψ◦Rk · α◦Rkl, (kl)y

)
=

(
(φ, k)(ψ, l)

)
• (α, y).

2) Suppose that the G-stabilizer of x and the H-stabilizer of y are trivial. Let also
(φ, h) ∈ G ≀H be an element of the G ≀H-stabilizer of w = (x, y). We should show that
(φ, h) = (eG, 1H) is the unit of G ≀ H . Indeed, since x is a constant map, x = x◦Rh,
whence the relation w = (φ, h) • w can be written as follows:

(x, y) = (φ, h) • (x, y) =
(
φ · x◦Rh, hy

)
=

(
φ · x, hy

)
. (4.3)

Comparing first coordinates of (4.3), we see that x = φ · x which means that for every
k ∈ H ,

x = x(x) = φ · x(k) = φ(k)x.

As the stabilizer of x is trivial, it then follows that φ(k) = 1G, so φ = eG.
Similarly, from the equality of second coordinates in (4.3) we obtain that y = hy. As

the H-stabilizer of y is trivial, we must have that h = 1H . Thus, (φ, h) = (eG, 1H).

It remains to prove that (G ≀ H)w = Map(H,Gx) × Hy. The identity (4.3) shows
that (G ≀H)w ⊂ Map(H,Gx)×Hy. Conversely, let (ψ, y′) ∈ Map(H,Gx)×Hy. Since
the G-stabilizer of x is trivial, we see that for each k ∈ H there exists a unique φ(k) ∈ G
such that ψ(k) = φ(k)x, and thus ψ = φ · x. Also, since the H-stabilizer of y is also
trivial, there exists a unique h ∈ H such that y′ = hy. Thus, (ψ, y′) =

(
φ · x, hy

)
=

(φ, h) • w ∈ (G ≀H)w.
3) Suppose the actions of G and H are free. Assume also that

(α, y) = (φ, h) • (α, y) = (φ · α◦Rh, hy)

for some (φ, h) ∈ G ≀H and (α, y) ∈ W . In particular, y = hy, and since the action of H
is free, we obtain that h = 1H . Moreover, we also have that α = φ · α◦Rh = φ · α. That
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is α(k) = φ(k) · α(k) for all k ∈ H . Since the action of G on X is also free, it follows
that φ(k) = 1G for all k ∈ H . In other words, φ = eG : H → G is the constant map into
the unit of G, whence (φ, h) = (eG, 1H) is the unit of G ≀H . �

4.1. WD-actions of wreath products. Assume now that X and Y are path
connected topological spaces, and the groups G and H act on them by homeomorphisms.
Fix two points x ∈ X and y ∈ Y . Let also x : H → {x} ⊂ X be a constant map into
the point x and

w = (x, y) ∈ W. (4.4)

Suppose also that H is finite of some order m. Endow H with the discrete topology.
Then every map H → X is continuous, i.e. Map(H,X) = C

(
H,X

)
, and we endow this

space with the compact open topology.
Fix some enumeration H = {h1, . . . , hm} of elements of H . Then the natural identi-

fication

ω : Map(H,X) → Xm, ω(f) = (f(h1), . . . , f(hm)),

is a homeomorphism. In particular, we get a homeomorphism

ω × idY : W = Map(H,X)× Y
ω×idY−−−−→ Xm × Y.

In what follows it will be convenient to regardW sometimes as Map(H,X) and sometimes
as Xm × Y . This will simplify some formulas and will never lead to confusion.

Lemma 4.1.1. (1) Suppose the action of G is WD at x, while the action of H is WD
at y, (see Definition 2.3.1). Then the action of G ≀H on W is WD at w.

(2) If the actions of G and H are PD, then the action of G ≀H on W is PD as well.

Proof. We regard W here as Xm × Y .
(1) By assumption the G-stabilizer of x and the H-stabilizer of y are trivial, and

every continuous path into Gx as well as into Hy is constant. Then by Lemma 4.0.1 the
G ≀H-stabilizer of w is also trivial. Moreover, by (4.2), (G ≀H)w = (Gx)m×Hy, whence
every continuous path into (G ≀H)w is also constant. Hence, the action of G ≀H is WD
at w.

(2) Let (x1, . . . , xm, y0) ∈ W be any point. Since the action of H on Y is PD, there
exists an H-wandering neighborhood of V of y0, i.e. kV ∩ lV = ∅ for all k 6= l ∈ H .
Moreover, as the G-action on X is also PD, for each xi ∈ X, i = 1, . . . , m, there exists
a G-wandering neighborhood Ui. We claim that then W := U1 × · · · × Um × V is a
G ≀H-wandering neighborhood of (x1, . . . , xm, y0) in W .

Indeed, suppose there exists σ = (φ1, . . . , φm, h) ∈ G ≀H such that W ∩ σ(W ) 6= ∅.
In other words, there exists (x′1, . . . , x

′
m, y

′) ∈ W such that

(φ1, . . . , φm, h) • (x
′
1, . . . , x

′
m, y

′) = (φj1x
′
1, . . . , φjmx

′
m, hy

′) ∈ W

as well, where (j1, . . . , jm) is a permutation of indices (1, . . . , m) induces by left shift of
H by itself. More precisely, hjk = hkh for all k = 1, . . . , m.

We need to show that φi = 1G for all i = 1, . . . , m, and h = 1H .
Since y′, hy′ ∈ V , and V is anH-wandering neighborhood of y′, it follows that h = 1H .

Hence,
(φ1, . . . , φm, h) • (x

′
1, . . . , x

′
m, y

′) = (φ1x
′
1, . . . , φmx

′
m, y

′).
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But then x′i, φix
′
i ∈ Ui for each i = 1, . . . , m. Since Ui is a G-wandering neighborhood of

xi, we obtain that φi = 1G as well, and thus σ is the unit of G ≀H . �

4.2. Main result. Consider the short exact sequences of (X,Gx, x) and (Y,Hy, y):

π1(X, x) ֒
j
X−−→ π1(X,Gx, x)

δ
X−→→ G, π1(Y, y) ֒

j
Y−−→ π1(Y,Hy, y)

δ
Y−→→ H.

Then we have the following (3× 3)-diagram whose rows and columns are exact:

(
π1X

)m � �
j
X

m

//
� _

��

(
π1(X,Gx)

)m (δ
X
)m

// //
� _

��

Gm
� _

��(
π1X

)m
× π1Y

� � //

��
��

π1(X,Gx) ≀
δ
Y

π1(Y,Hy)
δ
X
≀ δ

Y
// //

j
��
��

G ≀H

��
��

π1Y
� �

j
Y

// π1(Y,Hy)
δ
Y

// // H

(4.5)

where we omitted base points,

(δ
X
≀ δ

Y
)(a1, . . . , am, b) =

(
δ
X
(a1), . . . , δX(am), δY(b)

)
, j(a1, . . . , am, b) = j

Y
(b).

Theorem 4.2.1. Suppose that the action of G on X is WD at x, and the action of
H on Y is WD at y, so G ≀H is WD at w, see (4.4) and Lemma 4.1.1. Then the short
exact sequence of (W, (G ≀H)w,w):

π1(W,w) −֒→ π1(W, (G ≀H)w,w) −→→ G ≀H

is isomorphic to the middle horizontal sequence of (4.5). In particular, there is an
isomorphism

π1(W, (G ≀H)w,w) ∼= π1(X,Gx, x) ≀
∂
Y

π1(Y,Hy, y). (4.6)

Proof. Denote

X := P(X, x,Gx), Y := P(Y, y,Hy), W := P(W,w, (G ≀H)w).

By Corollary 2.1.4 we have natural isomorphisms:

π0X ∼= π1(X,Gx, x), π0Y ∼= π1(Y,Hy, y), π0W ∼= π1(W, (G ≀H)w,w).

It will be more convenient to work with these π0-groups. In particular, the diagram (4.5)
can be written in terms of them, and we thus need to establish the following isomorphism

π0W ∼= π0X ≀
δ
Y
: π0Y→H

π0Y := Map(H, π0X )⋊
δ
Y

π0Y .

A) We will show in A1) and A2) below that there exists a homeomorphism

η : C
(
I,W

)
∼= Map(H,C(I,X))× C(I, Y ),

such that η(W) = Map(H,X )× Y. Hence, η induces a bijection

η0 : π0W ∼= π0Map(H,X )× π0Y ≡ Map(H, π0X )× π0Y (4.7)
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of the corresponding sets of path components. Notice that the latter set has the structure
of the group π0X ≀

δ
Y

π0Y . We will then show in B1) and B2) that (4.7) is an isomorphism

of groups:

η0 : π0W ∼= π0X ≀
δ
Y

π0Y . (4.8)

A1) Since I and H are compact and Hausdorff, and H is also discrete (so any map
from H is continuous), we have (by the exponential law, see Lemma 2.1.4) the canonical
homeomorphisms with respect to the corresponding compact open topologies:

C
(
I,Map(H,X)

)
≡ C

(
I, C

(
H,X

))
∼= C

(
I ×H,X

)
∼=

∼= C
(
H × I,X

)
≡ C

(
H, C

(
I,X

))
≡ Map(H, C

(
I,X

)
).

(4.9)

There is also another canonical identification:

C
(
I,W

)
∼= C

(
I,Map(H,X)× Y

)
∼= C

(
I,Map(H,X)

)
× C

(
I, Y

)
(4.10)

associating to each path ω = (χ, ν) : I → W = Map(H,X)×Y the pair of its coordinate
functions (χ, ν). Hence, we get a homeomorphism

η : C
(
I,W

) (4.10)
∼= C

(
I,Map(H,X)

)
× C

(
I, Y

) (4.9)
∼= Map(H,C(I,X))× C(I, Y ),

defined as follows. Let ω = (α, λ) : I → W = Map(H,X)× Y be a path in W . Define
the map α′ : H → C(I,X) by α′(h)(t) := α(t)(h). Then

η(ω) = (α′, λ).

A2) We claim that η(W) = Map(H,X )× Y . Indeed, let ω = (α, λ) ∈ C(I,W ) and
η(ω) = (α′, λ). Then ω ∈ W = P(W,w, (G ≀H)w), means that

ω(0) = (α(0), λ(0)) = w = (x, y),

ω(1) = (α(1), λ(1)) = (φ, h) • (x, y) =
(
φ · (x ◦Rh), hy

)
=

(
φ · x, hy

)
,

(4.11)

for some (φ, h) = δ
W
(ω) ∈ G ≀H . In turn, (4.11) is equivalent to the assumption that for

each k ∈ H we have that

α′(k)(0) = α(0)(k) = x, λ(0) = y,

α′(k)(1) = α(1)(k) = φ(k)x ∈ Gx, λ(1) = hy ∈ Hy,
(4.12)

i.e. α′ ∈ Map(H,X ) and λ ∈ Y . Hence, η(ω) = (α′, λ) ∈ Map(H,X )×Y .

B) We need to prove that (4.8) is an isomorphism of groups. Since it is a bijection,
it suffices to check that η0 is a homomorphism of groups.

B1) First let us write down explicit formulas for the multiplication in π0W. Let

ψ = (α, λ), ξ = (β, µ) : I → W = Map(H,X)× Y

be two paths belonging to P(W,w, (G ≀H)w), and

ζ = (γ, ν) = ψ · ξ
(2.6)
= ψ ♯ (δ

W
(ψ) ◦ ξ)
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be their product. We need to find precise formulas for the corresponding coordinate
functions γ : I → Map(H,X) and ν : I → Y . Since the action of G ≀H is WD at w, there
exists a unique map φ : H → X and a unique h ∈ H such that

α(1)(k) = φ(k)x, k ∈ H, λ(1) = hy,

so δ
W
(ψ) = (φ, h), and (δ

W
(ψ) ◦ ξ)(t) = (φ, h) • (β(t), µ) =

(
φ · β(t)◦Rh, hy

)
for all t ∈ I.

Hence,

γ(t)(k) =

{

α(2t)(k), t ∈ [0; 1
2
],

φ(k) · β(2t− 1)(kh), t ∈ [1
2
; 1],

ν(t) =

{

λ(2t), t ∈ [0; 1
2
],

h · µ(2t− 1), t ∈ [1
2
; 1].

(4.13)

B2) Now let us describe the multiplication in

π0X ≀
δ
Y

π0Y = Map(H, π0X )⋊δ
Y
π0Y .

By definition, each element of that group is a pair (α′′, λ′), where α′′ : H → π0X is some
map and λ′ ∈ π0Y . It is thus can be represented by a pair

(α′, λ) ∈ Map(H,X )× Y = η(W),

such that α′′(k) = [α′(k)] for all k ∈ H , and λ′ = [λ], where square brackets mean
homotopy classes of the corresponding paths.

Now let (α′′, λ′), (β ′′, µ′) ∈ π0X ≀
δ
Y

π0Y be two elements, and

(γ′′, ν ′) := (α′′, λ′)(β ′′, µ′) =
(
α′′ · β ′′ ◦R∂

Y
(λ′), λ

′ · µ′
)

be their product. Recall that the multiplication here is the point-wise (in H) concate-
nation of paths defined by (2.6). Hence, if (α′, λ), (β ′, µ) ∈ Map(H,X ) × Y are repre-
sentatives of those elements, then (γ′′, ν ′) is represented by (γ′, ν) ∈ Map(H,X ) × Y ,
where

γ′(k) = α′(k) ♯ (δ
X,x
(α′(k)) ◦ β ′(k)), ν(k) = λ ♯ (δ

Y,y
(λ) ◦ µ).

Define φ : H → X by φ(k) = α′(k)(1), and let h = λ(1). Then,

γ′(k)(t) =

{

α′(k)(2t), t ∈ [0; 1
2
],

φ(k) · β ′(kh)(2t− 1), t ∈ [1
2
; 1],

ν(t) =

{

λ(2t), t ∈ [0; 1
2
],

h · µ(2t− 1), t ∈ [1
2
; 1].

(4.14)

Comparing (4.14) and (4.13) we see that if

(α, λ), (β, µ), (γ, ν) = (α, λ) · (β, µ) ∈ W,

and
(α′, λ) = η(α, λ), (β ′, µ) = η(β, µ), (γ′, ν) = (α′, λ) · (β ′, µ)

then η(γ, ν) = (γ′, ν). This implies that η0 is a homomorphism, and therefore an iso-
morphism. �
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Corollary 4.2.2. Suppose p : X → X/G and q : Y → Y/H are regular covering
maps, and H is finite of order m. Then r : W → W/(G ≀ H) is also a regular covering
map, and we have an isomorphism:

π1
(
W/(G ≀H)

)
∼= π1(X/G) ≀

∂
Y

π1(Y/H). (4.15)

In particular, if p and q are universal covering maps, then π1
(
W/(G ≀H)

)
∼= G ≀H .

Proof. Let x ∈ X and y ∈ Y be any points, and w ∈ (x, . . . , x
︸ ︷︷ ︸

m

, y) ∈ W = Xm × Y .

As p, q, r are regular coverings, the corresponding actions of G, H and G≀H are WD at x,
y and w respectively. In particular, and we have isomorphisms π1(X/G) ∼= π1(X,Gx),
π1(Y/H) ∼= π1(Y,Hy), and π1

(
W/(G ≀ H)

)
∼= π1(W, (G ≀ H)w), where x, y, w are any

points as in Theorem 4.2.1. Now by Theorem 4.2.1, the isomorphism (4.6) gives an
isomorphism (4.15). �

Let T0 be a singleton, and Tn = (S1)n, n ≥ 1, be the n-torus.

Example 4.2.3. Let p : X → X/G be a covering map and q : S1 → S1, q(w) = wm, be
the quotient map corresponding to the action of H = Zm on Y = S1 by rotations. Then
the boundary homomorphism ∂

Y
: π1S

1 = Z → Zm of q is given by ∂
Y
(a) = a mod m, so

the short exact sequence of q is cm : mZ →֒ Z →→ Zm.
In particular, due to Example 3.3.2, π1(X/G) ≀

∂
Y

π1(Y/H) is the same as π1(X/G) ≀
m
Z.

Moreover, W = Xm × S1, and the action G ≀ Zm on W is given by

(g0, . . . , gm−1, k)(x0, . . . , xm−1, w) =
(
g0(xk), g1(x1+k), . . . , gm−1(xk−1), we

2πik/m
)
,

where the lower indices in xi are taken modulo m. Hence, by Theorem 4.2.1, the short
exact sequence of the covering map r : W →W/(G ≀H) is

p ≀ cm : (π1X)m ×mZ ֒
pm×q

−−−−−→ π1(X/G) ≀
m
Z

∂
X
≀ ∂

Y−−−−−→→ G ≀ Zm,

so in particular π1W ∼= π1(X/G) ≀
m
Z.

Example 4.2.4. More generally, let m,n ≥ 1 and q : T2 → T2 be the covering map
given by q(w1, w2) = (wm

1 , w
n
2 ). It corresponds to the free action of H = Zm × Zn on

Y = T2 defined by (a, b)(w1, w2) = (w1e
2πia/m, w2e

2πib/n), a, b ∈ Zm×Zn. Then the short
exact sequence of q is

cm × cn : mZ× nZ ֒
q

−−−→ Z× Z
∂
Y
: (a, b) 7→ (a mod m, b mod n)

−−−−−−−−−−−−−−−−−−→→ Zm × Zn.

Now, due to Example 3.3.4, π1(X/G) ≀
∂
Y

π1(Y/H) is the same as π1(X/G) ≀
m,n

Z2. We also

have a PD action of G ≀H on W = Xmn × Y defined by

(
{gi, j}i∈Zm, j∈Zn

, a, b
)
·
(
{xi, j}i∈Zm, j∈Zn

, w1, w2

)
=

=
(
{gi, j(xi+a, j+b)}i∈Zm, j∈Zn

, w1e
2πia/m, w2e

2πib/n
)
.



24 SERGIY MAKSYMENKO

Then by Theorem 4.2.1, the short exact sequence of r : W →W/(G ≀H) is

p ≀ cm,n : (π1X)m ×mZ× nZ ֒
pm×q

−−−−−→ π1(X/G) ≀
m,n

Z2 ∂
X
≀ ∂

Y−−−−−→→ G ≀ (Zm × Zn).

In particular, π1W ∼= π1(X/G) ≀
m,n

Z2.

Example 4.2.5. Similarly, for a product of finitely many cyclic groups

H = Zm1
× · · · × Zmn

with m = m1 · · ·mn, one can similarly define a free action of G ≀ H on W = Xm × Tn

such that the short exact sequence of the covering map r : W →W/(G ≀H) is

p ≀ cm1,...,mk
: (π1X)m ×

k∏

i=1

miZ −֒−−→ π1(X/G) ≀
m1,...,mk

Zk −−→→ G ≀

k∏

i=1

Zmi
,

so in particular π1(W/(G ≀H)) ∼= π1(X/G) ≀
m1,...,mn

(Zm1
× · · · × Zmn

).

5. Classes of short exact sequences

Iterated wreath products naturally act on trees, e.g. [26]. That observation was
made in 1869 by C. Jordan [19] who probably introduced wreath products, see [37,
p. 209]. Let T be the set of isomorphism classes of groups of automorphisms of finite
trees. Jordan proved that every group from T is obtained from the unit group by
finitely many operations of direct product and wreath product of the form · ≀

Xn

Sn, where

Xn = {1, . . . , n} and Sn is the permutation group of Xn. We will now define in a similar

way two classes of groups generated by wreath products · ≀m1,...,mk
Zk and · ≀

∏k
i=1 Zmi

and related by certain short exact sequences.

Definition 5.1. For n ≥ 1 let Bn be the minimal set of isomorphism classes of short
exact sequences having the following properties (see Section 3.4 for notations):

(a) the sequence c0 : 1 →֒ 1 →→ 1 belongs to Bn;
(b) if p,q ∈ B, then p× q ∈ Bn;
(c) if p ∈ B and m1, . . . , mk ≥ 1 is a finite collection of natural numbers with k ≤ n,

then p ≀ cm1,...,mk
∈ Bn.

Due to (a), the set Bn is non-empty, and its minimality means that every short exact
sequence p ∈ Bn is obtained from c0 by finitely many operations of direct product and
wreath product of the form · ≀ cm1,...,mk

with k ≤ n. For example,

ck ∈ B1, (k ≥ 1), (c2 × c9) ≀ c5,7 ∈ B2,
(
c32 × (c2 ≀ c5,7,3)

)
≀ c9,34,6,2 ∈ B4.

It is also evident that Bk ⊂ Bl for k < l. Put B := ∪n≥1Bn.

Remark 5.2. Let BB and BC be the sets of isomorphism classes of middle and right
groups appearing in the short exact sequences p : A →֒ B →→ C ∈ B. Then it follows
from the definition that BB (resp. BC) is the minimal set of classes containing the unit

group 1 and closed under direct product and wreath products · ≀
m1,...,mk

Zk (resp. · ≀
k∏

i=1

Zmi
).

Thus, BB and BC are defined similarly to T .
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Any short exact sequence isomorphic to a sequence of the form p : Zn →֒ B →→ C
with finite C and some n ≥ 0 will be called crystallographic. In this case the middle
group B will also be called crystallographic. We will also say that p as well as B are
Bieberbach, whenever B is torsion free. In [33, Lemmas 2.2 & 2.6] the author proved
that every sequence from B1 is Bieberbach.

Remark 5.3. In [33, Theorem 2.5] the following statement is mentioned as Bieber-
bach theorem and referred to [7, Corollary 5.1] for its proof: for every Bieberbach sequence
p : Zn →֒ B →→ C there exists a free action of C on a torus Tn such that the exact se-
quence of that covering Zn →֒ π1(T

n/C) →→ C is isomorphic to p relatively to the last
term C. In particular, π1(T

n/C) ∼= B. However, Bieberbach theorem claims existence
of such actions only under assumption that Zn is a maximal abelian subgroup.

Let us show that the above statement is true even for non-maximal free abelian
subgroups, which will give lacking arguments. This is essential, since [33, Theorem 5.10]
and the orientable part of [33, Corollary 1.3] are based on the variant of Bieberbach
theorem for non-maximal subgroups. For example, in the sequence cm : mZ →֒ Z →→ Zm

with m ≥ 2, the abelian subgroup mZ of finite index is non-maximal, however there is
a free action of Zm on T1 = S1 (by rotations by 2π/m) such that cm is isomorphic with
the short exact sequence of the quotient map p : T1 → T1/Zm = T1.

Thus, let A →֒ B →→ C be a Bieberbach sequence, where A is a free abelian subgroup
of B of rank n. If A is non-maximal, take any maximal abelian subgroup A′ ⊂ B
containing A. In fact, see A. Vasquez [?, Theorem 3.1], A′ is the centralizer of the normal
subgroup A in B, and therefore it is normal as well. Since A′/A is finite, A′ ∼= Zn and
we get another Bieberbach sequence q : A′ →֒ B →→ C ′. Then by the “maximal subgoup”
case of Bieberbach theorem, there exists an action of C ′ := B/A′ on T ′ := Tn such that
the exact sequence of the corresponding covering map q : T ′ → T ′/C ′ is isomorphic to q.
Let r : T = Tn → T ′ be the covering map corresponding to the subgroup A ⊂ A′, and

p = q ◦ r : T
r
−→ T ′ q

−→ T ′/C ′. Then p(π1(T )) = A, so p is a regular covering, its short
exact sequence is isomorphic with p, and we can identify T ′/C ′ = T/C. In particular,
this gives the required action of C on T such that π1(T/C) ∼= B.

The following lemma provides an explicit description of the actions on tori for the
short sequences from class B.

Lemma 5.4 (cf. [33, Lemma 2.6]). For each p : A →֒ B →→ C ∈ B the following
statements hold.

(i) p is Bieberbach, so A ∼= Zn for some n, B is torsion free, and C is finite. Moreover,
B,C are also solvable.

(ii) There exists a free action of the group C on Tn such that p is isomorphic to the
short exact sequence π1T

n →֒ π1(T
n/C) →→ C of the corresponding covering map

p : Tn → Tn/C.
Therefore, since Tn/C is aspherical, i.e. it is an Eilenberg-MacLane space K(B, 1), any
other aspherical path connected topological space X with π1X ∼= B is weakly homotopy
equivalent to Tn/C.

Proof. Let B′ ⊂ B be the subset of isomorphism classes of sequences having prop-
erties (i) and (ii). We need to prove that B′ = B.
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It suffices to show that B′ satisfies conditions (a)-(c) of Definition 5.1. Since B is the
minimal class with those properties, we will then have that B′ = B.

(a) Let p = c0 : Z0 →֒ 1 →→ 1. Then (i) trivially holds for c0. Also, the latter
group C = 1 freely acts on the singleton T0 so that the short exact sequence of the
corresponding covering map p : T0 → T0/C is c0. This also proves (ii), so c0 ∈ B′.

(b) Let pi : Z
ni →֒ Bi →→ Ci ∈ B′, i = 1, 2. Thus, each Bi is solvable torsion free,

Ci is finite solvable and freely acts on Tni so that pi is isomorphic with the short exact
sequence of the covering map pi : T

ni → Tni/Ci. Then, B1 × B2 is also solvable torsion
free, and the product C1×C2 is finite solvable and naturally acts on Tn1 ×Tn2 = Tn1+n2

so that the short exact sequence of the covering map p : Tn1+n2 → Tn1+n2/(C1 × C2) is
isomorphic with p1 × p2 : Z

n1+n2 →֒ B1 ×B2 →→ C1 × C2. Thus, p1 × p2 ∈ B′.
(c) Finally, let p : Zn →֒ B →→ C ∈ B′, m1, . . . , mk ≥ 1 be any natural numbers, and

m = m1 · · ·mk. In particular, we have a free action of the group C on Tn such that p is

short exact sequence of the covering map p : Tn → Tn/C. Then H := C ≀
k∏

i=1

Zmi
is finite

and solvable as well as C. Moreover, by Example 4.2.5, there exists a free action of H
on the torus (Tn)m × Tk = Tnm+k such that the short exact sequence of the covering
map q : Tnm+k → Tnm+k/H is isomorphic with

p ≀ cm1,...,mk
: Znm+k −֒−→ B ≀

m1,...,mk

Zk −→→ C ≀
k∏

i=1

Zmi
.

Note that B ≀
m1,...,mk

Zk is also solvable as well as B. Moreover, by the arguments similar

to [33, Lemma 2.2] for k = 1, B ≀
m1,...,mk

Zk is also torsion free. Hence, p ≀ cm1,...,mk
∈ B. �

6. Homotopy types of orbits of smooth functions on surfaces

Let M be a compact surface and P be either the real line R or the circle S1. For a
closed subset X ⊂M denote by D(M,X) the group of all smooth (C∞) diffeomorphisms
of M fixed on X. Then the group D(M,X) acts on the space C∞(M,P ) by the following
rule: if h ∈ D(M,X) and f ∈ C∞(M,P ), then the result of the action of h on f is the
composition map f ◦ h :M → P . For f ∈ C∞(M,P ) let

S(f,X) = {h ∈ D(M,X) | f ◦ h = f}, O(f,X) = {f ◦ h | h ∈ D(M,X)}

be respectively the stabilizer and the orbit of f under that action. It will be convenient to
say that elements of S(f,X) preserve f . Endow the above spaces with the corresponding
strong C∞ topologies and denote by Did(M,X) and Sid(f,X) the corresponding path
components of idM in D(M,X) and S(f,X), and by Of (f,X) the path component of
O(f,X) containing f . If X is empty, then it will be omitted from notation.

Let also C∞
∂ (M,P ) ⊂ C∞(M,P ) be the subset consisting of maps f : M → P satis-

fying the following axiom:

(B) f takes a constant value at every connected component of ∂M and has no critical
points on ∂M .
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A map f ∈ C∞
∂ (M,P ) is called Morse if all its critical points are non-degenerate. Then

the set Morse(M,P ) of Morse maps is open and everywhere dense in C∞
∂ (M,P ). Further,

let F(M,P ) be the subset of C∞
∂ (M,P ) consisting of maps f satisfying one more axiom:

(H) for every critical point z of f , there are local coordinates in which f is a homogeneous
polynomial R2 → R of degree ≥ 2 without multiple factors.

By Morse Lemma every non-degenerate singularity is C∞ equivalent to a homogeneous
polynomial without multiple factors ±x2 ± y2 and thus satisfies (H). This means that
Morse(M,P ) ⊂ F(M,P ). Notice that (H) also implies that each critical point of f ∈
F(M,P ) is isolated, whence the set of critical points of f is finite. By [8,11,38], for
every isolated critical point z of a C3 function f : R2 → R the local topological structure
of level-sets of f near z is realized by level sets of homogeneous polynomial without
multiple factors. Thus, F(M,P ) contains not only “all typical” (i.e. Morse) maps, but
also maps with all possible topological types of critical points.

Let f ∈ F(M,P ). A connected component K of a level-set f−1(c), c ∈ P , will be
called a contour (of f). We also call K regular if it contains no critical points, and
critical otherwise. Then a compact submanifold X ⊂ M whose connected components
have dimensions 1 and 2 will be said f -saturated if it is a union of contours of f . In
particular, every regular contour of f and ∂M are f -saturated. Also, if a, b ∈ P are
regular values of f , and J ⊂ P an interval with ∂J = {a, b}, then f−1(J) is f -saturated.

The study of homotopy types of stabilizers and orbits of Morse maps f ∈ Morse(M,P )
was initiated in [29]. In a series of papers [29–33] it was proved that for f ∈ F(M,P )
and an f -saturated submanifold X the following statements hold.
(1) The map p : D(M,X) → O(f,X) is a Serre fibration with fiber S(f), [29, Th. 2.1],

[31, Th. 5.1].

(2) The path component Sid(f) is contractible except for few types of maps for which it
is homotopy equivalent to the circle, [29, Th. 1.3], [31, Th. 5.1], [32, Th. 2.1].

(3) There is a short exact sequence π1Did(M,X)× Zk →֒ π1Of (f,X) →→ G, where G is
a finite group and k ≥ 0 both depending on f and X.

(4) Of (f) is aspherical iff either M 6= S2,RP 2 or X 6= ∅, [29, Th. 1.5], [32, Th. 2.3].
In that case
• π1Did(M,X) is a free abelian of rank ≤ 2. In fact, π1Did(M,X) = 0 iff either
X 6= ∅ or χ(M) < 0; π1Did(T

2) = Z2; and in all other cases π1Did(M) = Z.
• π1Of (f,X) is torsion free, [33, Lemma 2.2].
Hence, the short exact sequence from (3) is Bieberbach.

(5) If f is a generic Morse map (i.e. it takes distinct values at distinct critical points),
then G is trivial and expect for few cases Of (f) has the homotopy type of Tk × R,
where k ≥ 0 and R = SO(3) ifM = S2,RP 2 and R is a point otherwise, [29, Th. 1.5].
E. Kudryavtseva [21–25] studied the homotopy type of the space of Morse functions

on compact surfaces and rediscovering ideas from [29] extended the above results, see [33,
footnote after Theorem 1.2]. She proved that if M is orientable, then under additional
mild assumptions on f ∈ Morse(M,R) there exists a free action of G on Tn such that
Of (f) is homotopy equivalent to (Tn/G) × R, where R is the same as above, which
generalizes (5).



28 SERGIY MAKSYMENKO

Further in [33, Section 5] the author described a precise algebraic structure of the
Bieberbach sequence (3), which allowed to explicitly compute all its groups. Also, in a
series of papers with B. Feshchenko that sequence (3) was also computed for M = T2.
Those results can be formulated as follows:

Theorem 6.1 ([13, 14, 20, 27, 28, 33]). Let M be a compact orientable surface,
f ∈ F(M,P ), X ⊂ M an f -saturated submanifold, and

p : Zn →֒ π1Of (f,X) →→ G (6.1)

the Bieberbach sequence of (f,X), see (3).
(a) If M is distinct from T2 and S2, then (6.1) belongs to B1.
(b) If M = T2, then (6.1) belongs to B2.

In both cases, a sequence of operations of direct products and wreath products of the
form · ≀cm and · ≀cm1,m2

generating (6.1) can be explicitly written down via f and X. �

The following statement extends [33, Theorem 5.10] to all orientable surfaces distinct
from S2 (the new statement corresponds to M = T2).

Corollary 6.2 (c.f. [23,33]). Under notation of Theorem 6.1 there is a free action of
G on Tn such that p coincides with the short exact sequence of the covering map p : Tn →
Tn/G. In this case we have the following weak homotopy equivalence Of(f,X) ≃ Tn/G.

Proof. Since p ∈ B, the required action of G on Tn is guaranteed by Lemma 5.4.
In particular, we get an isomorphism π1Of (f,X) ∼= π1(T

n/G). As Of(f,X), Tn, and
therefore its quotient Tn/G are aspherical, the latter isomorphism is induced by a some
weak homotopy equivalence Of(f,X) ≃ Tn/G. �
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