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DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX
DOMAINS II: THE GENERAL CASE

OANA IVANOVICI1, RICHARD LASCAR2, GILLES LEBEAU3, AND FABRICE PLANCHON4,∗

Abstract. We consider the wave equation on a manifold (Ω, g) of dimension d ≥ 2 with smooth
strictly convex boundary ∂Ω 6= ∅, with Dirichlet boundary conditions. We construct a sharp local
in time parametrix and then proceed to obtain dispersion estimates: our fixed time decay rate for
the Green function exhibits a t1/4 loss with respect to the boundary less case. We precisely describe
where and when these losses occur and relate them to swallowtail type singularities in the wave
front set, proving that our decay is optimal. Moreover, we derive better than expected Strichartz
estimates, balancing lossy long time estimates at a given incidence with short time ones with no
loss: for d = 3, it heuristically means that, on average the decay loss is only t1/6.

1. Introduction

Let us consider the wave equation on a smooth d−dimensional manifold (Ω, g), with d ≥ 2, a
strictly convex boundary ∂Ω, and ∆g its Laplace-Beltrami operator:

(1.1)

{
(∂2t −∆g)u = 0, in Ω
u|t=0 = u0, ∂tu|t=0 = u1, u|∂Ω = 0,

On any smooth Riemannian manifold without boundary, one may construct an approximate so-
lution, i.e. a parametrix, to any order by microlocal methods. In a suitable patch around x0 ∈ Ω
(within the radius of injectivity at x0), such an approximate solution is a Fourier integral operator
whose phase is a solution to the eikonal equation. That phase is non degenerate in a suitable
way and one recovers pointwise decay estimates for the kernel of such parametrix similar to that

for the flat case: let us denote by e±it
√

−∆g the half-wave propagators on Ω with ∂Ω = ∅, and
κ ∈ C∞

0 (]0,∞[). Then, possibly only for (small) finite |t|, we have the so-called dispersion estimate,

(1.2) ‖κ(−h2∆g)e
±it

√
−∆g‖L1→L∞ ≤ C(d)h−dmin{1, (h/|t|) d−1

2 }.
Such fixed time decay estimates have been the key tool to obtain other families of estimates, from
Strichartz to spectral projector estimates, all of which are of space-time type in (mixed) Lebesgue
spaces, for data in Sobolev spaces. These in turn are invaluable tools for studying a large range of
problems, from nonlinear waves to localization of eigenfunctions.

In the presence of a boundary, much less is known on the decay of the wave equation. In
fact, before our recent work [9] on the wave equation on a model strictly convex domain, there
were no known results on fixed time dispersion, even with lesser bounds than (1.2). Boundaries
induce reflections, and the geometry of broken light rays can be quite complicated. These already
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cause difficulties in proving propagation of singularities results, and obtaining such results led
to major developments [1, 13, 16, 17], along with constructions of suitable parametrices, see [4,
19, 20]. However, such parametrices, while efficient at proving that singularities travel along the
(generalized) bi-characteristic flow, do not seem strong enough to obtain dispersion, at least in the
presence of gliding rays and the more flexible microlocal energy arguments from [13, 16, 17] do
not provide any information on the amplitude of the wave. Nevertheless, outside strictly convex
obstacles, parametrices from [19, 20] were instrumental in matching results from Rd: Strichartz
estimates for the wave equation were obtained in [21], and dispersion estimates were finally proved
to hold for d = 3 in [8]). For generic boundaries, some positive results for mixed space-time
estimates ([22, 2] and references therein) have been obtained using the machinery developed for
low regularity metrics ([23]): reflect the metric across the boundary and consider a boundary less
manifold with a Lipschitz metric across an interface. These arguments require to work on very
short time intervals, in order to consider only one reflection (and this, in turn, induces losses
when summing time intervals). Counterexamples to the full set of Strichartz estimates inside a
strictly convex domain were later constructed in [6, 7], by carefully propagating a cusp singularity
along the boundary and across a large number of successive reflections, and these carefully crafted
solutions provided hindsight for the parametrix construction on the model domain from [9].

Before stating our main result, let us define strict convexity: our boundary ∂Ω 6= ∅ is said to be
strictly (geodesically) convex if the induced second fundamental form on ∂Ω is positive definite.
If Ω is actually a domain in Rd with the identity metric, this definition is equivalent to strict
positivity of all principal curvatures at any point of the boundary, and Ω is a strictly convex
domain (it admits a gauge function that is strictly convex.)

Theorem 1.1. Let κ ∈ C∞
0 (]0,+∞[). There exist C > 0, T0 > 0 and a0 > 0 such that, uniformly

in a ∈]0, a0], h ∈ (0, 1) and t ∈ [−T0, T0], the solution ua to (1.1) with (u0, u1) = (δa, 0), δa being
any Dirac mass at distance a from ∂Ω, is such that

(1.3) ‖κ(−h2∆g)ua(t, ·)‖L∞ ≤ C

hd
min

{
1,

(
h

|t|

) d−2
2

+ 1
4

}
.

Remark 1.2. By finite speed of propagation for the wave equation, estimate (1.3) is local in time
and space. Hence, compactness for Ω may be dropped if appropriate uniform assumptions are
made on the metric.

The dispersion estimate (1.3) may be compared to (1.2): we notice a 1/4 loss in the h/t exponent,
which we may informally relate to the presence of caustics in arbitrarily small times if a is small.
Moreover, one of the key features in Theorem 1.1 is that T0 depends only on the geometry of ∂Ω
and the metric g: (1.3) holds uniformly with respect to both the source point and its distance a to
the boundary and the frequency 1/h. In fact, say for a = hν , ν > 0, there are at most 1/

√
a = h−ν/2

reflections, and caustics in between them, as we will see later; so in the large frequencies regime
h → 0, we have to deal with an increasingly large number of caustics, even to travel a small
distance over a small time T0. These caustics occur because optical rays are no longer diverging
from each other in the normal direction, where less dispersion occurs when compared to the Rd

case. In fact, we can track caustics and therefore Theorem 1.1 is optimal.

Theorem 1.3. Let ua be the solution to (1.1) with data (u0, u1) = (δa, 0). Let h ∈ (0, 1) and
a ≥ h1/3. There exist a constant C > 0, such that for all ϑ ∈ Sd−2, there exist a finite sequence
(tn, xn, yn)n, 1 ≤ n ≤ a−1/2 with d(xn, ∂Ω) ∼ a, yn/|yn| ∼ ϑ, such that

h−d(h/tn)
d−2
2 n−1/4a

1
8h1/4 ∼ a

1
4h−d(h/tn)

d−2
2

+ 1
4 ≤ C|κ(−h2∆g)ua(tn, xn, yn)| .
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As a byproduct, we get that even for t ∈]0, T0] with T0 small, the 1/4 loss is unavoidable for
a comparatively small to T0 and independent of h. Later this optimal loss will be related to
swallowtail type singularities in the wave front set of ua.

Remark 1.4. There is nothing specific about the cosine part of the wave propagator in Theorem
1.1 and 1.3. Both hold equally true if one replaces κ(−h2∆g)ua(t, x) by the half-wave propagators

κ(hDt)e
±it

√
−∆gδa with κ ∈ C∞

0 (R∗).

As a consequence of more elaborate estimates that lead to (1.3), we obtain improved Strichartz
estimates when compared to those that routinely follow from fixed time dispersion.

Theorem 1.5. Let d ≥ 3 and u be a solution of (1.1) on a manifold Ω with strictly convex
boundary. Then there exist T such that for all ε > 0, there exists CT,ε such that

(1.4) ‖u‖Lq(0,T )Lr(Ω) ≤ CT,ε
(
||u0||Ḣβ(Ω) + ||u1||Ḣβ−1(Ω)

)
,

where β = d/2− 1/q − d/r (scaling condition) and (d, q, r) such that q ≥ 2 (q 6= 2 for d = 3),

1

q
≤
(d− 1

2
− γ(d)

)(1
2
− 1

r

)
, with γ(d) =

1

4
− 1

4d
+ ε =

1

6
+

1

4

(1
3
− 1

d

)
+ ε .

In dimension d = 2 the known range of admissible indices for which sharp Strichartz are already
known to hold is in fact slightly larger, see [2] where γ(2) = 1/6 (which we may recover with
our argument). Especially noteworthy is d = 3, for which we get γ(3) = 1/6 + ε: such a loss
corresponds heuristically to a fixed time dispersion (1.3) where the 1/4 loss would be replaced
by a 1/6 loss. In dimensions d ≥ 3, Theorem 1.5 improves the known range of indices for which
Strichartz estimates hold, and it does so in a uniform way with respect to dimension, in contrast
to [2], where γ(3) = 2/3 and γ(d) = (d − 3)/2 for d ≥ 4. The results in [2] however apply to any
domain or manifold with non-empty boundary.

In the negative direction, counterexamples from [6, 7] prove that γ(d) ≥ 1/12, for d = 2, 3, 4.
In other recent works [12], [11], on the model domain, both positive and negative results for
d = 2 are pushed further. Estimates (1.4) are proved to hold with γ(2) = 1/9 ; improvements on
counterexamples yield γ(2) ≥ 1/10. These results extend beyond the model case for d = 2, and
provide similar improvements in higher dimensions; these extensions, for the general case, will be
addressed elsewhere, as they require significant new developments that are out of scope here.

In the present work, we mainly focus on constructing a sharp parametrix for the wave equation
(1.1), providing optimal bounds on the amplitude of the wave, including at a discrete set of caustics
of swallowtail type that increase to arbitrarily large numbers when the source gets closer and closer
to the boundary. While a natural outcome of this parametrix is optimal dispersion bounds, we
believe that such a sharp parametrix will prove useful for a broad range of applications beyond the
study of dispersive effects and localization of eigenfunctions, including sharp quantitative versions
of propagation of singularities results that are of importance in control theory.

We conclude this introduction with a brief overview of the content in the next sections.

• The second section is devoted to building our parametrix for the wave propagator, which is the
key tool to prove Theorems 1.1 and 1.3. While one may think of [9] as inspirational, its inner
knowledge is by no way a prerequisite and the present construction differs significantly for several
reasons we briefly outline: unlike in the model case, we lack an explicit spectral representation.
We therefore need to construct quasi-modes, and for this we rely on a parametrix for the
Helmholtz equation (see [18] which relies crucially on [15]). Using the Airy-Poisson formula
that we introduced in [10], we then obtain a parametrix, both as a “spectral” sum and its
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counterpart after Poisson summation. One obvious benefit from this approach is that the
Dirichlet boundary condition holds easily, unlike in [9]. Moreover, the Poisson sum turns out to
coincide with the carefully constructed sum of reflected waves in [9], as each term has essentially
the same phase (in the model case). The present construction is therefore a sophisticated version
of the method of images, which was our inspiration for constructing suitably matching incoming
and outgoing waves in between consecutive reflections in [9] (in turn drawing upon [6]). An
additional benefit is that our parametrix holds for any a and h: we extend the reflected waves
construction to the range h2/3 < a < h4/7 (a crucial tool in further improvements alluded to
earlier, see [12]). The range 0 < a ≤ h2/3 requires to properly define gallery modes from the
quasi-modes and prove that their decay properties are uniform with respect to their discrete
parameter, at least in a range useful for our purpose. To our knowledge, these gallery modes
had never been defined in such a uniform way in the general case before now; then, one has to
carefully construct the initial data by decomposing over the gallery modes, a delicate issue that
was notably absent from the model case.

• The third section deals with dispersion estimates for reflected waves. There the analysis of the
oscillatory integrals follows [9] in spirit but it departs from it on several counts. We can no
longer reduce the higher dimensional case to d = 2 by rotational invariance (i.e., the underlying
model case is no longer isotropic). For a < h4/7, we need to estimate both the size of each wave
and their overlap, which is no longer bounded: we observe that after a very large number of
reflections, waves start to exhibit dispersion along the tangential variable. We therefore obtain
bounds that are sharper and cover an extended region when compared to [9].

• In the fourth section, for a ≤ h2/3, we use a mix of dispersion estimates on each gallery
mode, the spectral sum, and Poisson summation on the worst terms to obtain a sharper decay
than in [9], thereby proving that the worst decay (with a 1/4 loss) really only happens when
h1/3 < a < 1, whereas a lesser 1/6 loss is seen below h1/3, essentially due to cusp propagating
and accumulating.

• The fourth section deals with Strichartz estimates and how to derive Theorem 1.5, taking advan-
tage of the previously introduced decomposition with respect to angles of incidence, following
[12], combined with short time Strichartz estimates (similar to those from [2]).

• Finally, the appendix provides hindsight on how to obtain the key properties (and required
uniformity, in a suitable sense) of the generating function associated to the equivalence of
glancing hypersurfaces ([15]) in our setting.

In the remaining of the paper, A . B means that there exists a constant C such that A ≤ CB
and this constant may change from line to line but is independent of all parameters. It will be
explicit when (very occasionally) needed. Similarly, A ∼ B means both A . B and B . A.

2. A parametrix construction

By finite speed of propagation, we may work locally near the boundary and chose boundary
normal coordinates (x, y) on Ω, with x > 0 on Ω, y ∈ Rd−1 such that ∂Ω = {(0, y) : y ∈ Rd−1}
(these coordinates may be interpreted as Fermi coordinates relative to the hypersurface that is the
boundary); local coordinates on Ω×Rt are then (x, y, t). Local coordinates on the base induce local
coordinates on the cotangent bundle, namely (x, y, t, ξ, η, τ) on T ∗(Ω × Rt). The corresponding
local coordinates on the boundary are (y, t, η, τ). In this coordinates (and up to conjugation by a
non vanishing smooth factor eg(x, y)), the Laplacian ∆g can be written as ([5, III, Appendix C])

∆ = e−1
g ∆geg = ∂2x +R(x, y, ∂y) .
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We assume that the boundary is everywhere strictly (geodesically) convex: for every point (0, y0) ∈
∂Ω and every (0, y0, 0, η0) ∈ T ∗Ω with η0 6= 0,

{ξ2 +R(x, y, η), x}(0, y0, 0, η0) = 0 ,

{{ξ2 +R(x, y, η), x}, ξ2 +R(x, y, η)}(0, y0, 0, η0) = 2∂xR(0, y0, η0) > 0,

where {., .} denotes the Poisson bracket (see [5, III, 24.3]). We assume (without loss of generality)
that y0 = 0, hence κ0 = (0, 0, 0, η0). On the boundary and for (0, y) near (0, 0), the metric reads

ξ2+
∑d−1

j,k=1R
j,k(0, y)ηjηk; using again [5, III, Appendix C], we assume moreover that (Rj,k(0, 0))j,k

is the identity matrix, and define

(2.1) R0(y, ∂y) := R(0, y, ∂y) =
∑

j

∂2yj +O(|y|) , R1(y, ∂y) := ∂xR(0, y, ∂y) =
∑

j,k

Rj,k
1 (y)∂yj∂yk .

Recall that strict convexity for ∂Ω is equivalent to R1 being elliptic (the associated quadratic form
is positive definite). Define our model Laplacian ∆M and (Fourier) multipliers q, τq

(2.2) ∆M = ∂2x+
∑

j

∂2yj+x
∑

j,k

Rj,k
1 (0)∂yj∂yk , q(η) =

∑

j,k

Rj,k
1 (0)ηjηk , τq(ω, η) =

√
|η|2 + ωq(η)

2
3 .

Later we will use various functions of variables (x, y, η, ω, σ) (where some variables may be omitted
depending on context and both new variables ω, σ ∈ R) that will be defined in a conic neighborhood
of the set

(2.3) N0 = {x = 0 , y = 0 , ω = 0 , σ = 0 , η ∈ Rd−1 \ {0}} .
Such a function f is said to be homogeneous of degree k if

f(x, y, λη, λ2/3ω, λ1/3σ) = λkf(x, y, η, ω, σ) .

Definition 2.1. A symbol a(x, y, η, ω, σ) is of order m and type ((1, 2/3, 1/3), 0) if

∀β = (β0, β1, β2, β3) ∃Cβ |∂β0(x,y)∂β1η ∂β2ω ∂β3σ a(x, y, η, ω, σ)| ≤ Cβ(1 + |η|)m−|β1|− 2
3
|β2|− 1

3
|β3|.

We now recall the Airy function, defined for z ∈ R as the oscillatory integral

(2.4) Ai(−z) =
∫
ei(

σ3

3
−σz) dσ .

The choice of σ as an integration variable is consistent with our later use of oscillatory integrals
with related phases and with symbols within the class we just defined; and ω may be chosen as a
zero of the Airy function.

Constructing a parametrix near glancing or gliding rays has a long history, starting with Andersson-
Melrose [1] and Eskin [4]. We also refer to Melrose and Taylor ([18] and references therein) and
Zworski [24] for the exterior case. We now state an important theorem for our purposes. To our
knowledge, this result is stated (for glancing rays) in [24] and a proof is available in [18].

Theorem 2.1. [Melrose-Taylor, Zworski] Let τq(ω, η) be defined in (2.2). There exist a neighbor-
hood U of (x, y, η, ω) = (0, 0, 1, 0), phase functions ψ(x, y, η, ω) and ζ(x, y, η, ω), symbols p0(x, y, η, ω)
and p1(x, y, η, ω) and a function e0(x, y, η, ω) such that

• the function ψ is homogeneous of degree 1, (∇y(∂ηjψ))j=1,··· ,d−1 are linearly independent;
• the function ζ is homogeneous of degree 2/3, and

ζ = ω − xq(η)1/3e0(x, y, η/|η|, ω/q(η)1/3) ,
i.e. e0 is homogeneous of degree 0;
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• the symbols p0, p1 (which do not depend on σ) and p0+σp1 are of order 0 and type ((1, 2/3, 1/3), 0);
• the phase functions ψ and ζ are solutions to the following eikonal equations

(2.5) < ∇(x,y)ψ,∇(x,y)ψ > +ζ < ∇(x,y)ζ,∇(x,y)ζ >= τq
2(ω, η), < ∇(x,y)ψ,∇(x,y)ζ >= 0.

Here < ., . > is the symmetric bilinear form obtained by polarization of the principal symbol
ξ2 +R(x, y, η) of the operator ∆ (which is a second order homogeneous polynomial).

• Define the function G(x, y, η, ω) to be

(2.6) G(x, y, η, ω) = eiψ(·)(p0(·)Ai(−ζ(·)) + ip1(·)q−1/6(η)Ai′(−ζ(·))) ;
Then the following equation holds in U ,

(2.7) −∆G = τq
2G+OC∞(τq

−∞) ,

with p0, e0 elliptic symbols, e0 > 0 near any (0, 0, η, 0) with η ∈ Rd−1 \ {0} and p1 = 0 on
{x = 0}. We call G a quasimode in U .

Remark 2.2. Constructing an asymptotic solution to equation (2.7) with ansatz (2.6) is a classical
result in geometrical optics. However, that such a solution can be constructed with ζ |x=0 = ω
independent of (y, η) is delicate and is a key point of the result. Moreover, that the construction
can be done such that the symbol p1 in front of Ai′ in (2.6) vanishes on the boundary {x = 0} is
not obvious and proved in [18, Paragraph. 4.4, formula 4.4.6 and paragraph 7.1].

Remark 2.3. Near glancing rays, the same theorem holds true with Ai(e±iπ/3·) instead of Ai(·). As
Ai(e±iπ/3s) does not vanish for real values of s, one may define outgoing and incoming parametrix
for the wave operator with given Dirichlet data on the boundary. Near gliding rays, which is our
case, the Airy function may vanish and the same methodology no longer applies. In [4], Eskin deals
with this difficulty by a conjugation of the wave operator by e−ζt, replacing τ by τ − iζ , therefore
avoiding zeros of the Airy function. While one may then prove propagation of singularities, it is
unknown (and unlikely) to be enough for dispersive estimates near gliding rays.

Let us now briefly review how to prove Theorem 2.1. First, observe that Melrose’s classification
Theorem for glancing hypersurfaces (see [15]) applies, in the non-homogeneous setting, locally near
any point in the set Σ0, defined as

(2.8) Σ0 = {(XM , YM ,Ξ,Θ) : XM = 0 , YM = 0 , Ξ = 0 , |Θ| = 1} .
Therefore, there exists a canonical transform χM such that, near Σ0

(2.9) χM({XM = 0}) = {x = 0}, χM({Ξ2 + |Θ|2 +XMq(Θ) = 1}) = {ξ2 +R(x, y, η) = 1} .
The crucial fact that such a canonical transformation χM may actually be defined in a neighbor-
hood of Σ0 then follows from the transversality of the Hamiltonian flow with respect to Σ0. The
following proposition will be essential for us.

Proposition 2.4. The generating function for χM may be written as ϕΓ(x, y,Ξ,Θ) = xΞ+ yΘ+
Γ(x, y,Ξ,Θ), where Γ(0, y,Ξ,Θ) is independent of Ξ (as χM({XM = 0}) = {x = 0}) and
(2.10) Γ(x, y,Ξ,Θ) = BΓ(y,Θ) + xAΓ(x, y,Ξ,Θ).

The transformation χM is such that χM(∂ΞϕΓ,∇ΘϕΓ,Ξ,Θ) = (x, y, ∂xϕΓ,∇yϕΓ), and therefore
generated by the following relations:

(2.11)

{
XM = x+ x∂AΓ

∂Ξ
(x, y,Ξ,Θ) , YM = y + ∂BΓ

∂Θ
(y,Θ) + x∂AΓ

∂Θ
(x, y,Ξ,Θ)

ξ = Ξ + AΓ(x, y,Ξ,Θ) + x∂AΓ

∂x
(x, y,Ξ,Θ) , η = Θ+ ∂BΓ

∂y
(y,Θ) + x∂AΓ

∂y
(x, y,Ξ,Θ) .
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There exists an elliptic symbol p(x, y, η, ω, σ) of order 0 and type ((1, 2/3, 1/3), 0) with support near
N0 (from (2.3)) and

(2.12) G(x, y, η, ω) :=
1

2π
e−iτqBΓ(0,η/τq)

∫
ei(y·η+

s3

3
+s(xq

1
3 (η)−ω)+τqΓ(x,y,sq

1
3 (η)/τq ,η/τq))p(x, y, η, ω, s)ds

such that Theorem 2.1 holds with this G.

Proof. We postpone to the appendix how to obtain the generating function Γ and the BΓ(y,Θ)
and AΓ(x, y,Ξ,Θ) terms. The function Γ(x, y,Ξ,Θ) is not unique: the group of canonical transfor-
mations under which the model {XM = 0,Ξ2 + |Θ|2 +XMq(Θ) = 1} is invariant is non trivial and
includes any symplectic transformation (XM , YM ,Ξ,Θ) → (XM , YM + h′(Θ),Ξ,Θ), where h is any
function defined near the set {|Θ| = 1}. Thus we may replace Γ(x, y,Ξ,Θ) by Γ(x, y,Ξ,Θ)+h(Θ).
We therefore assume that BΓ(0,Θ) = 0, which is equivalent to Γ(0, 0, 0,Θ) = 0. This explains the
factor e−iτqBΓ(0,η/τq) in (2.12). Let us now verify that there exists a symbol p(x, y, η, ω, σ) such that
G defined by (2.12) is such that (−∆− τq

2)G = O(τq
−∞) near x = 0, y = 0.

We will work microlocally near the set Σ0, defined in (2.8), in the semiclassical setting with
0 < h < 1 as small parameter. Set P = −h2∆ − 1, p2(x, y, ξ, η) = ξ2 + R(x, y, η) − 1, PM =
h2(D2

XM
+D2

YM
+Xq(DYM ))−1, and pM,2(XM , YM ,Ξ,Θ) = Ξ2+ |Θ|2+XMq(Θ)−1, where DXM

=
1
i
∂xM , DYM = 1

i
∇YM . Let W ⊂ W̃ be small neighborhoods of Σ0. Let χ(XM , YM ,Ξ,Θ) ∈ C∞

0 (W̃ )

such that χ = 1 in a neighborhood of W and such that χ|XM=0 is independent of Ξ. Let Gh be the
following semiclassical Fourier integral operator

Gh(F )(x, y) :=
1

(2πh)d

∫
e

i
h
(ϕΓ(x,y,Ξ,Θ)−XΞ−YΘ)χ(X, Y,Ξ,Θ)F (X, Y )dXdY dΞdΘ,

where ϕΓ has been introduced in Proposition 2.4. Then for any semiclassical operator QM such
that QM =

∑
n≥0(−ih)nQM,n(XM , YM , hDXM

, hDYM ) defined on W̃ , there exists a semiclassical

operator Q =
∑

n≥0(−ih)nQn(x, y, hDx, hDy) defined on χM(W̃ ) and unique on χM(W ) such that
one has

WFh

(
(QGh − GhQM )(F )

)
∩ χM(W ) = ∅,

where WFh denotes the semiclassical wavefront set (see [25]) and F denotes any function such that
WFh(F ) ⊂W . Moreover, Q0(χM(XM , YM ,Ξ,Θ)) = QM,0(XM , YM ,Ξ,Θ) for (XM , YM ,Ξ,Θ) ∈ W .
Taking QM = PM and using (2.9), Q has simple characteristics on the set p2(x, y, ξ, η) = 0 near

χM(Σ0). Thus, if W ⊂ W̃ are small enough, there exists a function l(x, y, ξ, η) ∈ C∞
0 (χM(W̃ )),

which is elliptic on χM(W ), such that l(x, y, ξ, η)p2(x, y, ξ, η) = Q0(x, y, ξ, η) = pM,2◦χ−1
M (x, y, ξ, η)

in a neighborhood of χM(W ). Set L = l(x, y, hDx, hDy), then there exists RM with RM =∑
n≥0(−ih)nRM,n(XM , YM , hDXM

, hDYM ) such that

(2.13) WFh

(
(LPGh − Gh(PM − ihRM))(F )

)
∩ χM(W ) = ∅.

We now exhibit a suitable F = Fθ,pq,h(XM , YM) as an oscillatory integral with symbol pq to be
chosen later and θ ∈ Rd−1 with |θ| close to 1. Define a function

αq(θ) =
1− |θ|2
q2/3(θ)

,
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let pq be such that pq(XM , YM , s, θ, h
−1) =

∑
n≥0(−ih)npq,n(XM , YM , s, θ), compactly supported

near X = 0, Y = 0, s = 0, with pq,n homogeneous of order 0 and |∂βpq,n| ≤ Cβ, and set

Fθ,pq,h(XM , YM) :=
1

2πh1/3

∫
e

i
h
(Y ·θ+s3/3+s(XM q1/3(θ)−αq(θ)))pq(XM , YM , s, θ, h

−1) ds ,

where YM · θ denotes the scalar product in Rd−1. Define the model Lagrangian submanifold ΛM,θ

ΛM,θ :=
{
(XM , YM ,Ξ,Θ = θ) : ∃s ∈ R such that XM = q(θ)−1/3(αq(θ)− s2),Ξ = sq(θ)1/3

}
,

then one has WFh(Fθ,pq,h) ⊂ ΛM,θ and ΛM,θ is contained in the characteristic set of PM , defined
by pM,2(XM , YM ,Ξ,Θ) = 0, which is the same as the characteristic set of PM − ihRM as ihRM is
a lower order term. Let V ⊂ W be a small neighborhood of pq,0. By solving transport equations,
we can select the symbol pq to be elliptic on XM = 0, YM = 0, s = 0, |θ| = 1, such that for all
θ ∈ Rd−1 with |θ| close to 1 one has

WFh

(
(PM − ihRM )(Fθ,pq,h−1)

)
∩ V = ∅, WFh(Fθ,pq,h) ⊂ W.

We now set Gθ,pq,h(x, y) := Gh(Fθ,pq,h)(x, y). Using (2.13) and the ellipticity of L on χM (V ) yields

(2.14) WFh

(
P (Gθ,pq,h)

)
∩ χM(V ) = ∅, WFh(Gθ,pq,h) ⊂ χM(WFh(Fθ,pq,h)) ⊂ χM(W ).

Moreover, we may write Gθ,pq,h(x, y) as follows

1

(2πh)d
1

2πh1/3

∫
e

i
h
Φθ(x,y,XM ,YM ,Ξ,Θ,s)χ(XM , YM ,Ξ,Θ)pq(XM , YM , s, θ, h

−1) dXMdYMdΞdΘds ,

where the phase is defined as

Φθ(x, y,XM , YM ,Ξ,Θ, s) = ϕΓ(x, y,Ξ,Θ)−XMΞ−YM ·Θ+YM ·θ+s3/3+s(XMq
1/3(θ)−αq(θ)) ,

and we recall that ϕΓ(x, y,Ξ,Θ) = xΞ+y ·Θ+Γ(x, y,Ξ,Θ) and we required Γ(0, 0, 0,Θ) = 0. Since
at (x, y) = (0, 0) we have ϕΓ(0, 0, 0,Θ) = 0 (Γ|x=0 is independent of Ξ), Φθ(0, 0, XM , YM ,Ξ,Θ, s) is
explicit and we easily check that it has an unique non degenerate stationary point in the variables
XM , YM ,Ξ,Θ at XM,c = 0, YM,c = 0,Ξc = sq1/3(θ),Θc = θ. Therefore, for (x, y) close to (0, 0),
the phase function Φθ also has a unique non degenerate critical point in these variables, such that
Ξc = sq1/3(θ) and Θc = θ; the critical value of the phase Φθ, that we denote φθ(x, y, s) is given by

φθ(x, y, s) = y · θ + Γ(x, y, sq1/3(θ), θ) + s3/3 + s(xq1/3(θ)− αq(θ)).

Using (2.10), we have for the stationary point XM,c = x(1 + ∂ΞAΓ); stationary phase provides a
symbol p̃q such that p̃q =

∑
n≥0(−ih)np̃q,n(x, y, s, θ), elliptic on x = 0, y = 0, s = 0, |θ| = 1 and

Gθ,pq,h(x, y) =
1

2πh1/3

∫
e

i
h
φθ(x,y,s)p̃q(x, y, s, θ, h

−1)ds .

Notice that WFh(Gθ,pq,h) ⊂ χM(ΛM,θ), χ
−1
M ({x = 0}) = {X = 0} and AΓ(0, 0, 0, θ) = 0 (and also

∇yBΓ(0, θ) = 0 for |θ| = 1). From (2.11) we thus get {|θ| = 1 and (0, 0, ξ, η) ∈ WFh(Gθ,pq,h)} if
and only if {ξ = 0 and η = θ}. Together with (2.14) which gives WFh(P (Gθ,pq,h)) ∩ χM(V ) = ∅,
we proved that there exists a small neighborhood U of (x, y) = (0, 0) such that for all |θ| ∼ 1, one
has WFh(P (Gθ,pq,h)) ∩ {(x, y) ∈ U} = ∅.

Taking θ = hη and h2/3ω = αq(θ), we obtain by direct computation that 1/h = τq(η, ω),
and (2.7) holds. Rescaling the variable s → τq

−1/3s, G(x, y, η, ω) = Gθ,pq,τq(x, y) is given by the

formula (2.12) where p(x, y, η, ω, s) = p̃q(x, y, s/τq
1/3, η/τq, τq) and is a symbol or order 0 and type
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((1, 2/3, 1/3), 0). Finally, integration with respect to the variable s in (2.12) yields G of the form
(2.6) near x = 0 as Γ|x=0 is independent of s. �

Let a0 > 0 be small and a ∈ (0, a0]; denote by G(t, x, y, a) the Green function for the wave
equation with Dirichlet boundary condition, and δ(a,0) := δx=a,y=0 the source point,

(2.15) (∂2t −∆)G = 0 , for x > 0 , G|x=0
= 0,G|t=0 = δ(a,0) and ∂tG|t=0 = 0.

We will frequently need smooth cut-off functions κ ≥ 0 in C∞
0 (Rm) with m = 1 or with m = d−1.

For m = 1, κ will be such that κ = 1 near 1, κ = 0 outside a small neighborhood of 1, and for
m = d − 1, κ will be radial and such that κ = 1 near Sm−1, κ = 0 outside a small neighborhood
of Sm−1. We will abuse notations and retain κ as a generic notation, irrespective of the value of m
(which will be clear from context) as well as the size of the (small) support of κ, which we assume
from now on to be smaller than 0 < ǫ0 < 1/100.

Definition 2.5. Let h ∈ (0, 1). A function Ph,a(t, x, y) is a parametrix for (2.15) if and only if
there exists a0 > 0, r > 0 and a neighborhood V of (t, y) = (0, 0) such that for all α one has

sup
0<a≤a0

sup
0<x≤r

sup
(t,y)∈V

∣∣∣∂αt,x,y(κ(hDt)κ(hDy)(Ph,a − G(·, a))
∣∣∣ ∈ O(h∞).

Remark 2.6. We have G = cos(t
√

|∆|), but we will work with the half wave propagator e±it
√

|∆|,
from which we may obtain G and ∂tG. The operator κ(hDt) is really a spectral localization with
respect to ∆, if applied to a solution to the wave equation. The operator κ(hDy) further restricts
this localization to spatial frequencies whose dominant part is tangential: the general heuristic is
that waves propagating along the boundary are the most dangerous ones, whereas other waves are
transverse and can be handled by simpler arguments (with a finite number of reflections). While
κ(hDy) does not commute with ∆ (unlike in the model case), the support of η in phase space
will not significantly move over a finite time interval as a consequence of the Melrose-Sjöstrand
propagation of singularities theorem. Therefore, up to OC∞(h∞) terms, we may insert κ(hDy)
operators before and after the propagator.

Rescale ω = α
h2/3

, η = θ
h
, s = σ

h1/3
in (2.12) (defining G), hence τq(α, θ) = hτq(ω, η). Let also

χ♭ ∈ C∞(R) such that χ♭ = 1 on (−∞, 1] and χ♭ = 0 on [2,∞), and χ♯ = 1− χ♭. We let

(2.16) Φ(x, y, θ, α, σ) = y ·θ+σ3/3+σ(xq1/3(θ)−α)+τq(α, θ)Γ(x, y, σq1/3(θ)/τq(α, θ), θ/τq(α, θ)) ,
and as our change of variables s = σ

h1/3
provides a factor h−1/3, we set

(2.17) ph(x, y, θ, α, σ) := h−1/3p(x, y, θ/h, α/h2/3, σ/h1/3)κ(θ)κ(τq(α, θ))χ
♯(α/h2/3) ,

where the relevance of all cut-off functions will reveal itself later on. We get

(2.18) χ♯(α/h2/3)κ(θ)κ(τq(α, θ))G(x, y, θ/h, α/h
2/3) =

1

2π

∫
e

i
h
Φ(x,y,θ,α,σ)ph(x, y, θ, α, σ)dσ.

We now define an operator acting on smooth f(y′, ρ), with f̂ its Fourier transform in all variables,

(2.19) J(f)(x, y) =

∫
G(x, y, η, ω)χ♯(ω)q(η)1/6κ(hη)κ(hτq(ω, η))f̂(η, ω/h

1/3)dηdω .

After rescaling and subtitution of (2.18) in (2.19),

J(f)(x, y) =
1

2πhd

∫
e

i
h
(Φ(x,y,θ,α,σ)−y′·θ−̺α)ph(x, y, θ, α, σ)q(θ)

1/6f(y′, ̺) dy′d̺dθdαdσ .
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Lemma 2.7. The operator J is well defined from tempered distributions S ′
y′,̺ into smooth functions

of (x, y) near (0, 0). In the semiclassical setting with h as small parameter, J is a semi-classical
Fourier integral operator associated to a canonical transform χJ , defined near the set {y′ = 0, ̺ =
0, |θ| = 1, α = 0} and such that χJ(y

′ = 0, ̺ = 0, |θ| = 1, α = 0) = {y = 0, x = 0, |θ| = 1, ξ = 0}.
Moreover, J is elliptic on this set and, microlocally near this set, an intertwining relation holds,

−h2∆J(f) = J(τ 2q (hD̺, hDy′)f) +O(h∞).

As the symbol ph is smooth and compactly supported in (θ, α, σ), J is easily extended to S ′
y′,̺.

The Lemma then follows from Theorem 2.1 (p0 is elliptic and xp1 vanishes on ∂Ω.)

Remark 2.8. When Γ = 0 (the model case), this canonical transform is given explicitly:

χJ(y
′, ̺, θ, α) = (y, x, θ, ξ)

where
y = y′ + ̺(α− ̺2)∇q(θ)/(3q(θ)) , x = (α− ̺2)/q1/3(θ) , ξ = −̺q1/3(θ) .

2.1. Some useful results on Airy functions. We now digress and present a variation on the
Poisson summation formula, the ”Airy-Poisson summation formula”. For z ∈ C we set

(2.20) A±(z) = e∓iπ/3Ai(e∓iπ/3z) , then Ai(−z) = A+(z) + A−(z) and A+(z) = A−(z).

The next two Lemmas are proved in [11, Lemmas 1 and 3] :

Lemma 2.9. Define, for ω ∈ R, the function L(ω) = π+ i log A−(ω)
A+(ω)

: L is an analytic, real valued,

strictly increasing function with L(0) = π/3, limω→−∞ L(ω) = 0, and, for ω ≥ 1,

(2.21) L(ω) =
4

3
ω

3
2 +

π

2
−BL(ω

3
2 ) , BL(u) =

∞∑

k=1

bku
−k , (bk)k ∈ R , b1 > 0 .

Finally, let {−ωk}k≥1 denote the zeros of the Airy function in decreasing order,

(2.22) L(ωk) = 2πk and L′(ωk) = 2π

∫ ∞

0

Ai2(x− ωk) dx .

Lemma 2.10. Let N∗ = N \ {0}. In D′(Rω), one has

(2.23)
∑

N∈Z
e−iNL(ω) = 2π

∑

k∈N∗

1

L′(ωk)
δ(ω − ωk) .

Let us define, for ω ∈ R, and without loss of generality, an arbitrary choice of + sign for the
time propagator exp(itτq(ω, η)),

(2.24) Kω(f)(t, x, y) =

∫
eitτq(ω,η)G(x, y, η, ω)χ♯(ω)q1/6(η)κ(hη)κ(hτq(ω, η))f̂(η,

ω

h1/3
) dη .

Due to both cut-off in ω as well as that in η, Kω(f) is supported in 1 ≤ ω ≤ ǫ0h
−2/3 and so is

R(t, x, y, ω, a, h) := ((∂2t −∆)Kω(f))(t, x, y). By design of G, using (2.7), we have moreover that,
for small r0 and a0 and for all (large) M ∈ N,

(2.25) sup
|a|<a0

sup
|(t,x,y)|<r0

sup
ω

∣∣∣∇α
t,x,y,ωR

∣∣∣ ≤ CM,αh
M .

Moreover, at x = 0, we have Kωk
(f)(t, 0, y) = 0 as G(0, y, η, ωk) = 0 (recall ζ(x, y, η, ω)|x=0 = ω

and (2.6)). In other words, Kω(f)(t, x, y) is a solution to the wave equation, up to O(h∞); and
when ω = ωk, it satisfies the Dirichlet boundary condition.
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To get a sense of perspective, let us remark that, in the model case, Γ = 0 and then (up to
normalization) GM(x, y, η, ω) =

∫
η
exp(iy · η)Ai(xq1/3(η) − ω) dη; for ω = ωk, GM is a so-called

gallery mode, and Kω(f) is an exact solution to the half-wave equation, satisfying the Dirichlet
boundary condition if ω = ωk, but f should not be considered as its data: if one picks f such that,
on the model, J(f) is a Dirac at (x = a, y = 0), then f =

∫
η
exp(−iy · η)Ai(aq1/3(η)− ω) dη and

then integrating over ω recovers δx=a,y=0 by a standard identity on Airy functions. For this f , the
integral over ω of Kω(f)(t, x, y) is then just an half-wave solution with no boundary condition. In
[9] such a solution is then iterated by reflecting it on the boundary; here, the Airy-Poisson formula
would, on the model, directly provide a sum of waves (the sum over N) that may later be identified
as analogue of the reflected waves from [9], while the spectral sum (over k) provides the boundary
condition and a direct way to decompose the Dirac data.

We now revert to the general case, where we follow the model case strategy we just sketched, but
replace gallery modes by G(x, y, η, ω). Recall we defined J(f)(x, y) in (2.19) and we may rewrite

J(f)(x, y) =
∫
R
Kω(f)(0, x, y) dω. Let η = θ

h
, q

1
6 (η) = h−

1
3 q

1
6 (θ) and α = h

2
3ω, then (with elliptic

symbol ph defined in (2.17))
(2.26)

Kω(f)(t, x, y) =
h

2
3
−d

2π

∫
e

i
h
(tτq(α,θ)+Φ(x,y,θ,α,σ)−y′·θ−̺α)ph(x, y, θ, α, σ)q

1
6 (θ)f(y′, ̺) dy′d̺dθdσ .

As we will see later, both cut-off functions κ in Kω(f) relate to localization operators from Defi-
nition 2.5. Moreover, Kω(f) is a suitable test function in ω (smooth and compactly supported in
ω). Using (2.23),

(2.27) 〈
∑

N∈Z
e−iNL(ω), Kω(f)(t, x, y)〉ω = 2π

∑

k∈N∗

1

L′(ωk)
Kωk

(f)(t, x, y) .

The N = 0 term in the sum over N is J(f). Moreover, at x = 0 the RHS vanishes, as the sum over
k is finite and each term vanishes as we just observed, and this finite sum (on the RHS) satisfies
the wave equation, up to O(h∞) terms, due to (2.25).

These remarks will later be of crucial importance to verify that Definition 2.5 will hold for the
parametrix we shall introduce in the next sections, up to finding a suitable function f that will
recover the data at t = 0 in (2.27). This remaining step is far from trivial, unlike in the model case
(see [11]), for which we know explicitly the spectral resolution of the Laplacian and can therefore
expand a Dirac mass over the eigenmodes, as alluded to earlier.

One may expect that it should be enough to consider initial data (at time 0) χ0(hDx)κ(hDy)δ(a,0),
for κ supported near Sd−1 and χ0 ∈ C∞

0 supported near 0. Indeed, classical geometric optics argu-
ments provide a parametrix for data (1− χ0(hDx))κ(hDy)δ(a,0): due to the cut-off (1− χ0(hDx)),
singularities are transverse to the boundary at x = 0 (there is at most one reflection). However,

(2.28) χ0(hDx)κ(hDy)δ(a,0) =

∫
ei((x−a)ξ+y·η)χ0(hξ)κ(hη)dξdη =

1

hd
χ̂0

(x− a

h

)
κ̂

(y
h

)
.

Therefore, at x = 0, this data will be O(h∞) only if we assume that a ≥ h1−ǫ for some ǫ > 0. For
smaller a, in the case of the Friedlander model operator ∆M , we can take advantage of the known,
explicit, spectral resolution of −∆M in order to consider an initial data χ0(−h2∆M)κ(hDy)δ(a,0)
that can be further expressed as a sum of eigenfunctions that vanish on the boundary. By contrast,
in the general case, we only have quasimodes and this is a source of significant difficulties for
these very small a. Nevertheless, we will decompose the parametrix construction according to the
respective values of a and h2/3, with an overlap between the two regimes where any construction
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holds. In subsection 2.2, for a ≫ h2/3, we will use (2.28) as a data, and mainly proceed with
the sum over N in our Airy-Poisson formula (2.27). In subsection 2.3, dealing with a . h2/3,
stationary phase methods in this sum over N break down (although one could push them down
to a ≫ h, matching the heuristic above, but with no obvious benefit) in addition to the problem
of defining a suitable initial data. We will solve the data issue in subsection 2.3.1 by choosing
the model initial data χ0(−h2∆M)κ(hDy)δ(a,0). In some sense, in the very narrow strip where
it is located, the spectral localizations with respect to ∆M or ∆ are close enough that gallery
modes are good substitutes to the quasimodes in defining said data. One then proceeds with a
parametrix construction where such data is, again, split according to the values of k in the spectral
sum defining it: either k is large enough and we recover a large parameter and can proceed as
in the previous regime, or we have the relatively small value of k for which we proceed with the
spectral sum, proving in subsections 2.3.2 and 2.3.3 that terms appearing in that expansion are
close enough to the model gallery modes and therefore retain enough of their properties to provide
a parametrix. This part of the construction is quite delicate and obviously absent in the model
case, while of independent interest as far as uniform estimates on quasimodes are concerned as
these will be proved in the range k ≪ h−1/4, exceeding by far what we need in our construction.

2.2. Parametrix construction for a ≥ h
2
3
−ǫ, 0 < ǫ < 2/3. An initial data (2.28) is O(h∞) on

the boundary for any χ0, compactly supported near 0. Let χ0 ∈ C∞
0 (−2ǫ0, 2ǫ0) with χ

0

∣∣[−ǫ0,ǫ0] = 1.

Lemma 2.11. Let a0 > 0, r0 > 0 be small enough. For all a ∈ [h
2
3
−ǫ, a0], there exists a smooth

function gh,a such that κ(hDy′)gh,a = gh,a and

(2.29) J(gh,a)(x, y) = χ0(hDx)κ(hDy)δ(a,0) +OC∞(|(x,y)|≤r0)(h
∞) ,

where the remainder is OC∞(|(x,y)|≤r0)(h
∞) uniformly in a.

The lemma follows from the aforementioned fact that J is an elliptic Fourier integral operator,
however, we compute gh,a explicitely:

Lemma 2.12. There exists a smooth phase function ψa(̺, θ
′) and a symbol rh(̺, θ

′) of order 1/3,
with support near ̺ = 0, |θ′| = 1, of the form rh(̺, θ

′) = h1/3
∑

k≥0 rh,kh
k with rh,0(0, θ

′) 6= 0 for
|θ′| = 1, such that

(2.30) ψa(̺, θ
′) = ̺3/3 + a(̺q1/3(θ′) +O(̺3)) +O(a2)

and the function gh,a, defined as

(2.31) gh,a(y
′, ̺) = h−d

∫
e

i
h
(ψa(̺,θ′)+y′·θ′)rh(̺, θ

′)q−1/6(θ′) dθ′ ,

solves (2.29). Moreover, ψa is the critical value of the phase ̺α− Φ(a, 0, θ′, α, s) at critical points
in (α, s).

Proof. We may invert microlocally the operator J from (2.19) by setting

J−1(F )(y′, ̺) = h−d−1

∫
e

i
h
(−Φ(x,y,θ′,α′,s)+y′·θ′+̺α′)qh(x, y, θ

′, α′, s)q−1/6(θ′)F (x, y)dxdydθ′dα′ds,
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where qh(x, y, θ
′, α′, s) is a symbol of order 1/3, qh = h1/3

∑
k≥0 h

kqh,k, with support near {x =

0, y = 0, α′ = 0, s = 0} and elliptic on this set: we aim at proving that J−1◦J(f) = f modulo O(h∞):

J−1 ◦ J(f) = h−d−1

∫
e

i
h
(−Φ(x,y,θ′,α′,s)+y′·θ′+̺α′)qh(x, y, θ

′, α′, s)q−1/6(θ′)

× 1

2πhd
e

i
h
Φ(x,y,θ,α,σ)ph(x, y, θ, α, σ)q

1/6(θ)f̂(θ/h, α/h)dθdαdσdxdydθ′dα′ds.

We now apply stationary phase in variables (σ, s, x, y, θ′, α′): one checks that critical points are
non-degenerate, such that θ′c = θ, α′

c = α, and stationary phase provides a factor hd−1+1+1 = hd+1

(one factor hd−1 from dydθ′, one factor h from dxds and one factor h from dσdα′). The critical
value of the phase is y′θ + ̺α and we obtain (modulo O(h∞))

J−1 ◦ J(f)(y′, ̺) = h−d−1 × hd+1

2πhd

∫
e

i
h
(y′·θ+̺α)q̃h(θ, α)f̂(θ/h, α/h)dθdα,

where q̃h is obtained from the product qh(x, y, θ
′, α′, s)q−1/6(θ′)ph(x, y, θ, α, σ)q

1/6(θ) after sta-
tionary phase; asking q̃h = 1 for θ such that |θ| ∼ 1 and ̺ near 0 allows to chose qh; since
ph = h−1/3p(x, y, θ/h, α/h2/3, σ/h1/3)χ♯(α/h2/3)κ(θ)κ(τq(α, θ)), we obtain qh as announced. De-
fine

(2.32) g̃h,a := J−1(χ0(hDx)κ(hDy)δ(a,0)) .

Then, using the second line in (2.28),

(2.33) g̃h,a(y
′, ̺) =

1

hd

∫
e

i
h
y′·θ′Fh,a(̺, θ

′)dθ′ , Fh,a(̺, θ
′) =

1

hd+1

∫
e

i
h
(−Φ(x,y,θ′,α,s)+̺α+(x−a)σ+y·θ)

× qh(x, y, θ
′, α, s)q−

1
6 (θ′)χ0(σ)κ(θ)dσdθdxdydαds .

We apply stationary phase to Fh,a with respect to variables (x, σ, y, θ): (non-degenerate) critical
points are x = a, y = 0, σc = ∂xΦ(a, 0, θ

′, α, s) and θc = ∂yΦ(a, 0, θ
′, α, s). The resulting symbol

q̃h(θ
′, α, s) is of order 1/3, with support near {|θ′| = 1, α = 0, s = 0} and elliptic on this set, and

(2.34) Fh,a(̺, θ
′) = h−1

∫
e

i
h
(−Φ(a,0,θ′,α,s)+̺α)q̃h(θ

′, α, s)q−1/6(θ′)dαds .

Here α is bounded, as τq(α, θ
′) ∈ suppκ; indeed, α = h2/3ω and we assumed |ω| ≤ ǫ0h

−2/3;
therefore α ≤ ǫ0 on the support of the symbol ph, as well as on the support of qh and also q̃h. The
phase of Fh,a is stationary in α for s + ̺ + O(a) = 0 and in s for s2 + O(a) ∼ α ≤ ǫ0 (as we will
see below using the explicit form of Φ) and a ≤ a0 < 1 is small enough, therefore s2 . ǫ0 + a0
(otherwise non stationary phase in s provides an O(h∞) contribution.) Hence there exists a cut-off
χ(̺) ∈ C∞

0 ((−2r, 2r)), equal to 1 on [−r, r] for r ∼ √
ǫ0+a0, such that (1−χ(̺))Fh,a(̺, θ′) = O(h∞)

in S̺, uniformly in θ′ near |θ′| = 1.
We now apply stationary phase in (2.34) with respect to α and s: with (̺, θ′, a) as parameters

and for ̺ ∈ (−2r, 2r) and |θ′| close to 1, let (αc, sc) denote the critical points of the phase, define
ψa(̺, θ

′) = ̺αc−Φ(a, 0, θ′, αc, sc), where (̺, a) are small parameters in (−2r, 2r)× (0, a0). In order
for ψa to be (2.30), we need more information on the phase Φ. Recall from (2.16)

Φ(x, y, θ, α, σ) = yθ + σ3/3 + σ(xq1/3(θ)− α) + τq(α, θ)Γ(x, y, σq
1/3(θ)/τq(α, θ), θ/τq(α, θ)),

and from the Appendix, Proposition 6.5, Γ(x, y,Ξ,Θ) = BΓ(y,Θ)+xAΓ(x, y,Ξ,Θ), where BΓ(0,Θ) =
0 and AΓ(x, y,Ξ,Θ) = Ξℓ(y,Θ/|Θ|) + µ(y,Θ/|Θ|)(Ξ2 + |Θ|2 − 1) + Hj≥3, where ℓ, µ are smooth
functions such that ℓ(0, ω) = 0, and Hj≥k denotes any function which is an expansion of the form
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∑
j≥k fj with fj homogeneous of order j with respect to weights on variable (x, y,Ξ,Θ): x : 2,

(|Θ| − 1) : 2, Ξ : 1. Therefore, the phase of Fh,a reads

(2.35) − Φ(a, 0, θ′, α, s) + ̺α = −s3/3− s(aq1/3(θ′)− α) + ̺α

− aτq(α, θ
′)AΓ(a, 0, sq

1/3(θ′)/τq(α, θ
′), θ′/τq(α, θ

′)) .

Setting Ξ := sq1/3(θ′)/τq(α, θ′) and Θ := θ′/τq(α, θ′) and using that ℓ(0,Θ/|Θ|) = 0,

AΓ(a, 0,Ξ,Θ)∣∣Ξ=sq1/3(θ′)/τq(α,θ′),Θ=θ′/τq(α,θ′)
= µ(0, θ′/|θ′|)(s

2 − α)q2/3(θ′)

τq2(α, θ′)
+Hj≥3,

whereHj≥3 contains terms with factors as, s3 and sα; asAΓ(a, · · · ) comes with a factor a, cancelling
the derivative of the phase (2.35) with respect to s yields an equation for sc,

−s2 − (aq1/3(θ′)− α)− aτq(α, θ
′)
(
2sµ(0, θ′/|θ′|)q2/3(θ′)/τq2(α, θ′) +O(a, s2, α)

)
= 0 ,

s2c(1 +O(a)) + aq1/3(θ′)(1 + 2scq
1/3(θ′)µ/τq) = αc(1 +O(a)) ,

while cancelling the derivative of (2.35) with respect to α yields ̺+ sc(1 +O(a)) = 0. Therefore,
sc = −̺(1+O(a)) and αc = ̺2(1+O(a))+aq1/3(θ′)(1+O(̺)). We now compute the critical value of
the phase (2.35) at sc, αc: let φ(a, ̺, θ

′) := −Φ(a, 0, θ′, αc, sc)+ ̺αc and write the Taylor expansion
of φ near a = 0. We have φ(a, ̺, θ′) = φ(0, ̺, θ′) + a∂aφ(0, ̺, θ

′) + O(a2), where αc|a=0 = ̺2 and
sc|a=0 = −̺, and then, with (· · · ) = (0, 0, θ′),

φ(0, ̺, θ′) = −Φ(· · · , αc|a=0, sc|a=0) + ̺αc|a=0 =
(
− (

s3

3
+ sα) + ̺α

)∣∣s=−̺,α=̺2 =
̺3

3
,

∂aφ(0, ̺, θ
′) = −∂aΦ(· · · , ̺2,−̺)− ∂asc|a=0∂sΦ(· · · , ̺2,−̺)

+ ∂aαc|a=0(̺− ∂αΦ(· · · , ̺2,−̺)) .
(2.36)

As sc, αc are critical points for −Φ(·, α, s) + ̺α, the last two terms in (2.36) vanish. We have

∂aφ(0, ̺, θ
′) = −∂aΦ(a, 0, θ′, α, s)|(0,0,θ′,̺2,−̺) = ̺q1/3(θ′)− τq(̺

2, θ′)AΓ(0, 0,−̺q1/3(θ′)/τq, θ′/τq) .
For (Ξ,Θ) = (−̺q1/3(θ′)/τq, θ′/τq), with τq = τq(̺

2, θ′), the term homogeneous of degree 1 of
AΓ(0, 0,Ξ,Θ) is Ξℓ(0,Θ) = 0 and the term homogeneous of degree 2 equals µ(0,Θ)(Ξ2+|Θ|2−1) =

0 as (Ξ2 + |Θ|2 − 1) = (s2−α)
τq2

|s=−̺,α=̺2 = 0. The terms homogeneous of higher order j ≥ 3 of

AΓ(0, 0,Ξ,Θ) are powers of Ξj ∼ ̺j (as we can replace |Θ|2−1 by Ξ2), hence AΓ(0, 0,Ξ,Θ) = O(̺3).
Therefore, stationary phase in s, α yields, for some new symbol rh(̺, θ

′) of order 1/3,

g̃h,a(y
′, ̺) = h−d

∫
e

i
h
(ψa(̺,θ′)+y′·θ′)rh(̺, θ

′)q−1/6(θ′) dθ′ +OC∞(h∞) ,

where we set ψa(̺, θ
′) := φ(a, ̺, θ′) that is indeed the required (2.31). One has WFh(g̃h,a) ⊂

{(y′, ̺, θ′, α′), y′ = −∇θ′ψa(̺, θ
′), α′ = ∂̺ψa(̺, θ

′)}. Using (2.30) and (2.32), we now set gh,a(y
′, ̺) :=

χ(̺)g̃h,a(y
′, ̺), such that (2.29) holds and this completes the proof of Lemma 2.12. �

Definition 2.13. Let gh,a be defined in (2.31): using (2.23), we define Ph,a equivalently as

Ph,a(t, x, y) = 〈
∑

N∈Z
e−iNL(ω), Kω(gh,a)(t, x, y)〉ω(2.37)

Ph,a(t, x, y) = 2π
∑

k∈N∗

1

L′(ωk)
Kωk

(gh,a)(t, x, y) .(2.38)
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We are abusing notation here: one should consider P± depending on the sign on t and then
obtain 2P from Definition 2.5 as P+ + P−. Considering P+ is enough by time symetry and we
therefore drop the +.

We now recall (see the discussion after (2.24)) that, using both localizations in η and τq(ω, η),
(2.38) may be reduced to a finite sum over k . h−1: support considerations on Kω (as a function
of ω) provide |ω| ≤ ǫ0h

−2/3; after Airy-Poisson summation, this translates into |ωk| ≤ ǫ0h
−2/3. The

zeroes {−ωk}k≥1 of the Airy function have asymptotic ωk ∼ (3πk/2)2/3. We therefore introduce a
cut-off in the sum over k, χ♭ǫ0(h

2/3ωk) := χ♭(h2/3ωk/ǫ0). Then, (2.38) may be rewritten as a finite
sum,

(2.39) Ph,a(t, x, y) := 2π
∑

k∈N∗

χ♭ǫ0(h
2/3ωk)

L′(ωk)
Kωk

(gh,a)(t, x, y) .

From ω1 ≥ 2.33, we remark that the cut-off function χ♯(ω) that was introduced in the definition
(2.24) of Kω is no longer needed when restricting ω to the set {ωk}k∈N∗ . But it will help on the
other sum (2.37), in estimating how many N ’s contribute significantly. Again with (2.23), we also
have

(2.40) Ph,a(t, x, y) = 〈
∑

N∈Z
e−iNL(ω), χ♭(h2/3ω/ǫ0)Kω(gh,a)(t, x, y)〉ω .

The sum
∑

N∈Z converges in D′
ω and χ♭(h2/3ω/ǫ0)Kω(gh,a)(t, x, y) is smooth in (t, x, y) in a neigh-

borhood W of (0, 0, 0) and smooth and compactly supported in ω. For the moment we use gh,a as
expressed from (2.33) and (2.34) (integral over α, s, ̺). We can however replace the cut-off χ(̺),
introduced in the proof of Lemma 2.12, by χ(s); as sc = −̺(1 + O(a)), defining gh,a without the
factor χ(̺) but with χ(s) inside the integral provides the same contribution modulo O(h∞) but
allows to immediately obtain ĝh,a(θ/h, α/h), which is useful in the formula for Kω(gh,a):

ĝh,a(θ/h, α/h) = h−1q−1/6(θ)

∫
e−

i
h
Φ(a,0,θ,α,s)χ(s)q̃h(θ, α, s)ds,

and substitution in (2.26) yields

(2.41) Kω(gh,a)(t, x, y) =
h2/3

2πhd+1

∫
e

i
h
(tτq(h2/3ω,θ)+Φ(x,y,θ,h2/3ω,σ)−Φ(a,0,θ,h2/3ω,s))

× ph(x, y, θ, h
2/3ω, σ)χ(s)q̃h(θ, h

2/3ω, s)dsdθdσ .

We set Ph,a(t, x, y) =
∑

N∈Z VN(t, x, y), where VN is defined as

VN(t, x, y) :=

∫
e−iNL(ω)χ♭(h2/3ω/ǫ0)Kω(gh,a)(t, x, y)dω(2.42)

=
1

2πhd+1

∫
e

i
h
(tτq(α,θ)+Φ(x,y,θ,α,σ)−Φ(a,0,θ,α,s)−NhL(h−2/3α))

× χ♭(α/ǫ0)χ(s)ph(x, y, θ, α, σ)q̃h(θ, α, s)ds dθdσdα .

The symbol χ♭(α/ǫ0)χ(s)phq̃h of VN is the same for every N , is of order 0 and is given by an
asymptotic expansion with small parameter h and main term equal to 1 (indeed, since q̃h has
been obtained by inverting J , whose symbol is ph). Note that we do not have a finite sum over N :
convergence should be understood in the distributional sense. The cut-off in α is redundant but we
will leave it there to emphasize compact support in α. In the forthcoming Lemma 2.16, we prove
that for a generic function fh replacing gh,a the sum over N converges and is O(h∞) for N > h−1/3,
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provided fh is of moderate growth with respect to h. Practically, fh is an oscillatory integral with
an Airy type phase and with a smooth rapidly decaying or compactly supported symbol and as
such, is of moderate growth.

As such, we may indeed replace gh,a modulo O(h∞) as it will only concern a (large but) finite
number of terms. Our main result in this section is the following proposition:

Proposition 2.14. Let a ∈ (h
2
3
−ǫ, a0] with small a0, ǫ > 0.

• For |t| . 1, Ph,a is essentially a finite sum in N at any given time,

(2.43) Ph,a(t, x, y) =
∑

|N |.|t|a−1/2

VN(t, x, y) +OC∞(h∞) .

Moreover we can introduce a cut-off χ♯(4α/a) in the definition of VN without changing its main
contribution modulo O(h∞) terms.

• At t = 0, we have Ph,a(0, x, y) = χ0(hDx)κ(hDy)δ(a,0) +OC∞(h∞).
• Ph,a is a parametrix in the sense of the Definition 2.5.

Remark 2.15. The cut off χ♯(h−2/3α) from Kω restricts to 1 ≤ h−2/3α. The last statement in the
first part of Proposition 2.14 translates into the contribution of the integrals defining VN being
irrelevant for small values α ≤ a/2: for a > h2/3−ǫ we can further restrict to α > a/2. This follows
right away from the expression of G(x, y, θ/h, ω) appearing in the definition of Kω(gh,a) (recall
(2.24)): using (2.6), G reads as a sum of Airy functions computed at −ζ = x|η|2/3e0(x, y, η, ω)−ω
with an elliptic e0, close to 1. These Airy functions are exponentially decreasing for −ζ > 0;
hence, if a > h2/3−ǫ, η = θ/h with |θ| ∼ 1 and ω = h−2/3α, we must have a . α since otherwise
the contribution from G is O(h∞). Note that h2/3−ǫ . α is required to perform stationary phase
arguments; for α ≤ h2/3−ǫ (to be dealt with if a ≤ h2/3−ǫ !), rescaling no longer provides a large
parameter.

Proof. We start with the easiest part: from Theorem 2.1 G(0, y, η, ωk) = eiψ(0,y,η,ωk)p0Ai(−ωk),
which immediately yields G(0, y, η, ωk) = 0. Therefore, from (2.39) being a finite sum, we get
Ph,a(t, x, y)|∂Ω = 0, which is to say, the Dirichlet boundary condition holds for Ph,a. From (2.23),

we get that the distribution
∑

N∈Z e
−iNL(ω) ∈ S ′(R). Moreover, from upcoming Lemma 2.16, for

|N | > h−1/3, the sum is O(h∞) irrespective of gh,a. As such, we are reduced to a finite number
of N ’s, and from (2.37) and (2.25), it follows that, taking W smaller if needed, and uniformly in
a < a0, one has (∂2t −∆)Ph,a ∈ OC∞(W )(h

∞), not only for x > 0 but in the full neighborhood W
of (0, 0, 0, 1). Both statements on Ph,a are independent on the particular choice of the function
gh,a such that (2.29) holds. It remains to check that, with our choice of gh,a given in (2.29),
Ph,a(0, x, y) is the right initial value, which turns out to be the most difficult part of the proof.
We first prove that the sum over N is (large but) finite and that at t = 0, in the sum over N
in (2.43), all the oscillatory integrals VN(0, x, y) for |N | ≥ 1 provide a O(h∞) contribution, while
V0(0, x, y) = J(gh,a)(x, y) which, by design, is our initial data. The fact that the number of N is
finite will allow to deduce that Ph,a(0, x, y) = V0(0, x, y) = J(gh,a)(x, y) = χ0(hDx)κ(hDy)δ(a,0)
and conclude.

Lemma 2.16. Let fh be a smooth function of (y′, ̺), with compact support in ̺ and of moderate
growth in h, and Kω(fh) be defined by (2.26). Then

(2.44) 〈
∑

|N |&h−1/3

e−iNL(ω), χ♭(h2/3ω/ǫ0)Kω(fh)(t, x, y)〉ω = O(h∞) .
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Proof. We consider the sum over all N : all phases in the sum are linear in t and N and given by

(2.45) tτq(α, θ) + Φ(x, y, θ, α, σ)−NhL(αh−2/3)− y′θ − ̺α,

with large parameter 1/h as a factor; it follows from (2.21) that

NL(αh−2/3) = N
π

2
+

1

h

(4
3
Nα3/2 −NhBL(α

3/2/h)
)
.

Integration variables are σ, α, θ and also y′ and ̺ ; only stationary points with respect to α and σ
will be required for the sum in N to be finite. Critical points in α are such that

(2.46) t∂ατq(α, θ) + ∂αΦ(x, y, θ, α, σ) = ̺+ 2Nα1/2
(
1− 3

4
B′
L(α

3/2/h)
)
,

while those with respect to σ are such that ∂σΦ(x, y, θ, α, σ) = 0. We used 1 ≤ h−2/3α to expand
L(h−2/3α) with (2.21). Recall that

Φ(x, y, θ, α, σ) = y · θ + σ3/3 + σ(xq1/3(θ)− α) + τq(α, θ)Γ(x, y, σq
1/3(θ)/τq(α, θ), θ/τq(α, θ)),

where Γ(x, y,Ξ,Θ) = BΓ(y,Θ)+xAΓ(x, y,Ξ,Θ) from Proposition 6.5 in the Appendix. In addition
to properties of AΓ and BΓ listed in Proposition 6.5, we will use Lemma 6.4. We start with
computing derivatives of τq(α, θ)Γ(x, y, σsq

1/3(θ)/τq, θ/τq) which depends on α only through τq.
Take Θ = θ/τq(α, θ), ϑ = θ/|θ|, then

τqBΓ(y, θ/τq) = τq
(
B0(y, ϑ) + (|θ|/τq − 1)B2(y, ϑ) + ... + (|θ|/τq − 1)jB2j(y, ϑ) + ...

)

and, writing ρ = |θ|/τq, θ/τq = ρϑ,

(2.47) ∂α

(
τqBΓ(y, θ/τq)

)
= ∂ατq∂w

(
wBΓ(y, θ/w)

)
|w=τq

= ∂ατq

(
BΓ(y, θ/τq)−

|θ|
τq
∂ρBΓ(y, ρϑ)|ρ=|θ|/τq

)

= ∂ατq

[
B0(y, ϑ)− B2(y, ϑ)−

( |θ|2
τq2

− 1
)
B4(y, ϑ) +Hj≥4

]
.

(2.48) ∂α

(
τqAΓ(x, y, sq

1/3(θ)/τq, θ/τq)
)
= ∂ατq∂w

(
wAΓ(x, y, sq

1/3/w, θ/w)
)
|w=τq

= ∂ατq

(
AΓ(x, y, sq

1/3/τq, θ/τq)− sq1/3(θ)ℓ(y, ϑ)/τq

− 2µ(y, ϑ)(s2q2/3(θ)/τq
2 + |θ|2/τq2) +Hj≥3

)

= ∂ατq

[
− µ(y, ϑ)

(
s2q2/3(θ)/τq

2 + |θ|2/τq2 + 1
)
+Hj≥3

]
,

where in the second to last line we used that the terms in Hj≥3 are powers of x, sq1/3(θ)/w, θ/w

and therefore w∂wHj≥3|w=τq = Hj≥3. We have ∂ατq(α, θ) =
q2/3(θ)
2τq(α,θ)

and using (2.47), (2.48) (which

comes with a factor x ∈ Hj≥2), (2.46) becomes

(2.49) ∂ατq

[
t +B0(y, ϑ)− B2(y, ϑ)−

( |θ|2
τq2

− 1
)
B4(y, ϑ) +Hj≥4

]
+ σ = ̺

+ 2Nα1/2
(
1− 3

4
B′
L(α

3/2/h)
)
.
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Using now (2.48) and that BΓ(y, θ/τq) does not depend on σ, ∂σΦ(· · · ) = 0 becomes

(2.50) σ2 + xq1/3(θ)− α + τq(α, θ)x∂σAΓ(x, y, σq
1/3(θ)/τq(α, θ), θ/τq(α, θ)) = 0.

Recalling (6.29), let Ξ = σq1/3(θ)
τq(α,θ)

and Θ = θ
τq(α,θ)

. Taking a derivative with respect to σ of AΓ

always provides a factor q1/3(θ)/τq: AΓ(x, y,Ξ,Θ) depends on σ only through Ξ = σq1/3(θ)
τq(α,θ)

, hence

∂σAΓ(x, y, σq
1/3(θ)/τq, θ/τq) = ∂σΞ× ∂ΞAΓ(x, y,Ξ,Θ),

and ∂ΞAΓ(x, y,Ξ,Θ) = ℓ(y,Θ/|Θ) + 2Ξµ(y, ϑ) +Hj≥2. This yields

(2.51) ∂σAΓ(x, y, σq
1/3(θ)/τq, θ/τq) =

q1/3(θ)

τq(α, θ)

(
ℓ(y, ϑ) + 2

σq1/3(θ)

τq(α, θ)
µ(y, ϑ) +Hj≥2

)
,

where Hj≥2 contains weights x, σ2q2/3(θ)
τq2

and |θ|
τq

− 1 = |θ|2−τq2
τq(|θ|+τq) = − αq2/3(θ)

τq(|θ|+τq) . Using (2.50) and

(2.51),

(2.52) σ2 + xq1/3(θ)
(
1 + ℓ(y, ϑ) + 2

σq1/3(θ)

τq(α, θ)
µ(y, ϑ) +Hj≥2

)
= α .

Recall that ℓ was chosen after (6.26) and depends on the curvature at the boundary near y = 0:

1 + ℓ(y, ϑ) =
(
R1(y, ϑ+∇yB0(y, ϑ))/q(ϑ)

)1/3
, R1(0, ϑ) = q(ϑ),

where from (6.25) we have ϑ + ∇yB0(y, ϑ) = ϑ(1 + O(y)). By finite speed of propagation of the
wave flow, for bounded time |t| we must have |y| bounded (see Lemma 3.2); hence, there exists
T0 < 1 sufficiently small such that if |t| ≤ T0 then

(2.53)
(
R1(y, ϑ+∇yB0(y, ϑ))/q(ϑ)

)1/3
> 1/2.

Recall that α ≤ ǫ0, small. We have B0 = O(|y|2), B2 = O(|y|2), B2j = O(|y|), ∀j ≥ 2 and
|θ|
τq

− 1 = |θ|2−τq2
τq(|θ|+τq) = − αq2/3(θ)

τq(|θ|+τq) = O(α), therefore the coefficient of ∂ατq in (2.47) is like

B0(y, ϑ)− B2(y, ϑ) +O(αy) = y(O(y) +O(α)).

For |t| ≤ T0, taking T0 smaller if necessary, we assume |B0(y, ϑ)− B2(y, ϑ)| = O(y2) ≤ |t|/8. As
y . t by finite speed of propagation, taking ǫ0 smaller if necessary, we assume O(αy) ≤ |t|/8
for α ≤ ǫ0. Therefore, the contribution from ∂α(τqBΓ(y, θ/τq))/∂ατq in (2.49) is O(|t|/4) and the
coefficient of ∂ατq in (2.49) behaves like t ≤ T0 < 1. As ̺ is bounded (f has compact support in
̺), it remains to compare σ and 2Nα1/2 in (2.49). Going back to (2.52), using that 0 ≤ x < 1 and
that the terms in Hj≥2 come with the factors σ2, x, α, it follows that

(σ + xµq2/3(θ)/τq)
2 + xq1/3(1 + ℓ+Hj≥2) = α + x2µ2q4/3(θ)/τq

2,

which implies that σ2 is bounded; hence for |σ| > C for some constant C, repeated integrations
by parts in σ provide a contribution O(h∞) in every integral in the sum in N in (2.44). We obtain
that the phase functions in (2.44) may be stationary in α only for

(2.54) 2|N |α1/2 ≤ 2(
c

2
|t|+ |̺|+ |σ|), c := sup

|θ|∼1,α≤ǫ0

q2/3(θ)

τq(α, θ)
,

where, as h2/3−ǫ . α, we used |B′
L(α

3/2/h)| = h2

α3

(
b1 +

∑
j≥2 jbj(

h
α3/2 )

j−1
)
≤ hǫ. As the righthand

side from (2.54) is bounded, phase functions in (2.44) are stationary in α only for |N | ≤ C̃α−1/2
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for some constant C̃ := c
2
T0 + 1 + C. Again, as h2/3−ǫ . α (which is crucial here), we get for N ’s

that may provide non-trivial contributions |N | . α−1/2 . h−1/3+ǫ/2. For |N | larger than h−1/3

we perform non stationary phase with respect to α: each integration by parts provides a factor h
and ”loses” a factor h−2/3 corresponding to taking a derivative on ph which has been defined in
(2.17) in terms of p(x, y, θ/h, α/h, σ/h1/3), together with a negative power of the derivative of the
phase of Kω(f) with respect to α, which depends on N (through the term 2

√
αN). Therefore, if

|N | ≥ h−1/3, we get, after M ≥ 1 integrations by parts,

∣∣∣〈
∑

|N |≥h−1
3

e−iNL(ω), χ♭(h
2
3ω/ǫ0)Kω(f)(t, x, y)〉ω

∣∣∣ ≤ CM
∑

|N |≥h−1
3

( h1− 2
3√

αN

)M
≤ CMh

M ǫ
2 .

as the sum in N is bounded for M ≥ 2, and therefore this provides a contribution O(h∞). We just
proved that, for any smooth f , the sum over N (2.44) is essentially finite over |N | . h−1/3. �

In the following we introduce gh,a provided by Lemma 2.12 in this finite sum (for |N | . h−1/3)
and prove that for a > h2/3−ǫ, N > |t|a−1/2, VN provides an OC∞(h∞) contribution. Let Kω(gh,a)
be given by (2.41). The phase function of VN(t, x, y) defined in (2.42) is

tτq(α, θ) + Φ(x, y, θ, α, σ)− Φ(a, 0, θ, α, s)−NhL(αh−2/3) ,

with large parameter 1/h in front. This phase function is stationary with respect to α if

(2.55) ∂ατq

[
t +B0(y, ϑ)− B2(y, ϑ)−

( |θ|2
τq2

− 1
)
B4(y, ϑ) +Hj≥4

]

+ σ − s = 2Nα1/2
(
1− 3

4
B′
L(α

3/2/h)
)
.

Using now (2.48), the phase is stationary in σ and s when

σ2 + xq1/3(θ)− α + τq(α, θ)x∂σAΓ(x, y, σq
1/3(θ)/τq(α, θ), θ/τq(α, θ)) = 0,

s2 + aq1/3(θ)− α + τq(α, θ)a∂sAΓ(a, 0, sq
1/3(θ)/τq(α, θ), θ/τq(α, θ)) = 0 .

Using (2.51) for ∂σAΓ, we obtain as in (2.52)

σ2 + xq1/3(θ)
(
1 + ℓ(y, ϑ) + 2

σq1/3(θ)

τq(α, θ)
µ(y, ϑ) +Hj≥2

)
= α,(2.56)

s2 + aq1/3(θ)
(
1 + 2

sq1/3(θ)

τq(α, θ)
µ(0, ϑ) +Hj≥2

)
= α .

Both a ≤ a0 and α ≤ ǫ0 being small, the second equation in (2.56) yields
(
s(1 +O(a) + aq2/3(θ)/τq

)2
+ aq1/3(θ)(1 +O(a)) ∼ α,

and therefore |s| = √
α + O(a). Moreover, we must have a . α, otherwise non stationary phase

in s provides an O(h∞) contribution.Therefore we introduce a cut-off (1− χ)(4α/a) supported for
α > a/4 in the symbol of VN without changing its contribution modulo O(h∞) (see Remark 2.15).
For T0 sufficiently small such that (2.53) to hold, the first equation in (2.56) yields,

(
σ(1 +O(x)) + xµq2/3(θ)/τq

)2
+ xq1/3(1 + ℓ(y, ϑ) +O(x)) ∼ α.

Note that x remains small (comparable to α), otherwise non stationary phase with respect to σ
will provide an O(h∞) contribution. We also obtain |σ| = √

α + O(x). Moreover, both σ and s
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are small and x ≥ 0, so that (2.56) implies that |σ|, |s| ≤ √
α for the phase of VN to be stationary

in σ, s; for |σ|, |s| ≥ 2
√
α we can apply the non-stationary phase theorem, and from (2.55), for T0

sufficiently small such that (2.53) to hold, the phase of VN(t, x, y) is stationary in α only for

(2.57) 2|N |√α ≤ |t|+ |σ|+ |s| ≤ |t|+ 2
√
α .

We used again here that for T0 sufficiently small and by finite speed of propagation, the coefficient
of ∂ατq in the lefthand side of (2.55) is t + y(O(y) + O(a)) ∼ t and that ∂ατq ∼ 1/2. Moreover,
for values 2|N |√α ≥ 2|t| + 4

√
α, non stationary phase in α provides an O(h∞) contribution

from all VN with |N | ≥ 2 + |t|/√α. As both a . α and the number of VN is (large but) finite
(|N | ≤ h−1/3), non-trivial contributions in Ph,a(t, x, y) may only be provided by the sum over
|N | . |t|/√α . |t|/√a. We have thus proved the second point in Proposition 2.14.

Finally, we turn to the data: by design, V0(0, x, y) = χ0(hDx)κ(hDy)δ(a,0) + OC∞(h∞), and we

are left to proving that, for 0 < |N | . h−1/3, VN(0, x, y) ∈ OC∞(h∞). In this part we consider gh,a
as provided by Lemma 2.12, of the form (2.31) with phase function ψa(̺, θ

′) = ̺3/3+a(̺q1/3(θ′)+
O(̺3)) +O(a2) . Then Kω(gh,a) is of the form (2.26) with f replaced by gh,a, that we re-write here

Kω(gh,a)(t, x, y) =
h2/3

2πhd

∫
e

i
h
(tτq(h2/3ω,θ)+Φ(x,y,θ,h2/3ω,σ)−y′·θ−̺h2/3ω)ph(x, y, θ, h

2/3ω, σ)q1/6(θ)

× h−de
i
h
(ψa(̺,θ′)+y′·θ′)rh(̺, θ

′)q−1/6(θ′) dθ′ dy′d̺dθdσ .

For all N , VN is an oscillatory integral, that we rewrite, using (2.42) and Proposition 2.14,

VN(t, x, y) =h
−2/3

∫
e−iNL(h

−2/3α)χ♭(α/ǫ0)χ
♯(4α/a)Kh−2/3α(gh,a)(t, x, y)dα

=
1

2πhd

∫
e−iNL(h

−2/3α)χ♭(α/ǫ0)χ
♯(4α/a)e

i
h
(tτq(α,θ)+Φ(x,y,θ,α,σ)−y′·θ−̺α)

× ph(x, y, θ, α, σ)q
1/6(θ)h−de

i
h
(ψa(̺,θ′)+y′·θ′)rh(̺, θ

′)q−1/6(θ′) dθ′ dy′d̺dθdσ .

We can write qh := χ♭(α/ǫ0)χ
♯(4α/a)phrh, which is an elliptic symbol of order 0; indeed, recall

that ph comes with a factor h−1/3 while rh comes with a factor h1/3. At t = 0, the stationary points
of VN with respect to α, s, ̺, y′, θ′, θ are solutions to the following equations

(2.58)





∂αΦ(x, y, θ, α, σ) = ̺+ 2Nα1/2
(
1− 3

4
B′
L(α

3/2/h)
)
,

σ2 + xq1/3(θ) + τq(α, θ)x∂σAΓ(x, y, σq
1/3(θ)/τq(α, θ), θ/τq(α, θ)) = α ,

∂̺ψa(̺, θ
′) = α ,

θ′ = θ , ∇θ′ψa(̺, θ
′) = y′ , ∇θΦ(x, y, θ, α, σ) = y′ .

From the first two equations we get (2.57) (at t = 0), which allows to conclude that if |N | ≥ 2 the
phase is non-stationary in α. Hence we are left with |N | = 1. The equations from the last line in
(2.58) give ∇θΦ(x, y, θ, α, σ) = ∇θψa(̺, θ) and therefore

(2.59) a̺∇θ(q
1/3(θ)) +O(a̺2, a2) = y + σx∇θ(q

1/3(θ)) +∇θ(τq(α, θ)Γ).

For τq = τq(α, θ) we have ∇θτq = (θ + α∇θ(q
1/3(θ))

3q1/3(θ)
)/τq and

∇θ

(
τqΓ(x, y, σq

1/3(θ)/τq, θ/τq)
)
= (∇θτq)Γ(x, y, σq

1/3(θ)/τq, θ/τq)

+ τq

(
∇θ(BΓ(y, θ/τq)) + x∇θ(AΓ(x, y, σq

1/3(θ)/τq, θ/τq))
)
.
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From B0 = O(|y|2), B2 = O(|y|2), B2j = O(|y|) we get

∂θ(τq(α, θ)Γ) = ∂θτq

(
O(y3) +O(y2α) +O(yα2) + x(O(σ) +O(α))

)
+ τq(O(yα) + xO(σ))

= O(y3) +O(yα) +O(xσ) .

Combining this with (2.59) yields y = O(a̺) + O(xσ) + O(a2), at the stationary phase points
y′, θ′, θ of VN . Rescale x = aX , α = aq1/3(θ)A, σ =

√
aq(θ)1/6S and ̺ =

√
aq(θ)1/6T ; from the

first three equations of (2.58) (and θ′ = θ) we get

S + T + 2A 1
2 = O(a1/2) , S2 + (1 + ℓ)X +O(a1/2) = A = T 2 + 1 +O(a1/2) .

As a ≤ a0 is small (taking a0 even smaller if necessary), T 2 ≤ A− 1
2
; then, using that ℓ = O(y) =

O(a3/2), there exists ε > 0 such that for X ≥ −ε, S2 ≤ A+ 1
10
. For these values, the first equation

cannot hold and non stationary phase in α allows to conclude. Again, that we can integrate by
parts in V±1(0, x, y) relies on a ≥ h2/3−ǫ. �

2.3. Parametrix construction for a < h2/3−ǫ, 0 < ǫ < 1/12. In formulas (2.37) and (2.38),
G(· · · , ω) can be written in terms of the Airy function Ai(−ζ) and its derivative, as stated in
Theorem 2.1. Using the explicit form of ζ , for ζ < 0 (hence for ω ≤ a/(4h2/3)), these Airy factors
in G are exponentially decreasing, so the main contribution comes from values a . 4ωh2/3. For
a & h2/3−ǫ, this implies ω & h−ǫ and one may perform stationary phase arguments in the integrals
from (2.37), as long as we pick any ǫ > 0. In this section, a is much smaller and very different issues
arise compared to the previous one; we need a different way to construct a suitable gh,a to recover
the initial data. The explicit upper bound on ǫ will be of use in this section and later required in
Section 4; there is quite an overlap between both parametrix constructions for h2/3 < a < h2/3−1/12,
but we made not attempt at enlarging it; the reader is advised to think ǫ to be really small.

Besides the lack of a large parameter, which forces us to work with (2.38), the regime a < h
has its own difficulties: even deciding how the initial data should be chosen in order the Dirichlet
condition to be satisfied on the boundary becomes a non trivial issue. Indeed, (2.28) as initial
data provides a non-trivial contribution on the boundary. Taking κ(−h2∆)κ(hDy)δ(a,0) would be
a natural choice: it may be expanded on eigenfunctions of the Laplace operator on the compact
set Ω, but we know very little on them. Instead, we use the spectral theory for the model Laplace
operator (2.2) in order to expand κ(−h2∆M )κ(hDy)δ(a,0) in terms of the eigenfunctions of −∆M ,
as they have been used extensively in our previous work [9], [12]. This will turn out to be sufficient
for our later purposes. We now recall some properties of −∆M .

2.3.1. Spectral theory for −∆M : the initial data in terms of model gallery modes. Let −∆M be the
Friedlander model operator introduced in (2.2), and recall q is a positive definite quadratic form.
Taking the Fourier transform in the y variable, the operator −∆M becomes −∂2x + |η|2 + xq(η).
For η 6= 0, this operator is a positive self-adjoint operator on L2(R+), with compact resolvent. The
next Lemma is proved in [11] (with q(η) = |η|2, but only using q(η) 6= 0):

Lemma 2.17. (see [11, Lemma 2]) There exists an Hilbert basis of L2(R+) where {ek(x, η)}k≥0

are eigenfunctions of −∂2x + |η|2 + xq(η), with eigenvalues λk(η) = |η|2 + ωkq(η)
2/3 = τ 2q (ωk, η).

These eigenfunctions are translated and rescaled Airy functions:

(2.60) ek(x, η) =

√
2πq(η)1/6√
L′(ωk)

Ai
(
xq(η)1/3 − ωk

)
,

where L′(ωk) (from (2.22)) normalizes ‖ek(., η)‖L2(R+) = 1.
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For a > 0, the Dirac distribution δx=a on R+ may be decomposed as δx=a =
∑

k≥1 ek(x, η)ek(a, η).

Eigenfunctions of−∂2x+xq(η) are ek(x, η) with eigenvalue λk(η)−|η|2 = τ 2q (ωk, η)−|η|2 = ωkq
2/3(η),

and for cut-offs κ, χ0 to be chosen, the following spectral decomposition holds

(2.61) χ0(−h2∂2x + xq(h∂y))κ(hDy)δ(a,0) =
∑

k≥1

∫
eiy·ηχ0

(
h

2
3ωkq

2
3 (hη)

)
κ(hη)ek(x, η)ek(a, η)dη .

With χ0 ∈ C∞
0 (−2ǫ0, 2ǫ0), χ0 = 1 on [−ǫ0, ǫ0], (2.61) is a finite sum with O(ǫ0/h) terms. Setting

θ = hη, from support considerations, taking the support of χ0 smaller if necessary, we can assume
that χ♭(α/ǫ0)χ0(αq

2/3(θ))κ(θ) = χ0(αq
2/3(θ))κ(θ), where α = h2/3ω and χ♭(h2/3ω/ǫ0) is the cut-off

introduced in (2.39) (which restricts the support of Kω to values ω ≤ ǫ0/h
2/3).

For a ≤ h2/3−ǫ, the easiest way to define an initial data is to chose the lefthand side term in
(2.61), which does vanish on the boundary (ek(0, η) = 0 for every k ≥ 1). Using both (2.40) and
(2.39), we are left to obtain a smooth function gh,a such that for Ph,a as in (2.39) to have

(2.62) Ph,a(0, x, y) = χ0(−h2∂2x + xq(h∂y))κ(hDy)δ(a,0) +OC∞(h∞).

We proceed as follows : for a given Kǫ such that h−ǫ ≪ h−2ǫ . Kǫ . h−1/4+ǫ ≪ h−1/4, define EM
and split the sum over k in (2.61),

EM(x, y, a, ωk) :=

∫
eiy·ηχ0(h

2/3ωkq
2/3(hη))κ(hη)ek(x, η)ek(a, η)dη

=
2π

L′(ωk)

∫
eiy·ηχ0(h

2/3ωkq
2/3(hη))κ(hη)q1/3(η)Ai(xq1/3(η)− ωk)Ai(aq

1/3(η)− ωk)dη.

(2.63)

∑

k≥1

(· · · ) =
∑

k≥1

χ♭
( ωk
ωKǫ

)
EM(x, y, a, ωk) +

∑

k≥1

χ♭(h2/3ωk/ǫ0)χ
♯
( ωk
ωKǫ

)
EM(x, y, a, ωk) .(2.64)

Proposition 2.18. For all a ∈ (0, h2/3−ǫ) there exists a smooth function gh,a,1 such that

(2.65)
∑

k≥1

2π

L′(ωk)
χ♭(h2/3ωk/ǫ0)Kωk

(gh,a,1)(0, x, y) =
∑

k≥1

χ♭
( ωk
ωKǫ

)
EM(x, y, a, ωk) +O(h∞) .

The proof of Proposition 2.18 is postponed to Section 2.3.3, as it requires arguments from section
2.3.2; we will introduce the cutoff χ♭(ωk/ωKǫ) in the (LHS) term of (2.65) as well, due to how gh,a,1
is obtained.

Proposition 2.19. For all a ∈ (0, h2/3−ǫ), there exists a smooth function gh,a,2 such that

〈
∑

N∈Z
e−iNL(ω), χ♭(h2/3ω/ǫ0)χ

♯(h2ǫω)Kω(gh,a,2)(0, x, y)〉ω

=
∑

k≥1

χ♯
( ωk
ωKǫ

)
χ♭(h2/3ωk/ǫ0)EM(x, y, a, ωk) +O(h∞),

(2.66)

〈
∑

N∈Z
e−iNL(ω), χ♭(h2/3ω/ǫ0)χ

♯(ω)χ♭(h2ǫω)Kω(gh,a,2)(0, x, y)〉ω = O(h∞).(2.67)

We introduced a new cut-off χ♯(h2ǫω) in (2.66) and removed χ♯(ω) (which is supported for ω ≥ 2
and identically 1 on the support of χ♯(h2ǫω)). The proof of Proposition 2.19 will be provided in
Section 2.3.4. The sum of (2.66) and (2.67) yields the second term in (2.64). Finally, we have

Proposition 2.20. For all a ∈ (0, h2/3−ǫ), let gh,a := gh,a,1+gh,a,2, then Ph,a, defined in Definition
2.13 is a parametrix in the sense of Definition 2.5 and (2.62) holds.



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 23

Proposition 2.20 follows easily from Propositions 2.18 and 2.19 using Kω(gh,a,1 + gh,a,2) =
Kω(gh,a,1) +Kω(gh,a,2) together with (2.38).

Remark 2.21. For later purposes (dispersion for small a, Section 4), taking Kǫ ∼ h−2ǫ would be
enough. However, in the next subsection, we aim at obtaining gallery modes for k as large as
possible, which turns out to be up to Kǫ ∼ h−1/4+ǫ. This is of independent interest and will prove
useful to deal with the Schrödinger operator as well as generalize [12] from the model case to the
general case; both will be adressed elsewhere.

2.3.2. Pseudo-differential calculus; construction of gallery modes.

Definition 2.22. Let G be defined in (2.12). We set

(2.68) e(x, y, η, ω) =

√
2πq(η)1/6√
L′(ω)

e−iy·ηG(x, y, η, ω).

Replacing G(· · · ) withGM(· · · ) := eiy·ηAi(xq(η)1/3−ω) in (2.68) yields (2.60) instead of e(x, y, η, ω).

Definition 2.23. Let κ be like in Definition (2.5). For g ∈ L2(Rd−1), we define

(2.69) Fωk
(g)(x, y) :=

1

(2π)d−1

∫
ei(y−y

′)·ηe(x, y, η, ωk)(κ(hDy′)g)(y
′)dηdy′ .

Definition 2.24. Let κ̃ ∈ C∞
0 (Rd−1) be such that κ̃ = 1 on the support of κ and vanishing

outside a neighborhood of Sd−2. Let also χ ∈ C∞
0 be a smooth cutoff supported in the ball of

center 0 and radius 1/16 of Rd−1. For f ∈ L2(Rd−1) we define an operator L as

(2.70) L(f)(y) :=

∫
ei(y−y

′)·η−i|η|B0(y′,η/|η|)κ̃(hη)χ(y′)f(y′)dy′dη,

where B0 is the first term in the development of BΓ in (6.8) and is homogeneous of degree 0.

To define gh,a,1 and gh,a,2, we need to ”invert” Fωk
, which requires estimating derivatives of

e(x, y, η, ωk) with respect to (y, η): in the Friedlander model case the corresponding mode ek(x, η)
from (2.60) does not depend on y, but here, deriving with respect to y yields a large factor due to
τB0 in the phase τΓ(x, y, σq1/3(η)/τ, η/τ). In order to get rid of the homogeneous term of degree
zero |η|B0(y, η/|/η|) in the phase function of e(x, y, η, ωk), we set F̃ωk

:= Fωk
◦ L to obtain a new

operator whose phase function does not include the contribution |η|B0(y, η/|η|); we need to prove
that, at least for k ≪ h−1/4, these operators can be inverted and this will be our main result in
this section:

Proposition 2.25. Let 0 < ǫ1 < 1/4 be small. The operators F̃ ∗
ωk

◦ F̃ωk
: L2(Rd−1) → L2(Rd−1)

are pseudo-differential operators that are uniformly elliptic with respect to 1 ≤ k ≤ h−1/4+ǫ1.

Note that we would like to construct quasi-modes for as many k as possible in the next section,
and therefore ǫ1 should really be seen as very small. We momentarily postpone the proof of
Proposition 2.25 to perform some preliminary steps.

We compute Fωk
◦ L(f) for f ∈ L2(Rd−1), setting ẽ(x, y, η, ωk) = e−i|η|B0(y,η/|η|)e(x, y, η, ωk):

Fωk
◦ L(f)(x, y) = 1

(2π)d−1

∫

η

eiy·ηe(x, y, η, ωk)κ(hη)L̂(f)(η)dη

=
1

(2π)d−1

∫

y′

∫

η

ei(y−y
′)·η+i|η|(B0(y,η/|η|)−B0(y′,η/|η|))ẽ(x, y, η, ωk)κ(hη)χ(y

′)f(y′)dηdy′.
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Remark 2.26. As y′ is small on the support of χ(y′), there exists a cut-off χ̃, supported in a ball
of radius 1/8 in Rd−1, such that χ̃ = 1 on the support of χ and

Fωk
◦ L(f)(x, y) = χ̃(y)Fωk

◦ L(f)(x, y) +O(h∞).

When it will be necessary to emphasize the small size of the support in y of the operators we will
work with, we will add the cutoff χ̃(y).

Setting F̃ωk
= Fωk

◦ L, we compute the adjoint operator F̃ ∗
ωk

using that for every f ∈ L2(Rd−1)

and E ∈ L2(Ω) we have < F̃ωk
(f), E >L2(Ω)=< f, F̃ ∗

ωk
(E) >L2(Rd−1). This yields

< F̃ωk
(f), E >L2(Ω)=

∫

Ω

( 1

(2π)d−1

∫

z

∫

η

ei(y−z)·ηe(x, y, η, ωk)κ(hη)L(f)(z)dηdz
)
E(x, y)dxdy

=

∫

y′
f(y′)

( 1

(2π)d−1

∫

Ω

∫

η

ei(y′−y)·η+i|η|(B0(y′,η/|η|)−B0(y,η/|η|))ẽ(x, y, η, ωk)κ(hη)χ(y′)E(x, y)dηdxdy
)
dy′

=

∫

z

f(z)F̃ ∗
ωk
(E)(z)dz =< f, F̃ ∗

ωk
(E) >L2(Rd−1),

which yields F̃ ∗
ωk
(E). We can now explicitly compute F̃ ∗

ωk
◦F̃ωk

(f)(z) for f ∈ L2(Rd−1) and z ∈ Rd−1:

F̃ ∗
ωk

◦ F̃ωk
(f)(z) =

χ(z)

(2π)d−1

∫

Ω

∫

η

ei(z−y)·η+i|η|(B0(z,η/|η|)−B0(y,η/|η|))κ(hη)ẽ(x, y, η, ωk)F̃ωk
(f)(x, y)dηdxdy

=

∫

z′
Mk(z, z

′)f(z′)dz′ +O(h∞),(2.71)

where we have introduced the cut-off χ̃(y) and have set

Mk(z, z
′) =

1

(2π)d−1

∫

y,η,η′
ei
(
(z−y)·η+|η|(B0(z,η/|η|)−B0(y,η/|η|))

)
−i
(
(z′−y)·η′+|η′|(B0(z′,η′/|η′|)−B0(y,η′/|η′|))

)

× χ̃(y)χ(z)χ(z′)κ(hη)κ(hη′)

∫ ∞

0

ẽ(x, y, η, ωk)ẽ(x, y, η
′, ωk)dxdη

′dηdy.

We let υ = υ(η, z, y) := η+ |η|
∫ 1

0
∇yB0(̟y+ (1−̟)z, η/|η|)d̟ (resp. υ′ = υ(η′, z′, y)) such that

(z − y)υ = (z − y) · η + |η|(B0(z, η/|η|)− B0(y, η/|η|)) ,
(z′ − y)υ′ = (z′ − y) · η′ + |η′|(B0(z

′, η′/|η′|)− B0(y, η
′/|η′|)) .

∇ηυ = Id−1+O(|∇yB0|) being close to the identity matrix Id−1 for small y, z, |∇υη| = 1+O(|∇yB0|)
and, in the same way |∇υ′η

′| = 1 + O(|∇yB0|). Denoting η(υ, z, y) = υ + |υ|O(y, z) the inverse
function, we have η = η(υ, z, y) and η′ = η(υ′, z′, y), respectively, and therefore

(2.72) Mk(z, z
′) =

1

(2π)d−1

∫

y,υ,υ′
ei(z−y)·υ−i(z

′−y)·υ′ |∇υη||∇υ′η
′| × χ̃(y)χ(z)χ(z′)

× κ(hη(υ, z, y))κ(hη(υ′, z′, y))

∫ ∞

0

ẽ(x, y, η(υ, z, y), ωk)ẽ(x, y, η(υ
′, z′, y), ωk)dxdυ

′dυdy.
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Taking y = z′ + w, υ′ = υ − ζ in (2.72), yields

Mk(z, z
′) =

∫

υ

ei(z−z
′)·υmk(z, z

′, υ)dυ ,(2.73)

mk(z, z
′, υ) =

1

(2π)d−1

∫

ζ

∫

w

∫ ∞

0

e−iw·ζ|∇υη|(υ, z, z′ + w)|∇υ′η|(υ − ζ, z′, z′ + w)

× κ(hη(υ, z, z′ + w))κ(hη′(υ − ζ, z′, z′ + w))χ̃(z′ + w)χ(z)χ(z′)

× ẽ(x, z′ + w, η(υ, z, z′ + w), ωk)ẽ(x, z
′ + w, η(υ − ζ, z′, z′ + w), ωk)dxdwdζ.

On the support of the two cut-offs κ, h(υ+O(z, z′+w)) ∈ [1/2, 2], h(υ−ζ+O(z′, z′+w)) ∈ [1/2, 2],
and on the support of χ(z)χ(z′ +w)χ̃(z′ +w), |z, z′| < 1/16, |z′+w| < 1/8; then, set υ = θ

h
, ζ = ̺

h
where θ ∈ [1/4, 5/4] and |̺| ≤ 2. In (2.73) we may replace mk(z, z

′, υ) by mk(z
′, z′, υ) =: m̃k(z

′, υ)
without changing the integral modulo O(υ−∞) = O(h∞). In the new variables (and modulo O(h∞)
terms), the symbol of (2.73) becomes

m̃k(z
′, θ/h) =

1

(2πh)d−1

∫

̺

∫

w

e−
i
h
w·̺ak((z

′, θ); (w, ̺); h)dwd̺ ,

where

(2.74) ak((z
′, θ); (w, ̺); h) := |∇υη|(θ/h, z′, z′ + w)|∇υ′η|((θ − ̺)/h, z′, z′ + w)

× κ(hη(θ/h, z′, z′ + w))κ(hη((θ − ̺)/h, z′, z′ − w))χ̃(z′ + w)χ(z)χ(z′)

×
∫ ∞

0

ẽ(x, z′ + w, η(θ/h, z, z′ + w), ωk)ẽ(x, z
′ + w, η((θ − ̺)/h, z′, z′ + w), ωk)dx .

Define

Sγ := {a ∈ C∞ such that |∂β1w ∂β2̺ a(w, ̺, h)| ≤ Cβh
−γ(|β1|+|β2|)} .

We now prove

Proposition 2.27. Let 0 < ǫ1 < 1/4 be small. The symbols ak((z
′, θ); (w, ̺); h) are in the class

S 1
2
− 2

3
ǫ1, uniformly with respect to 1 ≤ k ≤ h−

1
4
+ǫ1.

Proof. We check that there exists ǫ1 > 0 such that for every |β| ≥ 1,

(2.75) h|β|
∣∣∣∂βw∂β̺ ak(z′, θ;w, ̺; h)|w=0,̺=0

∣∣∣ . h
4
3
ǫ1|β| .

This easily follows from following lemma whose proof is postponed to the Appendix:

Lemma 2.28. Uniformly for h2/3ωk ≪ 1, we have:

(2.76) ‖∂β(y,θ)ẽ(., y, θ/h, ωk)‖L2(x≥0) .
(
ωk/h

1/3
)|β|

.

Using (2.74), (2.76), and ωk ∼ k2/3, we get that for every |β| ≥ 1, as k ≤ h−1/4+ǫ1 .

h|β|
∣∣∣∂βw∂β̺ ak((z′, θ); (w, ̺); h)|w=0,̺=0

∣∣∣ . Cβh
|β|(ωk/h1/3

)2|β|
. Cβ

(
h4ǫ1/3

)|β|
,

which proves the Lemma and completes the proof of Proposition 2.27. �

We now turn our attention to m̃k and recall the classical expansion:
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Lemma 2.29. Let a(w, ̺, h) : R2n → C be C∞ with a ∈ S 1
2
−ǫ1, with small ǫ1 > 0. Then

1

(2πh)n

∫

̺

∫

w

e−
i
h
w·̺a(w, ̺, h)dwd̺ =

∑

β

h|β|

i|β||β|!∂
β
w∂

β
̺ a(w, ̺, h)

∣∣∣
(w,̺)=(0,0)

.

Using Lemma 2.29 for n = d − 1 with ak defined in (2.74) and Proposition 2.27, we get that
m̃k(z

′, θ/h) may be written as

(2.77) m̃k(z
′, θ/h) =

∑

β

h|β|

i|β||β|!∂
β
w∂

β
̺ ak((z

′, θ); (w, ̺); h)|w=0,̺=0 .

We may now return to the proof of our main Proposition.

Proof. (of Proposition 2.25) From (2.71) and (2.73),

F̃ ∗
ωk

◦ F̃ωk
(f)(z) =

∫
e

i
h
(z−z′)·θm̃k(z

′, θ/h)f(z′)dz′ ,

where the symbol m̃k(z
′, θ/h) is given by (2.77) and where, for every k ≤ h−1/4−ǫ1 , (2.75) holds

true. Moreover, m̃k is elliptic. Indeed, from (2.74), it follows that

ak((z
′, θ); (0, 0); h) = σ(z′, θ/h; 0, 0)‖ẽ(., z′, θ/h, ωk)‖2L2(x>0),

where for υ = θ/h and ζ = ̺/h like before, we define

(2.78) σ((z′, υ); (w, ζ)) = |∇υη|(υ, z′, z′ + w)|∇υ′η|(υ − ζ, z′, z′ + w)

× κ(hη(υ, z′, z′ + w))κ(hη(υ − ζ, z′, z′ − w))χ̃(z′ + w)χ(z)χ(z′).

Using Lemma 6.1 in the Appendix, the e(., y, η, ωk) are almost L2-normalized in x > 0 and
‖ẽ(·, y, η, ωk)‖L2(x>0) ∼ 1. On the other hand the symbol σ defined in (2.78) is elliptic, there-
fore ak is elliptic and ak((z

′, θ); (0, 0); h) ∼ 1 for θ close to 1; using (2.75), m̃k is therefore elliptic;

F̃ ∗
ωk

◦ F̃ωk
are pseudo-differential operators, uniformly elliptic for k ≤ h−1/4+ǫ1 . �

2.3.3. Construction of quasi-modes k ≪ h−1/4 (proof of Proposition 2.18). It suffices to construct
a smooth function gh,a,1 such that, for all k such that χ♭(ωk/ωKǫ) 6= 0,

2π

L′(ωk)
Kωk

(gh,a,1)(0, x, y) = EM(x, y, a, ωk) +O(h∞).

Indeed, for a function g(y′, ̺), let
2∧
g(y′, α/h) be its Fourier transform w.r.t. ̺ at α/h. Using the

definition of Kω(g), we only need
2∧
gh,a,1(., ω/h

1/3) for ω ∈ {ωk, 1 ≤ k ≪ h−1/4}.

Lemma 2.30. Let h−2ǫ . Kǫ . h−1/4+ǫ, ǫ > 0 small. For 1 ≤ k ≤ 4Kǫ, define

(2.79) fωk
(y) :=

(
F̃ ∗
ωk

◦ F̃ωk

)−1(
F̃ ∗
ωk
(EM(., ωk))

)
(y) ,

then define gh,a,1 with: ∀k such that χ♭(ωk/ωKǫ) 6= 0,

(2.80)
2∧
gh,a,1(., ωk/h

1/3) :=

√
L′(ωk)√
2π

L(fωk
) ,

and ∀k such that χ♭(ωk/ωKǫ) = 0,
2∧
gh,a,1(., ωk/h

1/3) := 0. Then Proposition 2.18 holds for gh,a,1.
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Proof. As k ≤ 4Kǫ . h−1/4+ǫ ≪ h−1/4, we can use Proposition 2.25 and define fωk
by (2.79). For

such fωk
and χ♭(ωk/ωKǫ) 6= 0, we now define

2∧
gh,a,1(y, ωk/h

1/3) by (2.80) (and zero for larger k’s).

By construction, on the support of χ♭(ωk/ωKǫ), we have Fωk
(L(fωk

))(x, y) = F̃ωk
(fωk

)(x, y) =

EM(x, y, a, ωk), as we chose fωk
such that F̃ ∗

ωk
◦ F̃ωk

(fωk
) = F̃ ∗

ωk
(EM(., ωk)). In turn, we have

Fωk

( 2π√
L′(ωk)

2∧
gh,a,1(., ωk/h

1/3)
)
(x, y) = EM(x, y, a, ωk) +O(h∞) ,

(inverting F̃ ∗
ωk
); using (2.24) and (2.69), 2π

L′(ωk)
Kωk

(gh,a,1)(0, x, y) = EM(x, y, a, ωk) +O(h∞). �

We obtain the explicit form of
2∧
gh,a,1 as a corollary of Lemma 2.30:

Corollary 2.31. We keep the notations from the proof of Lemma 2.30. Let

(2.81) Ia(η, ωk) :=

∫

x,y

e−iy·ηe(x, y, η, ωk)EM(x, y, a, ωk)dxdy.

For 1 ≤ k ≤ Kǫ, gh,a,1 (from Lemma 2.30) may be rewritten

2∧
gh,a,1(y

′, ωk/h
1/3) =

√
L′(ωk)√
2π

∫
eiy

′·ηκ(hη)r(η, ωk)Ia(η, ωk)dη,

where r(., ωk) is an elliptic symbol of order 0 and main contribution 1/m̃k(y, η+ |η|∂yB0(y, η/|η|))
with m̃k defined in (2.77).

Proof. We compute explicitly

F̃ ∗
ωk
(EM)(z) =

1

(2π)d−1

∫
ei(z·η+|η|B0(z,η/|η|))κ(hη)

∫

x,y

e−iy·ηe(x, y, η, ωk)EM(x, y, a, ωk)dxdydη.

Moreover, using (2.71) and 2.73, there exists an elliptic symbol r̃k(y
′, υ) of order 0 with main

contribution 1/m̃k and κ̃ supported for υ ∼ 1
h
and equal to 1 on the support of κ such that

(F̃ ∗
ωk

◦ F̃ωk
)−1(F )(y′) =

∫
ei(y

′−z)·ηκ̃(hη)r̃k(y′, η)F (z)dzdη. Taking F = F̃ ∗
ωk
(EM) yields

fωk
(y′) =

1

(2π)d−1

∫
ei(y

′−z)·ηr̃k(y
′, η)κ(hη′)

∫
ei(z·η

′+|η′|B0(z,η′/|η′|))Ia(η
′, ωk)dη

′dzdη.

Applying stationary phase with respect to z, η, critical points are z = y′, η = η′+|η′|∂zB0(z, η
′/|η′|)|z=y′

and

fωk
(y′) =

1

(2π)d−1

∫
ei(y

′·η+|η|B0(y′,η/|η|))rk(y
′, η)Ia(η, ωk)dη

where the new symbol rk(y
′, η) is obtained from r̃k and has main contribution r̃k(y

′, η) = 1/m̃k

and where I remains unchanged since depended only on η′ and not on x, η. We therefore get

L(fωk
)(y) =

1

(2π)d−1

∫
ei(y−y

′)·η̃−|η̃|B0(y′,η̃/|η̃|)κ(hη̃)

∫
ei(y

′·η+|η|B0(y′,η/|η|))rk(y
′, η)Ia(η, ωk)dηdy

′dη̃

and integrating in y′, η̃ give y′ = y, η̃ = η achieves the proof. �
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2.3.4. Proof of Proposition 2.19. Our goal is to obtain gh,a,2 such that (2.66) holds. Observe that
the sum in the second line of (2.66), involving EM for large ωk, is, using (2.23),

(2.82)
∑

k≥1

χ♯
( ωk
ωKǫ

)
χ♭(h2/3ωk/ǫ0)EM(x, y, a, ωk)

= 〈
∑

N∈Z
e−iNL(ω), χ♭(h2/3ω/ǫ0)χ

♯
( ω

ωKǫ

)L′(ω)

2π
EM(x, y, a, ω))〉ω,

and non-stationary phase (with respect to ω) easily applies for all |N | ≥ 2 in the second line of
(2.82), providing an O(h∞) contribution (this is just the model case). Therefore, we are left to
obtain gh,a,2 such that

(2.83)

∫
χ♭(h2/3ω)χ♯(h2ǫω)

(
1 +

∑

±
e±iL(ω)

)
Kω(gh,a,2)(0, x, y)dω

+
∑

|N |≥2

∫
e−iNL(ω)χ♭(h2/3ω/ǫ0)χ

♯(hǫω)Kω(gh,a,2)(0, x, y)dω

=

∫
χ♭(h2/3ω/ǫ0)χ

♯
( ω

ωKǫ

)(
1 +

∑

±
e±iL(ω)

)L′(ω)

2π
EM(x, y, a, ω)dω +O(h∞).

Let us analyze the last line of (2.83), corresponding to the sum over model gallery modes. Here
EM is a product of two Airy functions eiy·ηAi(−ζM(x, η, ω))Ai(−ζM(a, η, ω)), where the phases
ζM = ω − xq1/3(η) and ψM(y, η) = y · η are such that (2.5) holds with < ., . > replaced by the
scalar product obtained by polarization of the principal symbol ξ2+|η|2+xq(η) of the model Laplace

operator ∆M . Using the definition of L in Lemma 2.9, 1 +
∑

± e
±iL(ω) = 1−

(
A+

A−

)
(ω)−

(
A−
A+

)
(ω).

As h2/3ωKǫ ∼ (hKǫ)
2/3 & (h1−2ǫ)2/3 ≫ h2/3−ǫ, it follows that h2/3ω is much larger than a on the

support of the symbol of the integral in the last line of (2.83), and we can use (2.20) to write
Ai(−ζM (a, η, ω)) =

∑
±A±(ζM(a, η, ω)). The phase of EM is now

(2.84) y · η + ξ3/3 + ξ(xq1/3(η)− ω)± 2

3
(ω − aq1/3(η))3/2.

Lemma 2.32. In the integral defining EM(., ω), the usual stationary phase in ξ applies. Moreover,
for the phase corresponding to N = 0 in the second line of (2.82), we have

φM,±,∓(x, y, η, ω) := y · η ± 2

3

(
(ω − xq1/3(η))3/2 − (ω − aq1/3(η))3/2

)
.

In the same way, the phases corresponding to N = ±1 in the second line of (2.82) are

φM,±,±(x, y, η, ω)∓
4

3
ω3/2 := y · η ± 2

3

(
(ω − xq1/3(η))3/2 + (ω − aq1/3(η))3/2 − 2ω3/2

)
.

Moreover, for x > 2h2/3−ǫ, the integral in the second line of (2.83) is O(h∞).

Proof. Let N = 0. The derivative with respect to ω of the phase (2.84) of EM vanishes when

ξ = ±
√
ω − aq1/3(η). As a ≤ h2/3−ǫ and ω ≥ ωKǫ & h−2ǫ ≫ a/h2/3, we introduce a cut-off in

ξ localizing for |ξ| ∈ [1
2

√
ω, 2

√
ω] without changing the contribution of the integral corresponding

to N = 0 modulo O(h∞) (for |ξ| ≤ 1
2

√
ω the phase (2.84) is non-stationary in ω). The second



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 29

derivative of (2.84) with respect to ξ is 2ξ ∼ ±√
ω and for ξ such that |ξ| ∼ √

ω ≥ √
ωKǫ ≫ h−ǫ

on the support of the symbol, stationary phase yields the following phase for N = 0,

φM,±,±(x, y, η, ω) := y · η ± 2

3
(ω − xq(η)1/3)3/2 ± 2

3
(ω − aq(η)1/3)3/2 .

We further notice that the phases φM,+,+ and φM,−,− are non-stationary in ω: indeed, ∂ωφM,+,+ ∼
2
√
ω and we get O(h∞) by integrations by parts. Moreover, taking switching signs, the derivative

with respect to ω becomes

(2.85)
√
ω − xq(η)1/3 −

√
ω − aq(η)1/3 ∼ (a− x)

2
√
ω

q(η)1/3 ,

and from (2.85), for x−a ≥ 2h2/3−ǫ−a ≥ h2/3−ǫ and ωKǫ . ω ≤ ǫ0h
−2/3, integrations by parts in ω

provide a O(h∞) contribution in the integral corresponding to N = 0 in the second line of (2.82).
In fact, with EM as in (2.63), the symbol of the integral in the second line of (2.82) depends on ω
only through χ♭(h2/3ω/ǫ0)χ

♯(ω/ωk), and therefore, in order to integrate by parts in ω, it remains
to check that, for some ǫ̃ > 0, we have

(2.86)
2
√
ω

(x− a)q(η)1/3
∂ω

(
χ♯
( ω

ωKǫ

))
≪ hǫ̃ .

As χ♯(ω/ωKǫ) is constant everywhere but for ω ∼ ωKǫ, (2.86) vanishes everywhere but for ω ∼ ωKǫ;

from η ∼ 1
h
and ωKǫ ∼ K

2/3
ǫ ≫ h−4ǫ/3, the lefthand side in (2.86) is at most h2/3

h2/3−ǫ√ωKǫ
; we obtain

(2.86) with ǫ̃ = 5ǫ/3 and we can integrate by parts infinitely many times.
For N = ±1 we proceed in a similar manner. Let for instance N = 1, then the phase of

e−iL(ω)EM is just (2.84)−4
3
ω3/2; it is stationary with respect to ω for ξ = 2

√
ω −

√
ω − aq1/3(η).

As ω ≥ ωKǫ & h−4ǫ/3 ≫ a/h2/3 we again introduce a cut-off, supported for |ξ| ∈ [1
2

√
ω, 2

√
ω]

without changing the contribution of the integral modulo O(h∞). Stationary phase then applies in
ξ and provides the phase function φM,±,± − 4

3
ω3/2. We easily see that φM,±,∓ and φM,−,− are non-

stationary with respect to ω and provide a O(h∞) contribution. We are left with φM,+,+ − 4
3
ω3/2

whose derivative with respect to ω is

√
ω − xq(η)1/3 +

√
ω − aq(η)1/3 − 2

√
ω ∼ −(x+ a)q(η)1/3/(2

√
ω) .

From a . h2/3−ǫ we obtain that, for x ≥ 2h2/3−ǫ, the phase φM,+,+ − 4
3
ω3/2 is non-stationary in ω

and yields an O(h∞) contribution. The exact same line of reasoning applies to N = −1. �

Remark 2.33. For |x, a| ≤ h2/3√
ωKǫ

, we cannot get an O(h∞) contribution for N = ±1: (2.86) does

not hold anymore even though for x ≥ 0 the derivative with respect to ω does not vanish; for such
small values of a we cannot perform integrations by parts. Specifically, as Kǫ ≪ h−1/4, we are to

deal with this case for all |x, a| ≤ h2/3+1/12 = h3/4(≪ h2/3√
ωKǫ

).

Putting all this together, the integral in the last line in (2.83) reads as

∫
χ♭(h2/3ω/ε0)χ

♯
( ω

ωKǫ

)(
1 +

∑

±
e±iL(ω)

)L′(ω)

2π
EM(x, y, a, ω)dω = EM,+(x, y, a) + EM,−(x, y, a),
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where we have set, modulo O(h∞),

(2.87) EM,+(x, y, a) :=

∫
χ♭(h2/3ω/ε0)χ

♯(ω/ωKǫ)

∫
q(η)1/6κ(hη)χ0(h

2/3ωq2/3(hη))

× eiy·η
(
A+(ζM(x, η, ω))−

(A+

A−

)
(ω)A−(ζM(x, η, ω))

)
A−(ζM(a, η, ω))dηdω,

(2.88) EM,−(x, y, a) :=

∫
χ♭(h2/3ω/ε0)χ

♯(ω/ωKǫ)

∫
q(η)1/6κ(hη)χ0(h

2/3ωq2/3(hη))

× eiy·η
(
A−(ζM(x, η, ω))−

(A−
A+

)
(ω)A+(ζM(x, η, ω))

)
A+(ζM(a, η, ω))dηdω,

where the phase functions of the Airy terms in the second line of (2.87) are φM,+,− and φM,−,− +
L(ω), while the phase functions of the Airy terms in the second line of (2.88) are φM,−,+ and
φM,+,+ − L(ω). Moreover, for x > 2h2/3−ǫ, EM,±(x, y, a) = O(h∞) and EM,±(0, y, a) = 0. This
means that we can introduce a smooth cut-off χ1(x/h

2/3−ǫ) with χ1 ∈ C∞
0 equal to 1 on [−1, 1]

and equal to 0 for x ≥ 2h2/3−ǫ such that EM,±(x, y, a) = χ1(x/h
2/3−ǫ)EM,±(x, y, a) + O(h∞),

and therefore we need to construct gh,a,2 such that (2.83) holds with the last line replaced by
χ1(x/h

2/3−ǫ)(EM,+(x, y, a) + EM,−(x, y, a)) (instead of EM,+(x, y, a) + EM,−(x, y, a)).
We now go back to (2.83): the symbol of its left hand side has support in ω & h−2ǫ, while the

right hand side is essentially supported for x, a . h2/3−ǫ. For such values of x and ω we have
ζ(x, y, η, ω) = ω − x|η|2/3e0(x, y, η/|η|, ωk/|η|2/3) ≥ ω/2; using (2.6) we write

G(x, y, η, ω) = eiψ
∑

±

(
p0A±(ζ) + i|η|−1/3p1A

′
±(ζ)

)
=: G±(x, y, η, ω).

Proposition 2.34. There exists smooth functions gh,a,2,± such that, with gh,a,2 :=
∑

± gh,a,2,±,

(2.89)

∫
χ♭(h2/3ω/ǫ0)χ

♯(h2ǫω)
(
G+(x, y, η, ω)−

(A+

A−

)
(ω)G−(x, y, η, ω)

)

q(η)1/6κ(hη)κ(hτq(ω, η))ĝh,a,2,−(η, ω/h
1/3)dηdω = EM,+(x, y, a) +O(h∞),

(2.90)

∫
χ♭(h2/3ω/ǫ0)χ

♯(h2ǫω)
(
G−(x, y, η, ω)−

(A−
A+

)
(ω)G+(x, y, η, ω)

)

× q(η)1/6κ(hη)κ(hτq(ω, η))ĝh,a,2,+(η, ω/h
1/3)dηdω = EM,−(x, y, a) +O(h∞).

(2.91)

∫
χ♭(h2/3ω/ǫ0)χ

♯(h2ǫω)
(
G+(x, y, η, ω)−

(A+

A−

)
(ω)G−(x, y, η, ω)

)

q(η)1/6κ(hη)κ(hτq(ω, η))ĝh,a,2,+(η, ω/h
1/3)dηdω = O(h∞),

(2.92)

∫
χ♭(h2/3ω/ǫ0)χ

♯(h2ǫω)
(
G−(x, y, η, ω)−

(A−
A+

)
(ω)G+(x, y, η, ω)

)

× q(η)1/6κ(hη)κ(hτq(ω, η))ĝh,a,2,−(η, ω/h
1/3)dηdω = O(h∞),

(2.93)
∑

|N |≥2

∫
e−iNL(ω)

∫
χ♭(h2/3ω/ǫ0)χ

♯(h2ǫω)Kω(gh,a,2)(0, x, y)dω = O(h∞).
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Proof. Proving that both operators in the first lines of (2.90) and (2.89) are invertible is sufficient:
once we define gh,a,2,± it will be clear that (2.91), (2.92) and (2.93) hold (using non-stationary
phase arguments). In fact, we notice from (2.89) that gh,a,2,− has to have a phase function whose
derivative with respect to ω should equal 2

√
ω +O(a), since otherwise the phase of (2.89) is non-

stationary in ω. Introducing such a function ĝh,a,2,− in the integral in the first line of (2.92) yields
a phase function (for (2.92)) whose derivative with respect to ω behaves like 4

√
ω and since ω

is large on the support of the symbol this allows to perform repeated integrations by part with
respect to ω to obtain a O(h∞) contribution. In the same way we prove (2.93), since for |N | ≥ 2
all the phase functions will be non-stationary in ω and after each integration by parts we obtain a
factor (N

√
ω)−1, which will allow to sum up over N to conclude. We are reduced to proving that

we can define gh,a,2,− satisfying (2.89) (solving (2.90) follows in exactly the same way).

Proposition 2.35. Let J̃+ := J+ +R+, with

J+(f)(x, y) =

∫
χ♭(h2/3ω/ǫ0)χ

♯)(h2ǫω)G+(x, y, η, ω)χ1(x/h
2/3−ǫ)

× q(η)1/6κ(hη)κ(hτq(ω, η))e
i(y′·η+̺ω/h1/3)f(y′, ̺)dηdωdy′d̺.

R+(f)(x, y) =

∫
χ♭(h2/3ω/ǫ0)χ

♯)(h2ǫω)
(A+

A−

)
(ω)G−(x, y, η, ω)χ1(x/h

2/3−ǫ)

× q(η)1/6κ(hη)κ(hτq(ω, η))e
i(y′·η+̺ω/h1/3)f(y′, ̺)dηdωdy′d̺.

The operator J̃+ is well defined from S ′
y′,̺ into the space of functions of (x, y) near (0, 0), and

with h as small parameter, J+ is an elliptic semi-classical Fourier integral operator. Moreover,

‖J−1
+ ◦R+‖L(L2) = O(h∞), hence J̃+ is invertible and J̃−1

+ =
(
I + J−1

+ ◦R+

)−1

◦ J−1
+ .

If we now chose gh,a,2,−(y
′, ̺) := J̃−1

+ (EM,+), this achieves the proof of Proposition 2.34. �

Proof. (of Proposition 2.35) The operator J+ is easily elliptic and invertible with phase function
ψ + 2

3
ζ3/2 with ψ and ζ defined in Theorem 2.1. The phase function of R+ is ψ − 2

3
ζ3/2 + 4

3
ω3/2.

Therefore the phase function of J−1
+ ◦R+ is given by

(2.94) −ψ(x, y, η, ω)− 2

3
ζ3/2(x, y, η, ω) + ψ(x, y, η̃, ω̃)− 2

3
ζ3/2(x, y, η̃, ω̃) +

4

3
ω̃3/2,

where x, y are now integration variables. The derivative of (2.94) with respect to x is

−∂xζ(x, y, η, ω)
√
ζ(x, y, η, ω)− ∂xζ(x, y, η̃, ω̃)

√
ζ(x, y, η̃, ω̃)− ∂xψ(x, y, η, ω) + ∂xψ(x, y, η̃, ω̃),

where |η|, |η̃| ∼ 1/h, ω, ω̃ ≥ h−2ǫ and xq1/3(η) ≤ h2/3−ǫ−2/3 = h−ǫ on the support of the symbol.
As ζ = ω − x|η|2/3e0(x, y, η/|η|, ω/|η|2/3) with e0 elliptic and close to 1, the derivatives of the two
terms involving ζ in (2.94) are such that

∣∣∣∂xζ(x, y, η, ω)
√
ζ(x, y, η, ω) + ∂xζ(x, y, η̃, ω̃)

√
ζ(x, y, η̃, ω̃)

∣∣∣ & 1

2
(
√
ω|η|2/3 +

√
ω̃|η̃|2/3).

On the other hand, using Corollary 6.10 and (6.31) in particular, the derivative with respect to x
of ψ is of the form

∂xψ(x, y, η, ω) = µ(y, η/|η|)q2/3(η)/τq(ω, η)
(
ω + 2xq1/3(1 + ℓ(y, η/|η|)) +Hj≥4

)
,
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and therefore ∣∣∣∂xψ(x, y, η, ω)− ∂xψ(x, y, η̃, ω̃)
∣∣∣ . ω|η|1/3 + ω̃|η̃|1/3,

where we have used that q2/3(η)/τq(ω, η) = |η|4/3q2/3(η/|η|)/(|η|τq(ω/|η|2/3, η/|η|)) ∼ |η|1/3. On
the support of the symbol χ(h2/3ω)χ(h2/3ω̃) we have |ω|, |ω̃| ≤ ǫ0h

−2/3, which means that the
main contribution of the derivative of (2.94) comes from the terms involving ζ and behaves like

≃ (
√
ω|η|2/3+

√
ω̃|η̃|2/3), as for |η|, |η̃| ≃ 1/h we have

√
ω|η|2/3 ≫ ω|η|1/3 (ωh2/3 ≪ 1). To perform

non stationary phase and obtain an O(h∞) contribution, we check that taking one derivative with
respect to x of the symbol provides a factor O(hǫ). Indeed, h2/3∂x(χ(x/h

2/3−ǫ))/
√
ω ∼ hǫ/

√
ω ≤

h
5
3
ǫ, which completes the proof. �

To complete the proof of Proposition 2.19, it remains to prove that, for gh,a,2,− := J̃−1
+ (EM,+),

(2.67) holds: but then in (2.67) one obtains a vanishing symbol as χ♭(h2ǫω)χ♯(h2ǫω) = 0. �

3. Dispersion estimates when a ≥ h2/3−ǫ

Here again one should think of ǫ as being very small: we may set 0 < ǫ < 1/12 to be consistent
with the parametrix construction we just did in the opposite regime (subsection 2.3), to have an
overlap between both regimes where we get dispersion estimates by different arguments. We now
use the parametrix as a sum over N to obtain the following dispersion estimates, restricting to
positive times for the sake of simplicity.

Theorem 3.1. There exist a0, c, C, ǫ such that for all |(t, x, y, h, a)| < a0, one has

• for t ≤ c
√
a,

(3.1) |Ph,a(t, x, y)| ≤ Ch−dmin
(
1, (h/t)

d−1
2

)
;

• For a ≥ h2/3−ǫ, t > c
√
a,

(3.2) |Ph,a(t, x, y)| ≤ Ch−d
(
h

t

) d−2
2

(
(max(a, x))

1
4

(
h

t

) 1
4

+ h
1
3

)
;

• For a ≤ h1/3+ǫ,

(3.3) |Ph,a(t, x, y)| ≤ Ch−d
(
h

t

) d−2
2

+ 1
3

.

The first estimate, (3.1), is just the (short time) dispersion for a free wave. On this timescale,
the wave has at most one reflection and singularities have not appeared yet. One should point out
that (a suitable version of) such dispersion is already proved in [2], for a more general boundary.

The second estimate, (3.2), is proved using the parametrix as a sum over reflected waves. The
first term is due to swallowtail singularities (and always larger than the corresponding factor in the
free dispersion) and the second term is due to the presence of cusps appearing after each swallowtail
singularity, between two consecutive reflections; notice that here we use the parametrix construc-
tion in an extended region a ≥ h2/3−ǫ (when compared to the previous parametrix construction in
[9], where it was obtained as a superposition of waves only for a ≥ h4/7−ǫ).

The third estimate, (3.3), will be proved using the parametrix as a sum over quasi-modes, and
we postpone its proof to the last section, where we deal with decay of such quasi-modes.

We start with a lemma which allows to deal with the parametrix “behind the wave front”.
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Lemma 3.2. There exist c0 and T0 such that , with B = {0 ≤ x ≤ a, |y| ≤ c0t, 0 < h ≤ t},

∀t ∈ [0, T0] , sup
x,y,t∈B

|Ph,a(t, x, y)| ≤ Ch−dO((h/t)∞) .

Proof. The lemma follows from classical propagation of singularities: for t ≤ a/C1 with a large
C1, we apply Melrose-Sjöstrand’s theorem in the interior of Ω. Now, let T0 be small enough and
consider a given s ∈ [h, T0]. Rescale with (t′, x′, y′) as new variables and ~ a new parameter:
t = st′, x = sx′, y = sy′, ~ = h/s, let vs(t

′, x′, y′) = v(st′, sx′, sy′) for any function v, then

(✷v)s =
1

s2
✷svs with ✷s = −∂2t′ + ∂2x′ + s2R(sx′, sy′, s−1Dy′) .

Set b = a/s, 0 < b ≤ c1 and Pb,s,~ = sd(Pa,h)s; then one may apply the Melrose-Sjöstrand theorem
to Pb,s,~ to obtain Pb,s,~ ∈ O(~∞) for 0 ≤ x′ ≤ b, |y′| ≤ c0 and t′ = 1, when s ≤ T0 and T0 is
small enough. In fact, Pb,s,~ is a parametrix for ✷s, and ✷s is smooth in s and for s small enough,
✷s is close to the usual wave operator −∂2t′ + ∂2x′ + ∆y′ (recall that we picked boundary normal
coordinates, and R0(y, η) = |η|2 +O(|y|)). If we denote by Gb,s the Green function of ✷s,

✷sGb,s = 0 in Ω, Gb,s = 0 on ∂Ω,

with Gb,s|t′=0 = δ(b,0) and ∂t′Gb,s|t′=0 = 0, then we have Pb,s,~ = κ(~Dt′)Q(sx′, sy′, ~Dy′)Gb,s and
its wave front set is described by the Melrose-Sjöstrand theorem. To complete our proof, we
need to check the following property of an optical ray σ ∈ [0, 1] → τ s(σ): if it starts at σ = 0
from (b, 0, ξ0, η0) with ξ20 + R(sb, 0; η0) = 1 and if |η0| ≥ c1 > 0 for some constant c1, then, if
τ s(σ) = (x′(σ), y′(σ), ξ′(σ), η′(σ)), there exists c0 such that |y′(1)| ≥ c0 > 0. Note that (y′, η′)(σ)
are solutions to the Hamilton-Jacobi equations ∂σy

′ = ∂η′Rs, and ∂ση
′ = −∂y′Rs, with y

′(0) = b,
η′(0) = η0, Rs(x

′, y′, η′) = s2R(sx′, xy′, η′/s). For some c > 0 small, |y′(σ)| ≥ 2c1σ − csσ for all
σ ∈ [0, 1], and if T0 is small enough, we get the lower bound |y′(1)| ≥ c0 > 0 for some c0 > 0. �

3.1. Number of waves that contribute in Ph,a. We further localize our parametrix Ph,a: let
φ ∈ C∞

0 (R) be even, φ = 1 on [−1, 1] and φ = 0 outside (−3/2, 3/2), set χ1 = φ − φ(2·), then
define (see (2.24)), for any dyadic γ (i.e. 1/γ ∈ 2N) such that γ ≤ ǫ0,
(3.4)

Kω,γ(f)(t, x, y) :=

∫
eitτq(ω,η)G(x, y, η, ω)χ♯(ω)q1/6(η)κ(hη)κ(hτq(ω, η))χ1

( ω

γ|η|2/3
)
f̂
(
η,

ω

h1/3

)
dη

as well as Ph,a,γ by replacing Kω with Kω,γ in (2.39). We just reduced the sum over k to k’s such
that k ∼ γ3/2/h, where h2/3−ǫ . γ ≤ ǫ0. Then, Ph,a(t, x, y) =

∑
γ Ph,a,γ(t, x, y), where the sum is

intended to be dyadic γ′s with γ < ǫ0. For γ ≪ a, the corresponding Ph,a,γ is irrelevant, as the
phase of gh,a is non-stationary. Using (2.40) or (2.23),

(3.5) Ph,a,γ(t, x, y) = 〈
∑

N∈Z
e−iNL(ω), χ♭(h2/3ω/ǫ0)Kω,γ(gh,a)(t, x, y)〉ω.

We will deal successively with γ ∼ a and 4a ≤ γ < 1. Heuristically, the first case contains ”tangent”
initial directions (worst scenario); the second case contains all ”almost transverse” directions and



34 DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS

provide less important contributions (even after summing up in γ). We write

VN,γ(t, x, y) =

∫
e−iNL(ω)χ♭(h2/3ω/ǫ0)Kω,γ(gh,a)(t, x, y)dω(3.6)

=
1

2πhd+1

∫
e

i
h
(tτq(α,θ)+Φ(x,y,θ,α,σ)−Φ(a,0,θ,α,s)−NhL(h−2/3α))χ1(α/(|θ|2/3γ))

× χ♭(α/ǫ0)χ
♯(α/h2/3)χ(s)ph(x, y, θ, α, σ)q̃h(θ, α, s)ds dθdσdα ,

Ph,a,γ(t, x, y) =
∑

N∈Z
VN,γ(t, x, y) ,(3.7)

where the symbol of VN,γ (the same for every N) is of order 0.

Lemma 3.3. At fixed |t| . T0, the significant contributions in the sum (3.7) defining Ph,a,γ come
from |N | . |t|/√γ:

∑

|N |≥4|t|/√γ
VN,γ(t, x, y) = O(h∞) .

The proof of the lemma reproduces that of Proposition 2.14; the maximum number of integrals
that provide non-trivial contributions in the sum over N is 1/

√
a when γ ∼ a. Observe that

Proposition 2.14 tells us that for t = 0, only the N = 0 term may contribute.
At fixed t ≥ Cγ1/2, we can further bound the cardinal of those N that contribute significantly

among the C|t|γ−1/2 which are left. We introduce a few notations before stating a sharp bound
of the number of waves that can overlap when t/

√
γ is large : let N (x, y, t) be the set of N with

significant contributions (e.g., we have a stationary point for the phase in all variables),

(3.8) N (t, x, y) = {N ∈ Z, (∃)(σ, s, α, θ) such that ∇(σ,s,α,θ)ΦN,a,γ = 0},
where ΦN,a,γ , the phase function of VN,γ for the large parameter 1/h, is defined as follows

(3.9) ΦN,a,γ := tτq(α, θ) + Φ(x, y, θ, α, σ)− Φ(a, 0, θ, α, s)− 4

3
Nα3/2 +NhBL(α

3/2/h).

Let (t, x, y) such that N (t, x, y) 6= ∅ and assume without loss of generality that t > 0 and t/
√
γ is

large. As we shall see below, at a critical point (σ, s, α, θ) of ΦN,a,γ ,

y +∇B0(y, ϑ)

|y +∇B0(y, ϑ)|
= −ϑ+O(α),

|y +∇B0(y, ϑ)|
t

= 1 +O(α),

and on the support of the symbol χ1, α ∼ γ ≪ 1. Therefore, as B0(y, ω) = O(|y|2) and∇B0(y, ω) =

O(|y|2), if N (t, x, y) 6= ∅ then we must have |y|
t
= 1 +O(|y|).

Consider first d > 2. Let c satisfy 4γ < c < 1
16

and such that 1−c ≤ |y|
t
≤ 1+c (notice that such

c does exist since otherwise N (t, x, y) = ∅). As B2(y, ϑ) = O(|y|2), |y| . T0 with T0 sufficiently

small, there exists ϑ̃ = ϑ̃(t, y) ∈ Rd−1 \ {0} such that, with 6∇θ = ∇θ − θ
|θ|(

θ
|θ| · ∇),

(3.10) ϑ̃ = − y +∇B0(y, ϑ̃)

|y +∇B0(y, ϑ̃)|
− 2
( |y +∇B0(y, ϑ̃)|

t
− 1
)[ 6∇q(ϑ̃)

q(ϑ̃)
− 3 6∇B2(y, ϑ̃)

2t(1− B2(y, ϑ̃)/t)

]
,

as a fixed point of a continuous map from a ball to a ball. In fact, as B0(y, θ) (resp. B2(y, θ))
is homogeneous of degree 1 (resp. 0) in θ, so is ∇B0 (of degree 0), hence the right hand side in

(3.10) does not depend on |ϑ̃|. Uniqueness follows by taking differences and using smallness of B0.

Moreover, for sufficiently small c and T0 we have |ϑ̃| ∈ [1
2
, 3
2
]. As we shall see below (in (3.39) from
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Lemma 3.10), ϑ̃(t, , y) is an approximation (modulo O(γ3/2/t) terms) of the critical point ϑθ of the

phase ΦN,a,γ . Let (t
′, x′, y′) be such that N (t′, x′, y′) 6= ∅, then 1− c ≤ |y′|

t′ ≤ 1+ c and there exists

ϑ̃(t′, y′) solution to (3.10) with (t, y) replaced by (t′, y′). We now define a cylinder Cγ(t, x, y) as the
set of (t′, x′, y′) such that

|(t′ − B2(y
′, ϑ̃(t′, y′)))− (t−B2(y, ϑ̃(t, y)))| ≤ r0

√
γ,(3.11)

|x′(1 + ℓ(y, ϑ̃(t′, y′)))− x(1 + ℓ(y, ϑ̃(t, y)))| ≤ r0γ,(3.12)

||y′ +∇B0(y
′, ϑ̃(t′, y′))| − t′ − |y +∇B0(y, ϑ̃(t, y))|+ t| ≤ r0γ

3/2,(3.13)

and let, with N defined in (3.8),

(3.14) N 1
d>2(t, x, y) = ∪Cγ (t,x,y)N (t′, x′, y′).

For d = 2, replace ∇B0(y, ϑ̃(t, y)) by B0(y), B2(y, ϑ̃(t, y)) by B2(y) and ℓ(y, ϑ̃(t, y)) by ℓ(y) to
define N 1

d=2(t, x, y).

Proposition 3.4. For any d ≥ 2, the following optimal upper bound holds for N 1
d defined in (3.14)

(3.15)
∣∣N 1

d (t, x, y)
∣∣ . O(1) + γ−1/2|t|(γ3/2/h)−2 .

Remark 3.5. A particular case of the two dimensional version of Proposition 3.4 has been proved
in [9, Lemma 2.17, Lemma 2.18] in the case a≫ h4/7 (and without the γ cut-off), where we proved
|N 1

d=2(t, x, y)| was bounded by a constant and that N (t, x, y) ⊂ [1, t/(2
√
a) +N0], with N0 being

an absolute constant. For a ∼ γ ≫ h4/7 and |t| . 1, one easily sees that |t|/(γ1/2(γ3/h2)) = O(1).
Indeed, γ7/2/h2 ≫ 1, hence the right hand side term in (3.15) is O(1). Therefore, if γ ≫ h4/7, we
only get non-trivial contributions from an uniformly bounded number of waves at a fixed t. The
case γ ≫ h2/3 was recently dealt with in [12] where Propositions 3.4 and 3.13 were proved in the
2D Friedlander model domain. Compared to [12], there are significant additional difficulties with
angles in the higher dimensional case (even in the model situation !)

Proof. We first provide a proof in all dimensions d ≥ 2 for the model case, with ∆M : a parametrix
of the wave equation reads as (3.7), where VN,γ has symbol χ1(α/(γ|θ|2/3))χ♭(α/ε0)χ♯(α/h2/3)χ(s)
and phase function ΦMN,a,γ given by

ΦMN,a,γ(t, x, y, σ, s, α, θ) := tτq(α, θ)+ΦM(x, y, θ, α, σ)−ΦM(a, 0, θ, α, s)− 4

3
Nα3/2+NhBL(α

3/2/h),

where ΦM (x, y, θ, α, σ) = y ·θ+ σ3

3
+σ(xq1/3(θ)−α); note that the only difference between ΦMN,a,γ and

ΦN,a,γ comes from the additional terms τq(α, θ)Γ(x, y,
σq1/3(θ)
τq(α,θ)

, θ
τq(α,θ)

)−τq(α, θ)Γ(a, 0, sq
1/3(θ)

τq(α,θ)
, θ
τq(α,θ)

)

(difference between ΦM and Φ). In the model case, without the additional phase function Γ,
we rescale x = γX , t =

√
γT , y =

√
γY , and our cylinder Cγ(t, x, y) and N 1

d≥2 simplify to

N 1,M
d (T,X, Y ) := ∪CM

γ (T,X,Y )NM(T ′, X ′, Y ′) and

CMγ (T,X, Y ) = {(T ′, X ′, Y ′) : |Y ′ − Y | ≤ r0, |X −X ′| < r0, ||Y ′| − T ′ − |Y |+ T | < r0γ} .

Note that (X ′, Y ′, Y ′) ∈ CMγ (T,X, Y ) implies ||Y ′|−|Y || ≤ r0, |Y |
∣∣∣ Y ′

|Y ′|− Y
|Y |

∣∣∣ ≤ 2r0 and |T ′−T | ≤ r0.

We also rescale σ =
√
γ|θ|1/3Σ, α = γ|θ|2/3A, s = √

γ|θ|1/3S and we let λγ =
γ3/2

h
. Define our new
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phase to be (with large parameter 1/h replaced by λγ)

ΨM
N,a,γ(T,X, Y,Σ, S, A, θ) = |θ|

(Y · ϑ+ T
√
1 + γAq2/3(ϑ)

γ
+

Σ3

3
+ Σ(Xq1/3(ϑ)−A)

− S3

3
− S(

a

γ
q1/3(ϑ)− A)− 4

3
NA3/2

)
+
N

λγ
BL(|θ|λγA3/2) .

The phase ΨM
N,a,γ defines a Lagrangian ΛMN , which is described by ∇A,S,Σ,θΨ

M
N,aγ = 0:

Tq2/3(ϑ)

2
√
1 + γAq2/3(ϑ)

− (Σ− S)− 2NA1/2(1− 3

4
BL

′(|θ|λγA3/2)) = 0,(3.16)

Σ2 +Xq1/3(ϑ)−A = 0, S2 +
a

γ
q1/3(ϑ)− A = 0,(3.17)

Y + Tϑ
√

1 + γAq2/3(ϑ) + γ
( TAq1/3(ϑ)√

1 + γAq2/3(ϑ)
+ (ΣX − S

a

γ
)
) 6∇q(ϑ)
3q2/3(ϑ)

+
2

3
γϑ(S3 − Σ3) =

4

3
γNA3/2(1− 3

4
BL

′(|θ|λγA3/2))ϑ ,

(3.18)

where we used the second and third equation for substitution in the last one. We recover [9,
formula (2.13) to (2.15)] when d = 2, with small adjustments due to our (more complicated) phase
construction there. Assume, without loss of generality, that T > 0, then eliminating N between
(3.16) and (3.18),

(3.19)
Y

T
= −

(
1 +

γAq2/3(ϑ)

1 +
√

1 + γAq2/3(ϑ)
− γAq2/3(ϑ)

3
√
1 + γAq2/3(ϑ)

+
2γ

3T
(A(Σ− S) + (S3 − Σ3))

)
ϑ

−
( γAq1/3(ϑ)√

1 + γAq2/3(ϑ)
+
γ

T

(
(ΣX − S

a

γ
)
) 6∇q(ϑ)
3q2/3(ϑ)

Using that ϑ · 6∇q(ϑ) = 0, we compute |Y |2/T 2 and expand its square root to get

(3.20)
|Y |
T

− 1 =
γ

6
Aq2/3(ϑ) +

2γ

3T

(
A(Σ− S) + S3 − Σ3

)
+ γ2E ,

where E = E(1/T,ΣX − S a
γ
, A, S,Σ, ϑ) is a smooth function of its arguments (that may be com-

puted explicitly, although irrelevant). We then compute

(3.21)
Y

|Y | = −ϑ− γA

3

( 6∇q(ϑ)
q1/3(ϑ)

)
+
γ

T
(ΣX − S

a

γ
)
6∇q(ϑ)
3q2/3(ϑ)

+ γ2~E ,

where ~E = ~E(1/T,ΣX−S a
γ
, A, S,Σ, ϑ) is an explicit smooth, vector-valued function. Later we will

use O(γ2) . O(γ/T ), as T
√
γ = O(1). We now estimate the distance between any two elements

of N 1,M
d (T,X, Y ). Pick (T,X, Y ) with T > 0, and let Nj ∈ N 1,M

d (T,X, Y ), j ∈ {1, 2}. There
exist (Tj , Xj, Yj) ∈ CMγ and there exist (θj = |θj |ϑj , Aj,Σj , Sj), j ∈ {1, 2}, Aj close to 1, such
that (3.16), (3.17), (3.19) hold. Taking the difference between (3.16) for j = 1, 2 and using (3.17)
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(
(Σj−Sj)

A
1/2
j

= O(1)) and γTj = O(
√
γtj) = O(

√
γ),

(3.22) N1 −N2 =
3

4

(
N1B

′
L(|θ1|λγA3/2

1 )−N2B
′
L(|θ2|λγA3/2

2 )
)
− Σ1 − S1

2
√
A1

+
Σ2 − S2

2
√
A2

+
T1q

2/3(ϑ1)

4A
1/2
1

√
1 + γA1q2/3(ϑ1)

− T2q
2/3(ϑ2)

4A
1/2
2

√
1 + γA2q2/3(ϑ2)

= O
(N1 +N2

λ2γ

)
+O(1) +

T1q
2/3(ϑ1)

4A
1/2
1

− T2q
2/3(ϑ2)

4A
1/2
2

.

Remark 3.6. The first term in the first line of (3.22) behaves like (|N1| + |N2|)/λ2γ, using that

B′(θλA3/2) ∼ − b1
θ2λ2A3 and θ, A ∼ 1. We cannot take advantage of the difference, since each term

NjB
′(·) corresponds to some θj , Aj (close to 1) and, although the difference between Aj turns

out to be O(1/T ), we do not have any better information about the difference between |θj | than
bounded by a small constant on the support of χ1. Therefore the bound (N1 + N2)/λ

2
γ for the

terms involving B′
L in (3.22) is sharp. As Nj ∼ Tj , and |Tj − T | ≤ 1, this contribution is of order

|T |/λ2γ.
We are reduced to proving that the following difference (from (3.22)) is O(1). Write

(3.23)
T1

A
1/2
1

q2/3(ϑ1)−
T2

A
1/2
2

q2/3(ϑ2) =
(T1 − T2)

A
1/2
1

q2/3(ϑ1) +
T2√

A1q2/3(ϑ1)
(q(ϑ1)− q(ϑ2))

+ T2q(ϑ2)(
1√

A1q2/3(ϑ1)
− 1√

A2q2/3(ϑ2)
).

As |T1 − T2| ≤ |T1 − T |+ |T2 − T | ≤ 2r0, it remains to prove

Lemma 3.7. Let (T,X, Y ) be fixed, let (Tj , Xj, Yj) ∈ CMγ and let (θj , Aj ,Σj, Sj), j ∈ {1, 2} with
Aj close to 1 such that (3.16), (3.17) and (3.19) hold, then

(3.24) T |ϑ1 − ϑ2| . 1, T |A1q
2/3(ϑ1)−A2q

2/3(ϑ2)| . 1.

Proof. When T is not too large, (3.24) immediately follows. We consider T sufficiently large. For
Tj , Yj, Aj, ϑj , (3.20) and (3.21) hold. Taking difference between (3.21) for j = 1 and j = 2,

− Y1
|Y1|

+
Y2
|Y2|

= (ϑ1 − ϑ2)
(
1− 2

3
γA1q

2/3(ϑ1)
)
− 2

3
ϑ2γ(A1q

2/3(ϑ1)−A2q
2/3(ϑ2))

+ γ(A1q
2/3(ϑ1)− A2q

2/3(ϑ2))
∇q(ϑ2)
q(ϑ2)

+ γA1q
2/3(ϑ1)

(∇q(ϑ1)
q(ϑ1)

− ∇q(ϑ2)
q(ϑ2)

)
+O(

γ

T
),

where we used that O( γ
T1
) = O( γ

T2
) = O( γ

T
). As Aj ’s stay close to 1 and ϑj ∈ Sd−2, we get

(ϑ1 − ϑ2)(1 +O(γ)) =
(
− Y1

|Y1|
+

Y2
|Y2|

)
+O(γ) .

Using
∣∣− Y1

|Y1| +
Y2
|Y2|
∣∣ =

∣∣− y1
|y1| +

y2
|y2|
∣∣ ≤ 2 r0

|Y | and T |ϑ1 − ϑ2| . t(2r0 +O(
√
γ)) . 2r0, we obtain the

first inequality in (3.24). Taking now the difference between (3.20) for j = 1, 2,

6
( |Y1|
T1

− |Y2|
T2

)
= γ(A1q

2/3(ϑ1)− A2q
2/3(ϑ2)) +O(

γ

T
),
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and using |(|Yj| − Tj)− (|Y | − T )| ≤ r0γ, |T1 − T2| ≤ 2r0 and (3.20) with j = 2 yields

T |A1q
2/3(ϑ1)−A2q

2/3(ϑ2)| ≤
6T

γ

∣∣∣ |Y1|
T1

− |Y2|
T2

∣∣∣+O(1)

≤ 6T

γ

|(|Y1| − T1)− (|Y2| − T2)|
T1

+
6T

γ

( |Y2|
T2

− 1
)(T2 − T1)

T1
+O(1)

≤ 12r0
T

T1
+ 2r0

T

T1

(
A2q

2/3(ϑ2) +O(
1

T2
)
)
+O(1) = O(1),

where, again, on the support of the symbol χ1, Aj is close to 1. The proof of Lemma 3.7 is complete
and, combined with (3.23) and (3.22), this yields (3.15) for the model operator ∆M . �

We now proceed with the general case, following the same steps as above. We first deal with the
most complicated situation d > 2. We also rescale variables as follows σ =

√
γ|θ|1/3Σ, α = γ|θ|2/3A,

s =
√
γ|θ|1/3S and let λγ =

γ3/2

h
. With ϑ = θ/|θ| we get q(θ) = |θ|2q(ϑ), τq(α, θ) = τq(γA|θ|2/3, θ) =

|θ|
√

1 + γAq2/3(ϑ) =: |θ|τq(γA, ϑ). We retain space-time variables (t, x, y) as our phase function
is no longer homogeneous in y. Recall that

Φ(x, y, θ, α, σ) = ΦM (x, y, θ, α, σ) + τq(α, θ)(BΓ(y, θ/τq) + xAΓ(x, y, σq
1/3(θ)/τq, θ/τq) ,

where τq = τq(α, θ) =
√

|θ|2 + αq2/3(θ). Let

Φ̃M,γ(x, y, ϑ, A,Σ) : = |θ|−1ΦM(x, y, θ, γ|θ|2/3A,√γ|θ|1/3Σ)

= y · ϑ+ γ3/2
(Σ3

3
+ Σ(

x

γ
q1/3(ϑ)−A)

)
.

Set Φ̃γ(x, y, ϑ, A,Σ) := |θ|−1Φ(x, y, θ, γ|θ|2/3A,√γ|θ|1/3Σ), then, using the homogeneity in |θ|,

Φ̃γ(x, y, ϑ, A,Σ) := Φ̃M,γ(x, y, ϑ, A,Σ) + τq(γA, ϑ)
[
BΓ(y, ϑ/τq(γA, ϑ))

+ xAΓ

(
x, y,

√
γΣq1/3(ϑ)

τq(γA, ϑ)
,

ϑ

τq(γA, ϑ)

)]
,

(3.25)

Φ̃γ(a, 0, ϑ, A, S) := Φ̃M,γ(a, 0, ϑ, A, S) + τq(γA, ϑ)aAΓ

(
a, 0,

√
γSq1/3(ϑ)

τq(γA, ϑ)
,

ϑ

τq(γA, ϑ)

)
,

where in the last line we used that BΓ(0, ϑ/τq) = 0 and where in the new variables we have

τq(γA, ϑ)BΓ(y,
ϑ

τq(γA, ϑ)
) = B0(y, ϑ) + (1− τq(γA, ϑ))B2(y, ϑ)

+ τq(γA, ϑ)
∑

j≥2

(
1

τq(γA, ϑ)
− 1)jB2j(y, ϑ) ,

(3.26)

τq(γA, ϑ)AΓ

(
x, y,

√
γΣq1/3(ϑ)

τq(γA, ϑ)
,

ϑ

τq(γA, ϑ)

)
= (

√
γq1/3(ϑ))Σℓ(y, ϑ) +Hj≥3

+
γq2/3(ϑ)

τq(γA, ϑ)
(Σ2 − A)µ(y, ϑ) ,

(3.27)

where we used (6.29); homogeneous terms of order j in Hj≥3 have weights
√
γj . We also set

(3.28) Φ̃N,a,γ(t, x, y,Σ, S, A, θ) := ΦN,a,γ(t, x, y,
√
γ|θ|1/3Σ,√γ|θ|1/3S, γ|θ|2/3A, θ) ,
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and from (3.9),

(3.29) Φ̃N,a,γ(t, x, y,Σ, S, A, θ) = |θ|
(
t
√

1 + γAq2/3(ϑ) + Φ̃γ(x, y, ϑ, A,Σ)− Φ̃γ(a, 0, ϑ, A, S)
)

− 4

3
γ3/2|θ|NA3/2 +NhBL((|θ|λγA3/2).

The phase function Φ̃N,a,γ defines a Lagrangian ΛN and, as in the model case, we obtain a
parametrization of πN (ΛN) by (d+ 1) parameters (ρ = |θ|, ϑ,Σ, A) as follows





tγq2/3(ϑ)

2
√

1+γAq2/3(ϑ)
+ ∂A

(
Φ̃γ(x, y, ϑ, A,Σ)− Φ̃γ(a, 0, ϑ, A, S)

)
= 2Nγ3/2A1/2(1− 3

4
BL

′(ρλγA3/2)),

Σ2 + x
γ

(
q1/3(ϑ) + τq(γA,ϑ)√

γ
∂Σ

(
AΓ(x, y,

√
γΣq1/3(ϑ)

τq(γA,ϑ)
, ϑ
τq(γA,ϑ)

)
))

= A,

S2 + a
γ

(
q1/3(ϑ) + τq(γA,ϑ)√

γ
∂S

(
AΓ(a, 0,

√
γSq1/3(ϑ)

τq(γA,ϑ)
, ϑ
τq(γA,ϑ)

)
))

= A,

t
√

1 + γAq2/3(ϑ) + Φ̃γ(x, y, ϑ, A,Σ)− Φ̃γ(a, 0, ϑ, A, S) =
4
3
γ3/2NA3/2(1− 3

4
B′
L(ρλγA

3/2)),

∂ϑj

(
t
√

1 + γAq2/3(ϑ) + Φ̃γ(x, y, ϑ, A,Σ)− Φ̃γ(a, 0, ϑ, A, S)
)
= 0, ∀1 ≤ j ≤ d− 2,

(3.30)

where ϑ = (ϑ1, ..., ϑd−1) ∈ Sd−2 and, as t 6= 0 implies |y| 6= 0, we assumed that yd−1 6= 0; then

ϑd−1 = ±
√

1−∑d−2
j=1 ϑ

2
j . The last line in the system (3.30) reads as follows

(3.31) ∂ϑj Φ̃0,a,γ − ∂ϑd−1
Φ̃0,a,γ

ϑj
ϑd−1

= 0, j ∈ {1, ..., d− 2}.

With Σ̃ :=
√
γΣq1/3(ϑ)

τq(γA,ϑ)
, dΣ̃
dΣ

=
√
γq1/3(ϑ)

τq(γA,ϑ)
the second equation in the system (3.30) reads as

Σ2 +
x

γ
q1/3(ϑ)

(
1 + ∂Σ̃

(
AΓ(x, y, Σ̃,

ϑ

τq(γA, ϑ)
)
))

= A.

We further compute, with τq = τq(γA, ϑ) =
√
1 + γAq2/3(ϑ),

(3.32) ∂AΦ̃γ(x, y, ϑ, A,Σ) = ∂Aτq

(∑

k≥2

∂τq

((1− τq)
k

τk−1
q

)
B2k(y, ϑ)− B2(y, ϑ)

)

+ γ3/2
(
− Σ+

∂Aτq√
γ

x

γ
∂τq

(
τqAΓ(x, y,

√
γΣq1/3(ϑ)/τq, ϑ/τq)

))
,

where the last term in the second line is small and behaves like xO(
√
γ); indeed, it follows from

(3.27) that ∂τq(τqAΓ) = −γq2/3(ϑ) (Σ2−A)
τ2q

µ(y, ϑ) +Hj≥3, hence its main contribution is O(γ) (here

we have also used the second and the third equations in (3.30) which imply that Σ2, S2 ≤ 2A where
the phase may be stationary in Σ, S). Using that for k ≥ 2, all terms in BΓ come with factors
O(γ2) and ∂Aτq = γq2/3(ϑ)/(2τq), the main contribution in the first equation in (3.30) reads

q2/3(ϑ)

2
√

1 + γAq2/3(ϑ)

(t− B2(y, ϑ))√
γ

−Σ+ S +O(
√
γx) +O(γ3/2|y|) = 2NA1/2(1− 3

4
BL

′(ρλγA
3/2)).

We now turn to critical points with respect to ϑ and deal with the last equation in (3.30).



40 DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS

Lemma 3.8. The last equation in the system (3.30) has two solutions, denoted ϑ±, such that

(3.33) ± ϑ± =
y +∇B0(y, ϑ±)

|y +∇B0(y, ϑ±)|
− γAq2/3(ϑ±)

|y +∇B0(y, ϑ±)|
[ 6∇q(ϑ±)
3q(ϑ±)

(
t−B2(y, ϑ±)

)
− 1

2
6∇B2(y, ϑ±)

]

− γ3/2

|y +∇B0(y, ϑ±)|
[ 6∇q(ϑ±)
3q2/3(ϑ±)

(x
γ
Σ(1 + ℓ(y, ϑ±))−

a

γ
S
)
+
x

γ
Σq1/3(ϑ±) 6∇(ℓ(y, ϑ±))

]
+
γ2

|y|E±,

with E±(t, x, y, t
|y+∇B0| ,

√
γ

t
, ϑ) smooth functions. Moreover,

(
y+∇B0(y,ϑ±)
|y+∇B0(y,ϑ±)|

)
· ϑ± = ±1 + γ2

|y+∇B0|E±.

Proof. Using (3.31) with ϑ2d−1 = 1 −∑d−2
j=1 ϑ

2
j ,
(∑d−2

j=1 |∂ϑj Φ̃0,a,γ|2
)
ϑ2d−1 = (1 − ϑ2d−1)|∂ϑd−1

Φ̃0,a,γ|2.
We eventually obtain

(3.34) ϑd−1 = ± ∂ϑd−1
Φ̃0,a,γ

|(∑d−1
j=1 |∂ϑjΦ̃0,a,γ |2|1/2

, ϑj = ϑd−1

∂ϑj Φ̃0,a,γ

∂ϑd−1
Φ̃0,a,γ

= ± ∂ϑj Φ̃0,a,γ

|∑d−1
j=1 |∂ϑj Φ̃0,a,γ |2|1/2

.

For each sign ± there exists an unique solution as the maps from Sd−2 to Sd−2: ϑ → ± ∇ϑΦ̃0,a,γ

|∇ϑΦ̃0,a,γ |
each have a unique fixed point for small |y|, t (as B0 = O(|y|2), B2 = O(|y|2) and γ is small).

In the following we approximate the equation satisfied by ϑ up to O(γ2) terms. This will turn
out to be useful later on, in the proof of Proposition 3.13. Using (3.29) with N = 0 together with
(3.25),(3.26) and (3.27), we write

Φ̃0,a,γ(t, x, y,Σ, S, A, ρϑ) = ρ
(
tτq + Φ̃M,γ(x, y, ϑ, A,Σ)− Φ̃M,γ(a, 0, ϑ, A, S)

+B0(y, ϑ) + (1− τq)B2(y, ϑ) + γ3/2
x

γ
q1/3(ϑ)Σℓ(y, ϑ) + γ2Γ̃γ(x, a, y, ϑ,

√
γΣ,

√
γS,A)

)
,

where we have set, for τq = τq(γA, ϑ),
(3.35)

Γ̃γ := γ−2
(
τqBΓ(y, ϑ/τq)−B0(y, ϑ)− (1− τq)B2(y, ϑ) + x(τqAΓ −

√
γxq1/3(ϑ)ℓ(y, ϑ)Σ)− aτqAΓS

)
.

From (3.26) and (3.27), Γ̃γ is a smooth bounded function and

Γ̃γ =
(1− τq)

2

γ2τq

(
B4(y, ϑ) +

∑

j≥3

(
1

τq
− 1)j−2B2j(y, ϑ)

)
+
x

γ

(
q2/3(ϑ)(Σ2 − A)µ(y, ϑ) + γ−1Hj≥3

)

− a

γ

(
q2/3(ϑ)(S2 − A)µ(0, ϑ) + γ−1Hj≥3

)
,

where homogeneous terms of order j in γ−1Hj≥3 come from AΓ and have factors γj/2−1, j ≥ 3 and
where (1− τq)

2/γ2 = A2q4/3(ϑ)/(1 + τq)
2 is bounded. We compute explicitly

(3.36)
1

ρ
∂ϑj Φ̃0,a,γ = yj + ∂jB0(y, ϑ) +

γA

2τq
q2/3(ϑ)

[2∂jq(ϑ)
3q(ϑ)

(t− B2(y, ϑ))−
2

1 + τq
∂jB2(y, ϑ)

]

+ γ3/2
[ ∂jq(ϑ)
3q2/3(ϑ)

(x
γ
Σ(1 + ℓ(y, ϑ))− a

γ
S
)
+
x

γ
Σq1/3(ϑ)∂jℓ(y, ϑ)

]
+ γ2∂ϑj Γ̃γ.



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 41

With ∇F = (∂ϑ1F, ..., ∂ϑd−1
F ), let Ω1 = A

2τq
q2/3(ϑ)

(
2∇q(ϑ)
3q(ϑ)

(1 − B2(y,ϑ)
t

) − 2
1+τq

∇B2(y,ϑ)
t

)
, Ω2 =

∇q(ϑ)
3q2/3(ϑ)

(
x
γ
Σ(1 + ℓ(y, ϑ))− a

γ
S
)
+ x

γ
Σq1/3(ϑ)∇ℓ(y, ϑ), then, using (3.36) we compute,

(3.37)
d−1∑

j=1

|∂ϑj Φ̃0,a,γ |2 =
∣∣∣y +∇B0 + γtΩ1 + γ3/2Ω2 + γ2∇Γ̃γ

∣∣∣
2

= |y +∇B0|2
[
1 +

2γt

|y +∇B0|
×

Ω1 ·
( y +∇B0

|y +∇B0|
)
+

2γ3/2

|y +∇B0|
Ω2 ·

( y +∇B0

|y +∇B0|
)
+

γ2

|y +∇B0|
(
E1 +

t2E2 + t
√
γE3 + γE4

|y +∇B0|
)]
,

where we have set E1 := 2
(
y+∇B0

|y+∇B0|

)
· ∇Γ̃γ , E2 := |Ω1|2, E3 = 2Ω1 · (Ω2 +

√
γ∇Γ̃γ), E4 = |Ω2|2 +

√
γΩ2 · (∇Γ̃γ) + γ|∇Γ̃γ|2. As γ

|y+∇B0| =
√
γ
√
γ

t
t

|y+∇B0| is small when t/
√
γ is sufficiently large, the

coefficient of E3 in (3.37) is bounded by O(
√
γ). All the three terms Ej are smooth, bounded

functions and we relabel their sum as follows

E1 +
t2E2 + t

√
γE3

|y +∇B0|
+

γ

|y +∇B0|
E4 = E(t, x, y, t

|y +∇B0|
,

√
γ

t
, ϑ).

We eventually find

( d−1∑

j=1

|∂ϑj Φ̃0,a,γ |2
)1/2

= |y +∇B0|
(
1 +

γt

|y +∇B0|
< Ω1,

y +∇B0

|y +∇B0|
>

+
γ3/2

|y +∇B0|
< Ω2,

y +∇B0

|y +∇B0|
> +

γ2

|y +∇B0|
Ẽ
)
,

where Ẽ is a smooth function of (t, x, y, t
|y+∇B0| ,

√
γ

t
, ϑ) obtained by taking the square root in (3.37)

and using the asymptotic expansion of
√
1 + κ = 1 + κ/2 +O(κ2). From (3.34) we have

±ϑ =
y +∇B0 + γtΩ1 + γ3/2Ω2 + γ2∇Γ̃γ

|y +∇B0|
(
1 + γt

|y+∇B0|Ω1 ·
(
y+∇B0

|y+∇B0|

)
+ γ3/2

|y+∇B0|Ω2 ·
(
y+∇B0

|y+∇B0|

)
+ γ2

|y+∇B0|R̃
) .

Setting Ω̃j =
Ωj

|y+∇B0| and using (1 + κ)−1 = 1 − κ + O(κ2), we obtain, for another smooth and

bounded function Ĕ(t, x, y, t
|y+∇B0| ,

√
γ

t
, ϑ),

± ϑ =
{ y +∇B0

|y +∇B0|
+ γtΩ̃1 + γ3/2Ω̃2 + γ2∇Γ̃γ/|y +∇B0|

}

×
{
1− γtΩ̃1 ·

( y +∇B0

|y +∇B0|
)
− γ3/2Ω̃2 ·

( y +∇B0

|y +∇B0|
)
+

γ2

|y +∇B0|
R̆
}

=
y +∇B0

|y +∇B0|
+

γt

|y +∇B0|
(
Ω1 −

y +∇B0

|y +∇B0|
Ω1 ·

( y +∇B0

|y +∇B0|
))

+
γ3/2

|y +∇B0|
(
Ω2 −

y +∇B0

|y +∇B0|
Ω2 ·

( y +∇B0

|y +∇B0|
))

+
γ2

|y +∇B0|
E ,

and replacing y+∇B0

|y+∇B0| in the last two lines by ±ϑ− γtΩ̃1 − γ3/2Ω̃2− γ2∇Γ̃γ/|y+∇B0| yields (3.33)
where E± are smooth, bounded functions of (t, x, y, t

|y+∇B0| ,
√
γ

t
, ϑ). �
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Remark 3.9. For t > 0, considering the critical point satisfying (3.33) with + sign in the left hand
side term produces O(h∞) contributions, as the critical value of the phase is not stationary in
ρ. Therefore in the following for t > 0 we pick ϑc(t, x, y,Σ, S, A) := ϑ−(t, x, y,Σ, S, A) such that
(3.33) holds (and for t < 0 one should take ϑc := ϑ+).

In Lemma 3.8 we only considered critical points of Φ̃N,a,γ with respect to ϑ. In the next Lemma

we deal with critical points with respect to A, ρ and ϑ of Φ̃N,a,γ , where ρ = |θ|, θ = ρϑ.

Lemma 3.10. Let t > 0. If ∇A,ρ,ϑΦ̃N,a,γ = 0 then there exists a smooth, bounded function

Ẽ depending on (t, x, y, t
|y+∇B0| ,

√
γ

t
, ϑ) such that for the critical point with respect to ϑ, that we

denote ϑ♯c (and for which (3.33) holds with ϑ−)

(3.38)
|y +∇B0(y, ϑ

♯
c)|

t
= 1 +

1

6
γAq2/3(ϑ♯c)

(
1− B2(y, ϑ

♯
c)

t

)
+
γ3/2

t

(2
3
A(Σ− S)

+
Σ3

3
+ Σ(

x

γ
q1/3(ϑ♯c)(1 + ℓ(y, ϑ♯c))−A)− S3

3
− S(

a

γ
q1/3(ϑ♯c)−A)

)
+
γ2

t
Ẽ .

Moreover, the critical point ϑ♯c is such that

(3.39) −ϑ♯c =
y +∇B0(y, ϑ

♯
c)

|y +∇B0(y, ϑ
♯
c)|

−2
( |y +∇B0(y, ϑ

♯
c)|

t
−1
)[ 6∇q(ϑ♯c)

q(ϑ♯c)
− 3 6∇B2(y, ϑ

♯
c)

2t(1 − B2(y, ϑ
♯
c)/t)

]
+O(

γ
3
2

t
) .

Proof. From Lemma 3.8, (3.33) holds (critical point w.r.t. ϑ). Let ∂AΦ̃N,a,γ = ∂ρΦ̃N,a,γ = 0 (first
and second to last equations in (3.30)): substitution between the two equations yields

t
√

1 + γAq2/3(ϑ) + Φ̃γ(x, y, ϑ, A,Σ)− Φ̃γ(a, 0, ϑ, A, S)

=
2

3
A
( tγq2/3(ϑ)

2
√

1 + γAq2/3(ϑ)
+ ∂A

(
Φ̃γ(x, y, ϑ, A,Σ)− Φ̃γ(a, 0, ϑ, A, S)

))
,

and using (3.25) and (3.32) we further obtain, with τq = τq(γA, ϑ), ∂Aτq = γq2/3(ϑ)/(2τq),

(3.40) tτq + y · ϑ+ γ3/2
(Σ3

3
+ Σ(

x

γ
q1/3(ϑ)− A)− S3

3
− S(

a

γ
q1/3(ϑ)−A)

)
+B0(y, ϑ)

+(1−τq)B2(y, ϑ)+γ
3/2x

γ
q1/3(ϑ)Σℓ(y, ϑ)+γ2Γ̃γ =

2

3

γAq2/3

2τq

[
t−B2(y, ϑ)+

∑

k≥2

∂τq

((1− τq)
k

τk−1
q

)
B2k(y, ϑ)

+x∂τq

(
τqAΓ(x, y,

√
γΣq1/3(ϑ)/τq, ϑ/τq)

)
−a∂τq

(
τqAΓ(a, 0,

√
γSq1/3(ϑ)/τq, ϑ/τq)

)]
−2

3
γ3/2(Σ−S)A

with Γ̃γ defined in (3.35). As, from (3.27), we obtain ∂τq (τqAΓ) = −γq2/3(ϑ)(Σ2 − A)µ(y, ϑ)/τ 2q +

Hj≥3, we define a smooth, bounded function Γ̆γ

Γ̆γ =
1

3

Aq1/3(ϑ)

τq

[∑

k≥2

∂τq

((1− τq)
k

γτk−1
q

)
B2k(y, ϑ)

+
x

γ
∂τq

(
τqAΓ(x, y,

√
γΣq1/3(ϑ)/τq, ϑ/τq)

)
− a

γ
∂τq

(
τqAΓ(a, 0,

√
γSq1/3(ϑ)/τq, ϑ/τq)

]
.
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Note that Γ̆γ = Aq(ϑ)
3τ2q

( 2A
(1+τq)

− x(Σ2 − A)µ(y, ϑ) + a(S2 − A)γ(0, ϑ) + γ−1Hj≥3), where terms in

Hj≥3 come with wights γj/2 and j ≥ 3. Equation (3.40) becomes

t + y · ϑ+B0(y, ϑ) = −γAq2/3(ϑ)(t−B2(y, ϑ))(
1

1 + τq
− 1

3τq
)− γ2(Γ̃γ − Γ̆γ)

− γ3/2
(Σ3

3
+ Σ(

x

γ
q1/3(ϑ)(1 + ℓ(y, ϑ))− A)− S3

3
− S(

a

γ
q1/3(ϑ)−A) +

2

3
(Σ− S)A

)
.

As τ 2q − 1 = γAq2/3/(1 + τq) and ( 1
1+τq

− 1
3τq

) = 1
6
+ 1

12

(τ2q −1)(1−(τ2q −1)/4)

τ2q (1+(τ2q −1)/2)
, we move the part of the

coefficient of (t − B2(y, ϑ)) with factor γ2 into the next term. Recall B0(y, ϑ) = ϑ · ∇B0(y, ϑ),
which eventually yields

(y +∇B0(y, ϑ)) · ϑ+ t = −γAq2/3(ϑ)(t−B2(y, ϑ))
(1
6
+

1

12

(τ 2q − 1)(1− (τ 2q − 1)/4)

τ 2q (1 + (τ 2q − 1)/2)

)

− γ3/2
(Σ3

3
+Σ(

x

γ
q1/3(ϑ)(1+ ℓ(y, ϑ))−A)− S3

3
−S(

a

γ
q1/3(ϑ)−A)+

2

3
(Σ−S)A

)
+ γ2(Γ̃γ − Γ̆γ) .

As ϑ is itself a critical point, we obtain, using the last statement of Lemma 3.8 and Remark 3.9,
that (3.33) holds with − sign on the left, and that ϑ · (y+∇B0(y, ϑ)) = −|y+∇B0|+ γ2E−. As a
result we obtain (3.38) with Ẽ = Ẽ(t, x, y, t

|y+∇B0| ,
√
γ

t
, ϑ), defined as follows

Ẽ := Γ̃γ − Γ̆γ + E− +
1

12

A2q4/3(ϑv)

1 + τq

(1− (τ 2q − 1)/4)

τ 2q (1 + (τ 2q − 1)/2)
(t− B2(y, ϑ) ,

which completes the proof of Lemma 3.10. �

Pick (t, x, y) with t > 0 and N (t, x, y) 6= ∅. As already noticed, we must have ||y|/t −
1| ≤ c (since otherwise N (t, x, y) = ∅ by (3.38)). Let now Nj ∈ N 1

d (t, x, y), j ∈ {1, 2}.
Then there exist (tj , xj , yj) such that Nj ∈ N (tj, xj , yj) and (tj, xj , yj) ∈ Cγ(t, x, y); there ex-
ist (θj , Aj ,Σj, Sj), j ∈ {1, 2}, Aj close to 1 such that (3.30) holds with (t, x, y, θ, A,Σ, S) replaced
by (tj , xj, yj, θj , Aj,Σj , Sj). Then we have, with ϑj = θj/|θj |,

2Nj(1−
3

4
BL

′(|θj|λγA3/2
j )) =

q2/3(ϑj)

2A
1/2
j

√
1 + γAjq2/3(ϑj)

1√
γ

(
tj −B2(yj, ϑj)

)
+O(1) ,(3.41)

Σ2
j +

xj
γ
q1/3(ϑj)

(
1 + ℓ(yj, ϑj) +Hj≥1

)
= Aj , S

2
j +

a

γ
q1/3(ϑj)(1 +Hj≥1) = Aj ,(3.42)

yj +∇B0(yj, ϑj)

tj
= −ϑj + γAjq

2/3(ϑj)
[
(1− B2(yj, ϑj)

tj
)
(1
2
ϑj −

∇q(ϑj)
3q(ϑj)

)

+
1

2tj
6∇B2(yj, ϑj)

]
+O(

γ3/2

tj
) .

(3.43)

Taking the difference between (3.41) for j = 1, 2 yields

(3.44) N1 −N2 =
3

4

(
N1B

′
L(|θ1|λγA3/2

1 )−N2B
′
L(|θ2|λγA3/2

2 )
)
+O(1)

+
(t1 − B2(y1, ϑ1))q

2/3(ϑ1)

4
√
γA

1/2
1

√
1 + γA1q2/3(ϑ1)

− (t2 −B2(y2, ϑ2))q
2/3(ϑ2)

4
√
γA

1/2
2

√
1 + γA2q2/3(ϑ2)

.
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Using Remark 3.6, the first term in the RHS of (3.44) is O
(
N1+N2

λ2γ

)
. We are reduced to proving

∣∣∣(t1 −B2(y1, ϑ1))q(ϑ1)√
A1q2/3(ϑ1)

− (t2 − B2(y2, ϑ2))q(ϑ2)√
A2q2/3(ϑ2)

∣∣∣ = O(
√
γ).

This will follow from the next lemma :

Lemma 3.11. Let (t, x, y) be fixed, let (tj, xj , yj) satisfy (3.12), (3.13) and let (θj = |θj |ϑj , Aj,Σj , Sj),
j ∈ {1, 2} with Aj close to 1 such that (3.41), (3.42) and (3.43) hold true, then

(3.45) t|ϑ1 − ϑ2| .
√
γ, t|A1q

2/3(ϑ1)− A2q
2/3(ϑ2)| .

√
γ.

Proof. If t√
γ
is bounded then both inequalities in (3.45) follow immediately. Suppose t√

γ
is suffi-

ciently large. From (3.43) and (3.33) we get (as in (3.38))

|yj +∇B0(yj, ϑj)| − tj
tj − B2(yj, ϑj)

=
1

6
γAjq

2/3(ϑj) +O(
γ3/2

tj
) .(3.46)

yj +∇B0(yj, ϑj)

|yj +∇B0(yj, ϑj)|
+ ϑj = − γAjq

2/3(ϑj)
[ 6∇q(ϑj)
3q(ϑj)

(
1− B2(yj, ϑj)

tj

)

− 1

2tj
6∇B2(yj, ϑj)

]
+O(

γ3/2

tj
) .

(3.47)

Taking the difference between (3.47) for j = 1 and j = 2 yields

|ϑ1 − ϑ2| =
∣∣∣ y1 +∇B0(y1, ϑ1)

|y1 +∇B0(y1, ϑ1)|
− y2 +∇B0(y2, ϑ2)

|y2 +∇B0(y2, ϑ2)|
∣∣∣ +O(γ).

As ∇B0(y, ϑ) = O(|y|2),
∣∣∣ y1|y1| −

y2
|y2|

∣∣∣ ≤ 2r0
√
γ

|y| from (3.12) and t
|y| ∼ 1, the first inequality in (3.45)

holds true. We proceed with the second one, which is, as for the model, more delicate to handle.

Lemma 3.12. Let ϑ̃j = ϑ̃j(tj , yj) be the solution to (3.48) below, then |ϑj − ϑ̃j | . γ3/2

tj
.

(3.48) ϑ̃j +
yj +∇B0(yj, ϑ̃j)

|yj +∇B0(yj, ϑ̃j)|
= −2

( |yj +∇B0(yj, ϑ̃j)|
tj

− 1
)[ 6∇q(ϑ̃j)

q(ϑ̃j)
− 3 6∇B2(yj, ϑ̃j)

2tj(1− B2(yj ,ϑ̃j)

tj
)

]
.

Proof. The coefficient of γAj in (3.46) does not vanish as B2(yj, ϑj) = O(|yj|2) and |yj|/tj ∼ 1; we
replace γAj in (3.47) by its first approximation given in (3.46). We obtain

(3.49) ϑj = − yj +∇B0(yj, ϑj)

|yj +∇B0(yj, ϑj)|

− 2
( |yj +∇B0(yj, ϑj)|

tj
− 1
)[ 6∇q(ϑj)

q(ϑj)
− 3 6∇B2(yj, ϑj)

2tj(1− B2(yj ,ϑj)

tj
)

]
+O(

γ3/2

tj
).

Taking the difference between (3.49) and (3.48), using ∇B2(yj, ϑ) = O(|yj|2) and smallness of∣∣∣ |yj+∇B0(yj ,ϑ̃j)|
tj

− 1
∣∣∣, completes the proof of Lemma 3.12. �

Using (3.46), in order to achieve the proof of Lemma 3.11 we are reduced to proving that

t

γ3/2

∣∣∣ |y1 +∇B0(y1, ϑ1)| − t1
t1 −B2(y1, ϑ1)

− |y2 +∇B0(y2, ϑ2)| − t2
t2 − B2(y2, ϑ2)

∣∣∣ = O(1).
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Set ỹj = yj +∇B0(yj, ϑj) and write

∣∣∣ |ỹ1| − t1
t1 − B2(y1, ϑ1)

− |ỹ2| − t2
t2 −B2(y2, ϑ2)

∣∣∣ ≤
∣∣∣ |ỹ1| − t1 + t2 − |ỹ2|

t1 − B2(y1, ϑ1)

− (t2 − |ỹ2|)
∣∣∣ 1

t1 − B2(y1, ϑ1)
− 1

t2 − B2(y2, ϑ2)

∣∣∣

≤
∣∣∣ |y1 +∇B0(y1, ϑ̃1)| − t1 + t2 − |y2 +∇B0(y2, ϑ̃2)|

t1 − B2(y1, ϑ1)

∣∣∣+
∣∣∣ |ỹ1| − |y1 +∇B0(y1, ϑ̃1)|

t1 −B2(y1, ϑ1)

∣∣∣

+
∣∣∣ |ỹ2| − |y2 +∇B0(y2, ϑ̃2)|

t1 −B2(y1, ϑ1)

∣∣∣+
∣∣∣ |ỹ2| − t2
t2 − B2(y2, ϑ2)

∣∣∣
∣∣∣t2 − B2(y2, ϑ2)

t1 − B2(y1, ϑ1)
− 1
∣∣∣

and using (3.11) and (3.13), Lemma 3.12 and (3.46) for j = 2 yields

t

γ3/2

∣∣∣ |ỹ1| − t1
t1 − B2(y1, ϑ1)

− |ỹ2| − t2
t2 −B2(y2, ϑ2)

∣∣∣ ≤ t

γ3/2
× r0γ

3/2

t1

+
t

γ3/2
×
(
O(

|y1|2
t1

)|ϑ1 − ϑ̃1|+O(
|y2|2
t1

)|ϑ2 − ϑ̃2|
)

+
t

γ3/2
×O(γ)×

( |t2 − B2(y2, ϑ̃2)− t1 +B2(y1, ϑ̃1)|
t1 − B2(y1, ϑ1)

+O(
|y1|2
t1

)|ϑ1−ϑ̃1|+O(
|y2|2
t1

)|ϑ2−ϑ̃2|
)
= O(1).

For d = 2 the proof is much simpler (no angle ϑ). In this case Lemma 3.11 reduces to obtaining
suitable estimates for |A1 −A2| ; this follows from the 2D equivalent of (3.46) which reads

|yj +B0(yj)|
tj

= 1 +
1

6
γAj

(
1− B2(yj)

tj

)
+O(γ3/2/t) ,

and we are done with Lemma 3.11. �

This completes the proof of Proposition 3.4 in the general case. �

Proposition 3.13. Let (t, x, y) such that N (t, x, y) 6= ∅. Then,
∑

N /∈N 1
d (t,x,y),|N |. 1√

γ

VN,γ(t, x, y) = O(h∞).

Proof. We, again, consider first the model case: in rescaled variables T,X, Y , the Lagrangian ΛMN
is defined by (3.16), (3.17), (3.18). We start with integration in ϑ : ΨM

N,a,γ = ΨM
0,a,γ − 4

3
|θ|NA3/2 +

N
λγ
BL((|θ|λγA3/2) and the last two terms do not depend on ϑ; ∇2

ϑΨ
M
N,a,γ = ∇2

ϑΨ
M
0,a,γ =

|Y |
γ
×O(1) =

|y|
γ3/2

× O(1). Using Lemma 3.2, we have |y| > c0|t|, hence critical points with respect to ϑ are

non-degenerate and stationary phase applies (providing a factor (λγ
|y|
γ3/2

)−(d−2)/2 . (h
t
)(d−2)/2). Let

t > 0, then using Lemma 3.8 with Γ = 0 (hence B0 = B2 = l = 0), there exists a smooth, bounded
function EM,− such that the critical point (associated to the − sign in (3.33)) is

(3.50) ϑc = −ϑY − γA

3

T

|Y |
6∇q(−ϑY )
q1/3(−ϑY )

+
γ

|Y |(ΣX − S
a

γ
)
6∇q(−ϑY )
3q2/3(−ϑY )

+
γ3/2

|Y | EM,− ,

where we set ϑY = Y/|Y |. The critical point (up to its sign) is unique, and from Lemma 3.10 (in

the model case) we see that we recover (3.21). Let ρ := |θ| and denote Ψ̃M
N,a,γ(T,X, Y,Σ, S, A, ρ) :=



46 DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS

ΨM
N,a,γ(T,X, Y,Σ, S, A, ρϑc) the critical value of the phase at ϑc given above, then

(3.51) Ψ̃M
N,a,γ(T,X, Y,Σ, S, A, ρ) = ρ

(Y · ϑc + T
√
1 + γAq2/3(ϑc)

γ
+

Σ3

3
+ Σ(Xq1/3(ϑc)− A)

− S3

3
− S(

a

γ
q1/3(ϑc)− A)− 4

3
NA3/2

)
+
N

λγ
BL(ρλγA

3/2) .

Define sets of integers related to stationary points of this phase:

NM
Ψ̃
(T,X, Y ) := {N ∈ Z, ∃(Σ, S, A, ρ) such that ∇(Σ,S,A,ρ)Ψ̃

M
N,a,γ(T,X, Y,Σ, S, A, ρ) = 0} ,

N 1,M

Ψ̃
(T,X, Y ) := ∪CM

γ (T,X,Y )NM
Ψ̃
(T ′, X ′, Y ′) .

One sees that NM
Ψ̃
(T,X, Y ) = NM(t, x, y), which implies N 1,M

Ψ̃
(T,X, Y ) = N 1,M

d (t, x, y), where

(T,X, Y ) = ( t√
γ
, x
γ
, y√

γ
): indeed, if N is such that there exists a critical point (Σ, S, A, ρ) for Ψ̃M

N,a,γ

at (T,X, Y ), then (Σ, S, A, ρ, ϑc(T,X, Y,Σ, S, A, a, γ)) is a critical point for Ψ
M
N,a,γ and the converse

also holds. We now need to prove that

∑

N /∈N 1,M

Ψ̃
(T,X,Y ),|N |. 1√

γ

V M
N,γ(T,X, Y ) = O(h∞),

where V M
N,γ(T,X, Y ) had phase ΨM

N,a,γ that became Ψ̃M
N,a,γ after the stationary phase in ϑ.

Let first 4a . γ: stationary phase applies in S. Indeed, Ψ̃M
N,a,γ is stationary in S when S2 +

a
γ
q1/3(ϑc) = A and for a

γ
small enough there are two non-degenerate critical points S± (with main

contributions ±
√
A). We denote by Ψ̃M,±

N,a,γ the critical values of the phase Ψ̃M
N,a,γ at S±. For

ε ∈ {±}, we define

NM,ε

Ψ̃
(T,X, Y ) := {N ∈ Z : ∃(Σ, A, ρ) such that ∇(Σ,A,ρ)Ψ̃

M,ε
N,a,γ(T,X, Y,Σ, A, ρ) = 0} ,

N 1,M,ε

Ψ̃
(T,X, Y ) := ∪CM

γ (T,X,Y )NM,ε

Ψ̃
(T ′, X ′, Y ′) and ∩± NM,±

Ψ̃
(T,X, Y ) = NM

Ψ̃
(T,X, Y ) .

If N ∈ NM
Ψ̃
(T,X, Y ), then there exists a critical point Σc, Sc, Ac, ρc for the phase Ψ̃M

N,a,γ; Sc
satisfies S2 + a

γ
q1/3(ϑc) = A, hence Sc ∈ {S±}. Therefore (Σc, Ac, ρc) is a critical point for

Ψ̃M
N,a,γ(T,X, Y,Σ, S±, A, ρϑc|S±) = Ψ̃±

N,a,γ. Conversely, let Σ±, A±, ρ± be a critical point for Ψ̃M,±
N,a,γ;

for each sign ε ∈ {±}, let S±
ε denote both solutions to S2+a

γ
q1/3(ϑc|Aε,Σε,S) = Aε, then (Σε, S

±
ε , Aε, ρε)

are critical points for Ψ̃M
N,a,γ and both inclusions hold. Using ∩±NM,±

Ψ̃
(T,X, Y ) = NM

Ψ̃
(T,X, Y ) we

obtain ∩±N 1,M,±
Ψ̃

(T,X, Y ) = N 1,M

Ψ̃
(T,X, Y ) and therefore (N 1,M

Ψ̃
(T,X, Y ))c = ∪±(N 1,M,±

Ψ̃
(T,X, Y ))c,

where (N 1,M

Ψ̃
)c is the complement set. Hence, the proof of Proposition 3.13 for ∆M (for 4a . γ)

rests on proving

∑

N /∈∪ε∈{±}N 1,M,ε

Ψ̃
(T,X,Y ),|N |. 1√

γ

V M,ε
N,γ (T,X, Y ) = O(h∞),



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 47

where now V M,ε
N,γ has phase function Ψ̃M,ε

N,a,γ and its symbol is obtained from the one of V M
N,γ after

stationary phase in S. Using (3.51), we obtain, with ϑc satisfying (3.21)

Ψ̃M,±
N,a,γ(T,X, Y,Σ, A, ρ) = ρ

(Y · ϑc + T
√

1 + γAq2/3(ϑc)

γ
+

Σ3

3
+ Σ(Xq1/3(ϑc)−A)

∓ 2

3
(
a

γ
q1/3(ϑc)−A)3/2 − 4

3
NA3/2

)
+
N

λγ
BL(ρλγA

3/2).

Lemma 3.14. There exists a uniform constant c > 0 such that, if N /∈ ∪ε∈{±}N 1,M,ε

Ψ̃
(T,X, Y )

then, for all (Σ, A, ρ) on the support of the symbol of V M,±
N,γ (T,X, Y ),

(3.52) |∇(Σ,A,ρ)Ψ̃
ε
N,a,γ(T,X, Y,Σ, A, ρ)| ≥ c.

Remark 3.15. The lemma allows to conclude the proof of Proposition 3.13 in the case 4a . γ as,
using (3.52), we apply non stationary phase with respect to (Σ, A, ρ) and obtain a contribution

O(h∞) for each such V M,ε
N,a,γ; the sum over N is finite (up to |N | . 1√

γ
) and we can sum up.

Before dealing with the proof of Lemma 3.14, we go back to (3.16), (3.17) and (3.18): we set
S = S±(A, ϑ) is such that S2 + a

γ
q1/3(ϑ) = A. For each ε ∈ {±}, we explicitly obtain the integral

curves (Tε, Xε, Yε)(A,Σ, θ) depending on the parameters (A,Σ, θ),




Xε(A,Σ, ϑ)q
1/3(ϑ) = A− Σ2, Sε = ε

√
A− a

γ
q1/3(ϑ),

Tε(A,Σ, |θ|, ϑ) q2/3(ϑ)

2
√

1+γAq2/3(ϑ)
= 2NA1/2(1− 3

4
B′
L(|θ|λγA3/2)) + (Σ− Sε(A, ϑ)),

Yε(A,Σ, |θ|, ϑ) = −Tε(A,Σ, |θ|, ϑ)q
2/3(ϑ)√

1 + γAq2/3(ϑ)

( ϑ

q2/3(ϑ)
(1 + γAq2/3(ϑ)) +

γA

3

6∇q(ϑ)
q(ϑ)

)

− γ
(Σ3

3
+ Σ(Xεq

1/3(ϑc)− A)− ε
2

3
S3
ε

)
ϑ+

4

3
γNA3/2(1− 3

4
B′
L(|θ|λγA3/2))ϑ

− γ
(
ΣXε(A,Σ, ϑ)− Sε

a

γ

)
q1/3(ϑ)

6∇q(ϑ)
3q(ϑ)

.

v(3.53)

Taking the scalar product with ϑ in the last equation and using that ϑ · 6∇q(ϑ) = 0 yields

Yε · ϑ+ Tε

√
1 + γAq

2
3 (ϑ) + γ

(Σ3

3
+ Σ(Xεq

1
3 (ϑc)− A)− ε

2

3
S3
ε

)
=

4

3
γNA

3
2 (1− 3

4
B′
L(|θ|λγA

3
2 )),

which is nothing but the derivative of the phase with respect to ρ = |θ|.

Proof. (of (3.52)) Fix (T,X, Y ). LetN /∈ ∪ε∈{±}N 1,M,ε

Ψ̃
(T,X, Y ), henceN /∈ ∪ε∈{±}NM,ε

Ψ̃
(T ′, X ′, Y ′)

for all (T ′, X ′, Y ′) ∈ CMγ (T,X, Y ), which is equivalent to ∇(Σ,A,ρ)Ψ̃
M,ε
N,a,γ(T

′, X ′, Y ′,Σ, A, ρ) 6= 0 for

all (T ′, X ′, Y ′) ∈ CMγ (T,X, Y ). Pick a sign ε ∈ {±}, let (T ′, X ′, Y ′) ∈ CMγ (T,X, Y ), and let

(A,Σ, ρ) be a given point (on the support of the symbol of V M,ε
N,a,γ); let Sε(A, ϑ

′
c) and ϑ′c be solu-

tions to S2 + a
γ
q1/3(ϑ′c) = A and (3.50), where in (3.50) we replace (T,X, Y ) by (T ′, X ′, Y ′) and

where the sign of Sε is ε. We may compute ∇(A,Σ,ρ)Ψ̃
M,ε
N,a,γ(T

′, X ′, Y ′,Σ, A, ρ), taking advantage

of ϑ′c and Sε(A, ϑ
′
c) being stationary points for ΨM

N,a,γ(· · · ) to cancel their derivatives. Let now
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ϑ ∈ Sd−2, using (3.53) and Sε(A, ϑ) = ε
√
A− a

γ
q1/3(ϑ)), we get





∂AΨ̃
M,ε
N,a,γ(T

′, X ′, Y ′, ·) = T ′q2/3(ϑ′c)

2
√

1+γAq2/3(ϑ′c)
− Tεq2/3(ϑ)

2
√

1+γAq2/3(ϑ)
+ Sε(A, ϑ

′
c)− Sε(A, ϑ),

∂ΣΨ̃
M,ε
N,a,γ(T

′, X ′, Y ′, ·) = X ′q1/3(ϑ′c)−Xεq
1/3(ϑ),

∂ρΨ̃
M,ε
N,a,γ(T

′, X ′, Y ′, ·) = γ−1
(
Y ′ · ϑ′c + T ′

√
1 + γAq

2
3 (ϑ′c)− Yε · ϑ− Tε

√
1 + γAq

2
3 (ϑ)

)

+ Σ
(
X ′q

1
3 (ϑ′c)−Xεq

1
3 (ϑ)

)
− 2

3

(
S3
ε (A, ϑ

′
c)− S3

ε (A, ϑ)
)
.

(3.54)

Recall that ϑ′c is provided by (3.50) with (T,X, Y ) replaced by (T ′, X ′, Y ′); the same formula holds
for ϑ with (T,X, Y ) replaced by (Tε, Xε, Yε). For such ϑ

′
c (resp. ϑ) we have Y

′ ·ϑ′c = −|Y ′|+O(γ2)
(resp. Yε · ϑ = −|Yε|+O(γ2)). Setting γZ ′ := −|Y ′|+ T ′ and γZε := −|Yε|+ Tε, ∂ρΨ̃

M,ε
N,a,γ may be

rewritten as

∂ρΨ̃
M,ε
N,a,γ(T

′, X ′, Y ′, · · · ) = A∂AΨ̃
M,ε
N,a,γ(T

′, X ′, Y ′, · · · ) + Σ∂ΣΨ̃
M,ε
N,a,γ(T

′, X ′, Y ′, · · · )

+ Z ′ − Zε − A(Sε(A, ϑ
′
c)− Sε(A, ϑ))−

(S3
ε (A, ϑ

′
c)

3
− S3

ε (A, ϑ)

3

)
+O(γ),

where all the small terms O(γ) come with differences T ′q2/3(ϑ′c) − Tεq
2/3(ϑ), q1/3(ϑ′c) − q1/3(ϑ),

X ′q1/3(ϑ′c)−Xεq
1/3(ϑ) etc. Using (3.54) we bound the gradient of Ψ̃M,ε

N,a,γ

(3.55) (|∂AΨ̃M,ε
N,a,γ|+ |∂ΣΨ̃M,ε

N,a,γ|+ |∂ρΨ̃M,ε
N,a,γ|)(T ′, X ′, Y ′,Σ, A, ρ) ≤ 4(|T ′q2/3(ϑ′c)− Tεq

2/3(ϑ)|
+ |q1/3(ϑ′c)− q1/3(ϑ)|+ |X ′q1/3(ϑ′c)−Xεq

1/3(ϑ)|+ |Z ′ − Zε|) .

As N /∈ N 1,M,ε

Ψ̃
(T,X, Y ) implies that ∇(Σ,A,ρ)Ψ̃

M,ε
N,a,γ(T

′, X ′, Y ′,Σ, A, ρ) 6= 0 for all (T ′, X ′, Y ′) ∈
CMγ (T,X, Y ), it follows that the right hand side of (3.55) doesn’t vanish for any (A,Σ, ρ, ϑ). Hence,

for all (A,Σ, ρ) on the support of the symbol and for every ϑ ∈ Sd−2,

(3.56) (Tε(A,Σ, ρ, ϑ), Xε(A,Σ, ρ, ϑ), Zε(A,Σ, ρ, ϑ)) /∈ Br0(T,X, Z), γZ = −|Y |+ T .

In fact, if the last statement does not hold, then there exist (A,Σ, ρ, ϑ) such that

(|T − Tε(A,Σ, ρ, ϑ)|+ |X −Xε(A,Σ, ρ, ϑ)|+ |Z − Zε(A,Σ, ρ, ϑ)| ≤ r0.

Taking (T ′, X ′, Y ′) = (Tε, Xε, Yε)(A,Σ, ρ, ϑ), γZ
′ = −|Y ′|+ T ′, then ϑ′c = ϑ and therefore the

right hand side term in (3.55) vanishes which contradicts (T ′, X ′, Y ′) ∈ CMγ (T,X, Y ). As (3.56)
holds true for all ϑ, it also holds for ϑ = ϑc from (3.50) (corresponding to (T,X, Y,Σ, A, ρ)), and

|T − Tε(A,Σ, ρ, ϑc)|+ |X −Xε(A,Σ, ρ, ϑc)|+ |Z − Zε(A,Σ, ρ, ϑc)| ≥ r0.

Moreover, at (T,X, Y,Σ, A, ρ) and ϑ = ϑc we obtain from (3.54)

|∂AΨ̃M,ε
N,a,γ |(T,X, Y,Σ, A, ρ) =

q2/3(ϑc)

2
√

1 + γAq2/3(ϑc)
|T − Tε(A,Σ, ρ, ϑc)|,

|∂ΣΨ̃M,ε
N,a,γ|(T,X, Y,Σ, A, ρ) = q1/3(ϑc)|X −Xε|,

|∂ρΨ̃M,ε
N,a,γ|(T,X, Y,Σ, A, ρ) ≥ |Z − Zε(A,Σ, ρ, ϑc)| −

Aq2/3(ϑc)|T − Tε|
1 +

√
1 + γAq2/3(ϑc)

− |Σ|q1/3(ϑc)|X ′ −Xε|,
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and therefore there exists a uniform constant (depending only on q) such that

(|∂AΨ̃M,ε
N,a,γ|+ |∂ΣΨ̃M,ε

N,a,γ|+ |∂ρΨ̃M,ε
N,a,γ|)(T,X, Y,Σ, A, ρ) ≥ C(|T − Tε(A,Σ, ρ, ϑc)|

+ |X −Xε(A,Σ, ρ, ϑc)|+ |Z ′ − Zε(A,Σ, ρ, ϑc)|) ≥ Cr0.

which allows to conclude the proof of Lemma 3.14. �

Let now a ∼ γ. We rescale variables as follows s =
√
a|θ|1/3S, σ√a|θ|1/3Σ, α = a|θ|2/3A, let λ =

λa = a3/2

h
and ΨM

N,a,a(T,X, Y,Σ, S, A, θ) := ΦMN,a,a(
√
aT, aX,

√
aY,

√
a|θ|1/3Σ,√a|θ|1/3S, a|θ|2/3A).

The saddle points of ΨM
N,a,a satisfy S2 = A − q1/3(ϑc) and they undergo coalescence when A =

q1/3(ϑc). Let χ0 ∈ C∞ be a smooth cutoff, equal to 1 on [0,∞] and equal to 0 on [−∞,−2].
Then (χ0Ai)(−(|θ|λ)2/3(A− q1/3(ϑc))) is a symbol of order 2/3 supported for values (|θ|λ)2/3(A−
q1/3(ϑc)) ≤ 2 and (1− χ0)Ai(−(|θ|λ)2/3(A− q1/3(ϑc))) is supported for A ≥ q1/3(ϑc) and is equal
to 1 on (|θ|λ)2/3(A − q1/3(ϑc)) ≥ 2. Notice that on the support of (1 − χ0) the Airy function can
be written as a sum of two contributions A±((|θ|λ)2/3(A− q1/3(ϑc))) corresponding to the saddle
points S±. We split the symbol of V M

N in two parts using χ0+ (1−χ0) = 1 and notice that on the
support of χ0 the Airy function behaves as a symbol of order 2/3. Therefore we can write each

integral V M
N,a(t, x, y) as a sum V M

N,a(t, x, y) =
∑

ε∈{0,±} V
M,ε
N,a (t, x, y) where for ε ∈ {±}, V M,ε

N has

phase Ψ̃M,ε
N,a,a(T,X, Y,Σ, A, ρ) while V M,0

N,a has phase function ΨN,a,a(t, x, y,Σ, 0, A, ρ). We are left
to prove that for ever ε ∈ {0,±} the following holds

∑

N /∈N 1,M,ε
Ψ (T,X,Y ),|N |.1/

√
a

V M,ε
N,a (T,X, Y ) = O(h∞).

For ε ∈ {±} we act exactly like in the transverse case 4a ≤ γ since on the support of (1 − χ0)
we obtain two distinct saddle points S±. For ε = 0 we use the fact that we got rid of variable S
hence ∂SΨN,a,a(T,X, Y,Σ, 0, A, ρ) = 0 and act again as in the previous case, completing the proof
of Proposition 3.13 for the model Laplace ∆M .

We can now proceed with the proof of Proposition 3.13 in the general situation. Recall that
the phase of VN is ΦN,a,γ(t, x, y, σ, s, α, θ) = tτq(α, θ)+Φ(x, y, θ, α, σ)−Φ(a, 0, θ, α, s)−NhL(α3/2/h)

(see (3.9)). Rescaling s =
√
γ|θ|1/3S, α = γ|θ|2/3A we obtain a new phase Φ̃N,a,γ(t, x, y,Σ, S, A, θ) :=

ΦN,a,γ(t, x, y, σ, s, α, θ) whose saddle points S± are solutions to the third equation in (3.30) that
we re-write here, using (2.51),

(3.57) S2 +
a

γ
q1/3(ϑ)

(
1 +Hj≥1

)
= A,

where terms in Hj come with factors O(γj/2). As this equation is independent of |θ|, we recover
that S± = S±(a, γ, ϑ, A) are independent of |θ| or N .

Let first 4a . γ; as A is close to 1 on the support of the symbol, critical points S± are non-
degenerate and have opposite signs. Stationary phase in S yields Φ̃N,a,γ ∈ {Φ̃εN,a,γ}, where for

ε ∈ {±} we set Φ̃εN,a,γ(t, x, y,Σ, A, θ) := Φ̃N,a,γ(t, x, y,Σ, Sε, A, θ). Assume t > 0. For ε ∈ {±}, let
N ε(t, x, y) := {(N ∈ Z, ∃(Σ, A, θ) such that ∇(Σ,A,θ)Φ̃

ε
N,a,γ(t, x, y,Σ, A, θ) = 0},

then N (t, x, y) = ∩ε=±N ε(t, x, y). Indeed, if N ∈ N (t, x, y), then there exists a critical point

Σc, Sc, Ac, θc for the phase Φ̃N,a,γ ; Sc satisfies (3.57), hence Sc ∈ {S±}. Therefore (Σc, Ac, θc)

is a critical point for Φ̃N,a,γ(t, x, y,Σ, S±(a, γ, ϑ, A), A, θ) = Φ̃±
N,a,γ. Conversely, if Σ±, A±, θ± is

a critical point for Φ̃±
N,a,γ, then (Σ±, S±(a, γ, ϑ±, A±), A±, θ±) are critical points for Φ̃N,a,γ . For
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ε ∈ {±}, let N 1,ε
d (t, x, y) = ∪Cγ(t,x,y)N ε(t′, x′, y′), then we have N 1

d = ∩±N 1,±
d and therefore,

(N1)
c = ∪ε∈{±1}(N 1,ε

d )c. Proposition 3.13 will follow from proving

(3.58) ∀ε ∈ {±} ,
∑

N /∈∪±N 1,±
d (t,x,y),|N |. 1√

γ

V ε
N,γ(t, x, y) = O(h∞) ,

where V ε
N,γ(t, x, y) has phase function Φ̃εN,a,γ and symbol obtained from the one of VN,γ after

stationary phase in S. For every N the phase Φ̃εN,a,γ has two critical points with respect to ϑ,

which are non-degenerate. Indeed, Φ̃εN,a,γ depends on N through −NhL(|θ|λγA3/2) and therefore

its dependence on ϑ comes only through Φ̃ε0,a,γ = Φ̃0,a,γ|S=Sε. Moreover, ∇2
ϑΦ̃0,a,γ = |y|O(1),

(∇2
ϑΦ̃0,a,γ)

−1 = |y|−1O(1) and using Lemma 3.2 it follows that |y| > c0|t| and in particular y 6= 0.
Lemma 3.8 provide the explicit form of the critical point ϑc and for t > 0 we set ϑc(t, x, y,Σ, A) =
ϑ−(t, x, y,Σ, Sε, A). Let ρ := |θ| and set

Ψε
N,a,γ(t, x, y,Σ, A, ρ) := Φ̃ε0,a,γ(t, x, y,Σ, A, ρϑc)−

4

3
Nργ3/2A3/2 +NhBL(ρλγA

3/2) ,

NΨε(t, x, y) := {(N ∈ Z, ∃(Σ, A, ρ) such that ∇(Σ,A,ρ)Ψ
ε
N,a,γ(t, x, y,Σ, A, ρ) = 0} .

Remark again that NΨε(t, x, y) = N ε(t, x, y): indeed, if N is such that there exists a critical point

(Σ, A, ρ) for Ψε
N,a,γ at (t, x, y), then (Σ, A, ρ, ϑc(t, x, y,Σ, A)) is a critical point for Φ̃εN,a,γ and the

reverse statement holds as well. Let ε ∈ {±} and N /∈ N 1,ε
d . Then N /∈ N ε(t′, x′, y′) for all

(t′, x′, y′) ∈ Cγ(t, x, y) and therefore for all such (t′, x′, y′) we have

∇(Σ,A,θ)Φ̃
ε
N,a,γ(t

′, x′, y′,Σ, A, θ) 6= 0, ∀(A,Σ, ρ).
This translates into N /∈ NΨε(t′, x′, y′) and ∇(Σ,A,ρ)Ψ

ε
N,a,γ(t

′, x′, y′,Σ, A, ρ) 6= 0 for all (t′, x′, y′) ∈
Cγ(t, x, y) and all Σ, A, ρ on the support of the symbol of V ε

N,γ(t, x, y).

Lemma 3.16. There exists a uniform constant c > 0 such that, for all N /∈ ∪ε∈{±}N 1,ε

Ψ̃
(t, x, y),

(3.59) |∇(Σ,A,ρ)Ψ
ε
N,a,γ(t, x, y,Σ, A, ρ)| ≥ cγ3/2

for all (Σ, A, ρ) on the support of the symbol of V ε
N,γ.

This lemma allows to perform non stationary phase in V ε
N,γ(t, x, y) with large parameter λγ and

conclude that (3.58) holds true.

Remark 3.17. We need to define the integral curves of Φ̃εN,a,γ : recall that (3.30) allows to pa-
rametrize the Lagrangian ΛN ; the projection πN (ΛN) can be parametrized by (ρ, ϑ,Σ, A), with
ρ ∼ 1, ϑ ∈ Sd−2, A,Σ, S on the support of the symbol of VN,γ and S ∈ {S±(a, γ, ϑ, A)}. We
define the integral curves t̃ε = t̃ε(Σ, A, ρ, ϑ, a, γ), x̃ε = x̃ε(Σ, A, ρ, ϑ, a, γ), ỹε = ỹε(Σ, A, ρ, ϑ, a, γ)
(as we did in Remark 3.14 in the model case) such that (3.30) holds at (t̃ε, x̃ε, ỹε). Therefore, at
a given point (ρ, ϑ,Σ, A), (t̃ε, x̃ε, ỹε) is defined such that (3.30) holds with (t, x, y) = (t̃ε, x̃ε, ỹε),
S = Sε(a, γ, ϑ, A) and θ = ρϑ. Using Lemma 3.8 with ϑ ∈ {ϑ±} and (t, x, y) replaced by (t̃ε, x̃ε, ỹε),

we obtain (ỹε +∇B0(ỹε, ϑ))ϑ = −|ỹε +∇B0(ỹε, ϑ)|+ γ2O( |ỹε|
t̃ε
).

Proof. Let (Σ, A, ρ) be a point on the support of the symbol of V ε
N,γ(t, x, y), let ϑ ∈ Sd−2 and define

Sε(a, γ, ϑ, A) to be the solution to the third equation in (3.30) (where ϑ is replaced by ϑ) with
sign ε. Let (t̃ε, x̃ε, ỹε) := (t̃ε, x̃ε, ỹε)(Σ, A, ρ, ϑ, a, γ) denote the corresponding point on the integral
curve (as in Remark 3.17); then, by construction of the integral curves,

∇(A,Σ,ρ)Ψ̃
ε
N,a,γ(t̃ε, x̃ε, ỹε,Σ, A, ρ) = ∇(A,Σ,ρ)Φ̃

ε
N,a,γ((t̃ε, x̃ε, ỹε)(Σ, · · · , γ),Σ, A, ρϑ) = 0 ∈ R3 .
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Using the explicit form of (3.30), this translates into

γq2/3(ϑ)

2
√

1 + γAq2/3(ϑ)
(t̃ε − B2(ỹε, ϑ)) + γ

3
2 (Σ− Sε(a, γ, ϑ, A)) = 2Nγ

3
2A1/2(1− 3

4
B′
L(ρλγA

3
2 )) +O(γ2) ,

x̃ε(1 + ℓ(ỹε, ϑ) +O(
√
γ)) = γ(A− Σ2) ,

(
(ỹε +∇B0(ỹε, ϑ))ϑ+ t̃ε

)
− (1− τq(A, ϑ))(t̃ε − B2(ỹε, ϑ))

+ γ
3
2

[Σ3

3
+ Σ

( x̃ε
γ
q1/3(ϑ)(1 + ℓ(ỹε, ϑ) +O(

√
γ))− A

)
− S3

ε

3
− Sε

(a
γ
q1/3(ϑ)(1 +O(

√
γ))− A

)]

=
4

3
γ

3
2NA

3
2 (1− 3

4
B′
L(ρλγA

3
2 )) +O(γ2) ,

where the last equation is obtained using the second to last equation in the system (3.30), as
satisfied by (t̃ε, x̃ε, ỹε)(Σ, A, ρ, ϑ, a, γ),Σ, Sε(a, γ, ϑ, A), A, ρ, ϑ. Let (t′, x′, y′) ∈ Cγ(t, x, y) and let

ϑ′c := ϑc(t
′, x′, y′,Σ, A) be the critical point of Φ̃εN,a,γ(t

′, x′, y′,Σ, A, ρϑ), then, for any ϑ ∈ Sd−2,

∂AΨ
ε
N,a,γ =

γq2/3(ϑ′c)

2
√
1 + γq2/3(ϑ′c)

(t′ −B2(y
′, ϑ′c))

− γAq2/3(ϑ)

2
√
1 + γAq2/3(ϑ)

(t̃ε − B2(ỹε, ϑ))− γ3/2(Sε(a, γ, ϑ
′
c, A)− Sε(a, γ, ϑ, A)) +O(γ2) ,

(3.60)

∂ΣΨ
ε
N,a,γ = γ

3
2

(
q1/3(ϑ′c)

x′

γ
(1 + ℓ(y′, ϑ′c) +O(γ

1
2 )
)
− q1/3(ϑ)

x̃ε
γ

(
1 + ℓ(ỹε, ϑ) +O(γ

1
2 ))
)
,(3.61)

(3.62) ∂ρΨ
ε
N,a,γ = ((y′ +∇B0(y

′, ϑ′c)) · ϑ′c + t′)− ((ỹε +∇B0(ỹε, ϑ)) · ϑ+ t̃ε)

+
γAq2/3(ϑ′c)

2
√
1 + γAq2/3(ϑ′c)

(t′ − B2(y
′, ϑ′c))−

γAq2/3(ϑ)

2
√
1 + γAq2/3(ϑ)

(t̃ε −B2(ỹε, ϑ))

+ γ3/2Σ
(x′
γ
q1/3(ϑ′c)(1 + ℓ(y′, ϑ′c) +O(

√
γ))− x̃ε

γ
q1/3(ϑ)(1 + ℓ(ỹε, ϑ) +O(

√
γ))
)

− 2

3
γ3/2

(
S3
ε (a, γ, ϑ

′
c, A)− S3

ε (a, γ, ϑ, A)
)
+O(γ2) ,

where in the last line we used S3
ε

3
+ Sε

(
a
γ
q1/3(ϑ)(1 +O(

√
γ))−A

)
= −2

3
S
3/2
ε +O(

√
γ).

Remark 3.18. All terms O(γ2) are smooth functions of differences: ϑ′c−ϑ, q2/3(ϑ′c)(t′−B2(y
′, ϑ′c))−

q2/3(ϑ)(t̃ε − B2(ỹε, ϑ)), q
1/3(ϑ′c)

x′

γ
− q1/3(ϑ) x̃ε

γ
as well as (f(y′, ϑ′c) − f(ỹε, ϑ)) where f is either

B2(y, ϑ) or ∇B2(y, ϑ) and such that f(y, ϑ) = O(|y|2) or f ∈ {B2k(y, ϑ),∇B2k(y, ϑ)} is such that
f(y, ϑ) = O(|y|) and coefficients O(γ2+k) instead of O(γ2), or f ∈ {αj(y, ϑ), γj(y, ϑ)} (where αj , γj
are coefficients of homogeneous terms of degree 2j in AΓ) with coefficients O(γ2+j/2).
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We then obtain and upper bound for ∇A,Σ,ρΨ̃
ε
N,a,γ (similar to (3.55))

γ−3/2(|∂AΨ̃ε
N,a,γ |+ |∂ΣΨ̃ε

N,a,γ|+ |∂ρΨ̃ε
N,a,γ|)(t′, x′, y′,Σ, A, ρ)

≤ C
(∣∣∣q2/3(ϑ′c)

(t′ −B2(y
′, ϑ′c))√

γ
− q2/3(ϑ)

(t̃ε −B2(ỹε, ϑ))√
γ

∣∣∣

+ |q1/3(ϑ′c)− q1/3(ϑ)|(1 +O(
√
γ)) + |q1/3(ϑ′c)

x′

γ
(1 + ℓ(y′, ϑ′c))− q1/3(ϑ)

x̃ε
γ
(1 + ℓ(ỹε, ϑ))|

+
∣∣∣(y

′ +∇B0(y
′, ϑ′c)) · ϑ′c + t′

γ3/2
− (ỹε +∇B0(ỹε, ϑ)) · ϑ+ t̃ε

γ3/2

∣∣∣+O(
√
γ)|y′ − ỹε|

)
,

where the term |q1/3(ϑ′c) − q1/3(ϑ)| comes from
(
Sε(a, γ, ϑ

′
c, A) − Sε(a, γ, ϑ, A)

)
and the term

O(
√
γ)|y′ − ỹε| comes from differences involving B2k, αj, γj. The constant C > 0 depends on q.

Lemma 3.19. Let (t, x, y) be fixed, let (Σ, A, ρ, ϑ) belong to the support of the symbol of V ε
N,γ, then

(t̃ε, x̃ε, ỹε)(Σ, A, ρ, ϑ, a, γ) /∈ Cγ(t, x, y).

Proof. If not, then taking (t′, x′, y′) := (t̃ε, x̃ε, ỹε)(Σ, A, ρ, ϑ) we have ϑ′c = ϑ, (t′, x′, y′) ∈ Cγ and

∇A,Σ,ρΨ̃
ε
N,a,γ(t

′, x′, y′,Σ, A, ρ) = 0, which cannot happen for N /∈ NΨε(t′, x′, y′). �

We now prove (3.59): from the previous lemma, for allA,Σ, ρ we have (t̃ε, x̃ε, ỹε)(Σ, A, ρ, ϑc, a, γ) /∈
Cγ(t, x, y), where ϑc = ϑc(t, x, y,Σ, A) is the critical point of Φ̃

ε
N,a,γ(t, x, y,Σ, A, ρϑ) given in Lemma

3.8 (with ϑc = ϑ−(t, x, y,Σ, A) for t > 0). This yields

(3.63)
∣∣∣t− B2(y, ϑ̃(t, y))√

γ
− t̃ε − B2(ỹε, ϑ̃(t̃ε, ỹε)√

γ

∣∣∣+ |x
γ
(1 + ℓ(y, ϑ̃(t, y)))− x̃ε

γ
(1 + ℓ(ỹε, ϑ̃(t̃ε, ỹε)))|

+
∣∣∣ |y +∇B0(y, ϑ̃(t, y))| − t

γ3/2
− |ỹε +∇B0(ỹε, ϑ̃(t̃ε, ỹε))| − t̃ε

γ3/2

∣∣∣ > r0.

As (3.60),(3.61) and (3.62) do hold for any ϑ ∈ Sd−2, taking (t′, x′, y′) = (t, x, y) and ϑ := ϑc(=
ϑ′c) = ϑc(t, x, y,Σ, A) yields Sε(a, γ, ϑ

′
c, A) = Sε(a, γ, ϑ, A) and therefore, for all (A,Σ, ρ) on the

support of V ε
N,γ(t, x, y) and (t̃ε, x̃ε, ỹε) = (t̃ε, x̃ε, ỹε)(Σ, A, ρ, ϑc) we have

γ−3/2|∂AΨ̃ε
N,a,γ|(t, x, y,Σ, A, ρ) =

1

2
q2/3(ϑc)

∣∣∣(t− B2(y, ϑc))√
γ

− (t̃ε − B2(ỹε, ϑc))√
γ

∣∣∣+O(
√
γ) ,

γ−3/2|∂ΣΨ̃ε
N,a,γ|(t, x, y,Σ, A, ρ) = q1/3(ϑc)|

x

γ
(1 + ℓ(y, ϑc))−

x̃ε
γ
(1 + ℓ(ỹε, ϑc))|+O(

√
γ) ,

γ−3/2|∂ρΨ̃ε
N,a,γ|(t, x, y,Σ, A, ρ) ≥

∣∣∣(y +∇B0(y, ϑc)) · ϑc + t)

γ3/2
− (ỹε +∇B0(ỹε, ϑc)) · ϑc + t̃ε)

γ3/2

∣∣∣

− 1

2
q2/3(ϑc)

∣∣∣(t−B2(y, ϑc))√
γ

− (t̃ε −B2(ỹε, ϑc))√
γ

∣∣∣

− q1/3(ϑc)|
x

γ
(1 + ℓ(y, ϑc))−

x̃ε
γ
(1 + ℓ(ỹε, ϑc))| − O(

√
γ),
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and therefore there exists a uniform constant C > 0 (depending only on q) such that

(3.64) Cγ−3/2(|∂AΨ̃ε
N,a,γ|+ |∂ΣΨ̃ε

N,a,γ|+ |∂ρΨ̃ε
N,a,γ |)(t, x, y,Σ, A, ρ)

≥
[∣∣∣(t− B2(y, ϑc))√

γ
− (t̃ε − B2(ỹε, ϑc))√

γ

∣∣∣+ |x
γ
(1 + ℓ(y, ϑc))−

x̃ε
γ
(1 + ℓ(ỹε, ϑc))|

+
∣∣∣(y +∇B0(y, ϑc)) · ϑc + t)

γ3/2
− (ỹε +∇B0(ỹε, ϑc)) · ϑc + t̃ε)

γ3/2

∣∣∣−O(
√
γ)
]
.

As (y + ∇B0(y, ϑc)) · ϑc = −|y + ∇B0(y, ϑc)| + O(γ2) by Lemma 3.8, (ỹε + ∇B0(ỹε, ϑc)) · ϑc =
−|ỹε+∇B0(ỹε, ϑc)|+O(γ2) by construction and Lemma 3.8, the last line in (3.64) may be rewritten
as

∣∣∣ |y +∇B0(y, ϑc)| − t

γ3/2
− |ỹε +∇B0(ỹε, ϑc)| − t̃ε

γ3/2

∣∣∣− O(
√
γ).

As (t̃ε, x̃ε, ỹε) = (t̃ε, x̃ε, ỹε)(Σ, A, ρ, ϑc) is the integral curve associated to (Σ, A, ρ, ϑc(t, x, y,Σ, A)),

it follows from the definition of ϑ̃(t, y) in (3.10) and Lemma 3.12 (applied to ϑc and ϑ̃(t̃ε, ỹε)) that

(3.65) |ϑ̃(t̃ε, ỹε)− ϑc(t, x, y,Σ, A)| = O(γ3/2/t̃ε) ,

which further yields

|ỹε +∇B0(ỹε, ϑc)| − |ỹε +∇B0(ỹε, ϑ̃(t̃ε, ỹε))| = O(
|ỹε|2
t̃ε

γ3/2) .

We now consider the difference between ϑc and ϑ̃(t, y) : the assumption of Proposition 3.13 is

N (t, x, y) 6= ∅, hence there exists N0 ∈ N (t, x, y) for which Φ̃N0,a,γ is stationary with respect to

A, ρ, ϑ and from Lemma 3.10 it follows that (3.38) must hold. Then ϑ̃(t, y) is an approximation
modulo O(γ3/2/t) of the critical point ϑ (when we consider all variables (A, ρ, ϑ)) satisfying (3.39).
From the formulas (3.33) for ϑc and (3.39) for ϑ♯c, we always have |ϑc − ϑc

♯| . γ, but this is not
small enough to conclude. If |ϑc − ϑc

♯| . γ3/2/t, then, using (3.63), (3.64), (3.65), we obtain

|(y +∇B0(y, ϑc)) · ϑc − (y +∇B0(y, ϑ̃(t, y))) · ϑ̃(t, y)| = O(|y|2γ3/2/t) = O(|y|γ3/2).

Suppose that, with ϑc
♯ given in (3.39) from Lemma 3.10, we have γ & |ϑc−ϑc♯| & γ3/2/t such that

(3.66) |(y +∇B0(y, ϑc)) · ϑc − (y +∇B0(y, ϑc
♯)) · ϑc♯| ≥ r0γ

3/2 .

Let Cq ≥ 2 be such that ‖q(ϑ)‖∞ ≤ Cq. If the first line in (3.63) is bounded from below by

r0/(10Cq), then using |ϑc − ϑ̃(t, y)| ≤ |ϑc − ϑc
♯| + |ϑc♯ − ϑ̃(t, y)| . γ, the second line in (3.64) is

bounded from below by r0/(20Cq) (if
√
γ is small compared to r0) and we are done. Therefore

we are reduced to considering the first line in (3.63) bounded from above by r0/(10Cq), which

is the same as assuming that |∂AΨ̃ε(t, x, y,Σ, A, ρ)| ≤ γ3/2r0/10 and |∂ΣΨ̃ε
N,a,γ(t, x, y,Σ, A, ρ)| ≤

γ3/2r0/10. We prove that, if, moreover, (3.66) holds, then γ−3/2|∂ρΨ̃ε
N,a,γ(t, x, y,Σ, A, ρ)| ≥ r0/5.

As γ−3/2|∂AΨ̃ε(t, x, y,Σ, A, ρ)| ≤ r0
10
, we find

∣∣∣q
2/3(ϑc)

2

(t−B2(y, ϑc))√
γ

+(Σ−Sε(a, γ, ϑc, A))+O(
√
γ)− 2NA1/2(1− 3

4
B′
L(ρλγA

3/2))
∣∣∣ ≤ r0/10 .
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Recall that

γ−3/2∂ρΨ̃
ε
N,a,γ = γ−3/2

(
(y +∇B0(y, ϑc)) · ϑc + t

)
− Aq2/3(ϑc)

2

(t−B2(y, ϑc))√
γ

+
(
Σ3/3 + Σ(

x

γ
q1/3(ϑc)(1 + ℓ(y, ϑc)) +

2

3
Sε(a, γ, ϑc, A)

)
− 4

3
NA3/2(1−B′

L(ρλγA
3/2)) +O(

√
γ)

and therefore, by substitution in the NA3/2 term,
∣∣∣∣γ

−3/2∂ρΨ̃
ε
N,a,γ −

(
γ−3/2

(
(y +∇B0(y, ϑc)) · ϑc + t

)
− Aq2/3(ϑc)

6

(t− B2(y, ϑc))√
γ

+
(
Σ3/3 + Σ

x

γ
q1/3(ϑc)(1 + ℓ(y, ϑc)) +

2

3
Sε(a, γ, ϑc, A)−

2

3
(Σ− Sε(a, γ, ϑc, A))

))∣∣∣∣ ≤ r0/10 .

With ϑc
♯ given by (3.39) in Lemma 3.10 (recall that it is independent of N), we have

γ−3/2
(
(y +∇B0(y, ϑc

♯)) · ϑc♯ + t
)
− Aq2/3(ϑc

♯)

6

(t− B2(y, ϑc
♯))√

γ

+
(
Σ3/3 +Σ

x

γ
q1/3(ϑc

♯)(1 + ℓ(y, ϑc)) +
2

3
Sε(a, γ, ϑc

♯, A)− 2

3
(Σ− Sε(a, γ, ϑc

♯, A))
)
+O(

√
γ) = 0.

Taking the difference between the last two equations and using that |ϑc − ϑc
♯| . γ and that

differences always provide functions of ϑc − ϑc
♯, we get, using (3.66)

γ−3/2|∂ρΨ̃ε
N,a,γ| = γ−3/2

∣∣∣(y +∇B0(y, ϑc)) · ϑc − (y +∇B0(y, ϑc
♯)) · ϑc♯

∣∣∣− O(
√
γ)− r0/10 ≥ r0

5
.

Therefore we always have
∣∣∣∇(Σ,A,ρ)Ψ̃

ε
N,a,γ

∣∣∣ & r0/5, which completes the proof in the case 4a . γ. �

Let now γ ∼ a. We write ΦN,a,a := ΦN,a,γ∼a and rescale variables as follows s =
√
a|θ|1/3S,

σ
√
a|θ|1/3Σ, α = a|θ|2/3A and let λ = λa =

a3/2

h
. We define

(3.67) Φ̃N,a,a(t, x, y,Σ, S, A, θ) := ΦN,a,a(t, x, y,
√
a|θ|1/3Σ,√a|θ|1/3S, a|θ|2/3A, θ).

Let s0(a, θ, α) be the unique solution to ∂2sΦ(a, 0, θ, α, s) = 0 and let s±(a, θ, α) be the critical points
of Φ(a, 0, θ, α) (see Lemma 6.9 from the Appendix for details on critical points s± of Φ(x, y, θ, α, σ)),
then after rescaling variables we obtain at most two critical points such that

S±(a, ϑ, A)− S0(a, ϑ, A) = ±
√
ζ(a, 0, ϑ, aA)

a
(1 +O(

√
ζ(a, 0, ϑ, aA))),

where ζ(a, 0, ϑ, aA)/a = A − e0(a, 0, ϑ, aA) is the phase function introduced in Theorem 2.1,
with e0 elliptic and close to 1. In this case ζ(a, 0, ϑ, aA)/a is close to 0 and S± are real only for
ζ(a, 0, ϑ, aA) ≥ 0. We now repeat the argument from the model case : let χ0 ∈ C∞ be a smooth cut-
off, equal to 1 on [0,∞] and equal to 0 on [−∞,−2]. Then (χ0Ai)(−(|θ|λ)2/3ζ(a, 0, ϑ, aA)) is a sym-
bol of order 2/3 supported for values (|θ|λ)2/3ζ(a, 0, ϑ, aA) ≤ 2 and (1− χ0)Ai(−(|θ|λ)2/3ζ(· · · )))
is supported on A ≥ e0(a, 0, ϑ, aA) with value 1 on (|θ|λ)2/3ζ(a, 0, ϑ, aA) ≥ 2. On the support of
(1−χ0) the Airy function may be written as a sum of two contributions A±((|θ|λ)2/3ζ(a, 0, ϑ, aA)))
corresponding to critical points S±. We split the symbol of VN in two parts using χ0+(1−χ0) = 1
and on the support of χ0 the Airy function behaves as a symbol of order 2/3. Therefore we write
each integral VN,a(t, x, y) as a sum VN,a(t, x, y) =

∑
ε∈{0,±} V

ε
N,a(t, x, y) where for ε ∈ {±}, V ε

N has
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phase Φ̃N,a,a(t, x, y,Σ, Sε, A, θ) while V 0
N,a has phase Φ̃N,a,a(t, x, y,Σ, S0(a, ϑ, A), A, θ). It remains

to prove that, for each ε ∈ {0,±},
∑

N /∈N 1
d (t,x,y),|N |.1/

√
a

V ε
N,a(t, x, y) = O(h∞).

For ε ∈ {±} we act exactly like in the transverse case 4a ≤ γ, as on the support of (1 − χ0)
we have two separate critical points S±. For ε = 0 we use that we got rid of variable S hence
∂SΦ̃N,a,a(t, x, y,Σ, S0(a, ϑ, A), A, θ) and act again as in the previous case, finally completing the
proof of Proposition 3.13. �

In the last part of this section we prove Theorem 3.1 : writing Ph,a as the sum over γ, we
evaluate each Ph,a,γ and then sum up in a . γ ≪ 1. We deal separately with the cases γ > 4a and
γ ∼ a when use the notation Ph,a,a for Ph,a,γ∼a and VN,a for VN,γ∼a. From (2.42) and (3.6) we have

VN =
∑

a.γ≪1

VN,γ = VN,a +
∑

4a≤γ
VN,γ .

Remark 3.20. In (3.6) we set ω = h−2/3α, and then α = γA, which yields ω = λ
2/3
γ A, with

λγ = γ3/2/h and A ∼ 1 on the support of ψ. Since the ”main” contribution in the parametrix

(2.37) comes from values ω ∼ λ2/3 with λ = λa =
a3/2

h
(or, in terms of Ph,a written as a sum (2.38)

with ωk ∼ k2/3, the main contribution comes from k ∼ λ), the part Ph,a,a will provide the ”worst”
case scenario.

Before stating estimates for VN,γ, when |N | ≥ 1 and a . γ, we recall that we have the free space
dispersion for V0, assuming that t > h so that the dispersive effect takes over:

(3.68) |V0(t, x, y)| ≤ Ch−d
(
h

t

) d−1
2

.

Proposition 3.21. Assume ǫ > 0, a ∈ [h2/3−ǫ, a0], and h ∈ (0, 1). Then there exists C(ǫ, a0) such
that, for t & h,

(3.69) |V±1(t, x, y)| ≤ Ch−d
(
h

t

) d−2
2

((
h

t

)1/2

+ a1/4
(
h

t

)1/4

+ h
1
3

)
.

Proposition 3.22. Assume ǫ > 0, a ∈ [h2/3−ǫ, a0], γ ≥ 4a, h ∈ (0, 1) and let λγ = γ3/2/h. Then
there exists C(ǫ, a0) such that, for t &

√
γ,

(3.70) |
∑

|N |≥2

VN,γ(t, x, y)| ≤ Ch−d
(
h

t

) d−2
2

h1/3

(
γ1/4

t1/2
+

1

λ
3/2
γ

)
.

Proposition 3.23. Assume ǫ > 0, a ∈ [h2/3−ǫ, a0], h ∈ (0, 1) and let λ = a3/2/h. Then there
exists C(ǫ, a0) such that for 0 ≤ x ≤ 2a,

(3.71) |
∑

|N |≥2

VN,a(t, x, y)| ≤ Ch−d
(
h

t

) d−2
2

(
a1/4

(
h

t

)1/4

+
h1/3

λ4/3

)
.
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Our main estimate, (3.2) from Theorem 3.1, follows at once from the previous propositions, in
the regime a ≥ h2/3−ǫ. Recall that for a . γ, VN,γ was defined in (3.6) as

VN,γ(t, x, y) =
1

2πhd+1

∫
e

i
h
(tτq(α,θ)+Φ(x,y,θ,α,σ)−Φ(a,0,θ,α,s)−NhL(h−2/3α))ψ(α/(|θ|2/3γ))

× χ♭(α/ǫ0)χ
♯(α/h2/3)χ(s)ph(x, y, θ, α, σ)q̃h(θ, α, s)ds dθdσdα ,

where the symbol of VN,γ (the same for every N) is of order 0. Let |N | ≥ 1 and a . γ, and set

λγ =
γ3/2

h
. We rescale variables as follows

• If γ ∼ a we set s =
√
a|θ|1/3S, σ√a|θ|1/3Σ, α = a|θ|2/3A and let λ = a3/2

h
;

• If 4a ≤ γ we set s =
√
γ|θ|1/3S, σ√γ|θ|1/3Σ, α = γ|θ|2/3A.

We let Φ̃N,a,a(t, x, y,Σ, S, A, θ) be given by (3.67) when γ ∼ a and Φ̃N,a,γ(t, x, y,Σ, S, A, θ) be given
by (3.28) when 4a ≤ γ. We have (including the case where γ is replaced by a)

Φ̃N,a,γ(t, x, y,Σ, S, A, θ) = Φ̃0,a,γ(t, x, y,Σ, S, A, θ)−
4

3
Nγ3/2|θ|A3/2 +NhBL(|θ|λγA3/2).

The phase Φ̃0,a,γ(t, x, y,Σ, S, A, θ), with θ = ρϑ, |ϑ| = 1, has two critical points ϑ± and they are

non-degenerate. Indeed (see the proof of Proposition 3.4), ∇2
ϑΦ̃0,a,γ = |y|O(1) for any a . γ. From

Lemma 3.2 we have |y| ≥ c0|t| and stationary phase in ϑ ∈ Sd−2 yields a decay factor

(3.72)

(
h

|y|

) d−2
2

≤ C

(
h

|t|

) d−2
2

, for |y| ≥ c0|t|.

Recall that the critical points (in ϑ) of ΦN,a,γ are (3.33) (Lemma 3.8). According to Remark 3.9,
if we fix a sign for t, only one of these critical points provide non-trivial contributions. Let t > 0
and denote ϑc = ϑ−(t, x, y,Σ, S, A) the critical point in ϑ,and let

ΨN,a,γ(t, x, y,Σ, S, A, ρ) = Φ̃N,a,γ(t, x, y,Σ, S, A, ρϑc) .

Recall from Lemma 3.8 that ϑc doesn’t depend onN , neither on ρ = |θ| (since Φ̃0,a,γ(t, x, y,Σ, S, A, θ)
is linear in |θ|).
Lemma 3.24. The critical points ϑc are such that

(3.73) ∂Σϑc = O(γ3/2/t), ∂Sϑc = O(γ3/2/t).

Proof. We evaluate its derivatives in Σ and S of ϑc using the equation (3.33) from Lemma 3.8. �

Remark 3.25. For |N | ≤ λγ , the factor eiNBL(ρλγA
3/2) does not oscillate. Indeed NBL(ρλγA

3/2) ∼
N/λγ . 1, and moving this factor to the symbol, the phase becomes linear in ρ. On the other
hand, as soon as N > λγ we can take advantage of the stationary phase in ρ, as we shall see below.
Applying the stationary phase in ρ turns out to be of particular interest for N ≥ λ2γ , since in this

case for a given t such that t/
√
γ ≥ λ2γ , the cardinal of the set N1(t, x, y) is not uniformly bounded

anymore but starts to increase like t√
γλ2γ

.

3.2. The tangent part γ ∼ a. Let first a ∼ γ and set λ = λa = a3/2/h. We apply stationary
phase to ΨN,a,a with respect to A.

Lemma 3.26. The equation ∂AΨN,a,a = 0 has at most one solution on the support of the symbol
ψ(A), that we denote Ac. Then Ac is a non-degenerate critical point and ∂2AΨN,a,a|A=Ac ∼ Na3/2.
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Proof. The phase is stationary when ∂AΨN,a,a = ∂AΦ̃N,a,a|ϑ=ϑc = 0. The equation ∂AΦ̃N,a,a = 0 is

the first in (3.30) and we easily see that for any N 6= 0 there exists a solution A
1/2
c ∼ t

4N
√
a
. For

N ∼ t/(4
√
a) we have Ac ∼ 1. Moreover,

∂2AΨN,a,γ = ∂2AΦ̃N,a,γ|ϑ=ϑc + ∂Aϑc∂A∇ϑΦ̃N,a,γ|ϑ=ϑc .
The derivative with respect to A of the first term in the left hand side of (3.30) is t O(a2). Using
(3.32), ∂2A(Φ(x, y, θ, a|θ|2/3A,

√
a|θ|1/3Σ) − Φ(a, 0, θ, a|θ|2/3A,√a|θ|1/3S)) = |y|O(a2). As the de-

rivative of the coefficient of N in (3.30) is close to Na3/2 and |N | ∼ |t|/4√a, |t| ∼ |y|, the main
contribution of ∂2AΦ̃N,a,a|ϑ=ϑc is also Na3/2. On the other hand,

(3.74) ∂A∇ϑΦ̃N,a,a|ϑ=ϑc = ∂A∇ϑΦ̃0,a,a|ϑ=ϑc ∼ tO(a).

Moreover, taking the derivative with respect to A of ∇ϑΦ̃0,a,a|ϑ=ϑc = 0 gives ∂Aϑc∇2
ϑΦ̃0,a,a =

−∂A∇ϑΦ̃0,a,a ; using
(
∇2
ϑΦ̃0,a,a

)−1

= |y|−1O(1), |y| ≥ c0|t| and (3.74) eventually yields

∂Aϑc∂A∇ϑΦ̃0,a,a|ϑ=ϑc ∼
∣∣∣∂A∇ϑΦ̃0,a,a

∣∣∣
2

× |y|−1O(1) ∼ t2

|y|O(a
2) .

|t|
c0
O(a2) .

Therefore the main contribution of ∂2AΨN,a,a is Na3/2. �

Hence we may apply stationary phase in A and get another decay factor

(3.75)
1√

a3/2|N |
× 1√

1/h
=

1

(λ|N |)1/2 .

Lemma 3.27. Assume N
√
a . 1. The critical point Ac is

Ac = A2
0 − 2A0A1 +

( Σ

2N
− S

2N

)2
+O

(
a(

Σ

N
,
S

N
)2
)
+

f0
Nλ2

,(3.76)

A0 =
q2/3(ϑc)|Σ=S=0

4N
√
a

(t + E0(y, a)), A1 =
Σ

2N
(1− xE1)−

S

2N
(1− aE2) ,(3.77)

and f0 is an asymptotic expansion in λ−1, E0 = O(|y|2, a|y|), E1,2 = O(1), E0,1,2 are independent
of Σ and S.

Proof. At the critical point Ac, (3.30) holds (replacing ϑ with ϑc and γ with a). Using (3.32),

(3.78) A1/2(1− 3

4
B′
L(ρλA

3/2)) =
q2/3(ϑc)

(
t− B2(y, ϑc) +

∑
k≥2 ∂τ

(
(1−τ)k
τk−1

)
B2k(y, ϑc)

)

4N
√
a
√

1 + aAq2/3(ϑc)
|τ=τq(aA,ϑc)

+
(−Σ + S)

2N
+

aq2/3(ϑc)

2N
√

1 + aAq2/3(ϑc)

[ x

a3/2
∂τ

(
τAΓ(x, y,

√
aΣq1/3(ϑc)/τ, ϑc/τ)

)
|τ=τq(aA,ϑc)

− a

a3/2
∂τ

(
τAΓ(a, 0,

√
aSq1/3(ϑc)/τ, ϑc/τ)

)
|τ=τq(aA,ϑc)

]
,

where we recall that B2k(y, ϑc) = O(|y|) for all k ≥ 2 and 1− τq(aA, ϑc) =
aAq2/3(ϑc)

(1+τq(aA,ϑc))
.

Remark 3.28. When |N | . λ, according to Remark 3.25 we get rid of the factor (1− 3
4
B′
L(ρλA

3/2))
in the LHS of (3.78), without which the equation satisfied by Ac is independent of ρ, λ.
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At Σ = S = 0, we get for A
1/2
c |Σ=S=0

(3.79) A
1
2 (1− 3

4
B′
L(ρλA

3
2 )) =

q2/3(ϑc)/(4N
√
a)√

1 + aAq
2
3 (ϑc)

[
t− B2(y, ϑc) +

∑

k≥2

∂τ

((1− τ)k

τk−1

)
B2k(y, ϑc)

+ 2a
(x
a
∂τ

(
τAΓ(x, y, 0, ϑc/τ)

)
− a

a
∂τ

(
τAΓ(a, 0, 0, ϑc/τ)

))]
|τ=τq(aA,ϑc),Σ=S=0

.

Using that ∂τ (τAΓ) = O(1) and the expansion (2.21) of BL, by the implicit function theorem

applied to (3.79), we obtain that A
1/2
c |Σ=S=0 is of the form A0 given in (3.77). Taking the derivative

of (3.78) with respect to Σ yields

∂Σ(A
1/2
c )
(
1− 3

4
B′
L(z)−

9

4
zB′′

L(z)
)
|z=ρλA3/2 =

q2/3(ϑc)

4N
√
a
√

1 + aAcq2/3(ϑc)

[
∂Σϑc ·

(
−∇B2(y, ϑc)

+
∑

k≥2

∂τ

((1− τ)k

τk−1

)
∇B2k(y, ϑc)

)
+(∂ΣAc∂Aτ+∂Σϑc ·∇ϑτ)

∑

k≥2

∂2τ,τ

((1− τ)k

τk−1

)
B2k(y, ϑc)

]∣∣∣
τ=τq(aAc,ϑc)

+ ∂Σ

( q2/3(ϑc)√
1 + aAcq2/3(ϑc)

)
(
t− B2(y, ϑc) +

∑
k≥2 ∂τ

(
(1−τ)k
τk−1

)
B2k(y, ϑc)

)

4N
√
a

∣∣∣
τ=τq(aAc,ϑc)

− 1

2N
+

√
a

2N
∂Σ

( q2/3(ϑc)√
1 + aAcq2/3(ϑc)

)x
a
∂τ

(
τAΓ(x, y,

√
aΣq1/3(ϑc)/τ, ϑc/τ)

)
|τ=τq(aA,ϑc)

+

√
a

2N

q2/3(ϑc)√
1 + aAcq2/3(ϑc)

x

a
∂Σ

[
∂τ

(
τAΓ(x, y,

√
aΣq1/3(ϑc)/τ, ϑc/τ)

)
|τ=τq(aA,ϑc)

]
,

where ∂Aτq = aq2/3(ϑ)/(2τq), B2k(y, ϑc) = O(|y|), ∇ϑτq = aA∇(q2/3(ϑ))/(2τq) and ∂Σ(∂τ (τAΓ)) =
O(a). At Σ = S = 0 we find

∂Σ(A
1/2
c )|Σ=S=0 =

2

3
∂Σϑc∇q(ϑc)q−1/3(ϑc)

(t+O(|y|2) +O(a|y|))
4N

√
a

− 1

2N
(1 +O(a3/2) +O(λ−2)) ,

which, together with (3.78) and (3.73), allows to obtain the explicit form of the derivative of Ac
with respect to Σ (similar computations hold for S). �

Remark 3.29. When |N | ≥ λ2, stationary phase in ρ turns out to be of particular interest: for a
given t such that t/

√
a ≥ λ2, the cardinal of the set N1(t, x, y) is large. Obtaining a bound of the

integral defining VN,a better than the one given by integrating only with respect to Σ, S turns out
to be crucial in order to obtain the desired dispersive estimates.

Let us consider the case |N | > Cλ2 for some constant C > 1. Let

φN,a(t, x, y,Σ, S, ρ) := ΨN,a,a(t, x, y,Σ, S, Ac, ρ)

denote the critical value of ΨN,a,a. We compute derivatives of φN,a with respect to ρ. Since ϑc is
independent of ρ, the phase φN,a is stationary in ρ when

0 = ∂ρφN,a = (∂ρΨN,a,a + ∂ρAc∂AΨN,a,a)|Ac = ∂ρΨN,a,a|Ac ,

with Ac provided in (3.76), where the coefficients of t,Σ, S (in the first three terms of the sum) are
independent of ρ (notice that in the equation (3.78) verified by Ac, the only term containing ρ is B′

L
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which amounts for the terms with factor O(λ−2) in (3.76)). Since ΨN,a,a = Ψ0,a,a− 4
3
a3/2ρNA3/2 +

NhBL(ρλA
3/2), and since Ψ0,a,a − 4

3
a3/2ρNA3/2 is linear in ρ, the second derivative is

∂2ρφN,a =
(
∂2ρΨN,a,a + ∂ρAc(∂ρ∂AΨN,a,a + ∂ρAc∂

2
AΨN,a,a)

)
|Ac .

For |N | > λ2 ≫ λ, the only part that matters here is the contribution from N
λ
BL(ρλA

3/2). Taking
into account that the support of the symbol of VN,a in A is a fixed, compact set of (0,∞), the
contribution of ∂2ρΨN,a,a will be hN/λ. The main contribution of ∂ρ∂AΨN,a,a|Ac is also of size hN/λ,
but it comes with a factor ∂ρAc, which, from (3.76), can be at most O(1/N), since the first three
terms in the sum defining Ac do not depend on ρ. Eventually we obtain,

(3.80)
1

h
|∂2ρφN,a| ∼

|N |
λ

,

hence the stationary phase in ρ will produce a factor ( |N |
λ
)−1/2 which is (of interest only in the

regime |N | ≥ Cλ and) particularly useful for |N |
λ
> λ. Let σV,h,a(Σ, S, ρ) be obtained from

ψ(A)ph(x, y, θ, a|θ|2/3A,
√
a|θ|1/3Σ)q̃h(θ, a|θ|2/3A,

√
a|θ|1/3S)

after applying the stationary phase in both ϑ and A. We note that σV,h,a is independent of
N , of order zero and has compact support in Σ, S. We are left with estimating the oscillatory
integral

∫
e

i
h
φN,aσV,h,adΣdSdρ. Following the approach in [12] (see also [9]), we deal separately

with |N | > λ1/3 and |N | ≤ λ1/3, where we recall that λ = λa = a3/2/h.

3.2.1. Large number of reflections: |N | > λ1/3.

Lemma 3.30. There exists C (independent of N) such that, if |N | ≥ λ1/3,

(3.81)

∣∣∣∣
∫
e

i
h
φN,aσV,h,a(Σ, S, ρ)dΣdSdρ

∣∣∣∣ ≤
C

λ2/3
.

Remark 3.31. The proof will be split in two parts: first, we consider λ1/3 ≤ |N | ≤ λ2 where we
integrate with respect to S,Σ and then bound the remaining integral in ρ owning to its compact
support; then for |N | > λ2 we start with stationary phase in ρ, which provides additional decay;
then we integrate with respect to S,Σ following closely the approach for λ1/3 ≤ |N | ≤ λ2.

Proof. We compute derivatives of φN,a with respect to Σ, S. Start with λ1/3 ≤ |N | ≤ λ2 and follow
[12, Proposition 4] (see also [9, Lemma 2.24], where only the case N < λ2 is considered). Using

Φ̃0,a,a as provided in (3.29) for N = 0 and γ replaced by a, we compute

(3.82) ∂ΣφN,a = ∂ΣΦ̃0,a,a|ϑc,Ac,ρ=|θ| = a3/2ρ
[
Σ2 +

x

a
q1/3(ϑc)−Ac

+
x

a

τq(aA, ϑc)√
a

∂ΣAΓ

(
x, y,

√
aΣq1/3(ϑc)

τq(aA, ϑc)
,

ϑc
τq(aA, ϑc)

)]

= a3/2ρ
[
Σ2 +

x

a
q1/3(ϑc)−Ac +

x

a
q1/3(ϑc)∂ΞAΓ(x, y,Ξ,

ϑc
τq(aA, ϑc)

)|
Ξ=

√
aΣq1/3(ϑc)
τq(aA,ϑc)

]
.
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In the same way we have

∂SφN,a = ∂SΦ̃0,a,a|ϑc,Ac,ρ=|θ| = −a3/2ρ
[
S2 + q1/3(ϑc)− Ac

+
τq(aA, ϑc)√

a
AΓ

(
a, 0,

√
aSq1/3(ϑc)

τq(aA, ϑc)
,

ϑc
τq(aA, ϑc)

)]

= −a3/2ρ
[
S2 + q1/3(ϑc)− Ac + q1/3(ϑc)∂ΞAΓ(a, 0,Ξ,

ϑc
τq(aA, ϑc)

)|
Ξ=

√
aSq1/3(ϑc)
τq(aA,ϑc)

]
.

The critical points are such that

Σ2 +
x

a
q1/3(ϑc)

(
1 + ∂ΞAΓ(x, y,Ξ,

ϑc
τq(aA, ϑc)

)|
Ξ=

√
aΣq1/3(ϑc)
τq(aA,ϑc)

)
= Ac,

S2 + q1/3(ϑc)
(
1 + ∂ΞAΓ(a, 0,Ξ,

ϑc
τq(aA, ϑc)

)|
Ξ=

√
aSq1/3(ϑc)
τq(aA,ϑc)

)
= Ac ,

where ∂ΞAΓ(x, y,Ξ,Θ) = ℓ(y, ϑc) + 2Ξµ(y, ϑc) +Hj≥2, ℓ(0, ϑc) = 0, and where homogeneous terms
of order j come with small factors aj/2. We will prove that, although the determinant of the matrix
of second derivatives may vanish, we can still use degenerate stationary phase with critical point
of order at most 2 to conclude. We compute the second derivative with respect to Σ using (3.82) :

(3.83) ∂2ΣφN,a = a3/2ρ
[
2Σ− ∂ΣAc +

x

a
∂Σ

(
q1/3(ϑc)∂ΞAΓ(x, y,Ξ,

ϑc
τq(aAc, ϑc)

)|
Ξ=

√
aΣq1/3(ϑc)
τq(aAc,ϑc)

)]
,

where homogeneous terms of order j in ∂ΞAΓ come with small factors aj/2 and

(3.84) ∂Σ

(
q1/3(ϑc)∂ΞAΓ(x, y,Ξ,

ϑc
τq(aAc, ϑc)

)|
Ξ=

√
aSq1/3(ϑc)
τq(aAc,ϑc)

)
= ∂Σ

(
q1/3(ϑc)(ℓ(y, ϑc)

+ 2µ(y, ϑc)

√
aΣq1/3(ϑc)

τq(aAc, ϑc)
+Hj≥2)

)
= ∂Σϑc∇ϑ

(
ℓ(y, ϑ)q1/3(ϑ) + 2

√
aΣµ(y, ϑ)q2/3(ϑ) +O(a)

)
|ϑ=ϑc

+ 2
√
aµ(y, ϑc)q

2/3(ϑc) +O(a) .

Using that
√
a . 1

N
, x . 2a, we obtain an estimation of the second derivatives of φN,a

∂2ΣφN,a = a3/2ρ(2Σ +O(a3/2/|y|) +O(1/N)),(3.85)

∂2SφN,a = a3/2ρ(2S +O(a3/2/|y|) +O(1/N)) ,

∂2Σ,SφN,a = O(a3/2/N) .

We rescale variables (Σ, S) = (λ−1/3
x, λ−1/3

y), so that we are left with proving

(3.86)

∣∣∣∣
∫
e

i
h
φN,a(λ

−1/3
x,λ−1/3

y,ρ)σV,h,a(λ
−1/3

x, λ−1/3
y, ρ) dxdy

∣∣∣∣ ≤ C .

From the compact support of σV,h,a we obviously have, for any multi-index ν,

|∂ν(x,y)σV,h,a(λ−1/3
x, λ−1/3

y, ρ)| ≤ Cν(1 + |x|+ |y|)−|ν| .

Let A0 be the main term of A
1/2
c defined (3.77); we define (A,B) as follows

−Aλ−2/3 =
x

a
q1/3(ϑc)(1 + ℓ(y, ϑc))− A2

0, −Bλ−2/3 = q1/3(ϑc)− A2
0
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and we also write (A,B) = r(sinS, cosS), where r2 = A
2 + B

2. In the new variables, since
∂Σ
∂x

= ∂S
∂y

= λ−1/3 and using ∂ΞAΓ as provided in (3.84), we find

1

h
∂
x

φN,a =
a3/2

h
λ−1/3ρ

[
λ−2/3(x2 − A) + 2

λ−1/3
x

2N

(
A0(1− xE1) +

x

a
(N

√
a)µ(y, ϑc)q

2/3(ϑc)
)

− 2
λ−1/3

y

2N

(
A0(1− aE2)

)
+
λ−1/3

N
O(

y

N
,
x

N
) +O(a)

]

= ρ
(
(x2 − A) +

λ1/3

N

(
x(A0(1− xE1) +O(N

√
a))− yA0(1− aE2) +O(

y

N
,
x

N
)) +O(λ2/3a)

)

= ρ(x2 − A+O(x, y) +O(1)) ,

where the term O(a) in the second comes from the terms homogeneous of order j ≥ 2 in the
term ∂ΞAΓ(x, y,Ξ,

ϑc
τq(aAc,ϑc)

)|
Ξ=

√
aSq1/3(ϑc)
τq(aAc,ϑc)

(see (3.84)). We have written O(λ2/3a) = O((λ1/3/N ×
N
√
a)2) = O(1) since λ1/3/N < 1 and (Na1/2) < 1. Similarly, derivatives with respect to x and y

are,

1

h
∂
x

φN,a = ρ(x2 − A+O(x, y) +O(1)) ,
1

h
∂
y

φN,a = ρ(y2 −B+O(x, y) +O(1)) .

From (3.85), we obtain, in the new coordinates

1

h
∂2
x

φN,a = λ1/3ρ(2λ−1/3
x+O(N−1)) = ρ(2x+O(1)) ,(3.87)

1

h
∂2
y

φN,a = λ1/3ρ(2λ−1/3
y +O(N−1)) = ρ(2y +O(1)) ,

where we used |N | > λ1/3 in the last step together with |y| ≥ c0t which yields a3/2/|y| . a3/2/t ∼
a/N , as t/

√
a ∼ 4N when the phase is stationary in A. Now, going back to (3.86), the integral

is bounded for 0 ≤ r ≤ r0, for some r0 > 0, by integration by parts for large (x, y) (recall that
the support of the integrand is now of radius λ1/3). For r0 < r . λ2/3, set (x, y) = r1/2(x′, y′),
φN,a = r3/2φ̃N,a, σ̃V,h,a(x

′, y′, .) = σV,h,a(r
1/2λ−1/3

x

′, r1/2λ−1/3
y

′, ρ), and as r1/2λ−1/3 is bounded, we
retain the decay |∂ν(x′,y′)σ̃V,h,a(x′, y′, .)| ≤ Cν(1 + |x′|+ |y′|)−|ν|. It remains to prove

r|
∫
ei

r3/2

h
φ̃N,a σ̃V,h,a dx

′dy′| ≤ C .

To begin with, notice that

∂
x

′(
r3/2

h
φ̃N,a) = r3/2ρ

(
x

′2 − sinS+ r−1/2O(x′, y′) + r−1O(1)
)
,

∂
y

′(
r3/2

h
φ̃N,a) = r3/2ρ

(
y

′2 − cosS+ r−1/2O(x′, y′) + r−1O(1)
)
.

If | sinS| ≥ 1/100, then r3/2

h
φ̃N,a has two critical points in x

′, namely x

′
± = ±| sinS|1/2+O(r−1/2),

and these critical points are non degenerate as |∂2
x

′( 1h φ̃N,a)| ≥ ρ/10. By stationary phase, we get

∫
ei

r3/2

h
φ̃N,a σ̃V,h,a dx

′dy′ = (r3/2)−1/2(

∫
ei

r3/2

h
φ̃N,h,a,+ σ̃V,h,a,+ dy

′ +

∫
ei

r3/2

h
φ̃N,a,−σ̃V,h,a,− dy

′) ,
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for some symbols σ̃V,h,a,± of order 0. Using (3.87), one may check that |∂3
y

′,y′,y′(
1
h
φ̃N,a)| ≥ c > 0,

and by degenerate stationary phase (or Van der Corput lemma) we get

|
∫
ei

r3/2

h
φ̃N,a,±σ̃V,h,a,± dy

′| ≤ C(r3/2)−1/3 = Cr−1/2 ,

and for r ≥ 1, we get the desired decay, and even an extra r−1/4 on the right hand side. If
| cosS| ≥ 1/100, we proceed in the same way, exchanging x

′ and y

′.
Let us now deal with |N | ≥ λ2. Stationary phase applies in ρ and from (3.80),

(3.88)
1

h
|∂2ρφN,a| ∼

|N |
λ

,

hence the stationary phase in ρ yields a factor ( |N |
λ
)−1/2. In the following we apply exactly the

same method as in the previous step; the only difference is that now we have an additional function
ρc which depends on the variables Σ, S and whose derivatives with respect to these variables are
small only for |N | > λ2 (which explains why we did not perform stationary phase with respect to
ρ earlier, for any |N | > λ1/3). Indeed, from ∂ρφN,a = ∂ρΨN,a,a|Ac = 0 we get

(3.89) Ψ0,a,a −
4

3
a3/2NA3/2

c = NhλA3/2
c B′

L(ρλA
3/2
c ) = −NhA

3/2
c

ρ2λA3
c

(b1 +O(1/λ)), b1 6= 0 ,

where the term in the left hand side doesn’t depend on ρ. Since ρ = |θ| ∼ 1 and since the support
of the symbol in Ac is a given compact set of (0,∞), we have

ρ2c = − Nh

λA
3/2
c

(b1 +O(1/λ))
(
Ψ0,a,a(t, x, y,Σ, S, 1)−

4

3
a3/2NA3/2

c

)−1

.

Taking the derivatives with respect to S,Υ of (3.89), with Ac bounded, provides a factor λ2/N
which is small in the regime we consider here, |N | > Cλ2 for some C > 1 sufficiently large (indeed,
the terms containing Σ, S in (3.89) come with a factor a3/2 = hλ). Since ∂Σρc and ∂Sρc are now
sufficiently small, we can follow the same earlier steps to estimate the integral in the remaining
variables Σ, S. �

3.2.2. Moderately large 0 < |N | ≤ λ1/3. In this case the contribution from the integral in ρ is
uniformly bounded due to its compact support. According to Remark 3.25, we bring the factor
eiNBL into the symbol and work with the phase Ψ0,a,a− 4

3
a3/2ρNA3/2, which is linear in ρ. Therefore,

the critical point Ac satisfies an equation similar to (3.78), but without the factor 1− 3
4
B′
L(ρλA

3/2),
which leads to an explicit expression of the form (3.76) where f0 = 0. We start in the same way
as in the proof of Lemma 3.30, replacing λ1/3 by |N |: we rescale variables with (Σ, S) = ( x

|N | ,
y

|N |).

Lemma 3.32. For |N | ≥ 1, set Λ = λ|N |−3 and assume Λ ≥ 1, then we have

(3.90)

∣∣∣∣
∫
e

i
h
φN,aσV,h,a(

x

|N | ,
y

|N | , ρ) dxdy
∣∣∣∣ ≤ CΛ−3/4 .
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Proof. Here we need all the first three terms in the formula (3.76). In our new variables, A0, as
defined in (3.77), does not change and A1 =

1
2N2 (x(1− xE1)− y(1− aE2)), hence, using (3.76)

1

h
∂
x

φN,a = Λr
(
x

2 +N2(
x

a
q1/3(ϑc)(1 + ℓ(y, ϑc))− A2

0)) + A0

(
x(1− xE1)− y(1 − aE2)

)

+ 2N
√
ax
x

a
µ(y, ϑc)q

2/3(ϑc)−
1

4N2
(x− y)2 +O(

y

2

N2
,
x

2

N2
) +N2O(a)

)
,

1

h
∂
y

φN,a = −Λr
(
y

2 +N2(q1/3(ϑc)− A2
0) + A0

(
x(1− xE1)− y(1 − aE2)

)

− 2N
√
ayµ(0, ϑc)q

2/3(ϑc)−
1

4N2
(x− y)2 +O(

y

2

N2
,
x

2

N2
) +N2O(a)

)
,

where N2O(a) in the last two formulas are homogeneous terms of order j ≥ 2 in the expression of
∂ΞAΓ. Next, we compute the second derivatives : notice that (3.73) yields |∇Σ,Sϑc| ∼ O(a3/2/|y|) ∼
O(a/N) since |y| ≥ c0t and t/

√
a ∼ 4N . Using (3.83) and (3.77) we find

1

h
∂2
x

φN,a = Λρ
(
2x+ 2N

√
a
x

a
µ(y, ϑc)q

2/3(ϑc) + A0(1− xE1)−
1

2N2
(x− y) +O(

y

2

N2
,
x

N2
)
)
,

1

h
∂2
y

φN,a = −Λρ
(
2y + 2N

√
aµ(0, ϑc)q

2/3(ϑc)(1 +O(
√
a)) + A0(1− aE2)−

1

2N2
(x− y)

+O(
y

N2
,
x

2

N2
)
)

1

h
∂
x

∂
y

φN,a = Λρ
(
A0 −

(x− y)

2N2
+O(

y

N2
,
x

N2
)
)
.

In fact, we infer that we can write

1

h
∂
x

φN,a = Λρ
(
x

2 − A+ (bx− dy)− 1

4N2
(x− y)2 +O(

x

2

N2
,
y

2

N2
)
)
,(3.91)

1

h
∂
y

φN,a = −Λρ
(
y

2 −B+ (dx− cy)− 1

4N2
(x− y)2 +O(

x

2

N2
,
y

2

N2
)
)
,

where (A,B) and b, c, d are defined as follows

− A

N2
=
x

a
q1/3(ϑc)(1 + ℓ(y, ϑc))− A2

0 , − B

N2
= q1/3(ϑc)− A2

0 ,

b = A0(1 + O(x)) +N
√
a
x

a
µ(y, ϑc)q

2/3(ϑc)(1 +O(
√
a)) ,

c = A0(1 + O(a))−N
√
aµ(0, ϑc)q

2/3(ϑc)(1 +O(
√
a))

d = A0(1 + O(x; a)) .

This follows easily from writing the Taylor development for the first order derivatives of φN,a with
respect to x, y and use that ∂

x

∂
y

φN,a = ∂
y

∂
x

φN,a. We also have

1

h
∂2
x

φN,a = Λρ
(
2x+ b− 1

2N2
(x− y) +O(

y

2

N2
,
x

N2
)
)
,

1

h
∂2
y

φN,a = −Λρ
(
2y− c+

1

2N2
(x− y) +O(

y

N2
,
x

2

N2
)
)
,

1

h
∂
x

∂
y

φN,a = −Λρ
(
d− (x− y)

2N2
+O(

y

N2
,
x

N2
)
)
.



64 DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS

Let ΛρM(x, y) denote the matrix of second order derivatives (i.e. the Hessian of 1
h
φN,a); we

compute its determinant

(3.92) detM(x, y) = −Λ2ρ2
(
4xy + 2(by− cx) + d2 − bc +

(x− y)2

N2
+O(

x

N2
,
y

N2
)
)
.

Set (A,B) = r(sinS, cosS). We will again deal separately with r ≥ r0, for some large r0 > 1, and
then r < r0. We start with large r ≥ r0 > 1 and we prove∣∣∣∣

∫
e

i
h
φN,aσV,h,a(

x

|N | ,
y

|N |) dxdy
∣∣∣∣ ≤ CΛ−5/6 ,

which has better decay than required. First, observe that from the hypothesis on r and (3.91), we
may integrate by parts in (x, y) in a region |(x, y)| ≤ cr1/2 with c small enough: for any k ≥ 1,

∣∣∣∣
∫

|(x,y)≤cr1/2
e

i
h
φN,aσV,h,a(

x

|N | ,
y

|N |) dxdy
∣∣∣∣ ≤ Ck(rΛ)

−k .

Thus we are left with the region |(x, y)| ≥ cr1/2. We rescale again (x, y) = r1/2(x′, y′) and, in the
new variables, we prove the following

(3.93)

∣∣∣∣r
∫

|(x′,y′)≥c
e

i
h
r3/2φ̃N,a σ̃V,h,a(x

′, y′, .) dx′dy′
∣∣∣∣ ≤ CΛ−5/6 ,

where we set, like in the previous section, φN,a(x, y, .) = r3/2φ̃N,a(x
′, y′, .) and σ̃V,h,a(x

′, y′) =
σV,h,a(r

1/2
x/N, r1/2y/N, .). Taking b = r1/2b′, d = r1/2d′ and c = r1/2c′, we have

∂
x

′

(r3/2
h
φ̃N,a

)
= Λρr3/2

(
x

′2 − sinS+ 2(b′x′ − d′y′)− (x′ − y

′)2

4N2
+O(1/N2)

)

∂
y

′

(r3/2
h
φ̃N,a

)
= −Λρr3/2

(
y

′2 − cosS+ 2(d′x′ − c′y′)− (x′ − y

′)2

4N2
+O(1/N2)

)
.

From these expressions of ∇(x′,y′)(
r3/2

h
φ̃N,a), if (x

′, y′) is large, we get decay by integrations by parts,
as |N | ≥ 2. Therefore, we can assume that c ≤ |(x′, y′)| ≤ C where C is a large, fixed constant
(we avoid a neighbourhood of (0, 0) since we have assumed |(x, y)| > cr1/2). If |N | ≥ 2, a is small
and r0 is large, the set {detM(x, y) = 0} is a smooth curve which does not intersect the origin.
Away from this set, we may use stationary phase, which will provide r(r3/2Λ)−1 decay on the left
of (3.93). In the region close to {detM(r1/2x′, r1/2y′) = 0}, we can apply [9, Lemma 2.21 (a)], i.e.
degenerate stationary phase along a curve, to obtain∣∣∣∣

∫

c≤|(x′,y′)≤C
e

i
h
r3/2φ̃N,aσV,h,a(x

′, y′, .) dx′dy′
∣∣∣∣ ≤ C(r3/2Λ)−5/6 ,

and therefore we get (3.93) as the extra factor r on the lefthand side is canceled by the r−5/4 on
the righthand side (recall r ≥ r0 > 1).

We can now focus on r = |(A,B)| ≤ r0. Notice that we may further restrict support again, this

time to |(x, y)| ≤ 2r1/2 ≤ 2r
1/2
0 as we get Λ−∞ decay by integration by parts if |(x, y)| is larger

than this value, as we did before. We now aim at proving∣∣∣∣
∫

|(x,y)|≤2r1/2
e

i
h
φN,aσV,h,a(

x

|N | ,
y

|N |) dxdy
∣∣∣∣ ≤ CΛ−3/4 ,

for which we will apply [9, Lemma 2.21 (b)]. The determinant of the Hessian M(x, y) of 1
h
φN,a

is given in (3.92) and the set {detM(x, y) = 0} is a smooth curve in {|(x, y)| ≤ 2r1/2}, at
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least for small a: it will be close to (2x + b)(2y − c) + d2 = −(x − y)2 when |N | = 1 and
(2x + b)(2y − c) + d2 = −(x − y)2/N2 for |N | ≥ 2 (and using b ∼ c ∼ d ∼ A0(1 + O(a)), we see
that it is close to the hyperbola 4xy+2A0(x−y) = −(x−y)2/N2 for |N | > 1 and to the parabola
2A0(x− y) = −(x + y)2 when |N | = 1).

Let (x0, y0) such that |(x0, y0)| ≤ 2r1/2: if detM(x0, y0) 6= 0, then the usual stationary phase
applies, unless we are in the special condition where [9, Lemma 2.21] takes over and we recall it
now: let H(ξ) be a smooth function defined in a neighborhood of (0, 0) in R2, such that H(0) = 0
and ∇H(0) = 0. We assume that the Hessian H ′′ satisfies rank(H ′′(0)) = 1 and ∇ det(H ′′)(0) 6= 0.
Then det(H ′′)(q, p) = 0 defines a smooth curve C near 0 ∈ R2 with 0 ∈ C. Let s → ξ(s) be a
smooth parametrization of C, with ξ(0) = 0, and define the curve Ξ(s) := H ′(ξ(s)) in R2.

Lemma 3.33. ([9, Lemma 2.21]) Let K = {ξ ∈ R2, |ξ| ≤ R0} , and a(ξ,Λ) a classical symbol of
order 0 in Λ ≥ 1 with a(ξ,Λ) = 0 for ξ /∈ K. Set for (P,Q) ∈ R2 close to 0

I(·,Λ) :=
∫
eiΛ(<ξ,·>−H(ξ))a(ξ,Λ)dξ .

Then for R0 > 0 small enough, the following holds true:

(a) If Ξ′(0) 6= 0, there exists C such that for all (P,Q) close to 0, |I(·,Λ)| ≤ CΛ−5/6.
(b) If Ξ′(0) = 0 and Ξ′′(0) 6= 0 there exists C such that for all · close to 0, |I(·,Λ)| ≤ CΛ−3/4.

Moreover, if a is elliptic at ξ = 0, there exists C ′ such that |I((0, 0),Λ)| ≥ C ′Λ−3/4.

Let (x0, y0) be such |(x0, y0)| ≤ 2r
1/2
0 and detM(x0, y0) = 0. For (x, y) near (x0, y0), |(x, y)| ≤

2r
1/2
0 let ξ = (x− x0, y − y0) and let R0 = 4r

1/2
0 , then |ξ| ≤ R0. We set

H(ξ) = ΦN (x, y)− ΦN(x0, y0)−∇φN,a(x0, y0) · ξ, (x, y) = (x0, y0) + ξ.

We see that H(0) = 0, H ′(0) = 0 and H ′′(0) = ∇2φN,a(x0, y0) = M(x0, y0). The matrix M
has two eigenvalues, 0 with normalized eigenvector v(x0, y0) and λ1 = tr(M(x0, y0)) with nor-
malized eigenvector u(x0, y0). Let Q be the matrix formed with column vectors u and v, then
tQM(x0, y0)Q = diag(λ1/2, 0), and λ1 6= 0 as the rank of M(x0, y0) ≥ 1 (thanks to |N | ≥ 2 and
(t, x, y) close to 0). Using (3.92), a simple computation yields

|∇detH ′′(0)|2 = 16
(
x0 + b/2− (x0 − y0)

2N2

)2
+ 16

(
y0 − c/2 +

(x0 − y0)

2N2

)2
+O(

x0

N2
,
y0

N2
).

We need to prove that there exists a positive constant C0 > 0 such that |∇detH ′′(0)|2 ≥ C0 > 0.
Since b = A0(1 + O(a)) + O(a1/2N), c = A0(1 + O(a)) + O(a1/2N) it follows that for (x0, y0) ∈
{M(x, y) = 0} we can write |∇detH ′′(0)|2 = 8A2

0 + 16(x0 − y0)
2(1 − 1

2N2 ) + O(a1/2N), provided

a1/2N is small enough and therefore |∇detH ′′(0)| ≥ C0 > 0 for some positive constant C0. This is
enough to apply Lemma 3.33 (case [b]) and get the desired bounds. When N = 1, one may inspect
the previous proofs to check that, knowing from support conditions that (x, y) is bounded, for
large (A,B) integrations by parts provide decay. On the other hand, in the range (A,B) bounded,
one may proceed as before, using Lemma 3.33. �

We moreover remark that the last statement in Lemma 3.33, together with ellipticity of the
symbol σV,h,a, provides, at fixed θ ∈ Sd−2, a sequence (tN , xN , yN) where the bound (3.90) saturates,
which is exactly at the swallowtail singularity in space-time. This is a key point in proving Theorem
1.3: for now, we have VN(tN , xN , yN) ∼ ‖VN‖∞, and at (tN , xN , yN), we have A ∼ B ∼ 0, i.e.
A0 ∼ q1/6(θ), implying tN ∼ 4Nq−1/2(y/|y|)√a, xN ∼ a and yN/|yN ∼ ϑc ∼ θ. Moreover, at
(tM , xN , yN) with M 6= N and |M −N | ≤M0, B ∼ CN and |VN(tM , xN , yN)| decays much faster



66 DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS

(Λ−5/6 rather than Λ−3/4). Therefore when summing over M at fixed N , only VN contributes to
saturating the bound and Theorem 1.3 holds.

3.2.3. The sum over 2 ≤ N .
√
a: completing the proof of Proposition 3.23. We now prove

(3.71). For N 6∈ N1(t, x, y), Proposition 3.13 provides an OC∞(h∞) contribution. Recall that if
(θ = (ρ, ϑ), A,Σ, S) is a critical point in the phase integral defining VN,a, then t/(4

√
a|N |) ∼ A1/2

and on the support of the symbol ψ(A) we have A ∼ 1. Set ♯N = |N1(t, x, y)|. If ♯N ≤ 2C,
the sum reduces to a finite sum, discarding all N 6∈ N1(x, y, t). For those N ∈ N1(t, x, y), if
|N | ≤ λ1/3, then, collecting (3.72) (stationary phase in ϑ), (3.75) (stationary phase in A) and
(3.90) (degenerate stationary phase in (Σ, S)),

|VN,a(t, x, y)| .
1

hd

(
h

t

) d−2
2 a2

h

1

|N |1/2λ1/2 |N |1/4λ−3/4

from which, with t ∼ 4a1/2N we get the desired result:

|VN,a(t, x, y)| .
1

hd

(
h

t

) d−2
2 a1/8h1/4

|N |1/4 ≤ C0

hd

(
h

t

) d−2
2 a1/4h1/4

t1/4
.

If |N | ≥ λ1/3, we collect the same bounds but with (3.90) replaced by (3.81):

|VN,a(t, x, y)| .
1

hd

(
h

t

) d−2
2 a2

h

1

|N |1/2λ1/2
1

λ2/3

and one easily checks that a1/2N−1/2λ−1/6 ≤ a1/8h1/4N−1/4 is equivalent to |N | ≥ λ1/3 (using
1/N ≤ λ−1/3 we get h1/3 instead of a1/8h1/4/|N |1/4.) Moreover, if only a finite number of VN,a(t, x, y)
contributes, we have a > h4/7. We proceed with large ♯N(≥ 2C): as ♯N ≤ C + C t√

aλ2
, we have

t ≥ c
√
aλ2. We also have |N | ∼ t/(4

√
a) and from t . 1, we have a . h4/7. For those N ,

∣∣∣∣∣∣

∑

N∈N1(t,x,y),|N |∼t/√a
VN,a

∣∣∣∣∣∣
.

1

hd

(
h

t

) d−2
2

a1/2λ1/3
1

|N |♯N .
1

hd

(
h

t

) d−2
2

h1/3λ−4/3 ,

and one checks that h1/3λ−4/3 ≤ h1/3 for a & h2/3. This completes the proof of Proposition 3.23.

3.3. The transverse part 4a ≤ γ ≪ 1. We go back to ΨN,a,γ(t, x, y,Σ, S, A, ρ), which is the

critical value of Φ̃N,a,γ after the stationary phase in ϑ: when 4a ≤ γ we start by applying stationary
phase in S, as in the proof of Proposition 3.13. The phase has two distinct saddle points S±,

S2
± +

a

γ
q1/3(ϑc)

(
1 + ∂Ξ

(
AΓ(a, 0,Ξ,

ϑc
τq(γA, ϑc)

)
)
|
Ξ=

√
γS±q1/3(ϑc)

τq(γA,ϑc)

)
= A.

Using (3.73), ϑc (function of Σ, S, A) does not affect the second derivative in S significantly and we
get ∂2SΨN,a,γ|S± ∼ 2. Moreover, the critical points S± depend on Σ only through ϑc and we have

S± = S0 ±
√
A−O(a/γ), where S0 is the unique solution to ∂2SΨN,a,γ(t, x, y,Σ, S, A, ρ) = 0 and it

satisfies S0 = O(a/
√
γ) (indeed, from Corollary 6.10, the unique solution s0 to ∂2s Φ̃N,a,γ satisfies

s0 = O(a); making the change of variables s =
√
γρ1/3S gives S0 = O(a/

√
γ)). We are left with

an integral with respect to A,Σ, ρ and we pick a factor λ
1/2
γ .
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When 1 ≤ |N | . λ2γ, we ignore ρ : we first perform stationary phase with respect to A, and then
prove that the remaining phase has critical points that may be degenerate of order at most two in
Σ. For each S±, the critical point with respect to A, denoted A±, is such that, with τ = τq(γA, ϑc),

(3.94) 2NA1/2(1− 3

4
B′
L(ρλγA

3/2)) =
q2/3(ϑc)

(
t− B2(y, ϑc) +

∑
k≥2 ∂τ

(
(1−τ)k
τk−1

)
B2k(y, ϑc)

)

2
√
γ
√

1 + γAq2/3(ϑc)

− Σ + S± +
γq2/3(ϑc)√

1 + γAq2/3(ϑc)

[ x

γ3/2
∂τ

(
τAΓ(x, y,

√
γΣq1/3(ϑc)/τ, ϑc/τ)

)

− a

γ3/2
∂τ

(
τAΓ(a, 0,

√
γS±q

1/3(ϑc)/τ, ϑc/τ)
)]
.

The second derivative with respect to A behaves like N/
√
A and with A ∼ 1 on the support of the

symbol ψ, stationary phase provides a factor λ
−1/2
γ |N |−1/2.

When |N | > λ2γ we apply stationary phase in A just like we did, and then stationary phase in
ρ. We then prove that the remaining integral can be degenerate of order at most two. To apply
(additional) stationary phase in ρ we act exactly like in the case γ ∼ a and obtain, as in (3.88)

1

h
|∂2ρΨN,a,γ(t, x, y,Σ, S+, A+, ρ)| ∼

1

h
|∂2ρΨN,a,γ(t, x, y,Σ, S+, A+, ρ)| ∼

|N |
λγ

.

Let φN,a,γ,+(t, x, y,Σ, ρ) = ΨN,a,γ(t, x, y,Σ, S+, A+, ρ) and, respectively, φN,a,γ,−(t, x, y,Σ, ρ) =
ΨN,a,γ(t, x, y,Σ, S−, A−, ρ), denote the critical values of ΨN,a,γ after the the stationary phase
in S and then in A (notice that A+ (and A−, respectively) is the critical point of the phase
ΨN,a,γ(t, x, y, S+, A, ρ) (and ΨN,a,γ(t, x, y, S−, A, ρ), respectively), so the critical points S and A
are paired with same sign, either + or −). Let σV,h,γ,±(Σ, ρ) be the symbol obtained from

ψ(A)ph(x, y, θ, γ|θ|2/3A,
√
γ|θ|1/3Σ)q̃h(θ, γ|θ|2/3A,

√
γ|θ|1/3S)

after applying stationary phase in ϑ, A and S, evaluated at (S,A)±; σV,h,γ is independent of N ,

of order zero and has compact support in Σ. We are left with estimating
∫
e

i
h
φN,a,γ,±σV,h,γ,±dΣdρ.

Following [12], we state different estimates for |N | ≥ 2, N = 0 and N = ±1.

Lemma 3.34. For |N | ≥ 2 and a given point (t, x, y) with t ∼ 4N
√
γ, the phase φN,a,γ,±(t, x, y,Σ, ρ)

has at most one degenerate critical point, which is of order two.

Proof. The first derivative of the phase φN,a,γ,± is

∂ΣφN,a,γ,± = ∂ΣΨN,a,γ(t, x, y,Σ, S, A, ρ)|A±,S±(3.95)

= Σ2 +
x

γ
q1/3(ϑc)

(
1 + ∂Ξ

(
AΓ(x, y,Ξ,

ϑc
τq(γA, ϑc)

)
)
|
Ξ=

√
γSq1/3(ϑc)

τq(γA,ϑc)

)
− Ac

Using (3.94) and then (3.95), we estimate derivatives w.r.t. Σ as follows

∂Σ(A
1/2
± ) = − 1

2N ∓ 1
(1 +O(

√
γ) +O(λ−2) +O(∂Σωc)) = − 1

2N ∓ 1
(1 +O(

√
γ)) ,

∂2ΣφN,a,γ,± = 2Σ(1 +O(
√
γ)) +

A
1/2
±

2N ∓ 1
(1 +O(

√
γ)) , ∂3ΣφN,a,γ,± = 2 +O(1/N) +O(

√
γ) .

For a given t, x, y, N , the equation ∂2ΣφN,a,γ,± = 0 has at most one solution which is a saddle point
when ∂ΣφN,a,γ,± = 0. Since the third order derivative stays close to 2, degenerate stationary phase

(or Van der Corput Lemma) in Σ provides a factor λ
−1/3
γ . �
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Lemma 3.35. Let N = 0, |t| > γ, then for |Σ| . 1 we have ∂2Σφ0,a,γ,±(t, x, y,Σ, ρ) ∼ t/
√
γ.

Proof. Let N = 0, |t| > γ, then A± solve (3.94) where the term in the left hand side vanishes. The

main term containing A comes from S± = S0 ±
√
A−O(a/γ) and A± satisfy

(3.96) S0 ±
√
A± −O(a/γ) = Σ(1 +O(

√
γ))− q2/3(ϑc)

(t+O(|y|))
2
√
γ

(1 +O(γ)).

Taking the derivative of (3.96) with respect to Σ, using that S0 depends on Σ only through ϑc
(which satisfies (3.73)), that A± stays close to 1 and that t/

√
γ is bounded yields

∂ΣA± = ±2
√
A± − O(a/γ) +O(

√
γ) +O(γ3/2/|y|)× (t+O(|y|))

2
√
γ

= 2
(
Σ(1 +O(

√
γ))− q2/3(ϑc)

(t +O(|y|))
2
√
γ

(1 +O(γ))
)
+O(

√
γ),

and therefore, using that the saddle point Σ is bounded since Σ2 ≤ A±, we find

∂2Σφ0,a,γ,±|∂Σφ0,a,γ,±=0 = 2Σ(1 +O(
√
γ))− ∂ΣA± = q2/3(ϑc)

(t+O(|y|))√
γ

(1 +O(γ)) +O(
√
γ) .

When |t| > γ we obtain the result. When |t| . γ, the wave has no time to reach the boundary. �

Lemma 3.36. For N = ±1: each phase function φ±1,a,γ,±(t, x, y,Σ, ρ) has at most one degenerate
critical point Σc of order exactly two; for t 6= 0, the equation ∂2Σφ±1,a,γ,∓ = 0 has an unique solution
Σ ∼ ∓1/γ, while for |Σ| . 1, we have ∂2Σφ±1,a,γ,∓ ∼ (t/

√
γ)(1 +O(γ)).

Proof. For φ±1,a,γ,±, the proof of Lemma 3.34 applies, for φ±1,a,γ,∓ the proof for N = 0 does. �

Lemma 3.37. For |N | ≥ λ2γ, after stationary phase in ρ, the critical value φN,a,γ,±(t, x, y,Σ, ρc)
has at most one degenerate critical point of order exactly two in Σ.

Proof. The proof is essentially the same as the one of Lemma 3.34 since the contribution from
the derivatives of the critical point with respect to ρ do not affect significantly the third order
derivative of the phase with respect to Σ . �

3.3.1. Estimates for the sum over N and end of the proof of Proposition 3.22. We now proceed
with estimating the sum over N , i.e. proving (3.70). Again, for N 6∈ N1(t, x, y), Proposition 3.13
provides an OC∞(h∞) contribution. With ♯N = |N1(t, x, y)|, if ♯N ≤ 2C, the sum reduces to a
finite sum. For those N ∈ N1(t, x, y), we have |N | ≤ λ2, then, collecting (3.72) (stationary phase
in ϑ), factors from stationary phase in S,A and from degenerate stationary phase in Σ,

|VN,γ(t, x, y)| .
1

hd

(
h

t

) d−2
2 γ2

h

1

λ
1/2
γ

1

|N |1/2λ1/2γ

1

λ
1/3
γ

∼ 1

hd

(
h

t

) d−2
2 h1/3√

N
.

If |N | ≥ λ2γ, we collect the same bounds but with an additional stationary phase in ρ,

|VN,γ(t, x, y)| .
1

hd

(
h

t

) d−2
2 γ2

h

1

λ
1/2
γ

λ
1/2
γ√
N

1

|N |1/2λ1/2γ

1

λ
1/3
γ

∼ 1

hd

(
h

t

) d−2
2 h1/3λ

1/2
γ

N
.

As ♯N ≤ C + C T
λ2

and T ∼ N , we complete the proof of Proposition 3.22 with
∣∣∣∣∣∣

∑

N∈N1(t,x,y)

VN,γ

∣∣∣∣∣∣
.

1

hd

(
h

t

) d−2
2 h1/3λ

1/2
γ

N
♯N .

1

hd

(
h

t

) d−2
2 h1/3

λ
3/2
γ

.
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Remark 3.38. In this transverse regime, we used γ ≥ h2/3−ε rather than a ≥ h2/3−ε. As such, all
estimates hold with any a > 0. This will be of importance in the next section.

4. Dispersion for small a . h2/3−ǫ

We now obtain dispersion for Ph,a for small a ∈ (0, h2/3−ǫ) with a small 0 < ǫ < 1/12 using

Propositions 2.18 and 2.19. Write Ph,a(t, x, y) := P1
h,a + P2

h,a , where Pj
h,a is given by (2.39) with

gh,a replaced by gh,a,j, j ∈ {1, 2}. Dispersion for P2
h,a easily follows using exactly the arguments

from the transverse case (for a > h
2
3
−ǫ): ω is large and stationary phase arguments apply. We are

left with P1
h,a.

Proposition 4.1. For h < t ≤ T0 ≤ 1

(4.1) ‖P1
h,a(t, .)‖L∞

x>0,y
. h−d

(h
t

) d−2
2
(h
t

)1/3
.

Proof. We need the following lemma, relying on Corollary 2.31:

Lemma 4.2. There exists symbols σ(η, ωk) and rj(a, η, ωk), of order 0, σ, r0 elliptic such that

(4.2) Kωk
(gh,a,1)(t, x, y) =

∫
eitτq(ωk ,η)G(x, y, η, ωk)q

1
6 (η)κ(hη)κ(hτq(ωk, η))r(η, ωk)σ(η, ωk)

χ♭
( ωk
ωKǫ

)
q

1
6 (η)

(
r0Ai(−ζ(a, 0, η, ωk)) + iq−

1
6 (η)r1Ai

′(−ζ(a, 0, η, ωk))
)
dη ,

where ζ is the phase introduced in Theorem 2.1.

Proof. Replacing ĝh,a,1 given by Corollary 2.31 in formula (2.24) yields

Kωk
(gh,a,1) =

∫
eitτq(ωk,η)G(x, y, η, ωk)χ

#(ωk)q
1
6 (η)κ(hη)κ(hτq(ωk, η))r(η, ωk)

√
L′(ωk)√
2π

Ia(η, ωk)dη ,

with Ia(η, ωk) defined in (2.81). To compute Ia use (2.63) and e(x, y, η, ωk) = e−i|η|B0 ẽ(x, y, η, ωk)

(4.3) Ia =

∫
e
−i(ỹ·(η−η̃)+|η|B0(ỹ,

η
|η| ))κ(hη̃)χ♭

( ωk
ωKǫ

)
ek(a, η̃)

[∫

R+

ẽ(x̃, ỹ, η, ωk)ek(x̃, η̃)dx̃

]
dη̃dỹ .

As in the proof of Lemma 2.28, the bracket term in (4.3) behaves like a symbol. For small a . h2/3−ǫ

and k ≤ Kǫ, ek(a, η̃) can also be included in the symbol, and with η = θ/h and η̃ = θ̃/h, stationary

phase applies in ỹ, θ̃ for the phase −(ỹ · θ+ |θ|B0(ỹ, ϑ)) + ỹ · θ̃, with large parameter 1
h
and symbol

1

hd−1
χ♭
( ωk
ωKǫ

)
κ(θ̃)χ0(h

2/3ωkq
2/3(θ̃))ek(a, θ̃/h)

(∫ ∞

0

ẽ(x̃, ỹ, θ/h, ωk)ek(x̃, θ̃/h)dx̃
)
.

Stationary points are such that ỹ = 0, θ̃ = θ+|θ|∂ỹB0(ỹ, ϑ) = θ (as ∂yB0(0, ϑ) = 0). All derivatives

with respect to ỹ land on ẽ(x̃, ỹ, θ/h, ωk) and we can use Lemma 2.28. Derivatives with respect to

θ̃ land either on cut-offs, ek(x̃, θ̃/h) or ek(a, θ̃/h) : using (2.76) for ek,
∣∣∣∂β1ỹ ∂β2η̃

(∫ ∞

0

ẽ(x̃, ỹ, η, ωk)ek(x̃, η̃)dx̃
)∣∣∣ ≤ ‖∂β1ỹ ẽ(., ωk)‖L2

x≥0
‖∂β2η̃ ek‖L2

x≥0
. (ωk|η|1/3)|β1|+|β2| .

As |η| ∼ 1/h and k . Kǫ < h−1/4+ǫ we find ωk|η|1/3 ≤ h−1/2+2ǫ/3. As one derivative on ek(a, θ̃/h)

yields at most a
h

√
h2/3ωk and we have a

h

√
h2/3ωk ≤ h−1/12−2ǫ/3 ≪ h−1/2 for ǫ < 5/8, station-

ary phase applies in ỹ, θ̃. After stationary phase, ek(a, θ̃/h) transforms into a linear combina-

tion of ek and its derivative : indeed, repeated derivatives in θ̃ lead to Ai(aq1/3(θ̃/h) − ωk) and
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Ai′(aq1/3(θ̃/h)−ωk), and we denote r0, r1 the corresponding asymptotic expansions; r0, r1 are func-
tions of (a, θ/h, ωk) and r0 is elliptic with main contribution equal to 1. Taking the difference be-

tween phase functions of ek(a, θ̃/h) and e(a, 0, θ/h, ωk) yields aτq(h
2/3ωk, θ)AΓ(a, 0, sq

1/3(θ)/τq, θ/τq),
which behaves (at worst) like a(s2 − h2/3ωkq

2/3(θ) + O(s3, s(h2/3ωk)) (where s2 . h2/3ωk); as

ah2/3ωk ≤ h7/6−ǫ/3, e
i
h
aτq(h2/3ωk,θ)AΓ(a,0,sq

1/3(θ)/τq ,θ/τq) does not oscillate and can be brought into the
symbol. The L2

x>0 product in (4.3) becomes a new symbol σ(θ/h, ωk), with main contribution σ0

σ0 =

∫ ∞

0

ẽ(x̃, 0, θ/h, ωk)ek(x̃, θ/h)dx̃ = h−2/3

∫ ∞

0

e
i
h
(−s̃3/3−s̃(x̃q1/3(θ)−h2/3ωk)+s

3/3+s(x̃q1/3(θ)−h2/3ωk))

× 2π

L′(ωk)

q1/3(θ)

h2/3
p̃h(x̃, θ, h

2/3ωk, s̃, h/t)e
− i

h
x̃τq(h2/3ωk,θ)AΓ(x̃,0,σq

1/3(θ)/τq ,θ/τq)ds̃dsdx̃,

for a symbol p̃h obtained from ph in (2.17). For x̃ & h2/3ωk, repeated integrations by parts in
s yield an O(h∞) contribution. For x̃ . h2/3ωk, apply stationary phase in s, x̃: as x̃q1/3(θ) =
h2/3ωk − s2 and sq1/3(θ) = s̃q1/3(θ) + τq(AΓ + x̃∂x̃AΓ), we are left with an integral in s̃ with phase

e
i
h
(h2/3ωk−s̃2)q1/3(−θ)τq(h2/3ωk,θ)AΓ((h

2/3ωk−s̃2)q−1/3(θ),0,s̃q1/3(θ)/τq ,θ/τq). One derivative with respect to θ on
this phase yields at most 1

h
(h2/3ωk)

2 . h4ǫ/3 for k ≤ Kǫ ≤ h−1/4+ǫ and therefore σ0 is of order 0.
Rewriting Kωk

(gh,a,1) after stationary phase, relabelling r0 and r1, we obtain (4.2). �

Now we evaluate the L∞ norm of P1
h,a(t, .). If d ≥ 3, we perform stationary phase in (4.2) w.r.t

η/|η| ∈ Sd−2: η = θ/h, θ = |θ|ϑ, θ ∈ supp(κ), the phase of each Kωk
(gh,a,1)(t, x, y) is

tτq(h
2/3ωk, θ) + |θ|(y · ϑ+B0(y, ϑ)) +O(h2/3ωk) = |θ|(t+ y · ϑ+B0(y, ϑ)) +O(h2/3ωk),

where O(h2/3ωk) contains contributions from BΓ − B0, xAΓ and aAΓ. Critical points ϑ± are
given by (3.33) (with γ = a, A = h2/3ωk/(a|θ|2/3), S = s/(

√
a|θ|1/3), Σ = σ/(

√
a|θ|1/3)). As

∇2
ϑ(y · ϑ + B0(y, ϑ)) ∼ |y| and |y| ∼ |t| (Lemma 3.2), stationary phase in ϑ yields (h/|θ||y|)d−2 ≤

C(h/|t|)d−2 for ϑ near ϑ±. For ϑ outside a small neighborhood of ϑ±, we get O(h
t
)∞. Stationary

phase yields new symbols as asymptotic expansions with small parameter h
t
; the main contribu-

tion Kωk
(g1,a,h)(t, x, y) remains similar to (4.2), with a front factor (h/t)(d−2)/2, η = |θ|ϑ±/h and

integration over η replaced by integration over |θ|.
Lemma 4.3. ( [9, Lemma 3.5]) There exists C0 such that for L ≥ 1,

(4.4) sup
b∈R

( ∑

1≤k≤L
ω
−1/2
k Ai2(b− ωk)

)
≤ C0L

1/3 , sup
b∈R+

( ∑

1≤k≤L
ω
−1/2
k h2/3Ai′2(b− ωk)

)
≤ C0h

2/3L .

Applying Cauchy-Schwarz, dispersion for small t reduces to estimates like (4.4), as

(4.5) ‖
L∑

k=1

2π

L′(ωk)
Kωk

(gh,a,1)(t, x, y)‖L∞ . h−d
(h
t

) d−2
2
h1/3

(
L1/3 + h1/3L2/3 + h2/3L

)
,

where h−(d−1)(h/t)
d−2
2 comes from stationary phase in ϑ, while h−2/3 = h−1h1/3 arises from

q1/3(θ/h) and L-related terms come from (4.4). Recall h−2ǫ ≤ Kǫ ≤ h−1/4+ǫ, hence hǫ ≫ h2ǫ ≥ 1
Kǫ
.

Let L = h−ǫ : for t ≤ hǫ we bound L ≤ 1
t
in (4.5) and get (4.1) for the sum up to h−ǫ.

When hǫ ≤ t, we apply stationary phase in each oscillatory integral in the sum over k for
k ≤ h−ǫ(≪ Kǫ). Using Corollary 6.10 in the Appendix, we reformulate the phase ψ of Theorem
2.1 as

ψ(x, y, θ, ωk) = y · θ + τq(h
2/3ωk, θ)BΓ(y, θ/τq) + Υ(x, y, θ, h2/3ωk).
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Lemma 4.4. The stationary phase theorem with respect to |θ| applies in (4.2) with large parameter
tωkh

−1/3, with phase function φh,k(t, x, y, θ) = tτq(h
2/3ωk, θ) + ψ(x, y, θ, ωk) and with symbol

(4.6)

σh,k =
(
p0Ai(−ζ(x, y, θ/h, ωk)) + ip1Ai

′(−ζ(x, y, θ/h, ωk))
)
q

1
3 (θ)κ(θ)κ(τq(h

2
3ωk, θ))χ

♭
( ωk
ωKǫ

)

× σ(θ/h, ωk)r(θ/h, ωk)
(
r0Ai(−ζ(a, 0, θ/h, ωk)) + iq−1/6(θ/h)r1Ai(−ζ(a, 0, θ/h, ωk))

)
,

where p0, p1 were defined in (2.6) and θ = |θ|ϑ with ϑ ∈ {ϑ±}.
Proof. Let r = |θ| and recall ϑ ∈ {ϑ±} (we already performed stationary phase in ϑ). We have

φh,k = tτq(h
2/3ωk, θ) + ψ(x, y, θ, ωk) = r

(
t+ y · ϑ+B0(y, ϑ)

)

+
r1/3

2
h2/3ωkq

2/3(ϑ)
(
t +B0(y, ϑ)−B2(y, ϑ) +O(|y|(h2/3ωk))

)
+ (rt)O((h2/3ωk)

2)

− x
(
O(x) +O(h2/3ωk)

)
− k1ζ

(
ζ +O(xh2/3ωk) +O((h2/3ωk)

2)
)
,

where, in the second line, O(|y|(h2/3ωk)) comes from BΓ − B0 − B2, and (rt)O((h2/3ωk)
2) comes

from tτq(h
2/3ωk, rϑ) and where the last line represents the contribution from Υ as given in (6.31).

Here the critical points ϑ± are solutions to Equation (3.33), but with γA replaced with h2/3ωk/r
2/3

in the whole equation. Then, y · ϑ± +B0(y, ϑ±) = ±|y +∇B0(y, ϑ±)|+O(a2), a2 ≪ h. Moreover,
∂rϑ± = O(h2/3ωk) (deriving (3.33); originally in (3.33) we made a suitable change of variables and
got rid of r = |θ|, which is no longer possible as we now work with fixed ωk). A critical point with
respect to r for φh,k is such that

(4.7) 0 = t± |y +∇B0(y, ϑ±)|+O(a2) + rO(|y|2)O(h2/3ωk)

+
2

3
r−2/3h2/3ωkq

2/3(ϑ±)
(
t+B0(y, ϑ±)− B2(y, ϑ±) +O(|y|(h2/3ωk))

)
+ tO((h2/3ωk)

2)

− ∂rk1ζ
2(x, y, θ, h2/3ωk) +O(x2, x(h2/3ωk)) ,

where the last line is ∂rΥ, whose main contribution is −∂rk1ζ2(x, y, θ, ωk) : as h2/3ζ(x, y, θ/h, ωk) =
ζ(x, y, θ, h2/3ωk) = h2/3ωk − xq1/3(θ)e0(x, y, ϑ, h

2/3ωk/|θ|), ∂rζ yields a factor x, which puts every-
thing else in O(x2, x(h2/3ωk)). Moreover, set t(> h) > 0 as usual, only ϑ− is to be kept (at ϑ+ the
phase will be non-stationary). As B0(y, ϑ±) − B2(y, ϑ±) = O(|y|2) = O(t2) and x . h2/3−ǫ, the
main contribution of ∂2rφh,k comes from first terms on the second and last lines of (4.7)

− 4

9
r−5/3h2/3ωkq

2/3(ϑ±)t
(
1 +O(|y|2/t) +O(|y|/t)× (h2/3ωk)) +O((h2/3ωk)

2)
)

− ∂2k1ζ
2(x, y, θ, h2/3ωk) +O(x2, x(h2/3ωk)).

Observe that h2/3ωkt≫ ζ2(x, y, θ, h2/3ωk) for all t > hǫ: indeed, hǫ ≫ h2/3ωk, which holds true for
all ωk ≤ ωKǫ ≤ h−1/6+2ǫ/3. At the stationary point satisfying (4.7), |y| behaves like t, and therefore
∂2rφh,k behaves like th2/3ωk there. We are left to prove that stationary phase indeed applies with
large parameter (th2/3ωk)/h ∼ tωkh

−1/3, for hǫ . t and symbol σh,k from (4.6). Computing ∂2rσh,k
yields at most ω

11/4
k which occurs when ζ(x, y, θ/h, ωk) is large, ζ(a, 0, θ/h, ωk) is bounded and

when both derivatives fall on of the first Airy: hence, it suffices to check h1/3

tωk
ω
11/4
k ≪ 1 for t ≥ hǫ,

uniformly in k . h−ǫ : this does hold as long as ǫ < 2/13 and we already set ǫ < 1/12. �
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We then sum up to k ≤ h−ǫ, for t ≥ hǫ and ǫ < 1/12, with L′(ωk) ∼ 2ω
1
2
k :

‖P1
h,a(t, x, y)‖L∞ .

h1/3

hd

(h
t

) d−2
2
∑

k.h−ǫ

1

L′(ωk)

(h1/3
tωk

) 1
2 ∼ 1

hd

(h
t

)d−2
2
(h
t

) 1
2
h−

ǫ
3 .

1

hd

(h
t

)d−2
2
(h
t

) 1
3
.

It remains to deal with h−ǫ ≤ k ≤ Kǫ and t ∈ (h, T0]. Taking L = Kǫ in (4.5), we obtain (4.1)
exactly as before for all t ≤ K−1

ǫ (up to k ≤ Kǫ). Hence we are left with t ≥ K−1
ǫ and h−ǫ ≤ k . Kǫ.

It suffices to consider 0 ≤ x, a . h
2
3
−ǫ (as for x ≥ h

2
3
−ǫ, the arguments for the transverse case

a > h
2
3
−ǫ apply). For small values of both x, a, |ζ(x, y, η, ωk)| ≥ ωk/2 and |ζ(a, 0, η, ωk)| ≥ ωk/2

(k ≥ h−ǫ is large so ωk ≥ h−2ǫ/3 ≫ h−ǫ & a/h2/3). We can write Ai(−ζ) =∑±A±(ζ) which give

rise to factors ζ(x, y, η, ωk)
−1/4ζ(a, 0, η, ωk)

−1/4. If we decide to ignore the integral with respect to
r ∈ suppκ, we can immediately bound the sum of integrals with

‖P1
h,a(t, x, y)‖L∞ .

h1/3

hd

(h
t

)d−2
2

∑

h−ǫ≤k≤Kǫ

1

ω
1/2
k

1

ω
1/2
k

. h−d
(h
t

) d−2
2

(hKǫ)
1/3 ,

and as Kǫ ≤ h−1/4+ǫ, (hKǫ)
1/3 ≤ h1/4+ǫ/3 which is not optimal (a similar crude bound was obtained

in [9] in that regime.) To obtain sharper bounds when t ≥ K−1
ǫ , h−ǫ ≤ k ≤ Kǫ, decompose

Ai(−z) = A+(z) + A−(z), with A±(z) = Ψ(e∓iπ/3z)e∓
2
3
iz3/2 and 4π3/2|Ψ(z)| ∼ |z|−1/4 for large z.

Then there are four different phases in Kωk
(gh,a,1), where ±1 and ±2 mean idependent signs,

1

h

(
tτq(h

2/3ωk, θ) + ψ(x, y, θ, ωk)±1
2

3
ζ(x, y, θ, h2/3ωk)

3/2 ±2
2

3
ζ(a, 0, θ, h2/3ωk)

3/2
)

and a symbol which behaves like h−(d−1)−2/3q1/3(θ)κ(θ)|ζ(x, y, θ/h, ωk)|−1|ζ(a, 0, θ/h, ωk)|−1/4, where
h−2/3ζ(x, y, θ, h2/3ωk) = ζ(x, y, θ/h, ωk) = ωk − xq1/3(θ)/h2/3e0(x, y, θ/h, ωk) ≥ ωk/2 and also
ζ(a, 0, θ/h, ωk) = ωk − aq1/3(θ/h)e0(a, 0, θ/h, ωk) ≥ ωk/2. We prove that stationary phase applies
with the same ”large parameter” th2/3ωk/h but a new symbol. As in (4.7), we find

t−|y+∇B0(y, ϑ−)|+rO(|y|2)O(h
2
3ωk)+

2

3
r−

2
3h

2
3ωkq

2
3 (ϑ−)

(
t+B0(y, ϑ−)−B2(y, ϑ−)−xµ(y, ϑ−)

)

+O((h
2
3ωk)

2)±1 x∂r(q
1
3 (rϑ−)e0)

√
ζ(x, y, rϑ−, h

2
3ωk)±2 a∂r(q

1
3 (rϑ−)e0)

√
ζ(a, 0, rϑ−, h

2
3ωk) = 0.

The second derivative is

− 4

9
r−5/3h2/3ωkq

2/3(ϑ−)(t +O(|y|2)) +O((h2/3ωk)
2))∓1 xO(

√
h2/3ωk)(1 +O((h2/3ωk)

2)

∓2 aO(
√
h2/3ωk)(1 +O((h2/3ωk)

2)),

and for t ≥ K−1
ǫ , h−ǫ ≤ k ≤ Kǫ, the main contribution comes from the first term : indeed,

t
√
h2/3ωk ≥ K−1

ǫ h1/3(1−ǫ) ≥ h7/12−4ǫ/3 ≫ h2/3−ǫ, hence t(h2/3ωk) ≫ max{x, a}O(
√
h2/3ωk) for all

x, a . h2/3−ǫ. We then check that th2/3ωk/h is a large parameter for t > K−1
ǫ (recall that in

Lemma 4.4 we had t ≥ hǫ ≫ K−1
ǫ ): indeed, tωk ≥ K−1

ǫ h−2ǫ/3 ≥ h1/4−5ǫ/3 ≫ h1/3. We find

‖P1
h,a(t, x, y)‖L∞ ≤ h1/3

hd

(h
t

) d−2
2

∑

1≤k.Kǫ

1

L′(ωk)ω
1/4+1/4
k

(h1/3
tωk

)1/2
∼ h−d

(h
t

)d−2
2
(h
t

)1/2
log h−1 ,

where we use the symbol of both factors A± to get |ζ |−1/4 < 2/ω
1/4
k . We proved (4.1) and therefore

Theorem 3.1. �
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5. Strichartz estimates

Standard duality and interpolation arguments would lead to Theorem 1.5 with γ(d) = 1/4 if
one only uses dispersion formula (1.3). We aim at improving on this straightforward application
of our dispersion estimate, combining three ingredients, where the first two were already proven
earlier: in our estimates from Propositions 3.21, 3.22, 3.23 and 4.1, we either have better decay
or additional (small) factors of a or γ; we also have the usual dispersion on time intervals with
lengh less than

√
γ, in the sum of reflections regime (corresponding to dispersion on the V0 term

in the expansion over N); and finally, we claim that the additional cut-off that we introduced to
localize h2/3ω ∼ γ is not only a useful technical device but also essentially commutes with the flow
itself. Assuming these facts, one can then prove Strichartz estimates at fixed γ: on intervals of
length one, with the γ(d) = 1/4 loss but with a constant that depends on a positive power of γ;
on intervals of size

√
γ, one has the usual Strichartz estimates, with γ(d) = 0, and by iteration,

one has a corresponding Strichartz estimate on time length one but with a constant that depends
on a negative power of γ; by interpolation, one recovers a Strichartz estimate, at fixed γ, that
improves upon γ(d) = 1/4, and then summation over γ yields the theorem, with strict inequality
on γ(d) because of that last summation over γ. Such a strategy was implemented in [11] and
is facilitated there because the γ localization commutes with the wave flow. Moreover, a refined
analysis of the dispersion estimates around the exceptional times that force γ(d) = 1/4 allows for
a better Strichartz estimate to interpolate with, thus yielding a better result on the 2D model.
We expect such result to generalize to the 2D general convex case, while higher dimensions will
require additional arguments related to the space-time localization of swallowtails (which can no
longer be a set of discrete, exceptional, times). As such, we believe that Theorem 1.5 is of interest
as it illustrates, in a relatively simple way, that the rate of dispersion does tell the whole story as
far as Strichartz estimates are concerned.

We now turn to the details: we relabel Ph(t, x, y, a, b) our parametrix but with source (a, b) ∈
Rd, and similarly Ph,γ(t, x, y, a, b) where an additional cut-off in α was inserted. Inhomogeneous
Strichartz estimates follow from estimating the inhomogeneous operator Ph (and/or Ph,γ with
obvious notations)

Phf(t, x, y) =

∫

s

Ph(t− s, x, y, a, b)f(s, a, b) dadbds .

We remark that, with such notations, the homogeneous operator approximating the half-wave flow
with data f0(a, b) at time t = 0 is

(Whf0)(t, x, y) = Ph(δs=0f0(a, b))(t, x, y) ,

and we define similarly Wh,γ. Now, suppose we restrict ourselves to P ♭
h =

∑
γ<h1/3 Ph,γ: for Ph,γ

with γ < h1/3, we have a1/4h1/4 . h1/3 and, collecting all bounds from Propositions 3.21, 3.22,
3.23 and 4.1 in our regime, we do have

(5.1) |P♭
h(t, x, y, a, b)| .

1

hd

(h
t

)(d−2)/2

min

(
1,
(h
t

)1/3)
.

Commuting the wave flow and the α ∼ γ localization in the parametrix is an issue, to be adressed
in Proposition 5.1 below; we already observe that Ph,γ is an approximate solution to the wave
equation, and as such, satisfies energy estimates. We then obtain inhomogeneous Strichartz esti-
mates but with γ(d) = 1/6 rather than 1/4, after interpolation between (5.1) and energy estimates,
followed by the argument from [14] for the endpoint (only required for d ≥ 4) and a dependence
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on h dictated by scaling, which we encode with .h:

‖Ph,γf‖
L2
tL

2 3d−4
3d−7

x

.h ‖f‖
L2
tL

2 3d−4
3d+3

x

, or, for d = 3, ‖Ph,γf‖
L

1
2 5

t L∞
x

.h ‖f‖
L

12
7
t L1

x

.

For now, we focus on a given γ > h1/3. First, we remark that Ph,γ satisfies inhomogeneous
Strichartz estimates with γ(d) = 1/4, but with a constant related to γ (from the a1/4, γ1/4 factors
in (3.69), (3.70), (3.71))

(5.2) ‖Ph,γf‖
L2
tL

2 2d−3
2d−7

x

.h γ
1

2d−3‖f‖
L2
tL

2 2d−3
2d+4

x

, or, for d = 3, ‖Ph,γf‖
L

8
3
t L

∞
x

.h γ
1
4‖f‖

L
8
5
t L

1
x

.

This follows from performing the usual duality and interpolation argument directly on Ph,γ rather
than Ph, using Proposition 5.1 to handle commutation of the localization with the flow. At the
same time, Wh,γ satisfies the usual short time dispersion (either from [2] or from (3.68) and close
inspection of the N = 1 cases, especially Lemma 3.36), hence homogeneous Strichartz estimates
on a time interval of size γ1/2 (this may be seen as a direct consequence of short time Strichartz
estimates proven in a more general context in [2].) With the help of Proposition 5.1, one may sum
such L2

t estimates over γ−1/2 intervals of length γ−1/2, obtaining

‖Wh,γf0‖
L2
tL

2d−1
d−3

x

.h γ
− 1

4‖f0‖2

and then revert to inhomogenous estimates,

(5.3) ‖Ph,γf‖
L2
tL

2 d−1
d−3

x

.h γ
− 1

2‖f‖
L2
tL

2 d−1
d+1

x

.

(abusing the enpoint for d = 3, for which exponents are to be shifted to avoid the forbidden
endpoint). One then interpolates between (5.2) and (5.3) to retain γε(q), with ε(q) > 0 dictated
by interpolation (to sum over γ later),

‖Ph,γf‖L2
tL

q
x
.h γ

ε(q)‖f‖
L2
tL

q′
x
, or, for d = 3, ‖Ph,γf‖

L
12

5−12ε
t L

1
ε
x

.h γ
ε‖f‖

L
12

7+12ε
t L

1
1−ε
x

.

with 1/2− 1/q > 2d/((d− 1)(2d− 1)) for d ≥ 4: this corresponds to γ(d) > 1/4− 1/4d for d ≥ 3.

Taking advantage of γε, we sum over dyadic γ’s to get estimates for P ♯
h =

∑
γ>h1/3 Ph,γ, and the

resulting estimate is always worse than (5.2) for P ♭
h, that is to say, q > 2(3d − 4)/(3d − 7). As

such, Ph = P ♯
h + P ♭

h satisfies the same set of estimates as P ♯
h, that is, Strichartz estimates with

γ(d) > 1/4 − 1/4d = 1/6 + (1/4)(1/3 − 1/d). In particular, for d = 3, we obtain (except for the
endpoint) the set of Strichartz estimates that would result from dispersion with a loss of only 1/6,
which is the loss resulting from cusp-like singularities in the wave front. This completes the proof
of Theorem 1.5, up to proving Proposition 5.1.

It remains to handle the issue of localization with respect to α in our parametrix. For this, we
check that we do have a suitable form of the group property for the operator Wh,γ(t): assume that

W̃h,γ is the same operator (with kernel denoted by P̃h,γ) but with a cut-off in α, denoted χ̃1, which
is the identity on the support of the cut-off χ1 in Wh,γ.

Proposition 5.1. We have W̃h,γ(t1)◦Wh,γ(t2) =Wh,γ(t1+t2), modulo O(h∞). In terms of kernels,

Ph,γ(t1 + t2, x, y; a, b) =

∫

x̃,ỹ

P̃h,γ(t1, x, y; x̃, ỹ)Ph,γ(t2, x̃, ỹ; a, b) dx̃dỹ +O(h∞) .



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 75

Similarly, for γ1 and γ2 such that the corresponding cut-offs have disjoint support, Wh,γ1(t1) ◦
Wh,γ2(t2) = O(h∞) and

(5.4)

∫

x̃,ỹ

Ph,γ1(t1, x, y; x̃, ỹ)Ph,γ2(t2, x̃, ỹ; a, b) dx̃dỹ = O(h∞) .

Proof. Recall that Ph,γ is given by (3.5) with Kω,γ defined in (3.4). Then we rewrite
∫

x̃,ỹ

P̃h,γ(t1, x, y; x̃, ỹ)Ph,γ1(t2, x̃, ỹ; a, b) dx̃dỹ =
∑

N1,N2

∫
e−iN1L(ω)χ♭(h2/3ω/ǫ0)JN2,γ1,γ2(t1, t2, x, y, ω)dω,

where we set

JN2,γ1,γ2(t1, t2, x, y, ω) =

∫

x̃,ỹ

K̃ω,γ1(gh,(x̃,ỹ))(t1, x, y)FN2,t2,γ2(x̃, ỹ)dx̃dỹ ,

FN2,t2,γ2(x̃, ỹ) =e
−iN2L(ω̃)χ♭(h2/3ω̃/ǫ0)Kω̃,γ2(gh,(a,b))(t2, x̃, ỹ) ,

and K̃ω,γ1(gh,(x̃,ỹ)) has the same form as (3.4) but with a cut-off χ̃1(
ω

γ1|η|2/3 ) instead of χ1(
ω

γ1|η|2/3 ),

supported near 1 and equal to 1 on the support of χ1.
From (3.4), FN2,t2,γ2(x̃, ỹ) expands as∫
G(x̃, ỹ, η̃, ω̃)χ#(ω̃)q1/6(η̃)κ(hη̃)κ(hτq(ω̃, η̃))χ1(

ω̃

γ2|η̃|2/3
)e−iN2L(ω̃)+it2τq(ω̃,η̃)ĝh,(a,b)(η̃,

ω̃

h1/3
)dω̃dη̃,

hence FN2,t2,γ2(x̃, ỹ) = J(fN2,t2,γ2), where we have set

(5.5) f̂N2,t2,γ2(η̃,
ω̃

h1/3
) = χ1(

ω̃

γ2|η̃|2/3
)e−iN2L(ω̃)+it2τq(ω̃,η̃)ĝh,(a,b)(η̃,

ω̃

h1/3
).

We turn to K̃ω,γ1(gh,(x̃,ỹ))(t1, x, y) which expands as

(5.6)

∫
G(x, y, η, ω)χ#(ω)q1/6(η)κ(hη)κ(hτq(ω, η))χ̃1(

ω

γ1|η|2/3
)eit1τq(ω,η)ĝh,(x̃,ỹ)(η,

ω

h1/3
)dη.

Lemma 5.2. We have∫

x̃,ỹ

gh,(x̃,ỹ)(y
′, ρ)FN2,t2,γ2(x̃, ỹ)dx̃dỹ = J−1(FN2,t2,γ2)(y

′, ρ).

Proof. Recall from (2.33) that, in the variables θ = hη, α = h2/3ω, we may write

gh,(x̃,ỹ)(y
′, ρ) =

1

h2d+1

∫
e

i
h
(y·′θ′−Φ(x,y,θ′,α,s)+ρα+(x−x̃)σ+(y−ỹ)·θ)

× qh(x, y, θ
′, α, s)q−1/6(θ′)χ̃0(σ)κ(θ)dxdydθ

′dσdsdαdθ,

where χ̃0 is supported near 0 and equals 1 on the support of χ0 (of Lemma 2.11). We thus obtain

∫

x̃,ỹ

gh,(x̃,ỹ)(y
′, ρ)FN2,t2,γ2(x̃, ỹ)dx̃dỹ =

1

h2d+1

∫
e

i
h
(y′·θ′−Φ(x,y,θ′,α,s)+ρα+xσ+y·θ)qh(x, y, θ

′, α, s)q−1/6(θ′)

× e−
i
h
(x̃σ+ỹ.θ)χ̃0(σ)κ(θ)F̂N2,t2,γ2(σ/h, θ/h).

As F̂N2,t2,γ2 = χ̃0(σ)F̂N2,t2,γ2(σ/h, θ/h) (which contains χ0(σ)), the last integral equals J
−1(FN2,t2,γ2).

�
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Using the lemma and FN2,t2,γ2(x̃, ỹ) = J(fN2,t2,γ2) yields

(5.7)

∫

x̃,ỹ

gh,(x̃,ỹ)(y
′, ρ)FN2,t2,γ2(x̃, ỹ)dx̃dỹ = J−1 ◦ J(fN2,t2,γ2)(y

′, ρ) = fN2,t2,γ2(y
′, ρ) +O(h∞),

hence taking the Fourier transform of gh,(x̃,ỹ)(y
′, ρ) (as needed in (5.6)) gives f̂N2,t2,γ2(θ/h, α/h)

modulo O(h∞) terms. Hence, JN2,γ1,γ2(t1, t2, x, y, ω) becomes

JN2,γ1,γ2(t1, t2, x, y, ω) =

∫
G(x, y, η, ω)χ#(ω)q1/6(η)κ(hη)κ(hτq(ω, η))χ̃1(

ω

γ1|η|2/3
)eit1τq(ω,η)f̂N2,t2,γ2(η, ω/h

1/3),

with f̂N2,t2,γ2 given in (5.5). We find, modulo O(h∞) terms from (5.7) (which stay O(h∞) as the
sums over N1, N2 below are finite),

(5.8)∫

x̃,ỹ

P̃h,γ1(t1, x, y; x̃, ỹ)Ph,γ2(t2, x̃, ỹ; a, b) dx̃dỹ =
∑

N,Ñ

∫
eit1τq(ω,η)−iN1L(ω)χ♭(h2/3ω/ǫ0)G(x, y, η, ω)

× χ#(ω)q1/6(η)κ(hη)κ(hτq(ω, η))χ̃1(
ω

γ1|η|2/3
)f̂N2,t2,γ2(η, ω/h

1/3)dω

=
∑

N1,N2

∫
ei(t1+t2)τq(ω,η)−i(N1+N2)L(ω)G(x, y, η, ω)χ#(ω)q1/6(η)κ(hη)κ(hτq(ω, η))

χ̃1(
ω

γ1|η|2/3
)χ1(

ω

γ2|η|2/3
)ĝh,(a,b)(η,

ω

h1/3
).

Recall that χ̃1 = 1 on the support of χ1. Therefore, if γ1, γ2 ∈ 1/2N, with γ1 6= γ2, then
χ̃1(

ω
γ1|η|2/3 )χ1(

ω
γ2|η|2/3 ) = 0 and in this case we obtain (5.4).

It remains to deal with γ1 = γ2 =: γ : in this case, as χ̃1χ1 = χ1, the last sum in (5.8) equals

(5.9)
∑

N1,N2

< e−i(N1+N2)L(ω), χ♭(h2/3ω/ǫ0)Kω,γ(gh,(a,b),γ)(t1 + t2, x, y) >ω +O(h∞),

and we need to show that the double sum (over N1, N2) yields indeed Ph,γ(t1 + t2, x, y; a, b). This
is the goal of the next lemma.

Lemma 5.3. The sum in (5.9) can be written as

(5.10)
∑

N

< e−iNL(ω), χ♭(h2/3ω/ǫ0)Kω,γ(gh,(a,b),γ)(t1 + t2, x, y) >ω .

Proof. We use arguments similar to those in Lemma 2.16, i.e. we check when the phase function
of
∫
e−i(N1+N2)L(ω)Kω,γ(gh,(a,b),γ)(t1 + t2, x, y)dω may be stationary with respect to α = h2/3ω.

Recall first that, independently of the size of a (or x̃), the phase function of ĝh,(a,b) (or of ĝh,(x̃,ỹ))
equals that of G(a, b, η, ω) (or of G(x̃, ỹ, η̃, ω̃)) : this follows from Propositions 2.12 and and 2.35
in case a > h2/3−ǫ and from Lemma 2.35 when a . h2/3−ǫ and ω > h−ǫ (for some ǫ > 0). (This
property also holds when a . h2/3−ǫ and ω is bounded). These constructions of gh,(a,b)(y

′, ρ) (resp.
gh,(x̃,ỹ)(y

′, ρ)) in both cases are very similar and these functions are compactly supported for ρ near

0. As in Lemma 2.16, the phase function of < e−iNL(ω), χ♭(h2/3ω/ǫ0)Kω,γ(gh,(a,b),γ)(t1 + t2, x, y) >ω

(with η = θ/h, ω = α/h2/3) is given by (2.45) and its critical points with respect to α, σ satisfy
the equations (2.46) and (2.52). Therefore, taking α = γA, σ =

√
γΣ, T1 = t1/(2

√
γ), X = x/γ

we must have

T1 − Σ = ρ+ 2N1

√
A, where Σ2 +Xq1/3(θ)(1 + ℓ+O(γ)) = A and ρ is small.
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If there are two non-trivial contributions for the same t1 > 0, corresponding to N1 and N1 − 1,
then there exists A1 ∼ 1 and Σ1 satisfying Σ2

1 +Xq1/3(θ)(1 + ℓ+O(γ)) = A1 such that

T1 − Σ1 = ρ+ 2(N1 − 1)
√
A1 = ρ+ 2N1

√
A1 − 2

√
A1.

The only solutions satisfying the last equations verify Σ/
√
A ∼ −1 and Σ1/

√
A1 ∼ 1. On the other

hand, there are no solutions if, instead of N1 − 1 and N1 we consider N1 − 2, N1. Therefore, each
time that we obtain non-trivial contributions from two consecutive values of N1 in the sum (5.9),
the corresponding critical points in Σ satisfy Σ2/A ∼ 1. In the same way, if, for fixed t2, N2 and
N2 + 1 provide nontrivial contributions in fN2,t2,γ(y

′, ρ) and fN2+1,t2,γ(y
′, ρ), then the (normalized)

Airy variable Σ̃ in G(a, b, η̃, ω̃) has to satisfy Σ̃2/Ã ∼ 1.
We introduce χ, supported in [−3/4, 3/4] and equal to 1 on [−1/2, 1/2] and χ±(z) := (1−χ)(z) if

±z > 0, and equal to 0 otherwise: then χ+
∑

± χ± = 1 everywhere. If σ, s denote the Airy variables
of G(x, y, η, ω) and G(a, b, η, ω), we split its symbol in two parts, ph = phχ(σ

2/α)+ph(1−χ(σ2/α))
and write Kω,γ(f) = K0

ω,γ(f)+K
±
ω,γ(f). We then do the same with gh,(a,b),γ, that we write as a sum

gh,(a,b),γ = g0h,(a,b),γ + g±h,(a,b),γ, where in the integral form of ĝh,(a,b),γ we added the cut-offs χ(s2/α)

and (1− χ)(s2/α).
Using the same arguments as above, we notice that, with Nt = [t/4

√
γ], the only non-trivial

contribution in last line of (5.8) comes from pairs (Nt, Nt̃), (Nt∓1, Nt̃), (Nt, Nt̃±1), (Nt∓1, Nt̃±1)
which corresponds to the following products of cutoffs (with respect to (σ/α), (s/α)) : (χ, χ),
(χ±, χ), (χ, χ±) and (χ±, χ±). Summing up all these contributions allows to obtain (5.10) (as we
recover (χ +

∑
± χ±)(·)(χ +

∑
± χ±)(·)); the sum of the contributions coming from |N − Nt| ≥ 2

or |Ñ − Ñt̃| ≥ 2 equals O(h∞) by repeated integrations by parts and using that these sums stay
finite. This achieves the proof of Proposition 5.1. �

From the last Lemma we conclude the proof of Proposition 5.1. �

6. Appendix

We provide details on the proof of Lemma 2.28 and on obtaining χM (from Proposition 2.4).

6.1. Proof of Lemma 2.28. We start with twisted modes ẽ (see Definition 2.24):

Lemma 6.1. Let k such that ωkh
2/3 ≤ ǫ0 with ǫ0 < 1/100. There exists constants l0 > 0 and

0 < c0 < C0 independent of k, h, a such that, for all y such that |y| ≤ l0,

(6.1) c0 ≤ ‖ẽ(·, y, η, ωk)‖L2 ≤ C0 .

Proof. By definition, ẽ(x, y, η, ωk) =
q(η)

1
6√

L′(ωk)
e−i(y·η+|η|B0(y,η/|η|))G(x, y, η, ωk) and, using (2.22), L

′(ωk) =

2π‖Ai(· − ωk)‖2L2 ∼ ω
1/2
k , for all k ≥ 1. From (2.6), with e0, p0 and p1 from Theorem 2.1,

(6.2) ẽ(x, y, η, ωk) =
q(η)1/6√
L′(ωk)

ei(ψ(x,y,η,ωk)−y·η−|η|B0(y,η/|η|))
(
p0Ai((−ζ) + ip1q

−1/6(η)Ai′(−ζ)
)
,

where ζ(x, y, η, ωk) = −ωk + x|η|2/3e0(x, y, η/|η|, ωk/|η|2/3). Using Cauchy-Schwarz,

(6.3)

∫ ∞

0

|ẽ(x, y, η, ωk)|2dx ≤ q1/3(η)

L′(ωk)

[ ∫ ∞

0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx+ 2
(∫ ∞

0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx
)1/2

×
( ∫ ∞

0

∣∣∣p1q−1/6(η)Ai′(−ζ)
∣∣∣
2

dx
)1/2

+

∫ ∞

0

∣∣∣p1q−1/6(η)Ai′(−ζ)
∣∣∣
2

dx
]
.
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For values x|η|2/3e0 > ωk both Ai(−ζ) and Ai′(−ζ) are exponentially decreasing. Setting X :=
xe0(x, y, η/|η|, ωk/|η|2/3) yields x = x(X, y, η/|η|, ωk/|η|2/3) and

q1/3(η)

L′(ωk)

∫ ∞

0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx =
q1/3(η)

L′(ωk)

∫ ∞

0

∣∣∣p̃0Ai(X|η|2/3 − ωk)
∣∣∣
2 dx

dX
dX,

where p̃0(X, y, η, ωk) := p0(x(X, y, η/|η|, ωk/|η|2/3). Here ωk/|η|2/3 ≪ 1 from η ∼ 1/h and h2/3ωk ≪
1. Moreover dx

dX
= 1

e0(0,·)+O(X), e(0, ·) is close to 1 andX ∼ x ≤ ωk|η|2/3 ≪ 1 (as for largeX , Ai(·)
is exponentially decreasing.) With C := sup |p̃0|2| dxdX | <∞ and rescaling variables X̃ = X|η|2/3,

(6.4)
q1/3(η)

L′(ωk)

∫ ∞

0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx ≤ C
q1/3(η)/|η|2/3

L′(ωk)

∫ ωk

0

Ai(X̃ − ωk)
2dX = Cq1/3(η/|η|).

For the integral with Ai′ we proceed similarly: p1 is bounded, ‖Ai′(X̃−ωk)‖2L2
X̃

. ω
3/2
k and X̃ . ωk

as for large values we have exponential decay. We compute, with X = xe0(x, ·), then X̃ = X|η|2/3,

(6.5)
q1/3(η)

L′(ωk)

∫ ∞

0

∣∣∣p1q−1/6(η)Ai′(−ζ)
∣∣∣
2

dx ≤ C ′

L′(ωk)

∫ ∞

0

|XAi′(X|η|2/3 − ωk)|2dX

≤ C ′|η|−2/3

L′(ωk)

∫ ωk

0

X̃2|η|−4/3|Ai′(X̃ − ωk)|2dX̃ ≤ C ′|η|−2ω
3+1/2
k /L′(ωk) ∼ C ′(ωkh

2/3)3 ≪ C ′,

where we used |Ai′(z)2| ≤ (1 + |z|)1/2 and that p1|x=0 = 0. Collecting all bounds yields the
upper bound in (6.1), which will be enough for proving Lemma 2.28 below. We now prove the
lower bound, which was used for the proof of Proposition 2.25. From (6.3), using (6.4), (6.5) and
ωkh

2/3 ≤ ǫ0, we have

∫ ∞

0

|ẽ(x, y, η, ωk)|2dx ≥ q1/3(η)

L′(ωk)

[ ∫ ∞

0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx− 2
(∫ ∞

0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx
)1/2

×
( ∫ ∞

0

∣∣∣xp1q−1/6(η)Ai′(−ζ)
∣∣∣
2

dx
)1/2

−
∫ ∞

0

∣∣∣xp1q−1/6(η)Ai′(−ζ)
∣∣∣
2

dx
]

≥ q1/3(η)

L′(ωk)

∫ ∞

0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx−O(ωkh
2/3)3/2 .

As ωkh
2/3 ≤ ǫ0, we are left to prove that q1/3(η)

L′(ωk)

∫∞
0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx can be bounded from below

by a constant independently of k, h, a. From ellipticity of p0 ∼ 1, there exists ε1 > 0 such
that p0(x, y, η, ωk) ≥ 1/2 for all (x, y) such that |(x, y)| ≤ ε1. On the other hand, for values
x|η|2/3e0(x, y, η/|η|, ωk/|η|2/3) > ωk with |η| ∼ 1/h, Ai(−ζ) is exponentially decreasing: thus, the
bulk of the L2 norm of p0Ai(−ζ) is located for x . ωkh

2/3 ≤ ǫ0 ≪ 1 and
∫∞
4ǫ0

|p0Ai(−ζ)|2dx =

O(h∞). Taking ǫ0 smaller if necessary such that ǫ0 < ε1/4, we have, for all |y| ≤ ε1

(6.6)
q1/3(η)

L′(ωk)

∫ ∞

0

∣∣∣p0Ai(−ζ)
∣∣∣
2

dx ≥ q1/3(η)

4L′(ωk)

∫ 4ǫ0

0

|Ai(−ζ)|2dx+O(h∞) .

Ellipticity of e0 near (x, y) = (0, 0) provides c > 0 and ε2 > 0 such that e0(x, y, ·) ≥ c for all
|(x, y)| ≤ ε2. Taken ε0 smaller if necessary (so that ε0 < ε2/4), we can assume that e0(x, y, ·) ≥ c
for all x ≤ 2ε0 and all |y| ≤ ε2. Let X = xe0(x, y, η/|η|, ωk/|η|2/3) for x ≤ ε0 and |y| ≤ l0 :=
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min{ε1, ε2}, then | dx
dX

| ≥ 1
c
for all 0 ≤ x ≤ 4ε0 and |y| ≤ l0 and

q1/3(η)

4L′(ωk)

∫ 4ǫ0

0

|Ai(−ζ)|2dx ≥ q1/3(η/|η|)
4cL′(ωk)

∫ 4ǫ0|η|2/3

0

Ai2(X̃ − ωk)dX̃.

As ωk ≤ 4ε0|η|2/3 for h|η| ∈ [1/2, 2] and ωkh
2/3 ≤ ε0, we find

∫ 4ǫ0|η|2/3

0

Ai2(X̃ − ωk)dX̃ =

∫ ∞

0

Ai2(X̃ − ωk)dX̃ −
∫ ∞

4ǫ0|η|2/3
Ai2(X̃ − ωk)dX̃ = L′(ωk) +O(h∞)

and therefore the left hand side term in (6.6) is bounded from below by infΘ∈Sd−2 q1/3(Θ)/(4c) for
all y with |y| ≤ l0. As q is positive definite, this completes the proof of Lemma 6.1. �

Proof. (of Lemma 2.28) Using B2j(y, ·) = O(y) for all j ≥ 2 and Corollary 6.10, the phase
ψ(x, y, η, ωk)− y · η − |η|B0(y, η/|η|) of ẽ(x, y, η, ωk) reads (see (6.2))

(τq(ωk, η)− |η|)(B0 + B2) + τq(ωk, η)(O(x)Hj≥2 +O(ζ/|η|2/3)Hj≥2 +O(y)Hj≥3).

Using Lemma 6.1, ‖ẽ(., ωk)‖L2(x≥0) . 1. From τq(ω, η) − |η| = ωq2/3(η)
|η|+τq(ω,η) ∼ ω|η|1/3 and x .

ωk/|η|2/3, taking derivatives with respect to y or η of the phase of (6.2) provides, at each step,
ωk|η|1/3 ∼ ωk/h

1/3. On the other hand, taking the derivatives (with respect to y or η) in the last
factor of the right hand side of (6.2) and using that Ai′′(−ζ) = ζAi(−ζ) provides

∂β1y ∂
β2
η

(
p0Ai(−ζ)+ip1q−1/6(η)Ai′(−ζ)

)
= (ω|η|1/3)β1+β2

(
p
(β1,β2)
0 Ai(−ζ)+ip(β1,β2)1 q−1/6(η)Ai′(−ζ)

)
,

where p
(β1,β2)
0 and p

(β1,β2)
1 are asymptotic expansions with main contributions homogeneous of degree

0 and small parameter (ωk|η|1/3)−1. Then, (2.76) follows from bounds like in (6.4) and (6.5). �

6.2. The generating function ϕΓ of χM . We aim at proving (2.10). Set Θ = ̺ϑ with ̺ = |Θ|
near 1 and ϑ = Θ/|Θ|. Functions AΓ, BΓ are to be defined near the glancing set GL = {x = 0,Ξ =
0, ̺ − 1 = 0} and for (y, ϑ) near {0} × Sd−1. We work with formal Taylor expansions F near GL
such that F =

∑
a,b,c fa,b,c(y, ϑ)XM

a(̺− 1)bξc. We attribute a degree to each factor x, ̺ − 1,Ξ: a

monomial of the form xa(̺−1)bΞc is homogeneous of degree k if and only if c+2(a+b) = k. For such
a formal serie F (x, y,Ξ, ̺, ϑ), defined near GL, we write F =

∑
k≥0 Fk, where Fk is homogeneous

of degree k; we also write F ∈ H≥j if and only if F =
∑

k≥j Fk. Therefore, F0 = f0(y, ϑ),

F1 = Ξf1(y, ϑ), F2 = XMf
0
2 (y, ϑ) + (̺− 1)f 1

2 (y, ϑ) + Ξ2f 2
2 (y, ϑ), and so on. Replacing XM , ξ, η by

their formulas (2.11) (as functions of (x, y,Ξ,Θ)) and using that from (2.9)

(6.7) ξ2 +R(x, y, η) = 1 if and only if Ξ2 + |Θ|2 +XMq(Θ) = 1,

(where we notice that there is no YM in the second equation), we get

(6.8) BΓ =
∑

j≥0

(̺− 1)jB2j(y, ϑ) , AΓ =
∑

k≥1

Ak .

Using the third equation from (2.11) and ξ|GL = 0, we have A0 = 0. We also have ξ(x, y,Ξ,Θ) ∈
H≥1 and XM(x, y,Ξ,Θ) ∈ H≥2. Moreover, from the proof of Melrose’s theorem [15], if formal
series of the form (6.8) satisfy (2.11) and (6.7), then there exist C∞ functions AΓ, BΓ with the
same Taylor development near GL satisfying (2.11) and (6.7).

We first consider in (6.7) homogeneous terms of order ≤ 5 in the expansion of Γ: using
XM(x, y,Ξ,Θ) ∈ H≥2, we are to write the explicit form of AΓ up to Hj≤3 and BΓ up to Hj≤5. Let
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A1 = Ξℓ(Y, ϑ), A2 = α(y, ϑ)x+ β(y, ϑ)(̺− 1) + µ(y, ϑ)Ξ2, A3 = α1(y, ϑ)xΞ + β1(y, ϑ)(̺− 1)Ξ +
µ1(y, ϑ)Ξ

3 and AΓ = A1 + A2 + A3 +Hj≥4.

Remark 6.2. Understanding this process will allow us to proceed with the expansion at any order.
Observe that A2j and A2j+1 always have the same number of terms: the only way to obtain
homogeneous terms of order 2j+1 is to add a factor Ξ to homogeneous terms of order 2j. Moreover,
each A2j and A2j+1 will have 2j + 1 terms. This is of importance to understand why all Ak may
be obtained from the system of equations that will follow below.

Using these expansions for AΓ and BΓ, and omitting variables for the functions ℓ, µ, α, β, µ,
α1, β1 and µ1, (2.11) yields

XM =x(1 + ℓ+ 2µΞ + α1x+ β1(̺− 1) + 3µ1Ξ
2 +Hj≥3)(6.9)

ξ =(1 + ℓ)Ξ + (2αx+ β(̺− 1) + µΞ2) + [2α1xΞ + β1(̺− 1)Ξ + µ1Ξ
3] +Hj≥4(6.10)

η =ϑ+∇yB0 + (̺− 1)(ϑ+∇yB2) + xΞ∇yℓ+ x2∇yα + x(̺− 1)∇yβ

+ xΞ2∇yµ+ (̺− 1)2∇yB4 +Hj≥5 .

(6.11)

Using x ∈ Hj≥2 we rewrite x = x2 + x3 + x4 + Hj≥5 where xj ∈ Hj; in the same way, η =
η0 + η1 + η2 + η3 + η4 +Hj≥5, with ηj ∈ Hj . From (6.11) we obtain

(6.12) η0 = ϑ+∇yB0, η1 = 0, η2 = (̺− 1)(ϑ+∇yB2).

Then, from x ∈ Hj≥2, η3 is homogeneous of order 3 and η3 = x2Ξ∇yℓ, while

η4 = x3Ξ∇yℓ+ x22∇yα + x2(̺− 1)∇yβ + x2Ξ
2∇yµ+ (̺− 1)2∇yB4 .

Similarly, ξ = ξ1 + ξ2 + ξ3 +Hj≥4, ξj ∈ Hj, depending on x2, x3, x4 (notice that ξ0 = 0). For ξ, an
expansion up to Hj≥3 is sufficient as we work with ξ2. From (6.10),

ξ1 = (1 + ℓ)Ξ , ξ2 = 2αx2 + β(̺− 1) + µΞ2 , ξ3 = 2αx3 + 2α1x2Ξ + β1(̺− 1)Ξ + µ1Ξ
3 .

Lemma 6.3. Let L := {(x, y, ϑ, ̺,Ξ), XMq(Θ) = 1− Ξ2 − |Θ|2}, where XM = XM(x, y, ϑ, ̺,Ξ) is
given by (6.9), Θ = ̺ϑ. If (x, y, ϑ, ̺,Ξ) ∈ L then x = x2 + x3 + x4 +Hj≥5, with

x2 = −(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)
, x3 =

2µΞ(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)2
,(6.13)

x4 =
1

q(ϑ)(1 + ℓ)

[
Ξ4
( 3µ1

(1 + ℓ)
− 4µ2

(1 + ℓ)2
− α1

q(ϑ)(1 + ℓ)2

)
(6.14)

+ (̺− 1)2
( 2

(1 + ℓ)
(

−2α1

q(ϑ)(1 + ℓ)
+ 3 + β1)

)

+ Ξ2(̺− 1)
(
2 + 2

( 3µ1

(1 + ℓ)
− 4µ2

(1 + ℓ)2
− α1

q(ϑ)(1 + ℓ)2

)

+
1

(1 + ℓ)
(β1 −

2α1

q(ϑ)(1 + ℓ)
)
)]
.

Proof. Using XMq(Θ) = 1− Ξ2 − |Θ|2, q(Θ) = ̺2q(ϑ) and (6.9) yields

(6.15) x(1 + ℓ+ 2µΞ+ α1x+ β1(̺− 1) + 3µ1Ξ
2 +Hj≥3)̺

2q(ϑ) = 1− ̺2 − Ξ2.

which immediately provides x in terms of (y, ϑ), Ξ and ̺− 1 up to Hj≥3 as follows

x|L =
(1− ̺2 − Ξ2)

̺2q(ϑ)(1 + ℓ)

(
1− 2Ξµ

1 + ℓ
+Hj≥2

)
;
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hence, using 1− ̺2 = −2(̺− 1)− (̺− 1)2, we get (6.13). In order to obtain homogeneous terms
of order 4 we write x|L = x2 + x3 + x4 + Hj≥5 and replace x2, x3, x4 in (6.15); using moreover
1
̺2

= 1− 2(̺− 1) + 3(̺− 1)2 +O((̺− 1)3), we find

(x2 + x3 + x4 +Hj≥5)(1 + ℓ+ 2µΞ + α1x2 + β1(̺− 1) + 3µ1Ξ
2 +Hj≥3)

= − 1

q(ϑ)
(Ξ2 + 2(̺− 1) + (̺− 1)2)× (1− 2(̺− 1) + 3(̺− 1)2 +Hj≥6)

= − 1

q(ϑ)

(
(Ξ2 + 2(̺− 1))− (̺− 1)(2Ξ2 + 3(̺− 1)) +Hj≥6

)
.

Identifying homogeneous terms of order 2, 3, 4, we obtain (again) x2, x3 as well as x4:

x4(1 + ℓ) + 2µΞx3 + (α1x2 + β1(̺− 1) + 3µ1Ξ
2)x2 =

1

q(ϑ)
(̺− 1)(2Ξ2 + 3(̺− 1)),

which yields (6.14) by substitution. This completes the proof of Lemma 6.3. �

We now replace (6.13) and (6.14) in (6.10) and (6.11) and then x, ξ, η in ξ2 + R(x, y, η) = 1 to
obtain a system of equations with unknown B0, B2, B4, ℓ, α, β, µ, α1, β1, µ1 as follows. First,

ξ2 = (ξ1 + ξ2 + ξ3 +Hj≥4)
2 = (1 + ℓ)2Ξ2 + 2(1 + ℓ)Ξ(2αx2 + β(̺− 1) + µΞ2)

+ 2(1 + ℓ)Ξ(2αx3 + 2α1x2Ξ + β1(̺− 1)Ξ + µ1Ξ
3) + (2αx2 + β(̺− 1) + µΞ2)2 +Hj≥5 .

Write ξ2 = (ξ2)2 + (ξ2)3 + (ξ2)4 +Hj≥5, where (ξ2)j ∈ Hj; replacing x2 and x3 by (6.13), we find

(ξ2)2 =(1 + ℓ)2Ξ2 ∈ H2 ,(6.16)

(ξ2)3 =2(1 + ℓ)Ξ
(
− 2α

(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)
+ β(̺− 1) + µΞ2

)
∈ H3 ,(6.17)

(ξ2)4 =
(
− 2α

(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)
+ β(̺− 1) + µΞ2

)2
+ 2(1 + ℓ)Ξ(6.18)

×
(
2α

2µΞ(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)2
− 2α1Ξ

(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)
+ β1(̺− 1)Ξ + µ1Ξ

3
)
∈ H4

=(Ξ2 + 2(̺− 1))2
(
µ− 2α

q(ϑ)(1 + ℓ)

)2
+ 2(1 + ℓ)µ1Ξ

4 + 2(1 + ℓ)β1Ξ
2(̺− 1)

+
4Ξ2

q(ϑ)

( 2αµ

(1 + ℓ)
− α1

)
(Ξ2 + 2(̺− 1)) .

We do the same for η = η0+η2+η3+η4+Hj≥5, for which it remains to replace x2 and x3 obtained
in (6.13) in the expression of η3 and η4 that we have already obtained from (6.11). We get
(6.19)

η3 = −Ξ∇yℓ
(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)
, η4 = (̺− 1)2∇yB4 −

(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)

(
Ξ2∇yµ+ (̺− 1)∇yβ

)

+∇yℓ
2µΞ2(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)2
+∇yα

(Ξ2 + 2(̺− 1))2

q2(ϑ)(1 + ℓ)2
.
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We expand R(x, y, η)R0(y, η) + xR1(y, η) +
1
2
x2R2(y, η) +O(x3) (η0, η2 were obtained in (6.12)),

(6.20) R(x, y, η) = R0(y, η0) + (η2 + η3 + η4)∇ηR0(y, η0) +
1

2
η22∇2

η,ηR0(y, η0) +Hj≥5

+ (x2 + x3 + x4)(R1(y, η0) + η2∇ηR1(y, η0)) +
1

2
x22R2(y, η0) +Hj≥5 .

We set R(x, y, η) = (R)0 + (R)1 + (R)2 + (R)3 + (R)4 +Hj≥5, with (R)j the homogeneous term of
order j in R(x, y, η); from (6.20) and (6.12) we get (R)0 = R0(y, ϑ+∇yB0), (R)1 = 0, and

(R)2 =η2∇ηR0(y, η0) + x2R1(y, η0) , η0 = ϑ+∇yB0(y, ϑ) ,(6.21)

(R)3 =η3∇ηR0(y, η0) + x3R1(y, η0) ,(6.22)

(R)4 =η4∇ηR0(y, η0) +
1

2
η22∇2

η,ηR0(y, η0) + x2η2∇ηR1(y, η0) +
1

2
x22R2(y, η0) .(6.23)

Recall from (2.1) that we had set R0(y, η) = R(0, y, η) = |η|2 + O(y) and R1(y, η) =
∂R
∂x
(0, y, η),

q(η) := R1(0, η). From (6.7) it follows that for (x, y, ϑ, ̺,Ξ) ∈ L we must have

(6.24) ξ2 +R(x, y, η) = 1 .

On L we have obtained x|L as a sum of homogeneous terms of the form (6.13), (6.14) which in turn
has allowed to do the same for ξ2 and R(x, y, η); it remains to get homogeneous terms of order j
for j ∈ {0, 2, 3, 4} in (6.24) to obtain a system of equations whose unknown are the coefficients
of AΓ and BΓ (notice there are no terms of order j = 1). First, we have R0(y, ϑ + ∇yB0) = 1,
(homogeneous terms of order 0). The next lemma easily follows from solving transport equations:

Lemma 6.4. For η ∈ Rd−1 \ 0, there exists an unique function φ(y, η), homogeneous of degree 1
in η, solving the eikonal equation R0(y,∇yφ) = |η|2, with φ|y·η=0 = 0.

We then obtain B0: from R0(y, η) = |η|2 +O(y), we have φ(y, η) = y · η(1 +O(y)), and

(6.25) B0(y, ϑ) = φ(y, ϑ)− y · ϑ .

As a consequence we have B0(0, ϑ) = 0 and ∇yB0(0, ϑ) = 0. Back to (6.24), consider homogeneous
terms of order 2 such that (ξ2)2 + (R)2 = 0; using (6.16) and (6.21), this translates into

(6.26) (1 + ℓ)2Ξ2 + (̺− 1)(ϑ+∇yB2) · ∇ηR0(y, η0)−
(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)
R1(y, η0) = 0 .

We first match coefficients of Ξ2 in (6.26): (1+ℓ)2 = R1(y,η0)
q(ϑ)(1+ℓ)

which yields 1+ℓ =
(
R1(y,ϑ+∇yB0)

q(ϑ)

)1/3
.

As R1(0, ϑ) = q(ϑ) and ∇yB0(0, ϑ) = 0, we obtain ℓ(0, ϑ) = 0. We now match coefficients of ̺− 1,

(6.27) (ϑ+∇yB2) · ∇ηR0(y, η0) =
2R1(y, η0)

q(ϑ)(1 + ℓ)
,

which is a linear transport equation for B2(y, ϑ) and we can take B2|y.ϑ=0 = 0 : at y = 0, the
transport field is 2ϑ · ∇y, as ∇ηR0(y, η0) = 2η0 + O(y), η0 = ϑ +∇yB0(y, ϑ) and ∇yB0(0, ϑ) = 0.
The first three equations involving B0, B2 and ℓ can be solved explicitly using only homogeneous
contributions up to order 2. We consider now homogeneous terms of order 3 in (6.24), i.e. (ξ2)3 +
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(R)3 = 0. This yields, using (6.17) together with (6.22), (6.19) and (6.13)

2(1 + ℓ)Ξ
(
− 2α

(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)
+ β(̺− 1) + µΞ2

)

− Ξ
(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)
∇yℓ · ∇ηR0(y, η0) +

2µΞ(Ξ2 + 2(̺− 1))

q(ϑ)(1 + ℓ)2
R1(y, η0) = 0 ,

in which there are only Ξ3 and Ξ(̺−1) terms. Exactly like we did for (6.26), we match coefficients
for these terms separately. Unknown functions are α, β and µ (we already chose ℓ and B0, B2.)
Using that q(ϑ)(1 + ℓ)3 = R1(y, η0), we get

(6.28)

{
4µ(1 + ℓ) = 4α

q(ϑ)
+ ∇yℓ

q(ϑ)(1+ℓ)
· ∇ηR0(y, η0), terms in Ξ3;

(2µ+ β)(1 + ℓ) = 4α
q(ϑ)

+ ∇yℓ
q(ϑ)(1+ℓ)

· ∇ηR0(y, η0) , terms in Ξ(̺− 1).

The last system of two equations and three unknown functions implies β = 2µ, and provides a
relation between α and µ (given by the first equation in (6.28)). Moreover, at y = 0, we have

q(ϑ) = R1(0, ϑ) and 3∇yℓ(0, ϑ) =
∇yR1(0,ϑ)

q(ϑ)
. We summarize what we obtained so far:

Proposition 6.5. The phase function Γ(x, ·) = BΓ + xAΓ is such that, near the glancing set GL,

(6.29)

{
AΓ(x, y,Ξ,Θ) = Ξℓ(y, ϑ) + α(y, ϑ)x+ µ(y, ϑ)(Ξ2 + |Θ|2 − 1) +Hj≥3 ,
BΓ(y,Θ) = B0(y, ϑ) + (̺− 1)B2(y, ϑ) +Hj≥3 ,

where ϑ = Θ/|Θ|, ̺ = |Θ| and the functions B0 B2 were defined in (6.25), (6.27). Morover,

β(y, ϑ) = 2µ , and µ(y, ϑ) =
α

q(ϑ)(1 + ℓ)
− ∇ηR0(y, ϑ+∇yB0)

4q(ϑ)
· ∇y

( 1

1 + ℓ

)
.

We also have ℓ(0, ϑ) = 0, B0(0, ϑ) = 0, ∇yB0(0, ϑ) = 0, B2(0, ϑ) = 0 and ∇yB2(0, ϑ) = 0, B0

(resp. B2) is homogeneous of order 1 (resp. of order 0) in the second variable.

Remark 6.6. The restriction of χM to GLM is given by x = ξ = 0 and YM = y +∇ΘBΓ(y,Θ)|̺=1,

η = Θ + ∇yB0(y,Θ)(y,Θ)|̺=1. It preserves the canonical foliation: χM

(
{YM = Y0 + 2sϑ0,Θ =

ϑ0, ϑ
2
0 = 1}

)
is an integral curve of HR0 on R0 = 1.

To complete the proof of Proposition 2.4, we are to identify homogeneous terms of order at least
4 for AΓ and BΓ in (6.7). One gets a cascade of linear equations (similar to those obtained by
identifying homogeneous terms of order 0, 1, 2, 3 in order to chose α, β, µ) which may be solved
by induction. We only do it for homogeneous terms of order 4 in (6.24) as an example: let
(ξ2)4 + (R)4 = 0 and match coefficients for Ξ4 and Ξ2(̺ − 1) using (6.18), (6.23), (6.19), (6.12),
(6.13),

4α1

q(ϑ)
− 2(1 + ℓ)µ1 =9µ2 +

R2(y, η0)

2q2(ϑ)(1 + ℓ)2
+

∇ηR0(y, η0)

q(ϑ)(1 + ℓ)
· ∇y

(∇ηR0(y, η0)

4q(ϑ)
· ∇y(

1

(1 + ℓ)
)
)

4α1

q(ϑ)
− (1 + ℓ)β1 =10µ2 +

R2(y, η0)

q2(ϑ)(1 + ℓ)2
− ∇ηR1(y, η0)

2q(ϑ)(1 + ℓ)
· (ϑ+∇yB2)

+
2∇ηR0(y, η0)

q(ϑ)(1 + ℓ)
· ∇y

(∇ηR0(y, η0)

4q(ϑ)
· ∇y(

1

(1 + ℓ)
)
)
,
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where both RHSs only contain µ2 and known function such as ℓ, B0, B2, R0, R1, R2.

Remark 6.7. If we require β1 = 2µ1 (which implies A3 = Ξ(xα1 + (Ξ2 + 2(̺ − 1))µ1)), then
by difference between the last two equations µ2 is uniquely determined (and therefore α using
Proposition 6.5). Similarly, we could ask for

A2j = xαj + (Ξ2 + 2(̺− 1))µj, A2j+1 = xΞαj−1 + (Ξ2 + 2(̺− 1))Ξµj−1, j ≥ 2 ,

but this would determine B2j in an unique way. Indeed, for j = 1 requiring β1 = 2µ1 provides a
unique µ and then a unique α. Moreover, identifying the coefficients of (̺ − 1)2 in homogeneous
terms of degree 4 in (6.24) does not involve α1, β1, µ1, but only ∇yB4 (with ∇ηR0(y, η0 6= 0) and
α, µ, ℓ (this is the first occurrence of B4.) Indeed, η4 does not contain α1, β1, µ1, which appear only
in (ξ2)4 (with Ξ4 or Ξ2(̺ − 1)). Therefore for given α, µ, this equation (obtained by identifying
coefficients of (̺− 1)2) determines ∇yB4 (and therefore ∇yB4(0, ϑ) 6= 0 unlike for B0, B2.)

Remark 6.8. That the formal expansion is not uniquely defined reflects that the group of canonical
transformations which preserves the model {XM = 0,Ξ2 + |Θ|2 +XMq(Θ) = 1} is not trivial.

6.3. Equivalence of phase functions for G(x, y, η, ω). Both phases ψ + s3/3 − sζ (from (2.6)
in Theorem 2.1) and y ·η+σ3/3+σ(xq1/3(η)−ω)+ τqΓ(x, y, σq1/3(η)/τq, η/τq) (from (2.12)) define
the same Lagrangian. We now explain how they are related. From a classical result (see [3]) on
the normal form of integrals whose phases have degenerate critical points of order 2, we have:

Lemma 6.9. Let φ(x, y, θ, α, σ) = σ3/3 + σ(xq1/3(θ)− α) + xτqAΓ(x, y, σq
1/3(θ)/τq, θ/τq). There

exists a unique map σ → s and Υ(x, y, θ, α) ∈ C∞ such that φ(x, y, θ, α, σ) = s3/3−sζ(x, y, θ, α)+
Υ(x, y, θ, α) and ds

dσ
/∈ {0,∞}. Let w := (x, y, θ, α) and denote σ0(w) the unique solution to

∂2σ,σφ(w, σ) = 0; then the two saddle points of φ, that we denote σ±(w), correspond to the critical

points s±(w) := ±
√
ζ(w) and such that σ±(w) = σ0(w) ±

√
ζ(w)k(±

√
ζ(w), w), with k(u, w) =

1 +
∑

j≥1 kj(w)u
j, where kj are smooth functions of w. Moreover,

(6.30)
3

4
ζ3/2(w) = φ(w, σ−(w))− φ(w, σ+(w)), Υ(w) :=

1

2

(
φ(w, σ+(w)) + φ(w, σ−(w))

)
.

Corollary 6.10. We may write ψ(x, y, θ, α) = y · θ + τq(α, θ)BΓ(y, θ/τq) + Υ(x, y, θ, α), with

(6.31) Υ(x, y, θ, α) = −x
(
xµ(y, θ/|θ|)q(θ)/τq(α, θ)(1+ℓ(y, θ/|θ|)+Hj≥4

)
−k1ζ(ζ+xHj≥2+ζHj≥2) .

Proof. Compute σ0: as ∂
2
σ,σφ(w, σ) = 2σ + 2x

(
µ(y, θ/|θ|)q2/3(θ)/τq(α, θ) +Hj≥1

)
= 0, where Hj=1

contains only multiples of σ, we get σ0(x, y, θ, α) = −x
(
µ(y, θ/|θ|)q2/3(θ)/τq(α, θ) +Hj≥2

)
, where

all Hj≥2 in the RHS come with weights x and α. We develop φ(w, σ) near σ = 0 and replace σ
by σ±(w): as

1
2
(σ+ + σ−) = σ0 + k1(w)ζ(w)(1 +O(ζ(w))), using (6.30) yields (6.31). Moreover, ψ

contains BΓ as it does not depend on σ. �

7. Index of notations

Below is a commented list of the main notations, with reference to their very first occurence.

7.1. General notations (used consistently throughout the paper).

• (Ω, g) = d dimensional manifold, d ≥ 2, ∆g its Laplace Beltrami operator, section 1.
• γ(d) encodes the loss in Strichartz estimates w.r.t. the case without boundary, Theorem
1.5.

• (x, y), boundary normal coordinates; t the time variable; locally, Ω = {(x, y) : x > 0, y ∈
Rd−1}, section 2.
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• (ξ, η, τ), dual variables: (x, y, t, ξ, η, τ) ∈ T ∗(Ω × Rt). For (x, y) near (0, y), the metric is
ξ2 +R(x, y, η). In a neighborhood of (0, 0) ∈ ∂Ω,

R0(y, ∂y) := R(0, y, η) , R1(y, η) := ∂xR(0, y, ∂) ,

section 2 and (2.1).

• ∆M = ∂2x +
∑

j ∂
2
yj
+ x

∑d−1
j,k=1R

j,k
1 (0)∂yj∂yk : model Laplace operator, (2.2); Multipliers

q(η) =
d−1∑

j,k=1

Rj,k
1 (0)ηjηk, τq(ω, η) :=

√
|η|2 + ωq(η)2/3 .

• {ek(x, η)}k≥0: in the spectral decomposition of −∆M (section 2.3.1), an explicit orthonor-
mal base of eigenfunctions associated to eigenvalues λk(η), where

λk(η) = |η|2 + ωkq(η)
2/3 = τ 2q (ωk, η).

• {−ωk}k≥0: zeros of the Airy function in decreasing order. Everywhere in the paper ω > 1
and serves as a substitute to the ξ variable: if Qy is the differential operator with symbol
q, α = h2/3ω quantizes the operator x−Q−1

y ∂2x.
• s, σ: integration variables in Airy type oscillatory integrals, (2.12), (2.4).
• (a, b) coordinates of the source point, mostly set with b = 0, Theorem 1.1.
• h ∈ (0, 1) (Theorem 1.1), γ ∈ (0, 1) with 1/γ ∈ 2N (Section 3.1): small parameters.
• λ = a3/2/h, λγ = γ3/2/h: large parameters, Section 3.1.
• (X, Y, T ), rescaled coordinates (using some combination of a, h or λ, λγ as rescaling pa-
rameters), Section 3.1.

• Σ, S, A: rescaled variables in Airy-type oscillatory integrals, Section 3.1.
• ω: (2.2), parameter and integration variable, successively rescaled to α ((2.16)) and then
A (Section 3.1). Stationary phases in oscillatory integrals are performed with respect to α,
σ, s or their rescaled versions A, Σ, S, less frequently η, with a large parameter being 1/h,
λ or λγ.

• θ: (Section 2) rescaled η, near Sd−1, and ρ = |θ|, ϑ = θ/ρ.

7.2. Localisations in phase space.

• We localize τq(ω, η) ∼ 1/h and |η| ∼ 1/h. For small x, this corresponds to large frequencies
−∆ ∼ −∆M ∼ 1/h2 and ”tangent” directions: the number of reflections on the boundary
may be quite large.

• A further localization is to values ω/|η|2/3 ∼ γ. Informally, it relates to the angle of
incidence at the boundary for a ray starting tangentially from (γ, 0).

• Cut-offs : κ ≥ 0 is a cut-off function in C∞
0 (Rm) with m = 1 or with m = d− 1, localizing

around a small neighbourhood of 1 (for d = 1), or near Sm−1 for m = d − 1; κ1 is a 1-d
κ. We also have χ♭ ∈ C∞(R) such that χ♭ = 1 on (−∞, 1] and χ♭ = 0 on [2,∞) and
χ♯ = 1− χ♭. Also, χ0 ∈ C∞

0 (R) is supported is a small, fixed neighborhood of 0.

7.3. Operators, kernels and quasimodes.

• G(x, y, η, ω): a quasimode, (2.7) or (2.12); satisfies (2.7) −∆G = τ 2qG+OC∞(τ−∞
q ).

• Kω(f)(t, x, y): operator related to wave flow (2.24), acting on smooth f .
• J(f)(x, y): Fourier integral operator, (2.19).
• Ph,a(t, x, y), (2.37) and (2.38), our parametrix for the wave equation
• VN : a wave in the expansion over N of Ph,a, (2.42).
• VN,γ: further localized with χ1(ω/(γ|η|2/3)), (3.6).
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• Ph,a,γ: the corresponding sum over N , (3.7).
• EM(·, ωk): galery modes for the model Laplacian ∆M , (2.63).
• ek(x, η): eigenfunctions of Fy(∆M ), (2.60).
• e(x, y, η, ω): quasimodes for ∆g, (2.68).
• gh,a, gh,a,j, j ∈ {1, 2}: functions to serve as arguments to J and Kω to construct a suitable
smoothed out Dirac data, (2.31), Propositions 2.18 and 2.19.

• Fωk
(g)(x, y): operator acting on functions g ∈ L2(Rd−1), average (with density ĝ(η)) of

quasimodes e(x, y, η, ωk), (2.69).
• L(f)(y): operator actiong on f ∈ L2(Rd−1) which allows to ”get rid” of the term B0 in the
phase of e(x, y, η, ω), (2.70).

• F̃ωk
(f)(x, y) = Fωk

◦ L(f)(x, y): its main property is that it can be inverted.

7.4. Phase functions and canonical transformation.

• ζ(x, y, η, ω), ψ(x, y, η, ω) : the phase functions of G(x, y, η, ω) from Theorem 2.1.
• Σ0: (2.8), a neighborhood of a glancing point in the model case.
• χM , (2.9),the canonical transformation defined in a conic neighborhood of Σ0 mapping the
model case (variables (XM , YM ,Ξ,Θ)) to the general case (variables (x, y, ξ, η)).

• ϕΓ(x, y,Ξ,Θ) = xΞ + yΘ+ Γ(x, y,Ξ,Θ): Proposition 2.4, the generating function for χM ,
with Γ(x, y,Ξ,Θ) = BΓ(y,Θ) + xAΓ(x, y,Ξ,Θ) from (2.10).

• AΓ, BΓ: phase functions that are formal series (6.8) from Section 6.2, defined near GL =
{x = 0,Ξ = 0, ̺−1 = 0} and for (y, ϑ) near {0}×Sd−1, where Θ = ̺ϑ. Their explicit form
is given in (6.29).

• H≥j = {F such that F =
∑

k≥j Fk, with Fk homogeneous of degree k ≥ 1}, where a

monomial of the form xa(̺− 1)bΞc is homogeneous of degree k if c+ 2(a+ b) = k.
• ℓ(y, ϑ) (which defines A1 = Ξℓ), α(y, ϑ), β(y, ϑ), µ(y, ϑ) (which define A2 = α(y, ϑ)x +
β(y, ϑ)(̺− 1) + µ(y, ϑ)Ξ2) so that AΓ = A1 +A2 +H≥3: other functions related to Γ from
Section 6.2.

• BΓ(y,Θ) = B0(y, ϑ) + (̺ − 1)B2(y, ϑ) +Hj≥3, whose properties are stated in Proposition
6.5.

• L = {(x, y, ϑ, ̺,Ξ), pM,2(XM , YM ,Ξ,Θ) = 0} defined in Lemma 6.3.
• WFh, the semiclassical wavefront set (see [25]).
• ΦN,a,γ : the phase function of VN,γ defined in (3.9).
• ΦMN,a,γ : the phase function in the model case (Ω,∆M ). (In general, a notation with an
additional M indicates that we consider the model situation.)

• Φ̃N,a,γ , a rescaled ΦN,a,γ (see (3.28)) with σ =
√
γ|θ|1/3Σ, α = γ|θ|2/3A, s = √

γ|θ|1/3S.
• ΨN,a,γ: relabeled Φ̃N,a,γ after rescaling x = γX , t =

√
γT , y =

√
γY .

• N (t, x, y): the set of N with significant contributions of the phase ΦN,a,γ(t, x, y, ·), defined
in (3.8).

• Cγ : a cylinder defined by (3.15).
• N 1

d : enlargement of N defined by N 1
d (t, x, y) = ∪Cγ (t,x,y)N (t′, x′, y′) in (3.14).

• Γ̃γ, Γ̆γ (see (3.35)), E±, Ẽ (see Lemma 3.8), Ẽ (see Lemma 3.10): remainder terms in phase
functions (they do not influence the behaviour of the corresponding phase functions.)

References

[1] K. G. Andersson and R. B. Melrose. The propagation of singularities along gliding rays. Invent. Math.,
41(3):197–232, 1977.



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 87

[2] Matthew D. Blair, Hart F. Smith, and Christopher D. Sogge. Strichartz estimates for the wave equation on
manifolds with boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(5):1817–1829, 2009.
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