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DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX
DOMAINS II: THE GENERAL CASE

OANA IVANOVICI!, RICHARD LASCAR?, GILLES LEBEAU?, AND FABRICE PLANCHON**

ABSTRACT. We consider the wave equation on a manifold (€2, g) of dimension d > 2 with smooth
strictly convex boundary 9 # ), with Dirichlet boundary conditions. We construct a sharp local
in time parametrix and then proceed to obtain dispersion estimates: our fixed time decay rate for
the Green function exhibits a ¢t'/4 loss with respect to the boundary less case. We precisely describe
where and when these losses occur and relate them to swallowtail type singularities in the wave
front set, proving that our decay is optimal. Moreover, we derive better than expected Strichartz
estimates, balancing lossy long time estimates at a given incidence with short time ones with no
loss: for d = 3, it heuristically means that, on average the decay loss is only #!/6.

1. INTRODUCTION

Let us consider the wave equation on a smooth d—dimensional manifold (€2, g), with d > 2, a
strictly convex boundary 0f2, and A, its Laplace-Beltrami operator:

(1.1) { (02 = Agu=0, inQ

U|t:0 = Uy, atu|t:0 = Uz, U|aQ =0,

On any smooth Riemannian manifold without boundary, one may construct an approximate so-
lution, i.e. a parametrix, to any order by microlocal methods. In a suitable patch around zy € 2
(within the radius of injectivity at xg), such an approximate solution is a Fourier integral operator
whose phase is a solution to the eikonal equation. That phase is non degenerate in a suitable
way and one recovers pointwise decay estimates for the kernel of such parametrix similar to that

for the flat case: let us denote by eV =2 the half-wave propagators on  with 9Q = @, and
2 € C§°(]0,00[). Then, possibly only for (small) finite |¢|, we have the so-called dispersion estimate,

(1.2) se(—h2Ag )™V =30 1 < C(d)h~min{1, (h/]t]) T .

Such fixed time decay estimates have been the key tool to obtain other families of estimates, from
Strichartz to spectral projector estimates, all of which are of space-time type in (mixed) Lebesgue
spaces, for data in Sobolev spaces. These in turn are invaluable tools for studying a large range of
problems, from nonlinear waves to localization of eigenfunctions.

In the presence of a boundary, much less is known on the decay of the wave equation. In
fact, before our recent work [9] on the wave equation on a model strictly convex domain, there
were no known results on fixed time dispersion, even with lesser bounds than (1.2). Boundaries
induce reflections, and the geometry of broken light rays can be quite complicated. These already
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cause difficulties in proving propagation of singularities results, and obtaining such results led
to major developments [I, 13, 16, 17], along with constructions of suitable parametrices, see [/,

, 20]. However, such parametrices, while efficient at proving that singularities travel along the
(generalized) bi-characteristic flow, do not seem strong enough to obtain dispersion, at least in the
presence of gliding rays and the more flexible microlocal energy arguments from [13, 16, 17] do
not provide any information on the amplitude of the wave. Nevertheless, outside strictly convex
obstacles, parametrices from [19, 20] were instrumental in matching results from R?: Strichartz
estimates for the wave equation were obtained in [21], and dispersion estimates were finally proved
to hold for d = 3 in [3]). For generic boundaries, some positive results for mixed space-time
estimates ([22, 2] and references therein) have been obtained using the machinery developed for
low regularity metrics ([23]): reflect the metric across the boundary and consider a boundary less
manifold with a Lipschitz metric across an interface. These arguments require to work on very
short time intervals, in order to consider only one reflection (and this, in turn, induces losses
when summing time intervals). Counterexamples to the full set of Strichartz estimates inside a
strictly convex domain were later constructed in [0, 7], by carefully propagating a cusp singularity
along the boundary and across a large number of successive reflections, and these carefully crafted
solutions provided hindsight for the parametrix construction on the model domain from [9].

Before stating our main result, let us define strict convexity: our boundary 02 # & is said to be
strictly (geodesically) convex if the induced second fundamental form on OS2 is positive definite.
If  is actually a domain in R? with the identity metric, this definition is equivalent to strict
positivity of all principal curvatures at any point of the boundary, and 2 is a strictly convex
domain (it admits a gauge function that is strictly convex.)

Theorem 1.1. Let x € C§°(]0, +o0[). There exist C > 0, Ty > 0 and ag > 0 such that, uniformly
in a €]0,a0], h € (0,1) and t € [-Tp, Ty, the solution u, to (1.1) with (ug,u1) = (64,0), 4 being
any Dirac mass at distance a from 05, is such that

) c . ANERE
(1.3) |2e(=h* Ay )ua(t, )| L < 7q nin {1, ( ) } .

2

Remark 1.2. By finite speed of propagation for the wave equation, estimate (1.3) is local in time
and space. Hence, compactness for €2 may be dropped if appropriate uniform assumptions are
made on the metric.

The dispersion estimate (1.3) may be compared to (1.2): we notice a 1/4 loss in the h/t exponent,
which we may informally relate to the presence of caustics in arbitrarily small times if a is small.
Moreover, one of the key features in Theorem 1.1 is that T depends only on the geometry of 0f2
and the metric g: (1.3) holds uniformly with respect to both the source point and its distance a to
the boundary and the frequency 1/h. In fact, say for a = h”, v > 0, there are at most 1/\/a = h™*/?
reflections, and caustics in between them, as we will see later; so in the large frequencies regime
h — 0, we have to deal with an increasingly large number of caustics, even to travel a small
distance over a small time 7. These caustics occur because optical rays are no longer diverging
from each other in the normal direction, where less dispersion occurs when compared to the R?
case. In fact, we can track caustics and therefore Theorem 1.1 is optimal.

Theorem 1.3. Let u, be the solution to (1.1) with data (ug,u1) = (04,0). Let h € (0,1) and
a > h'3. There exist a constant C > 0, such that for all 9 € S%2, there exist a finite sequence
(tns Ty Y ), 1 <m0 < a2 with d(x,,00) ~ a, yn/|yn| ~ 0, such that

h=U(h/t,) T n Y as B~ aih T (ht,) T < Clae(—h2A oty Tny yn)| -
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As a byproduct, we get that even for ¢t €]0,Ty] with Ty small, the 1/4 loss is unavoidable for
a comparatively small to Ty and independent of h. Later this optimal loss will be related to
swallowtail type singularities in the wave front set of u,.

Remark 1.4. There is nothing specific about the cosine part of the wave propagator in Theorem
1.1 and 1.3. Both hold equally true if one replaces »(—h*A,)u,(¢, x) by the half-wave propagators

s(hDy)e* "V 295, with s € C3°(R*).

As a consequence of more elaborate estimates that lead to (1.3), we obtain improved Strichartz
estimates when compared to those that routinely follow from fixed time dispersion.

Theorem 1.5. Let d > 3 and u be a solution of (1.1) on a manifold Q with strictly convex
boundary. Then there exist T such that for all ¢ > 0, there exists Cr. such that

(1.4) lull Lo,y () < CT,a( ||U0||Hﬁ(n) + ||u1||f{ﬁ71(9)) 3
where = d/2 —1/q—d/r (scaling condition) and (d,q,r) such that ¢ > 2 (q # 2 for d =3),

Lo (E—y(d))(%—%), withy(d) = 1 — - +e=z+ (3 ) +e.

q 2 4 4d 6 4\3 d
In dimension d = 2 the known range of admissible indices for which sharp Strichartz are already
known to hold is in fact slightly larger, see [2] where y(2) = 1/6 (which we may recover with

our argument). Especially noteworthy is d = 3, for which we get y(3) = 1/6 4+ &: such a loss
corresponds heuristically to a fixed time dispersion (1.3) where the 1/4 loss would be replaced
by a 1/6 loss. In dimensions d > 3, Theorem 1.5 improves the known range of indices for which
Strichartz estimates hold, and it does so in a uniform way with respect to dimension, in contrast
to [2], where y(3) = 2/3 and y(d) = (d — 3)/2 for d > 4. The results in [2] however apply to any
domain or manifold with non-empty boundary.

In the negative direction, counterexamples from [6, 7] prove that y(d) > 1/12, for d = 2,3, 4.
In other recent works [12], [11], on the model domain, both positive and negative results for
d = 2 are pushed further. Estimates (1.4) are proved to hold with y(2) = 1/9 ; improvements on
counterexamples yield y(2) > 1/10. These results extend beyond the model case for d = 2, and
provide similar improvements in higher dimensions; these extensions, for the general case, will be
addressed elsewhere, as they require significant new developments that are out of scope here.

In the present work, we mainly focus on constructing a sharp parametrix for the wave equation
(1.1), providing optimal bounds on the amplitude of the wave, including at a discrete set of caustics
of swallowtail type that increase to arbitrarily large numbers when the source gets closer and closer
to the boundary. While a natural outcome of this parametrix is optimal dispersion bounds, we
believe that such a sharp parametrix will prove useful for a broad range of applications beyond the
study of dispersive effects and localization of eigenfunctions, including sharp quantitative versions
of propagation of singularities results that are of importance in control theory.

We conclude this introduction with a brief overview of the content in the next sections.

e The second section is devoted to building our parametrix for the wave propagator, which is the
key tool to prove Theorems 1.1 and 1.3. While one may think of [9] as inspirational, its inner
knowledge is by no way a prerequisite and the present construction differs significantly for several
reasons we briefly outline: unlike in the model case, we lack an explicit spectral representation.
We therefore need to construct quasi-modes, and for this we rely on a parametrix for the
Helmholtz equation (see [18] which relies crucially on [15]). Using the Airy-Poisson formula
that we introduced in [10], we then obtain a parametrix, both as a “spectral” sum and its
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counterpart after Poisson summation. One obvious benefit from this approach is that the
Dirichlet boundary condition holds easily, unlike in [9]. Moreover, the Poisson sum turns out to
coincide with the carefully constructed sum of reflected waves in [9], as each term has essentially
the same phase (in the model case). The present construction is therefore a sophisticated version
of the method of images, which was our inspiration for constructing suitably matching incoming
and outgoing waves in between consecutive reflections in [9] (in turn drawing upon [(]). An
additional benefit is that our parametrix holds for any a and h: we extend the reflected waves
construction to the range h?? < a < h*7 (a crucial tool in further improvements alluded to
earlier, see [12]). The range 0 < a < h?/? requires to properly define gallery modes from the
quasi-modes and prove that their decay properties are uniform with respect to their discrete
parameter, at least in a range useful for our purpose. To our knowledge, these gallery modes
had never been defined in such a uniform way in the general case before now; then, one has to
carefully construct the initial data by decomposing over the gallery modes, a delicate issue that
was notably absent from the model case.

The third section deals with dispersion estimates for reflected waves. There the analysis of the
oscillatory integrals follows [9] in spirit but it departs from it on several counts. We can no
longer reduce the higher dimensional case to d = 2 by rotational invariance (i.e., the underlying
model case is no longer isotropic). For a < h*7, we need to estimate both the size of each wave
and their overlap, which is no longer bounded: we observe that after a very large number of
reflections, waves start to exhibit dispersion along the tangential variable. We therefore obtain
bounds that are sharper and cover an extended region when compared to [9].

In the fourth section, for a < h*?, we use a mix of dispersion estimates on each gallery
mode, the spectral sum, and Poisson summation on the worst terms to obtain a sharper decay
than in [9], thereby proving that the worst decay (with a 1/4 loss) really only happens when
h'/3 < a < 1, whereas a lesser 1/6 loss is seen below h'/3 essentially due to cusp propagating
and accumulating.

The fourth section deals with Strichartz estimates and how to derive Theorem 1.5, taking advan-
tage of the previously introduced decomposition with respect to angles of incidence, following
[12], combined with short time Strichartz estimates (similar to those from [2]).

Finally, the appendix provides hindsight on how to obtain the key properties (and required
uniformity, in a suitable sense) of the generating function associated to the equivalence of
glancing hypersurfaces ([15]) in our setting.

In the remaining of the paper, A < B means that there exists a constant C such that A < CB
and this constant may change from line to line but is independent of all parameters. It will be

explicit when (very occasionally) needed. Similarly, A ~ B means both A < B and B < A.

2. A PARAMETRIX CONSTRUCTION

By finite speed of propagation, we may work locally near the boundary and chose boundary
normal coordinates (x,y) on Q, with > 0 on Q, y € R such that 9Q = {(0,y) : y € R}
(these coordinates may be interpreted as Fermi coordinates relative to the hypersurface that is the
boundary); local coordinates on {2 x R, are then (z,y, t). Local coordinates on the base induce local
coordinates on the cotangent bundle, namely (z,y,t,&,n,7) on T*(2 x R;). The corresponding
local coordinates on the boundary are (y,t,7n, 7). In this coordinates (and up to conjugation by a
non vanishing smooth factor e, (z,y)), the Laplacian A, can be written as ([5, III, Appendix C])

A=e'Agey =02+ R(x,y,0,) .
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We assume that the boundary is everywhere strictly (geodesically) convex: for every point (0, o) €
08 and every (0,o,0,m0) € T*Q with 7y # 0,

{52 + R(xvyvn)vx}(07y07 077]0) = 07
{{é‘Q + R(ZII’, Y, 7])7 LU}, 52 + R(LU, Y, 77)}(07 Yo, 07 770) = 28wR(07 Yo, 7]0) > 07

where {.,.} denotes the Poisson bracket (see [5, III, 24.3]). We assume (without loss of generality)
that Yo = 0, hence ko = (0,0,0,79). On the boundary and for (0,y) near (0,0), the metric reads
'S +Z] — R7F(0, y)nme; using again [5, 111, Appendix C], we assume moreover that (R;1(0,0));x
is the identity matrix, and define

(2.1) Ro(y,d,) :== R(0,y,0 202 +O0(ly),  Ri(y.9,) = 0.R(0,y,0,) =Y _R*()9,,0,,
gk

Recall that strict convexity for 8(2 is equivalent to R; being elliptic (the associated quadratic form

is positive definite). Define our model Laplacian Ay, and (Fourier) multipliers ¢, 7,

(2.2) AM—82+Z(92 +xZR““ 0)y, 0y aln) = BRI (O)nymi, 7o(w,m) = \/In|2 + wa(n)s .

J:k

Later we will use various functlons of variables (x,y,n,w, o) (where some variables may be omitted
depending on context and both new variables w, o € R) that will be defined in a conic neighborhood
of the set

(2.3) No={zx=0,y=0,w=0, 0=0, neR""\{0}}.
Such a function f is said to be homogeneous of degree k if
f(z,y, A, X3, N30) = Mo f (2, y,m,w,0) .
Definition 2.1. A symbol a(z,y,n,w, o) is of order m and type ((1,2/3,1/3),0) if
VB = (B0, b1, B2, Bs)  3Cy |00, 05 020 a(w,y,m,w,0)] < Clg(1 + [p])m o151 =515,

(z,y)

We now recall the Airy function, defined for z € R as the oscillatory integral

(2.4) Ai(—z) = /ei(§_”) do .

The choice of o as an integration variable is consistent with our later use of oscillatory integrals
with related phases and with symbols within the class we just defined; and w may be chosen as a
zero of the Airy function.

Constructing a parametrix near glancing or gliding rays has a long history, starting with Andersson-

Melrose [I] and Eskin [1]. We also refer to Melrose and Taylor ([18] and references therein) and
Zworski [241] for the exterior case. We now state an important theorem for our purposes. To our
knowledge, this result is stated (for glancing rays) in [24] and a proof is available in [18].

Theorem 2.1. [Melrose-Taylor, Zworski] Let 7,(w,n) be defined in (2.2). There exist a neighbor-
hood U of (x,y,n,w) = (0,0,1,0), phase functions ¥ (x,y,n,w) and {(z,y,n,w), symbols po(z,y,n,w)
and p1(z,y,n,w) and a function ey(z,y,n,w) such that

e the function 1) is homogeneous of degree 1, (Vy(0,,v))j=1,.. a—1 are linearly independent;

e the function ¢ is homogeneous of degree 2/3, and

1/3 1/3)

¢=w—2zq(n) " eo(x,y,n/Inl,w/a(n)

i.e. ey s homogeneous of degree 0;
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e the symbols po, p1 (which do not depend on o) and po+op, are of order 0 and type ((1,2/3,1/3),0);
e the phase functions ¢ and ( are solutions to the following eikonal equations

(25) <Vt Vegd > +¢ < Vel Venl >= 1 w.n), < Vayd, Vy¢ >=0.

Here < .,. > 1is the symmetric bilinear form obtained by polarization of the principal symbol
&+ R(x,y,n) of the operator A (which is a second order homogeneous polynomial).
e Define the function G(x,y,n,w) to be

(2.6) G(x,y,m,w) = eOpo(-) Ai(=C() +ipa (g (M AT (=C()) 5
Then the following equation holds in U,
(2.7) —AG = 7,°G + O¢e (1,7,

with po, ey elliptic symbols, eg > 0 near any (0,0,7,0) with n € R*1\ {0} and p; = 0 on
{z =0}. We call G a quasimode in U.

Remark 2.2. Constructing an asymptotic solution to equation (2.7) with ansatz (2.6) is a classical
result in geometrical optics. However, that such a solution can be constructed with (|,—¢ = w
independent of (y,n) is delicate and is a key point of the result. Moreover, that the construction
can be done such that the symbol p; in front of Ai’ in (2.6) vanishes on the boundary {z = 0} is
not obvious and proved in [18, Paragraph. 4.4, formula 4.4.6 and paragraph 7.1].

Remark 2.3. Near glancing rays, the same theorem holds true with Ai(e*/3.) instead of Ai(-). As
Ai(e*™/35) does not vanish for real values of s, one may define outgoing and incoming parametrix
for the wave operator with given Dirichlet data on the boundary. Near gliding rays, which is our
case, the Airy function may vanish and the same methodology no longer applies. In [1], Eskin deals
with this difficulty by a conjugation of the wave operator by e~¢*, replacing 7 by 7 — i(, therefore
avoiding zeros of the Airy function. While one may then prove propagation of singularities, it is
unknown (and unlikely) to be enough for dispersive estimates near gliding rays.

Let us now briefly review how to prove Theorem 2.1. First, observe that Melrose’s classification
Theorem for glancing hypersurfaces (see [15]) applies, in the non-homogeneous setting, locally near
any point in the set >, defined as

(28) 20:{(XM,YM,E,@)I XMZO,YM:O,E:O, |@|:1}
Therefore, there exists a canonical transform x,, such that, near ¥,
(29) xu({Xn=0}) ={r=0}, xu({E*+ [0 + Xuq(©) =1}) = {€* + R(z,y,n) = 1} .

The crucial fact that such a canonical transformation x,, may actually be defined in a neighbor-
hood of ¥y then follows from the transversality of the Hamiltonian flow with respect to ¥y. The
following proposition will be essential for us.

Proposition 2.4. The generating function for x,; may be written as pr(x,y,=,0) = =+ yO +
[(z,y,Z,0), where ['(0,y, 2, O) is independent of = (as x,;({Xa =0}) = {x =0}) and

(210> F(xuvav ®> = BF(yv 9) _'_xAF(xvvau@)'

The transformation x,; is such that x,;(0=z¢r, Veyr, Z,0) = (z,y, 0xr, Vyer), and therefore
generated by the following relations:

(2.11) Xy = 24t (2,9,2,0), YM—eraBF(y,@)ﬂszgg(w y,Z,0)
' {=E+ Ar(z,9,E,0) Mr(xy,u,@) n=0+%(y,0) + % (r,y,2,0).
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There exists an elliptic symbol p(x,y,n,w, o) of order 0 and type ((1,2/3,1/3),0) with support near
Ny (from (2.3)) and

b B [ it ts(agd () —w) b (e.,sa% (n) /g m/e))
(2.12) G(x,y,n,w): e e p(x,y,n,w,s)ds

2T
such that Theorem 2.1 holds with this G.

Proof. We postpone to the appendix how to obtain the generating function I" and the Br(y, ©)
and Ar(z,y, =, 0) terms. The function I'(x, y, =, ©) is not unique: the group of canonical transfor-
mations under which the model {X; = 0,Z%+ |0]? + X,¢(©) = 1} is invariant is non trivial and
includes any symplectic transformation (X, Yy, =Z,0) — (X, Y + #/(©), 2, ©), where h is any
function defined near the set {|©| = 1}. Thus we may replace I'(x,y, =, 0) by I'(x,y, =, ©) + h(O).
We therefore assume that Br(0,0) = 0, which is equivalent to I'(0,0,0,©) = 0. This explains the
factor e~ Br(0n/7a) in (2.12). Let us now verify that there exists a symbol p(z,y,n,w, o) such that
G defined by (2.12) is such that (—A — 7,2)G = O(7,7*) near x = 0,y = 0.

We will work microlocally near the set ¥y, defined in (2.8), in the semiclassical setting with
0 < h < 1 as small parameter. Set P = —h?*A — 1, po(z,y,€,m) = € + R(x,y,n) — 1, Py =
h'2(D§(M _'_D%M +Xq(DyM)) - 1, and pM,Q(XM, YM, E, @) = =2 + |®|2+XMQ(@) - 1, where DXM =
10uss Dyyy = +Vy,,. Let W C W be small neighborhoods of . Let x(Xa, Yar, Z,0) € C&(W)
such that x = 1 in a neighborhood of W and such that x|x,,o is independent of =. Let G, be the
following semiclassical Fourier integral operator

1
(2mh)4

Gu(F)(x,y) = / il lprizu=0)-X2YO) (X Y = ©)F(X,Y)dXdY d=de,

where pr has been introduced in Proposition 2.4. Then for any semiclassical operator (J3; such
that Qu = ano(—ih)"QM,n(XM,YM, hDx,,, hDy,,) defined on W, there exists a semiclassical

operator @ = - (—ih)"Qn(z,y, hD,, hD,) defined on x,,(W) and unique on x,,(W) such that
one has -

WL ((QG = GrQun) (1)) N xas (W) = 0.

where W}, denotes the semiclassical wavefront set (see [25]) and F' denotes any function such that
WFh(F) C W. Moreover, QO(XM(XM7 Yu, =, @)) = QM,O(XMa Yu, =, @) for (XM, Y, =, @) eW.
Taking @y = Py and using (2.9), @ has simple characteristics on the set ps(x,y,&,n) = 0 near
X1(Z0). Thus, if W C W are small enough, there exists a function I(z,y,&,1) € C’(C)’O(XM(W)),
which is elliptic on x,,(W), such that I(z,y, &, n)pa(z, 9, €, 1) = Qo(x,y,€, 1) = Par2oXat (2,9, €, 1)
in a neighborhood of x,,(W). Set L = I(x,y,hD,, hD,), then there exists Ry with Ry =
Zn>0(—'éh)nRM7n(XM, YM, hDXM, hDYM) such that

(2.13) WFh<(LPgh — Gu(Py — z’hRM))(F)> A xa (W) = 0.

We now exhibit a suitable F' = Fy, (X, Yy) as an oscillatory integral with symbol p, to be
chosen later and 6 € R?~! with |6| close to 1. Define a function

116
aQ(H) = q2/3(9) )
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let pg be such that py(Xar, Yar, s,60,h7") = 2,2 o(=ih)"pen(Xar, Yar, 5,0), compactly supported
near X =0, Y =0, s = 0, with p,, homogeneous of order 0 and |0°p, .| < Cj, and set

1
Fopyn(Xar, Yar) = PAYE

where Y); - 6 denotes the scalar product in R?~!. Define the model Lagrangian submanifold A Mo

/e}iL(Y~0+s3/3+s(XMq1/3(9)—aq(9)))pq(XM’ Y, s, 9’ h—l) ds ’

Mg 1= {(Xar, Y, 2,0 = 0) : 3s € R such that Xy = q(0) "/ (a,(6) — %), Z = sq(6)° },

then one has WFh(Fg,pmh) C Apg and Ajprp is contained in the characteristic set of Py, defined
by par2(Xar, Yar, 2, 0) = 0, which is the same as the characteristic set of Py — ih Ry as ihRyy is
a lower order term. Let V' C W be a small neighborhood of p, . By solving transport equations,
we can select the symbol p, to be elliptic on X,y = 0,Yy = 0,5 = 0,]6] = 1, such that for all
6 € R4 with || close to 1 one has

WE (P = ihBa) (Fy ) ) OV =0, WE(Fyy,0) C W,
We now set Gg . 1(2,Y) := Gu(Fyp,.n)(x,y). Using (2.13) and the ellipticity of L on xa (V') yields

(214)  WE(P(Gopyn)) N X0 (V) =0, WE(Go,) © Xas (W (Fop, ) © Xas (W),

Moreover, we may write Gy, n(,y) as follows

1 1

(27h)® 2h1/3

where the phase is defined as
Do (z,y, Xar, Yar, E,0,5) = or(2,,Z,0) = Xy E— Yy - O+ Yy 0+ 5 3+ s(Xarq"*(0) — g (0))

and we recall that pr(z,y,=2,0) = 2Z2+y-O+1'(z,y, =, ©) and we required I'(0,0,0,0) = 0. Since
at (x,y) = (0,0) we have ¢r(0,0,0,0) = 0 (I'| .= is independent of =), $4(0,0, Xy, Yar, =, 0, s) is
explicit and we easily check that it has an unique non degenerate stationary point in the variables
Xor, Y, 2,0 at Xpe = 0,V = 0,2, = 5¢*/%(0),0, = 6. Therefore, for (x,y) close to (0,0),
the phase function ®4 also has a unique non degenerate critical point in these variables, such that
E. = 5¢'/3(0) and O, = 0; the critical value of the phase ®,, that we denote ¢g(z,y, s) is given by

do(z,y,8) =y-0+T(z,y, sql/3(9), 0) +s°/3+ s(qu/g(e) — ay(0)).

Using (2.10), we have for the stationary point X, . = z(1 + 0z Ar); stationary phase provides a
symbol p, such that p, = > ~((=ih)"Pgn(z,y, s,0), elliptic on z =0,y = 0,s = 0,]0] = 1 and

1 i
2 h1/3/eh%(x’%s)ﬁq(f”ayasaea h™)ds .
s

Notice that WE,(Gop,n) C Xar(Aare)s Xaf ({2 = 0}) = {X = 0} and Ar(0,0,0,6) = 0 (and also
V,Br(0,0) = 0 for |#| = 1). From (2.11) we thus get {|0| = 1 and (0,0,&,7n) € WEF,(Ggp,n)} if
and only if {£ = 0 and n = #}. Together with (2.14) which gives WF,(P(Gop,.n)) N X2 (V) = 0,
we proved that there exists a small neighborhood U of (z,y) = (0, 0) such that for all |#] ~ 1, one
has WFh(P(G@pq’h)) N {(LL’, y) S U} = 0.

Taking 6 = hn and h*3w = «,(#), we obtain by direct computation that 1/h = 7,(n,w),
and (2.7) holds. Rescaling the variable s — 7,735, G(z,y,n,w) = Go,py,r, (%, y) is given by the
formula (2.12) where p(x,y,n,w, ) = py(x,y, s/7,/3,n/7,,7,) and is a symbol or order 0 and type

/ 6%q)@(xvvaM’YM’ag’S)X(XM’ YM> =, @)pq(XM, Yu, s, 9, h_l) dXydYyd=dOds R

Gequyh(x7 y) =
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((1,2/3,1/3),0). Finally, integration with respect to the variable s in (2.12) yields G of the form
(2.6) near z = 0 as I'|,—¢ is independent of s. O

Let ag > 0 be small and a € (0, ag]; denote by G(t,z,y,a) the Green function for the wave
equation with Dirichlet boundary condition, and 4,0y := 0z—a,y—0 the source point,

(2.15) (02 —A)G =0, for x>0, g|x:0 =0,Gli=0 = (q,0) and 0;G|i—o = 0.

We will frequently need smooth cut-off functions s > 0 in C5°(R™) with m = 1 or with m = d —1.
For m = 1, s will be such that »x = 1 near 1, > = 0 outside a small neighborhood of 1, and for
m = d — 1, s¢ will be radial and such that s = 1 near S !, s = 0 outside a small neighborhood
of S™~1. We will abuse notations and retain sz as a generic notation, irrespective of the value of m
(which will be clear from context) as well as the size of the (small) support of s, which we assume
from now on to be smaller than 0 < ¢y < 1/100.

Definition 2.5. Let h € (0,1). A function Py (¢, z,y) is a parametrix for (2.15) if and only if
there exists ag > 0, r > 0 and a neighborhood V" of (¢,y) = (0,0) such that for all & one has

Oay(2(hDy)3e(hDy)(Pra — G(-,a))| € O(h™).

sup sup sup |0,

0<a<ag 0<z<r (t,y)€V

Remark 2.6. We have G = cos(t+/]A]), but we will work with the half wave propagator e="*V/I4l

from which we may obtain G and 0;G. The operator s»(hD;) is really a spectral localization with
respect to A, if applied to a solution to the wave equation. The operator s(hD,) further restricts
this localization to spatial frequencies whose dominant part is tangential: the general heuristic is
that waves propagating along the boundary are the most dangerous ones, whereas other waves are
transverse and can be handled by simpler arguments (with a finite number of reflections). While
»x(hD,) does not commute with A (unlike in the model case), the support of 7 in phase space
will not significantly move over a finite time interval as a consequence of the Melrose-Sjostrand
propagation of singularities theorem. Therefore, up to Oces(h™) terms, we may insert s»(hD,)
operators before and after the propagator.

Rescale w = .5, n = 3, s = 775 in (2.12) (defining G), hence 7,(a,0) = h7,(w,n). Let also
X’ € C*®(R) such that x> = 1 on (—oo, 1] and x* = 0 on [2,00), and x* =1 — x*. We let

(216> (I)(LU, Y, ‘97 «, U) = y¢9—|—0'3/3—|—0'(xq1/3(8) —Oé> +Tq(a7 G)F(I, Y, 0q1/3(‘9)/7—q(a7 ‘9)7 G/Tq(av ‘9)) ’
and as our change of variables s = ;7 provides a factor h=1/3, we set
(2.17) pr(x,y,0,0,0) = h™3p(x,y,0/h, o/ h*3, 0 /hY3) 5¢(0) 3¢(1, (v, 0)) X (a/ B??)

where the relevance of all cut-off functions will reveal itself later on. We get

5=

1 i
. X' (o x(0) (7, (0, x, Y, ,Q = — [ er Yz, y,0,0,0)do.
2.18 Ha/ D) 32(0) ¢(1, (o, )G 0/h,a/h*? 5 *(@yb,0.0) 0 d
T
We now define an operator acting on smooth f(y/, p), with f its Fourier transform in all variables,

(2.19) J(F) (@, y) = /G(I,y,77,W)Xﬁ(w)q(n)l/ﬁ%(hn)%(hn(w,n))f(mw/hl/g)dndw-

After rescaling and subtitution of (2.18) in (2.19),

1

Tw9) = 553 / eh (PEulan) =y 0=y, (4 y 0,0, 0)q(0)/°f(y', 0) dy'dedddado .
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Lemma 2.7. The operator J is well defined from tempered distributions Sz,/’,g into smooth functions
of (z,y) near (0,0). In the semiclassical setting with h as small parameter, J is a semi-classical
Fourier integral operator associated to a canonical transform x ;, defined near the set {y' =0, 0 =
0,10| =1, = 0} and such that x;,(y' =0,0=0,]0| =1,a=0) ={y =0,2=0,]0| = 1,£ = 0}.
Moreover, J s elliptic on this set and, microlocally near this set, an intertwining relation holds,

—h*AJ(f) = J(13(hDy, hDy) f) + O(h™).

As the symbol pj, is smooth and compactly supported in (6, a, o), J is easily extended to S;,’ 0
The Lemma then follows from Theorem 2.1 (py is elliptic and zp; vanishes on 0f2.)

Remark 2.8. When I" = 0 (the model case), this canonical transform is given explicitly:

XJ(y,a o, 9) a) = (ya z, 97 6)
where

y =1y + ol — 0*)Vq(0)/(3q(0)), = = (o — 0*)/q"*(0), £ = —0q"*(0).

2.1. Some useful results on Airy functions. We now digress and present a variation on the
Poisson summation formula, the ” Airy-Poisson summation formula”. For z € C we set

(2.20) Ap(z) = eTmBA(eT™/32), then Ai(—z) = Ap(2) + A_(2) and A, (2) = A_(Z).
The next two Lemmas are proved in [1 1, Lemmas 1 and 3] :

Lemma 2.9. Define, for w € R, the function L(w) = T+ ilog 2= o g L is an analytic, real valued,

strictly increasing function with L(0) = 7/3, limy,_, o L(w) = 0, and, for w > 1,

4
(2.21) L(w ):§w2+§—BL( w?), Zbku (i) €R, by >0,

Finally, let {—wy}x>1 denote the zeros of the Airy functzon in decreasing order,

(2.22) L(wy) =27k and L' (wy,) = 27T/ Ai%(x — wy) dx .
0

Lemma 2.10. Let N* =N\ {0}. In D’(]Rw), one has
—iNL(w
(2.23) D e =21 ) L/ o 8w — wy) .

NeZ keN*

Let us define, for w € R, and without loss of generality, an arbitrary choice of + sign for the
time propagator exp(itt,(w,n)),

(2.24) Kw(f)(tax,y)=/6“7"(“””)G($,y,77,W)Xﬁ(w)ql/ﬁ(n)%(hn)%(hm(w,n))f(m h1/3) n-

Due to both cut-off in w as well as that in 1, K,(f) is supported in 1 < w < ¢;h™?/3 and so is
R(t,z,y,w,a,h) = ((0? — A)K,(f))(t,x,y). By design of G, using (2.7), we have moreover that,
for small 7y and ag and for all (large) M € N,

VQ

t,x,y,w

(2.25) sup  sup sup

lal<ao |(t,z,y)|<ro w

R‘ < Crrah™.

(
Moreover, at x = 0, we have Kwk( )(t,0,y) = 0 as G(0,y,n,wy) = 0 (recall ((z,y,n,w)|ze0 = w
and (2. )) In other words, K, (f)(t,x y) is a solution to the wave equation, up to O(h>); and
when w = wy, it satisfies the Dirichlet boundary condition.
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To get a sense of perspective, let us remark that, in the model case, I' = 0 and then (up to
normalization) G(z,y,n,w) = [, exp(iy - n) Ai(zq'/?(n) — w)dn; for w = wy, Gy is a so-called
gallery mode, and K, (f) is an exact solution to the half-wave equation, satisfying the Dirichlet
boundary condition if w = wy, but f should not be considered as its data: if one picks f such that,
on the model, J(f) is a Dirac at (z = a,y = 0), then f = fn exp(—iy - n)Ai(aq*?(n) — w) dn and
then integrating over w recovers d,—q 4= by a standard identity on Airy functions. For this f, the
integral over w of K, (f)(t,x,y) is then just an half-wave solution with no boundary condition. In
[9] such a solution is then iterated by reflecting it on the boundary; here, the Airy-Poisson formula
would, on the model, directly provide a sum of waves (the sum over N) that may later be identified
as analogue of the reflected waves from [9], while the spectral sum (over k) provides the boundary
condition and a direct way to decompose the Dirac data.

We now revert to the general case, where we follow the model case strategy we just sketched, but
replace gallery modes by G(x,y,n,w). Recall we defined J(f)(x,y) in (2.19) and we may rewrite

y) = Jo Ko(f)(0,2,y) dw. Let n = £, q5(n) = h=3¢s () and a = h3w, then (with elliptic
symbol pj, defined in (2.17))

(2.26)
Ko(H)t2,y) = —— / e Tl 0)+ @@ y000) =y 0=00))) (1 0 v ) g0 (0) f (i, 0) dy dodbdo .

As we will see later, both cut-off functions s in K, (f) relate to localization operators from Defi-
nition 2.5. Moreover, K, (f) is a suitable test function in w (smooth and compactly supported in
w). Using (2.23),

(2.27) Ze_’NL K, (f)(t,z,y))w =27 Z L’ ()t z,y).

NeZ keN*

2
h3~d

The N = 0 term in the sum over N is J(f). Moreover, at z = 0 the RHS vanishes, as the sum over
k is finite and each term vanishes as we just observed, and this finite sum (on the RHS) satisfies
the wave equation, up to O(h™) terms, due to (2.25).

These remarks will later be of crucial importance to verify that Definition 2.5 will hold for the
parametrix we shall introduce in the next sections, up to finding a suitable function f that will
recover the data at ¢t = 0 in (2.27). This remaining step is far from trivial, unlike in the model case
(see [11]), for which we know explicitly the spectral resolution of the Laplacian and can therefore
expand a Dirac mass over the eigenmodes, as alluded to earlier.

One may expect that it should be enough to consider initial data (at time 0) xo(hDy)2¢(hDy)d(q,0),
for ¢ supported near S*! and y, € C5° supported near 0. Indeed, classical geometric optics argu-
ments provide a parametrix for data (1 — xo(hDy))»(hD, )5(a 0): due to the cut-off (1 — xo(hD,)),
singularities are transverse to the boundary at = = 0 (there is at most one reflection). However,

(2.28)  xo(hDa)5(hD,y)d(u0) = / a=aetun) y, (h€) se (hn)dgdn:%yo(x—;“)a(%).

Therefore, at z = 0, this data will be O(h*°) only if we assume that a > k'~ for some € > 0. For
smaller a, in the case of the Friedlander model operator Aj;, we can take advantage of the known,
explicit, spectral resolution of —A); in order to consider an initial data xo(—h*Ay)s¢(hD,)d(q,0)
that can be further expressed as a sum of eigenfunctions that vanish on the boundary. By contrast,
in the general case, we only have quasimodes and this is a source of significant difficulties for
these very small a. Nevertheless, we will decompose the parametrix construction according to the
respective values of a and h?/3, with an overlap between the two regimes where any construction
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holds. In subsection 2.2, for a > h?3, we will use (2.28) as a data, and mainly proceed with
the sum over N in our Airy-Poisson formula (2.27). In subsection 2.3, dealing with a < h?/3,
stationary phase methods in this sum over N break down (although one could push them down
to a > h, matching the heuristic above, but with no obvious benefit) in addition to the problem
of defining a suitable initial data. We will solve the data issue in subsection 2.3.1 by choosing
the model initial data xo(—h*Ap)s(hDy)d(40). In some sense, in the very narrow strip where
it is located, the spectral localizations with respect to Ay, or A are close enough that gallery
modes are good substitutes to the quasimodes in defining said data. One then proceeds with a
parametrix construction where such data is, again, split according to the values of k in the spectral
sum defining it: either k is large enough and we recover a large parameter and can proceed as
in the previous regime, or we have the relatively small value of k£ for which we proceed with the
spectral sum, proving in subsections 2.3.2 and 2.3.3 that terms appearing in that expansion are
close enough to the model gallery modes and therefore retain enough of their properties to provide
a parametrix. This part of the construction is quite delicate and obviously absent in the model
case, while of independent interest as far as uniform estimates on quasimodes are concerned as
these will be proved in the range k < h™'/4, exceeding by far what we need in our construction.

2.2. Parametrix construction for a > h3=¢, 0 < ¢ < 2/3. An initial data (2.28) is O(h™) on
the boundary for any o, compactly supported near 0. Let xo € C§°(—2€, 2¢0) with x = 1.

0‘ [—e€0,€0]

Lemma 2.11. Let ag > 0, rq > 0 be small enough. For all a € [h%_e,ao], there exists a smooth
function gp o such that s(hDy)gnq = gna and

(2'29) J(gh7a)(x> y) = XO(th)%(hDy)a(a,O) + OCOO(\(:c,y)IST’o)(hOO) >
where the remainder is Oceo(|(z,y)|<ro) (h°°) uniformly in a.

The lemma follows from the aforementioned fact that J is an elliptic Fourier integral operator,
however, we compute gy, , explicitely:

Lemma 2.12. There ezists a smooth phase function 1,(0,0") and a symbol r4,(0,0") of order 1/3,
with support near o = 0, |0'| = 1, of the form r,(0,0") = h'/? > ko Thakh® with 71,0(0,6") # 0 for
|0'| =1, such that

(2.30) Yal0,0') = ¢°/3+ aleg*(¢') + O(e”)) + O(a®)

and the function gp o, defined as
(231) ghﬂ(y/7 Q) — h_d / e%Wfa(979')-i-y'-t‘)'),rh(Q7 9/)q—1/6(0/) dtg/,

solves (2.29). Moreover, 1, is the critical value of the phase oo — ®(a, 0,0, o, s) at critical points
in (a,s).

Proof. We may invert microlocally the operator J from (2.19) by setting

T E) o) = b / H e 040 g (0 o 5)g V) P (x, y)dadyddda’ds,
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where g, (z,y,6', ¢/, s) is a symbol of order 1/3, q, = h'/? > k0 M qnk, with support near {z =
0,y = 0,0’ =0,s = 0} and elliptic on this set: we aim at proving that J o J(f) = f modulo O(h*):

J 1o J(f) = a1 /e%(—@(m,y,@’,a',s)+y/'9’+9a,)qh(x’y’9/’O/’ S)q—l/ﬁ(gf)

X —Qﬂlhd en@v00)p, (0 0, 0,0)q"%(0) f(8/h, o/ h)dbdadodzdyde'do’ ds.

We now apply stationary phase in variables (o, s, x,y,0',’): one checks that critical points are
non-degenerate, such that 6. = 6, o/, = «, and stationary phase provides a factor h¢~ 11+l = pd+1
(one factor h4! from dydf’, one factor h from dxds and one factor h from doda’). The critical
value of the phase is y'0 4+ pa and we obtain (modulo O(h*))

d+1

2mhd

where §, is obtained from the product gq(z,v,6, ', s)qg (0 )pu(x,y,0,a, 0)q"/%(0) after sta-
tionary phase; asking ¢, = 1 for 6 such that [#] ~ 1 and g near 0 allows to chose g; since
pn = b Y3p(x,y,0/h, a/h¥3 o /Y3 x* (o) h?/3) 5¢(0) 3¢(7,(r, ), We obtain g, as announced. De-
fine

(2.32) Ga = I (x0(hDy)5(hDy)d(a0)) -
Then, using the second line in (2.28),

T o J(A)Y,0) =h " x /e’i(y"wa)%(@, @) f(0/h, a/h)dbda,

- 1 Dol 1 (= (z,y,0 ,a,8)Foa+(z—a)o+y-
(2'33) gh’a(y/’ Q) _ ﬁ /6hy 0 Fh@(Q, el)del’ Fh@(Q, 9/) _ T /eh( O(z,y,0’ ,0,5)+0a+-(x—a)o+y-0)

X qn(z, 9,0, o, $)q75(0')xo(0) (0 dodfdadydads .

We apply stationary phase to Fj , with respect to variables (z,0,y,6): (non-degenerate) critical
points are * = a, y = 0, 0. = 0,9(a,0,0, 0, s) and 6. = 9,P(a, 0,8, s). The resulting symbol
Gn(0', a, s) is of order 1/3, with support near {|¢’| =1, = 0,s = 0} and elliptic on this set, and

(2.34) Fralo,0)=h"" /eii(_q)(“’o’el’o"s)JrQO‘)th(9’,a,s)q_l/G(é")dadS.

Here o is bounded, as 7,(a,6) € supp »; indeed, a = h?3w and we assumed |w| < eh™?/3;
therefore av < ¢y on the support of the symbol p,, as well as on the support of ¢, and also g,. The
phase of F},, is stationary in « for s + ¢+ O(a) = 0 and in s for s* + O(a) ~ a < ¢ (as we will
see below using the explicit form of ®) and a < ag < 1 is small enough, therefore s* < ¢ + ag
(otherwise non stationary phase in s provides an O(h*) contribution.) Hence there exists a cut-off
x(0) € C§°((=2r,2r)), equal to 1 on [—r, 7] for r ~ | /€y+ag, such that (1—x(0))Fh..(0,0) = O(h™)
in S,, uniformly in ¢ near |¢’| = 1.

We now apply stationary phase in (2.34) with respect to « and s: with (g, ¢, a) as parameters
and for o € (—2r,2r) and || close to 1, let (., s.) denote the critical points of the phase, define
Ua(0,0") = oa.— P(a,0,0, ag, s.), where (g, a) are small parameters in (—2r, 2r) X (0, ag). In order
for 1, to be (2.30), we need more information on the phase ®. Recall from (2.16)

O(z,y,0,a,0) =y + 0 /3 + U(:L’ql/3(9) —a) + 7,(a, O (z,y, aql/?’(ﬁ)/rq(a, 0),0/7,(c,0)),

and from the Appendix, Proposition 6.5, I'(x,y, =, ©) = Br(y, ©)+zAr(z,y, =, ©), where Br(0,©)
0 and Ar(z,y,=,0) = Zl(y,0/|0|) + u(y, 0/10])(Z? + |O]? — 1) + H;>3, where £, 1 are smooth
functions such that ¢(0,w) = 0, and H;>;, denotes any function which is an expansion of the form
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ijk f; with f; homogeneous of order j with respect to weights on variable (z,y,=,0): x : 2,
(|©] — 1) : 2, =: 1. Therefore, the phase of Fj, , reads
(2.35) — ®(a,0,0,a,5) + oo = —5° /3 — s(aq"’>(0') — @) + oa
— ary(a,0") Ar(a, 0, 5¢*3(0") J7,(, 0), 0 [T, (0, §)) .
Setting = := s¢'/3(0") /7, (v, 0') and © := ¢’ /7,(,¢') and using that £(0,0/|0]) = 0,
s* — a)@?P(0")
7,2 (e, 0)

where H ;>3 contains terms with factors as, s* and s«; as Ar(a, - - - ) comes with a factor a, cancelling
the derivative of the phase (2.35) with respect to s yields an equation for s,

—52 = (ag"*(0') ~ ) — ary(e, 0)(2511(0,0'/|0/])g**(0) /7,20, 0) + Ofa, 5%, @) ) =0,
(

s2(1+0(a)) + ag"3(0") (1 4 25,420/ 7,) = ac(1 + O(a)),

while cancelling the derivative of (2.35) with respect to a yields g + s.(1 + O(a)) = 0. Therefore,
sc = —0(1+0(a)) and a, = 0*(1+0(a))+aq'/3(0")(1+0(0)). We now compute the critical value of
the phase (2.35) at s., a.: let ¢(a, 0,0") := —P(a, 0,0, a., s.) + oa. and write the Taylor expansion
of ¢ near a = 0. We have ¢(a, 0,0') = ¢(0, 0,0") + a@agb((), 0,0') + O(a?), where aj,—0 = 0* and
Scja=0 = —0, and then, with (---) = (0,0,6),

Ar(@,0.2,6),_ — (0,016

==5g'/3(0") /7q(0,0'),.0=0" /7y (00') T Hizs,

83 3
¢(0a 0, 9/) = —@( © 5 Qela=0, Sc\a:O) + 00 cla=0 = ( - (? + SOZ) + Qa> ‘s:—g,aZQQ = % )
(236) 8a¢(0a 0, 9,) = _aaq)(' ) 927 _Q) - aaSc|a:Oas(I)(' T 927 _Q)

+ aaac\aZO(Q - 801(1)(' R 927 _Q)) .
As s, a, are critical points for —®(-, a, ) + o, the last two terms in (2.36) vanish. We have
9a0(0,0,0") = —0,®(a,0,0, a, 8)|0.0.0r.02.—0) = 04"3(0) — 7,(0% 6') Ar(0,0, —0g**(0") /7., 0/ 7,) -

For (Z,0) = (—0q¢"3(¢)/7,,0'/7,), with 7, = 7,(0*,0), the term homogeneous of degree 1 of
Ar(0,0,Z,0) is 20(0,0) = 0 and the term homogeneous of degree 2 equals p(0, 0)(Z2+[0]*—1) =
2

0as (2402 -1) = (STC}O‘)|32_Q7(1292 = 0. The terms homogeneous of higher order j > 3 of
Ar(0,0,Z,0) are powers of Z7 ~ ¢’ (as we can replace |©|>—1 by Z2), hence Ar(0,0,Z,0) = O(¢3).
Therefore, stationary phase in s, « yields, for some new symbol (o, ") of order 1/3,

Jnaly’s0) = h7" / eh (et Py (0,0")g™1/(0") B + Ocee (),

where we set ¢a(g, o) = ¢(a, o, 9’) that is indeed the required (2.31). Omne has WFj(gna) C
{(y,0,0.d),y ==V, (0,0"),0' = 0,14(0,0")}. Using (2.30) and (2.32), we now set g, o(v', 0) :=
X(0)Gn.q(y', 0), such that (2.29) holds and this completes the proof of Lemma 2.12. O
Definition 2.13. Let g5, be defined in (2.31): using (2.23), we define Py, equivalently as
(2.37) Pra(t,z,y) = (O e K (gha) (t2,9))e

Nez
(2.38) Pra(t,x,y) =27 Z K, (gna)(t,z,y).

kEN*
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We are abusing notation here: one should consider P* depending on the sign on ¢ and then
obtain 2P from Definition 2.5 as P™ + P~. Considering P* is enough by time symetry and we
therefore drop the +.

We now recall (see the discussion after (2.24)) that, using both localizations in n and 7,(w,n),
(2.38) may be reduced to a finite sum over k¥ < h™': support considerations on K, (as a function
of w) provide |w| < egh™%/3; after Alry—P01sson summation, this translates into |wy,| < egh™%/3. The
zeroes {—wy }r>1 of the Alry function have asymptotic wy, ~ (37k/2)%/3. We therefore introduce a
cut-off in the sum over k, x (h*3wy) := x"(h*3wy/€p). Then, (2.38) may be rewritten as a finite
sum,

(2.39) Praltry) =21 3 X0l _E R (g0t 2,y).

From w; > 2.33, we remark that the cut-off function x*(w) that was introduced in the definition
(2.24) of K, is no longer needed when restricting w to the set {wg fren+. But it will help on the
other sum (2.37), in estimating how many N’s contribute significantly. Again with (2.23), we also
have

(2.40) Pralt,z,y) = (Y e ™ (0w /e0) Ku(gna) (t 2, 9))

NEZ

The sum Yy, converges in D, and X" (h*/3w/eg) Ko (gna)(t, ©, y) is smooth in (¢, z,y) in a neigh-
borhood W of (0,0,0) and smooth and compactly supported in w. For the moment we use gy, , as
expressed from (2.33) and (2.34) (integral over «, s, 0). We can however replace the cut-off x(o),
introduced in the proof of Lemma 2.12, by x(s); as s. = —o(1 + O(a)), defining g, , without the
factor x (o) but with x(s) inside the integral provides the same contribution modulo O(h*) but
allows to immediately obtain g, ,(6/h, a/h), which is useful in the formula for K, (gs..):

ina(0/h, a/R) = h-1g~Y/5(9) / e~ F@0000) (Va9 o )ds,
and substitution in (2.26) yields

h2/3

(241) Kw(gh,a)(tv €, y) = 2mhdtl

/e%’(th(hz/%,e)+q>(z,y,9,h2/3w,o)—c1>(a,0,9,h2/3w,s))

X pu(z,y, 0, h*3w, o) x(5)dn (0, h*3w, s)dsdfdo .
We set Prao(t, z,y) = > yez Vn(t, z,y), where Vi is defined as

(2.42) VN(t> xz, y) = / e NL(W) (h2/3w/€0) (gh a)(t’ x, y)dw
— 1d : /6;1(trq(a,e)+<1>(x,y,e,a,a)—@(a,o,e,a,s)_NhL(h2/3a))
2mhat

x X" (a/e0)x(s)pn(z,y, 0, v, )G (6, o, s)ds dddodo .

The symbol x’(a/€y)x(s)pndn of Vi is the same for every N, is of order 0 and is given by an
asymptotic expansion with small parameter h and main term equal to 1 (indeed, since ¢, has
been obtained by inverting J, whose symbol is py,). Note that we do not have a finite sum over N:
convergence should be understood in the distributional sense. The cut-off in « is redundant but we
will leave it there to emphasize compact support in a. In the forthcoming Lemma 2.16, we prove
that for a generic function f;, replacing gy, the sum over N converges and is O(h™) for N > h~1/3,
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provided f;, is of moderate growth with respect to h. Practically, f;, is an oscillatory integral with
an Airy type phase and with a smooth rapidly decaying or compactly supported symbol and as
such, is of moderate growth.

As such, we may indeed replace g, modulo O(h™) as it will only concern a (large but) finite
number of terms. Our main result in this section is the following proposition:

Proposition 2.14. Let a € (h%_e, ag] with small ag, e > 0.
o For |t| S 1, Pha is essentially a finite sum in N at any given time,

(2.43) Pralt,z,y)= > Vi(t,z,y) + Oc=(h™).

IN|<[tla=1/2

Moreover we can introduce a cut-off x*(4a/a) in the definition of Viy without changing its main
contribution modulo O(h™) terms.

o At t =0, we have Py 4(0,2,y) = xo(hDy)3¢(hDy)d(4,0) + Ocoe (R™).

o P o 15 a parametriz in the sense of the Definition 2.5.

Remark 2.15. The cut off x*(h=?/3a) from K, restricts to 1 < h=2a. The last statement in the
first part of Proposition 2.14 translates into the contribution of the integrals defining Vy being
irrelevant for small values o < a/2: for a > h?/*~¢ we can further restrict to a > a/2. This follows
right away from the expression of G(z,y,60/h,w) appearing in the definition of K, (gn,) (recall
(2.24)): using (2.6), G reads as a sum of Airy functions computed at —( = z|n|*3eo(x, y, 1, w) —w
with an elliptic ey, close to 1. These Airy functions are exponentially decreasing for —( > 0;
hence, if a > h?3=¢, n = /h with |0] ~ 1 and w = h~%3q, we must have a < « since otherwise
the contribution from G is O(h*). Note that h?3~¢ < « is required to perform stationary phase
arguments; for a < h%37¢ (to be dealt with if a < h?/37¢ ), rescaling no longer provides a large
parameter.

Proof. We start with the easiest part: from Theorem 2.1 G(0,y,n,wy) = eV O¥m<r)p Ai(—wy),
which immediately yields G(0,y,n,w;) = 0. Therefore, from (2.39) being a finite sum, we get
Pha(t, y)| a0 = 0, which is to say, the Dirichlet boundary condition holds for Py .. From (2.23),

we get that the distribution ., eV € §'(R). Moreover, from upcoming Lemma 2.16, for
IN| > h™'/3 the sum is O(h*) irrespective of gj,. As such, we are reduced to a finite number
of N’s, and from (2.37) and (2.25), it follows that, taking W smaller if needed, and uniformly in
a < ag, one has (07 — A)YPy o € Ocoewy(h>), not only for z > 0 but in the full neighborhood W
of (0,0,0,1). Both statements on P, are independent on the particular choice of the function
gn.a such that (2.29) holds. It remains to check that, with our choice of g, given in (2.29),
Pha(0,z,y) is the right initial value, which turns out to be the most difficult part of the proof.
We first prove that the sum over N is (large but) finite and that at ¢ = 0, in the sum over N
in (2.43), all the oscillatory integrals Vi (0, z,y) for |[N| > 1 provide a O(h*) contribution, while
Vo(0,z,y) = J(gna)(x,y) which, by design, is our initial data. The fact that the number of N is
finite will allow to deduce that P, .(0,z,y) = Vo(0,2,y) = J(9n.a)(@,y) = Xo(hDy)se(hDy)d(a,0)
and conclude.

Lemma 2.16. Let f;, be a smooth function of (y', ), with compact support in o and of moderate
growth in h, and K,(fy) be defined by (2.26). Then

(2.44) (Y ™M (0 Pw/e) Ku(fu)(t, 7,9))w = O(h) .

[NIzh=1/3
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Proof. We consider the sum over all N: all phases in the sum are linear in £ and N and given by

(2.45) tr,(a,0) + ®(x,y,0,,0) — NhL(ah™2/*) —4/0 — oa,
with large parameter 1/h as a factor; it follows from (2.21) that
NL(ah™23) = N% + %(%NQ?’/Q — NhBp(a?? /h)).

Integration variables are o, «r, # and also y’ and ¢ ; only stationary points with respect to o and o
will be required for the sum in N to be finite. Critical points in « are such that

(2.46) 06Ty (0, 0) + 0,®(2,y,0,,0) = o+ 2Na'/? (1 — ZB'L(agﬂ/h)) ,
while those with respect to o are such that 9,%(z,y,0,a,0) = 0. We used 1 < h=?/3a to expand
L(h~%3a) with (2.21). Recall that

O(z,y,0,0,0) =y-0+0°/3+ 0(xq"(0) — a) + 74(, O (z,y,0q"*(0) /7, 0), 0 /7y(cx, ),

where I'(z,y,=,0) = Br(y, ©)+zAr(z,y, Z, ©) from Proposition 6.5 in the Appendix. In addition
to properties of Ar and Br listed in Proposition 6.5, we will use Lemma 6.4. We start with
computing derivatives of 7,(a, 0)T(z,y, 0sq"/3(0)/7,,0/7,) which depends on a only through 7,.
Take © = 6/7,(a,0), ¥ = 0/|6|, then

7 Br(y,0/7) = 74(Bo(y, 9) + (1] /7, — 1) Ba(y, ¥) + ... + (161 /7y — 1) Baj (y,9) + ...)
and, writing p = |0|/71,, 0/1, = pV,

(2.47) 0, (TqBF(y,Q/Tq)> = 0, TyO0w (pr(y,Q/w)>

|w:'rq

0
= 8(17—(1 (BF (y, H/Tq) - |7__|apBF(ya pﬂ) |p:|9‘/.rq>
q
2] 2
= 0ura[Boly. ) — Bty ) — (0 1) Bufy. 0) + H,].

q

(2.48) 0, <Tqu(x,y,sql/?’(@)/Tq,H/Tq)) = 0 TyOw <wAp(:)3,y,sql/3/w,9/w))

|w:7'q

= 0ury (Ar(y. 5" 7,,0/7) = 5q"(0) £y, 9) /7,
= 2u(y, 0) (247 (0)/ 7% + 107 /7,) + Hyzs
= Oura| = 1y ) (207 + 107 + 1) + Hyza),
where in the second to last line we used that the terms in H;>3 are powers of x, s¢*/*(8)/w,8/w

and therefore wd,H = H;>3. We have 0,7,(a, ) = quq/(gogga)) and using (2.47), (2.48) (which
comes with a factor x € H;>2), (2.46) becomes

6]
(249) Dty [t + Bo(y,9) = Ba(y,9) = (=5 — 1) Baly, 9) + Hyza| +0 = 0

q

j23|w:7'q

+ 2Na1/2(1 . ZB/L(a3/2/h)).
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Using now (2.48) and that Br(y, 8/7,) does not depend on o, 9,®(---) = 0 becomes

(2.50) o+ 2¢"30) —a + 7,(a, )20, Ar(z, v, aql/g(ﬁ)/Tq(oz, 0),0/1,(a,0)) = 0.

Recalling (6.29), let = = i‘f;(ij(;)) and © = ﬁ. Taking a derivative with respect to o of Ar
always provides a factor ¢'/3()/7,: Ar(z,y,Z,0) depends on o only through = = C’T‘il(fg;), hence
05 Ar(x,y,0¢"%(0) /7,0/7;) = 0,= x O=Ar(2,y, 2, 0),

and 0=Ar(z,y,=2,0) = {(y,0/]|0) + 2Zu(y, ) + H,;>2. This yields
3(0) aq'(9)
2.51 , A Y30) 0, 0/7) = - (¢, 0) + 2 0) + Hyz2)
( 5 ) a F(xvyvo-q ( )/Tlh /Tq) Tq(a,e) (y7 )_'_ Tq(Oé,9> ,U,(y, )+HJZ2 )
where H;>o contains weights z, %/23(@ and ‘T%' -1 = que(‘;;i) = —Tz‘?;/‘i(fj). Using (2.50) and
(2.51),
1/3 0

(2.52) 0% + 2q'3(0) (1 o) +22200) ey 4 Hm) =a.

7,(a, 6)

Recall that ¢ was chosen after (6.26) and depends on the curvature at the boundary near y = 0:

Lty 9) = (B0 + Y, Bolw 0)/a) . Ru(0,9) = (9),

where from (6.25) we have ¥ + V,By(y, ) = 9(1 + O(y)). By finite speed of propagation of the
wave flow, for bounded time [¢| we must have |y| bounded (see Lemma 3.2); hence, there exists
Ty < 1 sufficiently small such that if || < T then

(2.59) (Bily. 0+ V,Bofw.0)/a() > 1/2.

Recall that a < ¢, small. We have By = O(Jy|*), Bs = O(|y|?), Bz = O(|y|), Vj > 2 and

[4 0|2 —7,2 aq®/3(0 . . R
L—q‘ -1= T'q(‘ijq) = _T(;EZT"F(Tj) = O(a), therefore the coefficient of 0,7, in (2.47) is like

Bo(y,9) = Ba(y, ¥) + O(ay) = y(O(y) + O(a)).
For |t| < Ty, taking T smaller if necessary, we assume |By(y, 1) — Ba(y,9)| = O(y?) < [t|/8. As
y < t by finite speed of propagation, taking ¢, smaller if necessary, we assume O(ay) < |t|/8
for a < ¢y. Therefore, the contribution from 0, (7,Br(y,0/7,))/0at, in (2.49) is O(|t|/4) and the
coefficient of 0,7, in (2.49) behaves like t < Ty < 1. As p is bounded (f has compact support in
0), it remains to compare o and 2Na'/? in (2.49). Going back to (2.52), using that 0 < x < 1 and
that the terms in ;2 come with the factors o2, z, o, it follows that

(0 +2ug®3(0))7,)% + 23 (1 + 0+ Hyso) = a + 22 12¢*3(0) /7,2,

which implies that ¢? is bounded; hence for |o| > C for some constant C, repeated integrations
by parts in ¢ provide a contribution O(h*) in every integral in the sum in N in (2.44). We obtain
that the phase functions in (2.44) may be stationary in « only for

21(0)
9.54 oIN[a? < 251t + lo| + |o]), c:= sup 2 ,
254 Mo <25 +lol +lol, ei= s L

where, as h*3~¢ < a, we used |B)(a*?/h)| = & <b1 + ijzjbj(#)j_l) < h¢. As the righthand
side from (2.54) is bounded, phase functions in (2.44) are stationary in a only for |[N| < Ca~1/2
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for some constant C' := °To+ 1+ C. Again, as h?*¢ < o (which is crucial here), we get for N's
that may provide non-trivial contributions |N| < a~%/2 < h=Y/3+</2_ For |N| larger than h~'/3
we perform non stationary phase with respect to a: each integration by parts provides a factor h
and "loses” a factor h=%/% corresponding to taking a derivative on pj, which has been defined in
(2.17) in terms of p(x,y,8/h, a/h, o /h'/?), together with a negative power of the derivative of the
phase of K, (f) with respect to «, which depends on N (through the term 2\/aN). Therefore, if
IN| > h™'/3, we get, after M > 1 integrations by parts,

hlm3 \ M .
‘< Zle_m Y (h3w/eo) Ko (), 2, y))e 3 1 <\/aN> < Oy hMs
IN|>h~3 IN|>h~3
as the sum in N is bounded for M > 2, and therefore this provides a contribution O(h>). We just
proved that, for any smooth f, the sum over N (2.44) is essentially finite over |N| < h™Y/3, O

In the following we introduce g, , provided by Lemma 2.12 in this finite sum (for [N| < h=Y/3)
and prove that for a > h*37¢ N > |t|a='/2, Viy provides an Oge(h™) contribution. Let K, (g )
be given by (2.41). The phase function of Viy(¢,z,y) defined in (2.42) is

try(c, 0) + ®(x,y,0,a,0) — ®(a,0,0,,s) — NhL(ah™/3),
with large parameter 1/h in front. This phase function is stationary with respect to « if

6]

(255) Oury [t + Bo(y,9) = Baly.9) = (=5 = 1) Ba(w.9) + My

e
+a—s:2N¢ﬂQ—§Bﬂ&ﬂm0.
Using now (2.48), the phase is stationary in ¢ and s when

o 4+ 22 (0) — a + 7,(a, 0)20,Ar (2, y, 0¢"3(0) )7,(cr, ), 0 /T, (0, 6)) = 0,

s% + aq'?(0) — a + 7,(a, 0)ad, Ar(a, 0, 5¢"2(0) /7,(c, 0),0/7,(r, 0)) = 0.

Using (2.51) for 0, Ar, we obtain as in (2.52)
,74'°(6)
Ty(, )
) 1(0,9) + 7-[]>2)

(2.56) o? + xq1/3(9)<1 + Uy, ) + u(y, 0) + Hs ) a
sq'/3(0
7,(a, 6’)

Both a < ag and a < ¢ being small, the second equation in (2.56) yields
(s(l + O(a) + aqz/g(ﬁ)/rq)2 +ag*?(0)(1 + O(a)) ~ a,

and therefore |s| = \/a + O(a). Moreover, we must have a < «, otherwise non stationary phase
in s provides an O(h*) contribution.Therefore we introduce a cut-off (1 — x)(4a/a) supported for
a > a/4 in the symbol of Viy without changing its contribution modulo O(h*) (see Remark 2.15).
For Ty sufficiently small such that (2.53) to hold, the first equation in (2.56) yields,

(014 0)) + 2g?*(0)/7,) " +20"*(1 + £y, 9) + O()) ~ a

Note that x remains small (comparable to «), otherwise non stationary phase with respect to o
will provide an O(h*°) contribution. We also obtain |o| = y/a + O(z). Moreover, both ¢ and s

s+ aq'/3(6) (1 427
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are small and = > 0, so that (2.56) implies that |o|, |s| < v/« for the phase of Vyy to be stationary
in o, s; for |o|, |s| > 24/« we can apply the non-stationary phase theorem, and from (2.55), for T
sufficiently small such that (2.53) to hold, the phase of Vi (t, z,y) is stationary in a only for

(2.57) 2AN|Va < [t + |o| + 5| < |t] + 2v/ax.

We used again here that for T sufficiently small and by finite speed of propagation, the coefficient
of 0,7, in the lefthand side of (2.55) is t + y(O(y) + O(a)) ~ t and that 0,7, ~ 1/2. Moreover,
for values 2|N|\/a > 2|t| + 4y/a, non stationary phase in « provides an O(h™) contribution
from all Vy with |N| > 2 + |t|/\/a. As both a < « and the number of Vi is (large but) finite
(|N| < h~Y3), non-trivial contributions in Py, 4(t,z,y) may only be provided by the sum over
IN| < |t]/va < |t|/+/a. We have thus proved the second point in Proposition 2.14.

Finally, we turn to the data: by design, V4(0,2,y) = xo(hD;)»(hDy)d(0) + Oce(h>), and we
are left to proving that, for 0 < |N| < h™Y3, Viy(0,2,y) € Oce(h™). In this part we consider g,
as provided by Lemma 2.12, of the form (2.31) with phase function v,(o, ') = 0°/3 +a(oq"/?(0") +
O(¢®)) +O(a®). Then K, (gn.a) is of the form (2.26) with f replaced by gy, that we re-write here

h2/3

Ko(gna)(t, o, y) = i

/ g1 (T (WP OBy 012 P0) =y 0=a®w) (0 0 1230 0)q'/5(6)
x b4 Wal@0)H" )0, (o 0) g™ S(6') db' dy dodbdor .

For all N, Vy is an oscillatory integral, that we rewrite, using (2.42) and Proposition 2.14,

Vi(t, z,y) =h =2/ / e NVEITR0) b (0 feg )y (40 0) K p-210 (gha) (1 2, y)dod
B 1

~ Orhd

X pu(, y, 0, v, 0) g0 (0) = Aen e @)+ ) (5 00 (8) dB' dy' dpdbdo .

/ e—iNL(h*2/3a) Xb (Oé/Eo)Xﬁ(ZlOé/a)e%(th (2,0)+®(z,y,0,0,0)—y'-0—oc)

We can write q, := x’(a/eo)x*(4a/a)pyry, which is an elliptic symbol of order 0; indeed, recall
that py, comes with a factor h='/3 while ), comes with a factor h'/3. At t = 0, the stationary points
of Vv with respect to a, s, 0,9, 0,0 are solutions to the following equations

0,8(2.y.0,0,0) = o+ 2Na/2(1 — 2B, (¥/2/h) )

(2.58) 0% + ¢ (0) + 74(cv, )29, Ar(z,y, 04"*(0) /7,(a, 0),0/74(a, 0)) =
Dpthal0,0') = a,
0/ =0 ) VG’d}a(@u ‘9/> = y/v VQ(I)(LU, Y, ‘97 a, U) = y/ .

From the first two equations we get (2.57) (at t = 0), which allows to conclude that if | N| > 2 the
phase is non-stationary in a. Hence we are left with | V| = 1. The equations from the last line in
(2.58) give Vo®(x,y,0,a,0) = Vb, (0,0) and therefore

(2.59) aoVe(q?(0)) + O(ag® a*) =y + 0xVe(¢"3(0)) + Vo(1,(cr, O)T).
For 7, = 7,(a, 0) we have Vo7, = (6 + aivgé‘f%ig)))/q and

Vy <7‘ql—‘(a7, Y, Uql/g(e)/Tqa 9/771)) = (Vo7 )l'(2,y, Uql/g(e)/Tqa 0/7q)

7, (Vo Brly, 0/7)) + 2V o(Ar(,y,04"5(0) 7, 0/7,)) ).
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From By = O(lyl?), Bs = O(lyP), Bs; = O(lyl) we get
By (7, (0, O)T) = By, (o<y3> + O(2a) + O(ya?) + 2(O(0) + O(a))) +7,(0(ya) + 20(0))
= O(y*) + O(ya) + O(x0).

Combining this with (2.59) yields y = O(ap) + O(xzc) + O(a?), at the stationary phase points
Y, 0,0 of Viy. Rescale v = aX, a = aq'?(0)A, 0 = /aq(0)'/5S and o = \/aq(0)'/5T; from the
first three equations of (2.58) (and 6’ = 0) we get

S+T+247=0(a"?), S+(1+0X+0@"?)=A=T*+1+0(d"?).

As a < ag is small (taking ay even smaller if necessary), 72 < A — %; then, using that £ = O(y) =
O(a?/?), there exists € > 0 such that for X > —¢, S? < A+ %. For these values, the first equation
cannot hold and non stationary phase in « allows to conclude. Again, that we can integrate by
parts in Vi1 (0, z,y) relies on a > h?/37¢. O

2.3. Parametrix construction for a < h*3¢, 0 < e < 1/12. In formulas (2.37) and (2.38),
G(---,w) can be written in terms of the Airy function Ai(—() and its derivative, as stated in
Theorem 2.1. Using the explicit form of ¢, for ¢ < 0 (hence for w < a/(4h%*?)), these Airy factors
in G are exponentially decreasing, so the main contribution comes from values a < 4wh??. For
a > h*37¢, this implies w > h~¢ and one may perform stationary phase arguments in the integrals
from (2.37), as long as we pick any € > 0. In this section, a is much smaller and very different issues
arise compared to the previous one; we need a different way to construct a suitable g , to recover
the initial data. The explicit upper bound on € will be of use in this section and later required in
Section 4; there is quite an overlap between both parametrix constructions for h?/3 < a < h?/3-1/12,
but we made not attempt at enlarging it; the reader is advised to think e to be really small.

Besides the lack of a large parameter, which forces us to work with (2.38), the regime a < h
has its own difficulties: even deciding how the initial data should be chosen in order the Dirichlet
condition to be satisfied on the boundary becomes a non trivial issue. Indeed, (2.28) as initial
data provides a non-trivial contribution on the boundary. Taking »(—h?A)s(hD,)d(, 0 would be
a natural choice: it may be expanded on eigenfunctions of the Laplace operator on the compact
set 2, but we know very little on them. Instead, we use the spectral theory for the model Laplace
operator (2.2) in order to expand s¢(—h*Ay)»(hD,)d(0) in terms of the eigenfunctions of —Ay,
as they have been used extensively in our previous work [9], [12]. This will turn out to be sufficient
for our later purposes. We now recall some properties of —Aj,.

2.3.1. Spectral theory for —Ay: the initial data in terms of model gallery modes. Let —Aj; be the
Friedlander model operator introduced in (2.2), and recall ¢ is a positive definite quadratic form.
Taking the Fourier transform in the y variable, the operator —Aj; becomes —9% + |n|* + zq(n).
For 1 # 0, this operator is a positive self-adjoint operator on L?(R ), with compact resolvent. The
next Lemma is proved in [11] (with q(n) = |n|?, but only using ¢(n) # 0):

Lemma 2.17. (see 11, Lemma 2]) There exists an Hilbert basis of L*(R.) where {ex(x,n)} x>0
are eigenfunctions of —92 + |n|*> + xzq(n), with eigenvalues Ai(n) = |n|* + weq(n)*® = 72(wr, n)-
These eigenfunctions are translated and rescaled Airy functions:

V2mq(n)'/°

(2.60) ex(z,n) = mAi (xq(n)l/s — wk>,

where L'(wy) (from (2.22)) normalizes ||ex(.,n)| r2@,) = 1.
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For a > 0, the Dirac distribution d,—, on R, may be decomposed as §,—, = Zk>1 er(x,n)er(a,n).

Eigenfunctions of —92+xq(n) are e, (z, n) with eigenvalue Ay (n)—|n|* = 72(wi, 1) —|n|* = weg*3(n),
and for cut-offs sz, xo to be chosen, the following spectral decomposition holds

(2.61)  xo(—h20? + 2q(hd,))s¢(hD,)5(a0, Z/ w0 (hiwigs (b)) se(hn)ex(x, n)ex(a, n)dn .
k>1

With xo € C§°(—2¢€0,2¢p), Xo = 1 on [—€g, €], (2.61) is a finite sum with O(ey/h) terms. Setting
6 = hn, from support considerations, taking the support of xo smaller if necessary, we can assume
that X (a/eo)xo(q??(0))2(0) = xo(aq*?(0))s(0), where a = h*3w and X’ (h*?w/€) is the cut-off
introduced in (2.39) (which restricts the support of K, to values w < ey/h%?).

For a < h?/3=¢, the easiest way to define an initial data is to chose the lefthand side term in
(2.61), which does vanish on the boundary (ex(0,7) = 0 for every & > 1). Using both (2.40) and
(2.39), we are left to obtain a smooth function g, such that for Py, as in (2.39) to have

(2.62) Pra(0,2,y) = Xo(—h?0? + xq(h0y))»(hDy)d(a,0) + Ocee (h™).
We proceed as follows : for a given K, such that h=¢ < h=2¢ < K, < h~1/4te <« h=1/4 define &y
and split the sum over k in (2.61),

(2.63) En(, y, a, wy) == / e xo(h*Pwig®® (hn) ) 3e(hm)ex(z, n)ex(a, n)dn

= L’?Zk) / Vxo(h?Pwig®? (h)) s<(hm) g () Ai (2" (n) — wi) Ai(ag' ™ (n) — wi)dn.
2.64) S(-)=¥ (;—;)EM(L yoa,wn) + 3 (B feo) X (;—:)EM(:C, Y, W) -

Proposition 2.18. For all a € (0, h2/3_€) there exists a smooth function gp .1 such that

2
L’(W ) X (W3 wi ) €0) Koy (9h01) (0, 2, ) ZX ( >8M z,y,a,w;) + O(h™).
=1\ k>1

The proof of Proposition 2.18 is postponed to Section 2.3.3, as it requires arguments from section
2.3.2; we will introduce the cutoff x*(wy/wr, ) in the (LHS) term of (2.65) as well, due to how gj, .1
is obtained.

(2.65)

Proposition 2.19. For all a € (0, h¥/37), there exists a smooth function Gh.a2 such that
(2.66) (Y e N (0w feg) X (h*w) Ko (gna2) (0,2, 9))es

NEZ

= ZX ( i ) (R* 3wy, Je0)En (. y, a, wy) + O(h™),

k>1

(2.67) (Y e M (0w eo) (W)X (W) K(9h.a2) (0,2, 9))w = O(h™).

NeZ

We introduced a new cut-off x*(h?w) in (2.66) and removed x*(w) (which is supported for w > 2
and identically 1 on the support of x*(h?*w)). The proof of Proposition 2.19 will be provided in
Section 2.3.4. The sum of (2.66) and (2.67) yields the second term in (2.64). Finally, we have

Proposition 2.20. For all a € (0,h?*7), let gn.a = Gh.a1 + Ghaz, then Ph.a, defined in Definition
2.13 is a parametriz in the sense of Definition 2.5 and (2.62) holds.
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Proposition 2.20 follows easily from Propositions 2.18 and 2.19 using K,(gha1 + Gha2) =
K(9na1) + Ku(gha2) together with (2.38).

Remark 2.21. For later purposes (dispersion for small a, Section 4), taking K, ~ h=2¢ would be
enough. However, in the next subsection, we aim at obtaining gallery modes for k as large as
possible, which turns out to be up to K, ~ h~1/4t¢. This is of independent interest and will prove
useful to deal with the Schrodinger operator as well as generalize [12] from the model case to the
general case; both will be adressed elsewhere.

2.3.2. Pseudo-differential calculus; construction of gallery modes.
Definition 2.22. Let G be defined in (2.12). We set
V2mq(n)'/°

2.68 e(r,y,nw) = ——L e WIG (2, y,n,w).

(2.68) (z,y,n,w) o) (z,y,n,w)

Replacing G(- - -) with Gy (- - - ) := e¥" Ai(zq(n)'/?—w) in (2.68) yields (2.60) instead of e(x, y, 1, w).
Definition 2.23. Let s be like in Definition (2.5). For g € L?(R971), we define

(2.69) Fu (9)(z,y) = (275(1_1 / Ve (2, y, n,wi) (52(hDy ) g) (y)dndy' .

Definition 2.24. Let 5 € C$(R?™!) be such that 3 = 1 on the support of 3 and vanishing
outside a neighborhood of S¥2. Let also x € C§° be a smooth cutoff supported in the ball of
center 0 and radius 1/16 of R, For f € L?(R?!) we define an operator £ as

(2.70) £(f)(y) = / !y =B WD s () x (') f (y' ) dy'd.
where By is the first term in the development of Br in (6.8) and is homogeneous of degree 0.

To define g5,1 and gp a2, We need to "invert” F,, , which requires estimating derivatives of
e(z,y,n,wy) with respect to (y,n): in the Friedlander model case the corresponding mode ey (x,n)
from (2.60) does not depend on y, but here, deriving with respect to y yields a large factor due to
7By in the phase 7I'(x,y,0¢'/3(n)/7,n7/7). In order to get rid of the homogeneous term of degree
zero |n|Bo(y,n/|/n|) in the phase function of e(z,y,n,wy), we set F,, := F,, o £ to obtain a new
operator whose phase function does not include the contribution |n|By(y,n/|n|); we need to prove
that, at least for k < h~'/%, these operators can be inverted and this will be our main result in
this section:

Proposition 2.25. Let 0 < ¢ < 1/4 be small. The operators Fy; o F,, : L*(R4"1) — L}(R*)
are pseudo-differential operators that are uniformly elliptic with respect to 1 < k < h=/4+e1,

Note that we would like to construct quasi-modes for as many & as possible in the next section,
and therefore €; should really be seen as very small. We momentarily postpone the proof of
Proposition 2.25 to perform some preliminary steps.

We compute F,, o £(f) for f € L2(R¥Y), setting é(z,y,n, wy) = e~ MBown/e(x y n, wy):

Py o S0 ) = gy | € 7el,y ) S0 nhiy
1

= —(QW)d—l /y/ /nei(y—y’)ﬂ-i-im(Bo(yﬂl/UD—Bo(y’,n/77|))é(x’ Y, n, Wk)%(hn)x(y')f(y')dndy’.
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Remark 2.26. As 3y’ is small on the support of x(y'), there exists a cut-off x, supported in a ball
of radius 1/8 in R4, such that ¥ = 1 on the support of y and

Fo 0 £()(2,y) = X(y) Fuy 0 £() (2, y) + O(h™).

When it will be necessary to emphasize the small size of the support in y of the operators we will
work with, we will add the cutoff y(y).

Setting ka = F,, o £, we compute the adjoint operator F 5. using that for every f € L2(R1)
and £ € L*(Q) we have < F,, (f),€ >2=< f,F; (£) >L2(Rd 1y. This yields

< o 0).€ 2= [ (ggayamn [ €976, 0)t0m)200) eJtnd= B, )y

/f //6zy —y)-n+ilnl(Bo(y’.n/nl)—Bo(y,n/|nl) & (1’ v, n’wk) (hn) ( )g(l”y)dnd;pdy)dy/
/f dZ =< f ( ) L2(R4-1),

which yields F% (€). We can now explicitly compute F oF,, (f)(z) for f € L2(R%"1) and z € R¢L:

« F X\z i(z—y)m+i 2 - o o R
B0 RN = o [ / GH BB/ 0o ) o oy (1), )y
(2.71) / My(z, ) f(£)d= + O(h™),
where we have introduced the cut-off x(y) and have set

Mi(z, ) = — o (=) a1l (Bo (n/ )= Bo(sn/ 111))) =i ( (= =)0/ +1af | (Bo (" '/ of )= Bown' /1))
’ @m)t Sy

< X)X () el se( ) / g e éle, s w)dedn'dndy.

We let v =v(n, z,y) :==n+|n| fol V,Bo(wy + (1 —w)z,n/|n|)dw (resp. v' = v(n, 2, y)) such that

(z—y)v="(2—y) n+nl(Bo(z,n/|nl) — Boly,n/Inl)),
(2" =)' = (" —y) -0+ I0[(Bo(2,0'/I0']) — Boly,n'/In'])) -

Vv =1;-14+0(|V,Byl|) being close to the identity matrix I for small y, z, |V,n| = 14+O0(|V,Bo|)
and, in the same way |V, 7/| = 1+ O(|V,By|). Denoting n(v, z,y) = v + |v|O(y, 2) the inverse
function, we have n = n(v, z,y) and ' = n(v', 2/, y), respectively, and therefore

1

(2.72) My(z,7") = 2T

/ DY 17 | X () x(2)X(2)
y,0,0

w(hn(v, z,y))2(hn(v', 2, y)) / e(x,y,n(v, 2,9), wp)é(x,y,n(v', 2, y), wp)dedv'dudy.
0
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Taking y = 2 + w, v' = v — ( in (2.72), yields

(2.73) My (z,2") —/ ey (2,2 v)do

el 0 = oy /// e Tl (v, 2,2 + 0) [Tonl(v = ¢, 2,2+ w)
x w(hn(v, z, 2" +w))se(hn' (v —C, 2/, 2 +w))x (2 + w)x(2)x(2)
X é(x, 2 +w,n(v, 2,2 +w),wp)é(z, 2 +w,n(v—C, 2,2 +w),wy)drdwd(.

On the support of the two cut-offs 3¢, h(v+O(z, 2/ +w)) € [1/2,2], h(v—C(+O(Z, 2’ +w)) € [1/2,2],
and on the support of x(2)x (2" +w)x(2' +w), |z, 2| < 1/16, \z’+w| < 1/8; then, set v =2 (=2¢
where 6 € [1/4,5/4] and |o| < 2. In (2.73) we may replace my(z, 2, v) by my(2', 2, v) =: mg (2, v)
without changing the integral modulo O(v=>°) = O(h*). In the new variables (and modulo O(h™)
terms), the symbol of (2.73) becomes

00 = g | [ a0 w0 e,

where

(2.74) ap((Z,0); (w,0);h) == |V n|(0/h, 2, 2" +w)|Vun|((0 — 0)/h, 2, 2 + w)
x s(hn(0/h, 2, 2" +w))s(hn((0 — 0)/h, 2, 2" — w))x (2" +w)x(2)x(¢")

X /000 e(x, 2 +w,n0/h, z, 2 +w),wp)é(x, 2" +w,n((0 —0)/h, 2,2 +w),wi)dz .

Define
S, == {a € C™ such that [0J'0%a(w, 0, h)| < Cgh™ " AIHIFD}
We now prove

Proposition 2.27. Let 0 < ¢; < 1/4 be small. The symbols ax((2',0); (w, 0); h) are in the class
Si_2, ., uniformly with respect to 1 < k < hater,

126,
Proof. We check that there exists €; > 0 such that for every || > 1,
(2.75) hlAl 500 ar(Z, 05w, o; h)|w:0,g:0) < paaldl,
This easily follows from following lemma whose proof is postponed to the Appendix:
Lemma 2.28. Uniformly for h*3w;, < 1, we have:
(2.76) 10, 0,2 8/ o)l zzoy S (wn/n3)

Using (2.74), (2.76), and wy, ~ k?/3, we get that for every |3| > 1, as k < h~1/4Fe1,

WA o808 ay((2,0): (w, 0); h)|w:079:0} < Cgh‘*@'(wk/hl/?’)?'m <, (h461/3)‘ﬁ|’

which proves the Lemma and completes the proof of Proposition 2.27. O]

We now turn our attention to my and recall the classical expansion:
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Lemma 2.29. Let a(w, g, h) : R*™ — C be C* with a € S1 with small €, > 0. Then

_51;

1 w-
(Qﬁh)n/Q/we w0 (w, Q,h)dwdQ—Z ww'aﬁaﬁ a(w, o, h)

Using Lemma 2.29 for n = d — 1 with a; defined in (2.74) and Proposition 2.27, we get that
my(z',0/h) may be written as

(2.77) (<,0/h) = Z

(w,0)=(0,0)

|5\|g|18585ak((2 0); (w, 0); 1)lw=0.0~0-

We may now return to the proof of our main Proposition.

Proof. (of Proposition 2.25) From (2.71) and (2.73),

Bt o, (f)() = / A (2 0/R) ()

where the symbol my(2/,60/h) is given by (2.77) and where, for every k < h~Y/4=¢1 (2.75) holds
true. Moreover, my, is elliptic. Indeed, from (2.74), it follows that

a((#,0);(0,0);h) = o(2',0/1;0,0)[[€(., 2", 0/ h, wie) | 2(00).
where for v = 6/h and = o/h like before, we define
(2.78) o((z,v); (w, Q) = [Vunl(v, 2, 2" + w)[Vum| (v = ¢, 2, 2" + w)
x s(hn(v, 2, 2"+ w))se(hn(v = ¢, 2/, 2" = w))X(2" + w)x(2)x(2).

Using Lemma 6.1 in the Appendix, the e(.,y,n,w;) are almost L?normalized in z > 0 and
le(-,y,m, wi)||z2@>0) ~ 1. On the other hand the symbol o defined in (2.78) is elliptic, there-
fore ay, is elhptlc and ap((',0);(0,0); h) ~ 1 for 0 close to 1; using (2.75), my, is therefore elliptic;
F * o [, are pseudo-differential operators, uniformly elliptic for k < h~1/4+e1, O

2.3.3. Construction of quasi-modes k < h™'/* (proof of Proposition 2.18). It suffices to construct
a smooth function gy, 1 such that, for all k& such that x,(w/wk,) # 0,

2T

mKwk (gh,a,l)(o, x, y) = SM(x7 Y, a, wk) + O(hoo)

Indeed, for a function g(y/', o), let “g(y/, /h) be its Fourier transform w.r.t. o at a/h. Using the
definition of K, (g), we only need’g, ,,(.,w/h'/?) for w € {wg,1 < k < RV}
Lemma 2.30. Let h™% < K, < h™V/%¢ € > 0 small. For1 < k < 4K,, define
. N R
(2.79) fon) = (B, 0 P ) (P (Enrlon)) ) ),
then define gy q1 with: Vk such that (Wi /wk.) # 0,

L (wy)
Vor

and Vk such that x’(wi/wr,) = 0,7G) 0.1(, wi/hY3) := 0. Then Proposition 2.18 holds for gpa..

(2'80) 2§h,a,1('> wk/hl/g) = ’S(fwk) )
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Proof. As k < 4K, < h™Y/4¢ < h™Y* we can use Proposition 2.25 and define f,, by (2.79). For

such f,,, and x,(wp/wg,) # 0, we now define’q,, , ; (y, wy/h*/?) by (2.80) (and zero for larger k’s).
By construction, on the support of x,(wy/wi,), we have F,, (£(fu,))(z,y) = B, (fo)(z,y) =
Em(r,y,a,wy), as we chose f,, such that I o F, (f.,) = F} (Em(.,wr)). In turn, we have

ka <%gh,a,l(-, Wk/h1/3)> (l’, y) = E,'M(x’ Y, a, wk) + O(hoo) :

(inverting ij); using (2.24) and (2.69), L,(w T Ko (9na1)(0,2,y) = En(2,y, @, wi) + O(h*). O

We obtain the explicit form of 2§h,a71 as a corollary of Lemma 2.30:

Corollary 2.31. We keep the notations from the proof of Lemma 2.50. Let
(281> ]a(nvwk) = / e_iyvne(xvyvnvwk>£M(x7yuav wk>dxdy
x7y

For1 <k <K, gnha1 (from Lemma 2.50) may be rewritten

2/ , Tl -
gh,a,l(y 7wk/h1/3) = %/

e ae(h)r (0, wi) La(n, wi)dn,
where r(.,wg) is an elliptic symbol of order 0 and main contribution 1/my(y,n+ |n|0yBo(y,n/Inl))
with my, defined in (2.77).
Proof. We compute explicitly

1
(27)d-1

Fr (Ea)(2) = / gm0 n/ ) / e eln g on) (@, v, @, op)ddydn.
x,Y

Moreover, using (2.71) and 2.73, there exists an elliptic symbol 7(y’,v) of order 0 with main

contribution 1/mk and x supported for v ~ l and equal to 1 on the support of > such that

(Fr o)™ = [ W= (hn)F (v, n)F(z)dzdn. Taking I = F (Ey) yields

1

— /ei(y/_z)'"fk(y',n)%(hn')/ei(z'"u’”,BO(Z’",/WD)]G(#,wk)dn'dzdn.

fwk(y) = (27'(')

Applying stationary phase with respect to z, 7, critical points are z =y, n = n/+|1'|0. Bo(z, 7' /||| .=y
and

1 s ’
fuly') = (2m)d-1 / MWt BW ) gy (of ) o (), con)di

where the new symbol ri(y/,7) is obtained from 7} and has main contribution 7(y',n) = 1/my
and where [ remains unchanged since depended only on 7 and not on x,n. We therefore get

1 L _
L(fu)(y) = W/el(y—y)'n—lnBo(y /1) (hﬂ)/ i(y" - n+n|Bo(y/, n/ln\))rk(y/’n)[a(n’wk)dndy/dn

and integrating in y’, 77 give ¢y’ = y, 1 = n achieves the proof. O
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2.3.4. Proof of Proposition 2.19. Our goal is to obtain gy, 2 such that (2.66) holds. Observe that
the sum in the second line of (2.66), involving &y for large wy, is, using (2.23),

(2.82) Zx( ) (WP e0)Ene(, Y, a, wi)

k>1

= (3 e e () D ey, 00

2T
Nez Ke

and non-stationary phase (with respect to w) easily applies for all |[N| > 2 in the second line of
(2.82), providing an O(h*) contribution (this is just the model case). Therefore, we are left to
obtain g 42 such that

(2.83) /X"(h2/3 )X (h*w ( +Ze“ ) w(9n.02)(0, 2, y)dw

Y / L@ (1213 [0 ) (hw) K o (gh ) (0, 7, ) dw

IN|>2
= [ (2 (e N b0y, 0,01+ 00,

Let us analyze the last line of (2.83), corresponding to the sum over model gallery modes. Here
Eyr is a product of two Airy functions e¥7Ai(—Cyr(z,n,w))Ai(—Ca(a,n,w)), where the phases
Cu = w — 2¢3(n) and ¢y (y,n) = y - 1 are such that (2.5) holds with < .,. > replaced by the
scalar product obtained by polarization of the principal symbol €24 |n|>+xq(n) of the model Laplace
operator Ay,. Using the definition of L in Lemma 2.9, 1+, ¥l =1 — (i—f) (w) — <‘2—;> (w).
As W Pwy, ~ (WK )3 = (172623 > h2/3=¢ it follows that h?/3w is much larger than a on the
support of the symbol of the integral in the last line of (2.83), and we can use (2.20) to write
Ai(—Cu(a,n,w)) = > L Ax(Cula,n,w)). The phase of £y is now
2

(2.84) yon+E/3+&(xq' P (n) —w) £ W= ag'*(m))*?.

Lemma 2.32. In the integral defining Ey(.,w), the usual stationary phase in & applies. Moreover,
for the phase corresponding to N = 0 in the second line of (2.82), we have

O (T, y,mw) =y nE ;((w — 2" P())*? — (w - aql/?’(n))?’/z)-

In the same way, the phases corresponding to N = £1 in the second line of (2.82) are

4 2
Sat s 0,01, 0) F 507 =y kS (0 = 2 P2 + (0 = ag )2 — 207,
Moreover, for x > 2h*/37¢, the integral in the second line of (2.83) is O(h™).

Proof. Let N = 0. The derivative with respect to w of the phase (2.84) of £y, vanishes when
£ = £/w—agB(n). Asa < h?P € and w > wg, = h™% > a/h?3, we introduce a cut-off in
¢ localizing for €| € [%\/@, 2y/w] without changing the contribution of the integral corresponding
to N = 0 modulo O(h™) (for [¢| < 1,/w the phase (2.84) is non-stationary in w). The second
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derivative of (2.84) with respect to £ is 2§ ~ ++/w and for £ such that |£| ~ \Jw > Jwg, > h™¢
on the support of the symbol, stationary phase yields the following phase for N = 0,

2 (w— ag(n) /32

2
¢M,i,i(za y,mn, OJ) =Yy-n + g(w - 1'9(77)1/3)3/2 + 3

We further notice that the phases ¢+ + and ¢y, _ are non-stationary in w: indeed, O,¢nr+ 4+ ~
2y/w and we get O(h™) by integrations by parts. Moreover, taking switching signs, the derivative
with respect to w becomes

(a — )

2y/w

and from (2.85), for z —a > 2h?37¢ —a > h?/3~¢ and wg, < w < ¢gh~?/3, integrations by parts in w
provide a O(h™) contribution in the integral corresponding to N = 0 in the second line of (2.82).
In fact, with £y, as in (2.63), the symbol of the integral in the second line of (2.82) depends on w
only through x*(h?3w/ep)x*(w/wi), and therefore, in order to integrate by parts in w, it remains
to check that, for some € > 0, we have

(2.86) %a&, (Xﬂ(ﬁ)) < I

(z —a)q(

(2.85) Vo — 2@V — fw — ag(n)s ~ a(n)?.

As x*(w/wg,) is constant everywhere but for w ~ wg., (2.86) vanishes everywhere but for w ~ wg;
from n ~ 3 and wg, ~ KZ2® > h=4</3  the lefthand side in (2.86) is at most ﬁ
(2.86) with € = 5¢/3 and we can integrate by parts infinitely many times.

For N = +1 we proceed in a similar manner. Let for instance N = 1, then the phase of
e LWE, s just (2.84)—3w3/?; it is stationary with respect to w for £ = 2y/w — \/w — aq'/3(n).
As w > wg, 2 h7*? > a/h?? we again introduce a cut-off, supported for |¢]| € [/, 2/w]
without changing the contribution of the integral modulo O(h*). Stationary phase then applies in
¢ and provides the phase function ¢p; 4 + — —w3/ 2. We easily see that ¢y 4+ + and ¢y, are non-

stationary with respect to w and provide a O(h‘x’) contribution. We are left with ¢M+ L — §w3/ 2
whose derivative with respect to w is

Vo — 2g)1V3 4 \Jew — g3 — 2V ~ —(z + a)a(n)' P/ (2V)

; we obtain

From a < h*37¢ we obtain that, for x > 2h%/37¢, the phase @p,+ 1 — sw®? is non-stationary in w
and yields an O(h>) contribution. The exact same line of reasoning applies to N = —1. 0J

Remark 2.33. For |z,a| < \}/‘i—/Ta, we cannot get an O(h*°) contribution for N = +1: (2.86) does

not hold anymore even though for z > 0 the derivative with respect to w does not vanish; for such
small values of @ we cannot perform integrations by parts. Specifically, as K. < h~/*, we are to

deal with this case for all |z, a| < h?/3+1/12 = p3/4 (< ;ﬁ)

Putting all this together, the integral in the last line in (2.83) reads as

J 0z () (1 0 ) 25 e = B ) + B )
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where we have set, modulo O(h™),

(2.87) En(2,y,0) = / X (0w /o) (w/wie,) / a(n)"/®se(h)xo(h* wq®? (hn))

< e (A (Gurlrm.0) — (55 ) @A (a7, 00) ) A (Gur(, m, )y,

(2.88) Eu(z,y,0) = / X (0w /o) (w/wik,) / a(n)"/®se(h)xo (h*wq®? (hn))

< (A Gaer ) = () @)A1, ) ) As (Gl ),

where the phase functions of the Airy terms in the second line of (2.87) are ¢4 — and ¢pr— - +
L(w), while the phase functions of the Airy terms in the second line of (2.88) are ¢y _ 4 and
Grr v — L(w). Moreover, for x > 2h%*37¢ Ey 1 (x,y,a) = O(h™) and Ejy+(0,y,a) = 0. This
means that we can introduce a smooth cut-off x;(x/h*37¢) with y; € C° equal to 1 on [—1,1]
and equal to 0 for x > 2h%*3~¢ such that Ey (7, y,a) = x1(x/h?* ) Ey+(z,y,a) + O(h™),
and therefore we need to construct g, such that (2.83) holds with the last line replaced by
x1(z/P?3=)(Ey i (2,y,a) + Ey—(2,9,a)) (instead of Ey o (z,y,a) + En—(z,9,a)).

We now go back to (2.83): the symbol of its left hand side has support in w > h~2¢, while the
right hand side is essentially supported for z,a < h%37¢. For such values of z and w we have

C(a,y,m,w) = w —zn|*Peo(x, y,n/Inl, wr/In|*?) > w/2; using (2.6) we write
G(zayana = ewz <p0A:I: ‘|‘Z|77| 1/3p1A, (C)) = G:I:(Iayanaw)‘

Proposition 2.34. There exists smooth functions gp a2+ Such that, with g2 = Zi Ih.a,2.4+

289) [0 e (1) (Goloynw) - (52) @G- n.0)

a(n)"®s2(h) (g (@, 1)) G2~ (0, w/ B2 dipdw = Bt (w,y, a) + O(h),

290) [ Wi (1) (G- ) = () (@)l m.)
0

x ()% se(hn)e(hry (w0, 1)) Gn.az.+ (0, 0/ 2 )dipdw = By —(x,y, a) + O(h*),

291) [0 e (17) (Gooyn) - (§2) @G- @m0

q(n) " 5e(hn) <(hy(w, 1)) Gh.a 2.+ (0, w /B )dndw = O(h),

292) [ (i (1) (G- m0) = () (@Gl
<l Wﬁ byt = O,

(2.93) Z /e‘iNL(“’)/xb(hz/gw/eo)xﬁ(hzew)Kw(ghﬂg)(0,x,y)dw:O(h‘x’).



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 31

Proof. Proving that both operators in the first lines of (2.90) and (2.89) are invertible is sufficient:
once we define gp, 0+ it will be clear that (2.91), (2.92) and (2.93) hold (using non-stationary
phase arguments). In fact, we notice from (2.89) that g, .2 has to have a phase function whose
derivative with respect to w should equal 24/w + O(a), since otherwise the phase of (2.89) is non-
stationary in w. Introducing such a function g, .2 — in the integral in the first line of (2.92) yields
a phase function (for (2.92)) whose derivative with respect to w behaves like 4,/w and since w
is large on the support of the symbol this allows to perform repeated integrations by part with
respect to w to obtain a O(h*) contribution. In the same way we prove (2.93), since for |[N| > 2
all the phase functions will be non-stationary in w and after each integration by parts we obtain a
factor (N+/w)™!, which will allow to sum up over N to conclude. We are reduced to proving that
we can define gy, .0 — satisfying (2.89) (solving (2.90) follows in exactly the same way).

Proposition 2.35. Let J, := J, + R, with

1) (,y) = / (120 Jeo) ) (W) G (2, 1,7, ) (/5

X q() Y0 52(hn) se(hry(w, 1))@ &M £ (4 o) dndewdy'do.

Ri(f)(x,y) :/Xb(hz/gw/EO)Xﬁ)(hzew)(%)(M)G—(xyy,n,W>X1($/h2/3_E)
X q ()% se(h)e(hry (w, )€™V TH M) £ (| o) dndewdy'd.

.o into the space of functions of (z,y) near (0,0), and
with h as small parameter, J, is an elliptic semi-classical Fourier integral operator. Moreover,

. - -1
17" o Ryl cir2y) = O(R™), hence Jy is invertible and J' = <I +J7to R+> oJ .

The operator j+ is well defined from S!

If we now chose g q2-(y, 0) := J::l(EM,Jr), this achieves the proof of Proposition 2.34. O
Proof. (of Proposition 2.35) The operator J, is easily elliptic and invertible with phase function
¢ + 2¢*? with ¢ and ( defined in Theorem 2.1. The phase function of R, is 1 — 2¢3/2 + 2w%/2.
Therefore the phase function of J;' o R, is given by

2 o 2 o 4.
(294> —¢($, y,n, w) - §C3/2(I, Y, 1, w) + ¢('ZC7 Y, 1, w) - §g3/2(x’ Y, 1, w) + §w3/2’
where x,y are now integration variables. The derivative of (2.94) with respect to x is

_acxynv \/ xynv agwynv \/ xynv 8z¢$y777 )_'_arw(xuyuﬁud))u

where |n|, || ~ 1/h, w,& > h_2E and 2¢'/3(n) < h2/3_5_2/3 = h™¢ on the support of the symbol.
As ¢ = w — x[n|*Peg(x,y,n/|nl,w/|n|*?) with e elliptic and close to 1, the derivatives of the two
terms involving ¢ in (2.94) are such that

WV (@, y,m,w) + 0uC (2, y, 71, 0)/ (2, y, 1, @ } ~(Vwn|?? + Vo).

On the other hand, using Corollary 6.10 and (6.31) in particular, the derivative with respect to x
of 1 is of the form

O, y,m,0) = iy, /) (n) 7 0, m) (@ + 200 (14 Ly, m/In])) + Mz )
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and therefore

1/3 1/3

8x¢(zayanaw)_0x¢(zayaﬁa@) SW|?7| +(’D|f]| >

where we have used that ¢*/°(y)/7(w,n) = [n|*"*¢**(n/[nl)/(Inlq(w/In*?*,n/nl)) ~ [n]'/*. On
the support of the symbol x(h%3w)x(h?*3@) we have |w|,|0| < €h™%/3, which means that the
main contribution of the derivative of (2.94) comes from the terms involving ¢ and behaves like
~ (Vw|n|?? 4+ V&|7|*?), as for |, |7| =~ 1/h we have /w|n|?? > w|n|*/? (wh*? < 1). To perform
non stationary phase and obtain an O(h*) contribution, we check that taking one derivative with
respect to = of the symbol provides a factor O(h¢). Indeed, h?/30,(x(z/h?3€))/\/w ~ h¢//w <

R3¢, which completes the proof. O
To complete the proof of Proposition 2.19, it remains to prove that, for g, .o = j;l(EM7+),
(2.67) holds: but then in (2.67) one obtains a vanishing symbol as x’(h*w)x*(h*w) = 0. O

3. DISPERSION ESTIMATES WHEN ¢ > h2/3—¢

Here again one should think of € as being very small: we may set 0 < € < 1/12 to be consistent
with the parametrix construction we just did in the opposite regime (subsection 2.3), to have an
overlap between both regimes where we get dispersion estimates by different arguments. We now
use the parametrix as a sum over N to obtain the following dispersion estimates, restricting to
positive times for the sake of simplicity.

Theorem 3.1. There exist ag, ¢, C, € such that for all |(t,x,y,h,a)| < ap, one has
o fort < cy/a,
(3.1) Pralts9)| < Ch~min (1, (b))

e Fora > h?3 < t>cy/a,

(32) Phalt,z,y)| < Ch™ (ﬁ) N ((max(a, z))i (%) - h%> :

o Fora < hl/3te

224}
(3.3) Poalt,y)| < Ch—" <%> |

The first estimate, (3.1), is just the (short time) dispersion for a free wave. On this timescale,
the wave has at most one reflection and singularities have not appeared yet. One should point out
that (a suitable version of) such dispersion is already proved in [2], for a more general boundary.

The second estimate, (3.2), is proved using the parametrix as a sum over reflected waves. The
first term is due to swallowtail singularities (and always larger than the corresponding factor in the
free dispersion) and the second term is due to the presence of cusps appearing after each swallowtail
singularity, between two consecutive reflections; notice that here we use the parametrix construc-
tion in an extended region a > h?3~¢ (when compared to the previous parametrix construction in
[0], where it was obtained as a superposition of waves only for a > h%/77¢).

The third estimate, (3.3), will be proved using the parametrix as a sum over quasi-modes, and
we postpone its proof to the last section, where we deal with decay of such quasi-modes.

We start with a lemma which allows to deal with the parametrix “behind the wave front”.
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Lemma 3.2. There exist ¢ and Ty such that , with B ={0 <z < a,|y| < cot,0 < h < t},

vt €10, Ty], sup |Pha(t,z,y)| < Ch™@O((h/t)>).

z,y,teB

Proof. The lemma follows from classical propagation of singularities: for t < a/C} with a large
C1, we apply Melrose-Sjostrand’s theorem in the interior of 2. Now, let Ty be small enough and
consider a given s € [h,Ty]. Rescale with (#,2',y') as new variables and h a new parameter:
t=st',x=s2',y=sy, h="h/s let vs(t' 2", y) = v(st',sa’, sy’) for any function v, then

1
(Ov), = EDSUS with O, = =07 + 9% + s*R(s2’, sy, s 'Dy) .

Set b=ua/s,0<b<c and Ppsp = Sd(th)s; then one may apply the Melrose-Sjostrand theorem
to Ppsp to obtain Pygp € O(h®) for 0 < 2/ < b, || < ¢p and t' = 1, when s < Tj and Tj is
small enough. In fact, Py 5 is a parametrix for Oy, and O, is smooth in s and for s small enough,
O, is close to the usual wave operator —97 + 9% + A, (recall that we picked boundary normal
coordinates, and Ro(y,n) = |n]|*> + O(|y|)). If we denote by Gy s the Green function of O,

Dsgb,s =0in Q, gb,g =0on 89,

with Gy slv—0 = dp0) and Oy Gy s|lv—o = 0, then we have Py 5 = s(hDy)Q(s2’, sy', hDy )Gy s and
its wave front set is described by the Melrose-Sjostrand theorem. To complete our proof, we
need to check the following property of an optical ray o € [0,1] — 74(0): if it starts at 0 = 0
from (b,0,&,mo) with & + R(sb,0;7m9) = 1 and if |no| > ¢; > 0 for some constant c¢;, then, if
7s(0) = (2/(0),y'(0),&' (0),n'(0)), there exists ¢y such that |y (1)] > ¢o > 0. Note that (y',n')(o)
are solutions to the Hamilton-Jacobi equations 0,y = 0y R, and 0,1 = —0y R, with y'(0) = b,
7' (0) = no, Re(2',y/,n') = s*R(sa’,xy’,n'/s). For some ¢ > 0 small, |y/'(0)| > 2¢c10 — cso for all
o € [0,1], and if Ty is small enough, we get the lower bound |y'(1)] > ¢o > 0 for some ¢y > 0. O

3.1. Number of waves that contribute in P, ,. We further localize our parametrix Py ,: let
¢ € C°(R) be even, ¢ = 1 on [—1,1] and ¢ = 0 outside (—3/2,3/2), set x1 = ¢ — ¢(2-), then
define (see (2.24)), for any dyadic 7 (i.e. 1/v € 2V) such that v < ¢,

(3.4)

KeoDltziy) = [ G,y )0 ) el ) (s ) £ (375 )

as well as Py, by replacing K, with K, in (2.39). We just reduced the sum over k to k’s such
that k ~ v*/2/h, where h?/3=¢ < v < . Then, Py .(t,z,y) = > Phan(t, x,y), where the sum is
intended to be dyadic v's with v < €. For v < a, the corresponding P}, o is irrelevant, as the
phase of g, , is non-stationary. Using (2.40) or (2.23),

(3.5) Phaa(t,2,y) = () e NI (0¥Pw/e0) K (gha) (8, 2, 9)

NEZL

We will deal successively with v ~ a and 4a < v < 1. Heuristically, the first case contains ”tangent”
initial directions (worst scenario); the second case contains all ”almost transverse” directions and
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provide less important contributions (even after summing up in 7). We write

(3.6) VN,y(t,x,y)Z/e"'NL(“ "(h*Pw/e0) Koy (gna) (t, 2, y)dw

1 ; -
_ o /eﬁ(th(a,@)—l—@(w,yﬂ,a,a)—@(a,O,G,a,s)—NhL(h 2/3a))X1(a/(“9‘2/37>>
X Xb(a/EO)Xﬂ(a/h’z/g)X(s)ph(xu Y, ‘97 «, U)th(ev a, S)dS dfdoda )
(3.7) Phaq(t,z,y) = ZVNVtxy
NeZ

where the symbol of Vi, (the same for every N) is of order 0.

Lemma 3.3. At fized |t| < To, the significant contributions in the sum (3.7) defining Pp q come
from [N| < [t/ /7

> Vsltz,y) = 0(h™).
INIZ4ltl/ >

The proof of the lemma reproduces that of Proposition 2.14; the maximum number of integrals
that provide non-trivial contributions in the sum over N is 1/4/a when 7 ~ a. Observe that
Proposition 2.14 tells us that for ¢ = 0, only the N = 0 term may contribute.

At fixed t > Cv'/?, we can further bound the cardinal of those N that contribute significantly
among the C|t|y~/? which are left. We introduce a few notations before stating a sharp bound
of the number of waves that can overlap when t/,/7 is large : let N (z,y,t) be the set of N with
significant contributions (e.g., we have a stationary point for the phase in all variables),

(3.8) N(t,z,y) ={N € Z,(3)(0,s, a,0) such that V(, ;00 Pna~ =0},

where ®y , ., the phase function of Vi, for the large parameter 1/h, is defined as follows
4
(3.9) Dy r = t7,(, 0) + B(2,9,0,0,0) — ®(a,0,0,a,s) — gNoﬁ"/2 + NhBg(a®?/h).

Let (t,z,y) such that N'(¢,z,y) # 0 and assume without loss of generality that ¢t > 0 and ¢/,/7 is
large. As we shall see below, at a critical point (o, s, @, ) of Py 4,

y+ VB9 _ 5. o), ly + VBo(y, V)]
|y + VB (y, )] t
and on the support of the symbol 1, a ~ v < 1. Therefore, as By(y,w) = O(|y|?) and VBy(y,w) =
O(ly?), it N (¢, z,y) # 0 then we must have |y‘ =1+ O(ly)).
Consider first d > 2. Let ¢ satisfy 4y < ¢ < E and such that 1 —c < %
¢ does exist since otherwise N (¢, z,y) = 0). As By(y,9) = O(|y|?), |y

=1+ 0(w),

< 1+ ¢ (notice that such
< Ty with Ty sufficiently

small, there exists J = @(t, y) € R4\ {0} such that, with Y, = V, %(% V),
(3.10) j__Yt+VbByv) 2(Iy + VBy(y,9)| 1) [Vq(}?) __3YBa(y.9)
ly + VBo(y, V)] ¢ q(v)  2t(1 — Ba(y,9) /)

as a fixed point of a continuous map from a ball to a ball. In fact, as By(y,0) (resp. Ba(y,0))
is homogeneous of degree 1 (resp. 0) in ¢, so is VB, (of degree 0), hence the right hand side in
(3.10) does not depend on |¢J]. Uniqueness follows by taking differences and using smallness of By.

Moreover, for sufficiently small ¢ and T, we have |0] € 3, 3]. As we shall see below (in (3.39) from
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Lemma 3.10), 9(t, , y) is an approximation (modulo O(*/2/t) terms) of the critical point ¥, of the
phase @y . Let (¢',2/,y") be such that N'(¢',2,y") # 0, then 1 — ¢ < % < 1+ ¢ and there exists

J(t',y') solution to (3.10) with (t,y) replaced by (#,3'). We now define a cylinder C,(t, z,y) as the
set of (t',2’,y’) such that

(3.11) (' = Ba(y', (¢ 9/))) — (¢t = Ba(y. 9(t, 9)))| < rov/7,
(3.12) |2/ (1+ €y, O(t', ) — (1 + Ly, I(t, y)))| < 7o,
(3.13) ly' + VBo(y, (', y))| —t' — |y + VBoly, d(t,y))| +t| < ro7*?,

and let, with N defined in (3.8),
(314) Nd1>2(t> z, y) = UCW(t,x,y)N(tla l’,, y,)

For d = 2, replace VBo(y,0(t,y)) by Bo(y), Ba(y, (t,y)) by Ba(y) and ((y, J(t,y)) by £(y) to
define N}, (¢, x,y).

Proposition 3.4. For any d > 2, the following optimal upper bound holds for N} defined in (3.14)
(3.15) NG ()| S O) + 5721t (72 /h)

Remark 3.5. A particular case of the two dimensional version of Proposition 3.4 has been proved
n [9, Lemma 2.17, Lemma 2.18] in the case a > h*" (and without the 7 cut-off), where we proved
IN_,(t, z,y)| was bounded by a constant and that N (¢,x,y) C [1,t/(2v/a) + No], with Ny being
an absolute constant. For a ~ v >> h*7 and || < 1, one easily sees that [t|/(v*/2(73/h?)) = O(1).
Indeed, ¥7/2/h? > 1, hence the right hand side term in (3.15) is O(1). Therefore, if 4 > h*7  we
only get non-trivial contributions from an uniformly bounded number of waves at a fixed . The
case v > h*3 was recently dealt with in [12] where Propositions 3.4 and 3.13 were proved in the
2D Friedlander model domain. Compared to [12], there are significant additional difficulties with
angles in the higher dimensional case (even in the model situation !)

Proof. We first provide a proof in all dimensions d > 2 for the model case, with A,;: a parametrix
of the wave equation reads as (3.7), where Vi, has symbol x1(a/(7|0|*3))x" (/o) x* o/ h*3) x ()
and phase function ®y/,_ given by

4
@%m(t, z,y,0,8,a,0) =tr,(a,0)+ Py (2, y,0,0,0) —Ppr(a,0,60,a,5) — gNa3/2+NhBL(a3/2/h),

where @y (z,y,0,a,0) = y-9+%3+0(:zq1/3(9) «); note that the only difference between ®y/,  and

L. o 1/3 0 0 s 1/3 0 0
P,y comes from the additional terms 7, (v, 0)T'(z,y, % ey (0)), amy) ~Tal,0)l'(a, 0, f(a (9))7 )

(difference between ®,; and ®). In the model case, without the additional phase function T,
we rescale v = vX, t = AT, y = /Y, and our cylinder C,(t,z,y) and N, simplify to

NpM™(T, X, Y) o= UenrrxyNM(T', X', Y') and

CM(T, X, V) = {(T", X",Y) : [Y' =Y| <ro,|X = X'| <1, ||[V/| = T' = |V + T| < ro7}.

Note that (X', Y”,Y”) € C)/(T, X,Y) implies |[Y'|—[Y]| < o, \Y\‘IY—/—%‘ < 2rgand |T"=T| < ry.
We also rescale 0 = /7]6|'/*S, a = |0|*3A, s = \/7]0]'/*S and we let A, = L~ *2 Define our new
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phase to be (with large parameter 1/h replaced by \.)

Y 0+ T/1+ 7A@R0) | 33
WY, (T,X,Y,2,5,A,6) = o] (~5F ;7‘1 ()+§+Z(qu/3(19)—A)

8 a, 4 N
= “ o 1/3 . - 3/2 o 3/2
T~ SCaW) - 4) - 3NA )+ )WBL(\G\)WA ).

The phase WY, defines a Lagrangian A}/, which is described by V4 s59¥} ., = 0:

2/3
(3.16) L0 (v g) - aNAY2(1 = SB(joh,AY2) — o,
2/1+ 1 Ag3(D) 1
(3.17) Y24 XgB39) —A=0, S+ %ql/?’(z?) _A=0,
1/3
Y + T9\/ 1+ ~vAg?3(9) + 7( T4 W) + (XX — S%)Vfi?@
(3.18) 1+ yAg*3(2) 77/ 3¢*3(0)

+ZI(S* = ) = SoNAV(L - 2B (60, 420,

where we used the second and third equation for substitution in the last one. We recover [9,
formula (2.13) to (2.15)] when d = 2, with small adjustments due to our (more complicated) phase
construction there. Assume, without loss of generality, that 7" > 0, then eliminating N between
(3.16) and (3.18),

(3.19)

; B _(1 L APEE) YA () 2 A® - 8) 4 (S° - 23))>29

N 1T VT T A2 3Y1 T @) | 3T
[ YAPW) ol o0y Ya(¥)
( T ARPW) | T (o Sv>)

3¢*3(V)
Using that 9 - Vq(9) = 0, we compute |Y'|?/T? and expand its square root to get

Y] _ V423 2y 3 3 2
(3.20) = = 54 (0) + 7 (AZ - 9)+ 5% -%%) ++%¢,
where £ = £(1/T,XX — S%, A, S, %, 19) is a smooth function of its arguments (that may be com-

puted explicitly, although irrelevant). We then compute

V]~ 3

(3.21) Y _ -4 <Zg’((?)) + 2 mx - s YaW) L g

T 77 3q%3(0)

where £ = £ (1/T,2X -8 %, A, S, %, 1) is an explicit smooth, vector-valued function. Later we will
use O(7?) < O(v/T), as T /7 = O(1). We now estimate the distance between any two elements
of NJM(T, X, Y). Pick (T, X,Y) with T > 0, and let N; € N;™(T, X,Y), j € {1,2}. There
exist (7}, X;,Y;) € C)' and there exist (0; = |6;|0;,4;,%;,5;), j € {1,2}, A; close to 1, such
that (3.16), (3.17), (3.19) hold. Taking the difference between (3.16) for j = 1,2 and using (3.17)
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(B2 = 0(1)) and 4T} = O(At;) = O(/7),

21—Sl+22—52

3 / /
(3:22) Ni—No =3 (NiBL(101MAY?) = NaBy (16:10,43)) -

A VA,
T1¢**(91) B T5g*(9,)
4A}/2 V14 vA¢23(0) 4A;/2 V14 7A2q%3(05)
(NN, Tig*3 (%) Tag*3(d)
_ O<T> +0(1) + VR

Remark 3.6. The first term in the first line of (3.22) behaves like (|Ni| + [Ny])/A2, using that
B'(ONA%2) ~ - /{’5 1z and 6, A ~ 1. We cannot take advantage of the difference, since each term
N;B'(-) corresponds to some 6;, A; (close to 1) and, although the difference between A; turns
out to be O(1/T), we do not have any better information about the difference between |6;| than
bounded by a small constant on the support of x;. Therefore the bound (N7 + Ns)/ )\3 for the
terms involving B} in (3.22) is sharp. As N; ~ Tj, and |1; — T'| < 1, this contribution is of order
T/ X5

We are reduced to proving that the following difference (from (3.22)) is O(1). Write

2/3 T3 o3 (Th —13) o3 15
(3.23) A1/2q ) — A1/2q 13 (9) = Tq () + W(Q(ﬁl) —q(2))
+ Ty () (e — ————).

A1g?/3(01) Asq?/3(02)
As Ty =Ty < |Ty = T| + |To — T| < 2ry, it remains to prove

Lemma 3.7. Let (T, X,Y) be fired, let (T}, X;,Y;) € C)' and let (0, A;,%;,S;), j € {1,2} with
A; close to 1 such that (3.16), (3.17) and (3.19) hold, then

(3.24) TPy — 5| S1, T|Ag*?(01) — Axg™?(02)] S 1.

Proof. When T is not too large, (3.24) immediately follows. We consider T sufficiently large. For
T5,Y;, Aj, 9, (3.20) and (3.21) hold. Taking difference between (3.21) for j = 1 and j = 2,

VERESE
Y Y,

Sl 2 2
N = (01 — 02) (1 — 27 AgP (1)) — 057 (AP (9)) — As® (9
V)| + V5| (V1 2)( 37 14777 1)) 3 9y (A1g”° () 203 (1))

Vq(9>) Vq(¥h)  Vg(dh) v
A 3(91) — AP (0,)) L + AP (9 — =
+ y(A1g™* (1) 2q"""(2)) 2(92) + A1 ( 1)( (1) (92 >+O(T)’
where we used that O(7) = O(7;) = O(7). As A;’s stay close to 1 and 9J; € S¥2 we get
Y Yy
v —9)(1+ 0 =(—-——+—=—)+0().

Y1

Using | — w |- o+ yﬂ‘ < 24 and T|0 — 2] S t(2ro+ O(\/7)) S 270, we obtain the

Y2|} -
first inequality in (3.24). Taking now the difference between (3.20) for j = 1, 2,

(|Y1| [Ya|

I T ) = (A1¢*3(91) — Asg*3(9)) + O(%);
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and using |(|Y;| —T;) — (Y| = T1)| < rov, |11 — Ta| < 2rp and (3.20) with j = 2 yields

6T Y Y-
T|A1q2/3(191)—A2q2/3(192)| |Tl | 2|‘+O
1
6T\(\Y1\ 1) — (|Ya| - 2)| 67 ([Ys (T, —T)
< — —-1)—= 1
e T1 Y <T2 ) T, +0)

< 127’0% + 2ro— <A2q () + O(T%)) +0(1) = O(1),

where, again, on the support of the symbol x1, A, is close to 1. The proof of Lemma 3.7 is complete
and, combined with (3.23) and (3.22), this yields (3.15) for the model operator A ;. O

We now proceed with the general case, following the same steps as above. We first deal with the
most complicated situation d > 2. We also rescale variables as follows o = ,/7]0|'/3%, a = ~|0|*/2A,

s = /70|35 and let \, = L— 2 With 9 = 6/]0] we get ¢(6) = |0]2q(9), 7,(cv, 0) = 7,(YA|0]2/3,0) =

0]/ 1+ vAg*3(0) =: |0]7,( vA, ). We retain space-time variables (¢, z,y) as our phase function
is no longer homogeneous in y. Recall that

(I)(ZE', Y, 97 «, U) = qt>M(l’a Y, 9) «, U) + Tq(Oé, 9) (Bf(y> 9/7—11) + I’AF(ZIT, Y, 0q1/3(9)/7_q’ 9/7—11) 9
where 7, = 7,(a, ) = \/]0]2 + ag*/3(0). Let
Bory(,y,0, A, 5) 0 = 107 Por(x,y,0,7[0]A, \/70]' /%))

3 x
. 322" T 1309y _
Y-+ ( 3 +E(CeT0) A))-
Set . (z,y,7, A, %) == 0] ®(x,y,0,7]0]*2 A, \/7]0]/>S), then, using the homogeneity in |6,

(3.25) By (2,9, A, ) 1= Day (2,9,0, A,5) + 7,(vA, ) | Br(y, 9/7,(7A4,9))

VIZGRW) 0 ﬂ
T (VA 0) Ty (vA9) /1T

+ SL’AF (SL’, Yy,

. - VASE3(9) 9
. (a,0,0,A,8) == By (a,0,9, A, S) + 7, (vA, ﬁ)aAp<a 0 Tq(%ﬁ)),

where in the last line we used that Br(0,9/7,) = 0 and where in the new variables we have

%

(3.26) 74(vA, 9) Br(y, m)

— Boly, 9) + (1 — 7,(vA, ¥)) Baly, 9)

A Y (s = 1 Bay(0.9).

\/72611/3(?9) Y _ 1/3
(3.27) 7,(vA, ) Ar (I,ya ,(vA, D) ’Tq(WAaﬁ)) = (V74 / (0)Xl(y, V) + Hj>s

2/3
+ 2 — Aty

where we used (6.29); homogeneous terms of order j in H;>3 have weights ﬁj . We also set

(328> &)N,a,’y(t7 z,Y, 27 Sa A7 9) = (I)N,a,“/(tv x,Y, ﬁ‘6‘1/327 ﬁ‘9‘1/357 7‘9‘2/3147 9) )
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and from (3.9),

(3:29) Dwa(t, 29,5, 5, 4,0) = 0] (ty/1+ 7 AG3(9) + B, (2,5,9, A,%) — 8,(a,0,9, 4,9))
4
— g73/2|9|N,zr°>/2 + NhBL((|0])\, A¥?).

The phase function (fN#m defines a Lagrangian Ay and, as in the model case, we obtain a
parametrization of mn(Ay) by (d + 1) parameters (p = |0|,9, %, A) as follows

(3.30)
( t'yq2/3(’l9 _ 3/2 £1/2 3 , 3/2
a0 +6‘A( S(2,y,9, A, %) — . (a,0,9, A S)) = 2N32AY2(1 = 2B, (pA, AY?)),

. 7o (yA0) VIRGEW) g =
24 2(¢P () + Viﬁaz (Ar(x Y, ) ’quAﬂ)))) =4

. T (YAD 75420
52+ 2 (g3(0) + 20200 (Ar(a,0, YR, S0 ) ) = A,

tW+® (x,y,0,A, %) — <I>(a019AS) 132N A32(1 - 3B (p\, A3/2)),
| 00, (tVTHAAPR) + &, (25,0, A,5) - 8,(a,0,0,4,5)) =0, VI<j<d-2,

where ¥ = (U1, ...,9;_1) € S¥% and, as t # 0 implies |y| # 0, we assumed that y,_; # 0; then

Vg1 = £4/1 — Zj fﬁ? The last line in the system (3.30) reads as follows

- - 9 .
(3.31) 99, P00y — aﬁdflcbowﬁ =0, je{l,..,d-2}.
-1

/ S /3(
With ¥ = %Ai};ﬂ, g—g = *ﬁ;&l ) the second equation in the system (3.30) reads as

2 . T 13 i S —
ot g @) (1+ 05 (4r(z,y.%, Tq(WA’ﬁ)))) A.

We further compute, with 7, = 7,(vA,9) = /1 + vA¢*/3 (1),
(3.32) 8,4&)7(:5, y, 9, A, %) 0A7‘q<z ( >B2k(y, V) — Bz(y>?9)>

k>2

8 T,
3/2( _ Alq 1309
92 (= 2+ 220 (mAr ey V7SO 07 )

where the last term in the second line is small and behaves like zO(/7); indeed, it follows from
(3.27) that 8, (1,Ar) = —v¢*3(9) = A),u(y, V) + H;>3, hence its main contribution is O(7y) (here

we have also used the second and the thlrd equations in (3.30) which imply that 32, S? < 24 where
the phase may be stationary in X, 5). Using that for £ > 2, all terms in Br come with factors
O(+?) and a7, = 7¢**(¥)/(27,), the main contribution in the first equation in (3.30) reads

() (t — Ba(y, V)

2T APR)

We now turn to critical points with respect to ¥ and deal with the last equation in (3.30).

248 +0(/Ax) + 00 ly]) = INAV (1~ By (pA,4°%).
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Lemma 3.8. The last equation in the system (3.30) has two solutions, denoted ¥+, such that

Y+ VBy(y,9y) YAPP W) 1Yq(0z) 1
B99) 0= B T+ VBt 0] L3q(0) (P20 72)) ~ 57 Bl
y3/2 Vq(i) [ a T 1/3 o8
_ PRSI [36]2/3(191) (;2(1 +(y, V) — ;S) + ;Eq / (V) V (U(y, 191)):| + mgiu

with E4(t, x,y, val ¥) smooth functions. Moreover, <7y+VB°(y’ﬁi;‘> ¥y =+1+ 7\y+£30\5i-

t
ly+VBo|’ t ? ly+V Bo(y,9+

Proof. Using (3.31) with ¥2_, =1 — Zd_z 92 (Zj;f |019j(i)07aﬁ|2>’l93_1 =(1- 193_1)|819d71(i>07aﬁ|2.

J=1"3
We eventually obtain

O, qN) a 0, (i) a 0, (i) a
(334) ﬁd_l =+ d_lﬂ(F1 ~07 & 21172’ 19]' - ﬁd—l 193 97 — == d—1 19] ON’ - 211/2°
(32521 109, P2V 09y P00 | 22521199, Poan [
For each sign + there exists an unique solution as the maps from S%2 to S%2: ¢ — i‘gzgz’“’”l
5@y

each have a unique fixed point for small |y|, ¢ (as By = O(|y|?), B2 = O(|y|?) and + is small).

In the following we approximate the equation satisfied by 9 up to O(y?) terms. This will turn
out to be useful later on, in the proof of Proposition 3.13. Using (3.29) with N = 0 together with
(3.25),(3.26) and (3.27), we write

§>07W(t, x,y, %, S, A pl) = p(th + (iDMﬁ(a:, y, 0, A, %) — éMﬁ(a, 0,9,A,S)

x ~
+ Bo(y, V) + (1 — 1) Ba(y, 9) + vs/z;ql/:)’(ﬂ)m(y, 9) +°T, (2, a,y,9, /75, V7S, A)),

where we have set, for 7, = 7,(7A, V),
(3.35)

0y =92 (7 Br(y, 0/7) = Bo(y,¥) = (1 = 7) Baly, ¥) + (7, Ar = /72" (9)((y, 9)) — a7, ArS ).

From (3.26) and (3.27), T, is a smooth bounded function and

I, = (17‘4 (Biy.0) + Z@ =~ By(y0) + (PO~ Al 9) + 7 Hyzo)

a

(PO = A)p(0.9) 477 Hyzs).

where homogeneous terms of order j in v 'H,>3 come from Ar and have factors /2=1 5 > 3 and
where (1 —7,)%/72 = A%2¢*3(9)/(1 + 7,)? is bounded. We compute explicitly

1 = o ' 1A 2/3 20,q(Y) . . 2 .
(330) 00,00 = 357+ 03 Baly.9) + 20 0) [ 0 = By, 0) = 0, Bt )]
0;q(V) (x a x -
3/2 J v ¢ L 1/3 ' 2
T [3(12/3(19) (72(1 + {(y, 7)) ”YS) + ’yzq (ﬁ)ﬁjf(y,ﬁ)} +7 aﬁjry-
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With VF = (93, F,...,09, | F), let Q; = q2/3(19)(2vr1(v9)(1 _ Bz(y,ﬂ)) _ 2 VBz(y,ﬁ))7 Q, =

3q(9) t T+r, ¢

3(723:&@)( S+ Ly, 9) - £ ) + %qu/g(ﬁ)VK(y, ), then, using (3.36) we compute,

d—1 . o ot
(3.37) E:K%@mWP:wy+VBm+WQy+fﬂQy+fVD4:4y+VBﬁF_]——%EJ
j=1
Q. . ( y+ VB ) 2312 ‘ ( y + VB ) 72 ( 28+t /7Es +754>}
ly+VBo|l/  |y+ VB ly+VBol/ " |y+ VB ly + VB ’

where we have set & = 2( y+VBo ) -Vf‘y, E =% E =20 - (O + ﬂny), Ey = |N)? +

w+VB\
VI - (VL) + 4|V, 2 As B = ﬁ - |y+éB  is small when t/\/7 is sufficiently large, the

coefficient of £ in (3.37) is bounded by O(,/7). All the three terms &; are smooth, bounded
functions and we relabel their sum as follows

28 + t/7Es v V7
5+ 5:5t7 ) 777—779'
TR R PR R e 7 A
We eventually find
(gjaé FYQ—I+VBKL%—1L—<Q yt+ VB
j=1 e — ’ y+ VB T ly+ VB
3/2 2
Y y+VBO ¥ -
<, > + 5)
ly + VB ’ ly + V By| ly + V By|

where € is a smooth function of (¢, z, y, m, ‘{, ) obtained by taking the square root in (3.37)

and using the asymptotic expansion of /1 + k =1+ /2 + O(x?). From (3.34) we have
y + V By +vtQ + 7%/2Q, +42VI,

+0 = :
¢ +VB 32 4VB =
[y + VBl (1 T Iz/JrVVBolQl ’ <\Z+VBE\> * |y+VBo\Q <|3+VBEI) + \y+FYVBo|,R’)
Setting Q; = |y+QVB . and using (1+ k)™t =1—k+ O(k?), we obtain, for another smooth and
bounded function E(t, x, Y, ‘y+VB i {,19)
y+ VB, ~ 3/9.5 P
iﬁ:{7+tﬁ+ 2Qy +~*VID +VB}
ly + VB Yiiy T 2T /Ny ol
A y+VBO 3/2 6 y+VBO ,}/2 M
iy (LETB) ag, (1EVBY g
Ty VB T P\ VBl Ty + VB
Y+ VDB vt ( Y+ VB _<y+VBO>)
ly+VBol " ly+VBI\ Jy+ VB \ly+ VB
L ( _ Yy+VBy _(y+v&)> Y.
|y + VB ly + VB ly + VB ly+ VB’
and replacing ‘zigg& in the last two lines by +0 —ytQ; —7%2Qy — 12V, /|y + VBy| yields (3.33)
where £, are smooth, bounded functions of (¢, z, y, m, \é—, ). O



42 DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS

Remark 3.9. For t > 0, considering the critical point satisfying (3.33) with + sign in the left hand
side term produces O(h*) contributions, as the critical value of the phase is not stationary in
p. Therefore in the following for ¢ > 0 we pick ¥.(¢,z,y, 3,5, A) := JV_(t,x,y,%, S, A) such that
(3.33) holds (and for t < 0 one should take 9, := 9, ).

In Lemma 3.8 we only considered critical points of ® N.a~ With respect to 9. In the next Lemma
we deal with critical points with respect to A, p and ¥ of @y, ., where p = ||, § = pv.

Lemma 3.10. Let t > 0. If VApﬂ(i)N,an/ = 0 then there exists a smooth, bounded function
E depending on (t,z,y, m, ‘{,19) such that for the critical point with respect to 9, that we

denote 9% (and for which (3.33) holds with 9_)

By(y, V! 1 Bs(y, ¥ 32 /2

t t t \3
3 x 93 2
o+ B+ Uy, %) - A) - T = (S - 4)) + L€
3 ol 3 ol t
Moreover, the critical point 9% is such that
# # g 1 3
|y + VBo(y, ve)l t q(de)  2t(1 = Ba(y, ve)/t) t

Proof. From Lemma 3.8, (3.33) holds (critical point w.r.t. ). Let 8A§>N,M = apéNM = 0 (first
and second to last equations in (3.30)): substitution between the two equations yields
t\/1+yAg2B(0) + &, (z,y,9, A, %) — &,(a,0,9, A, S)

_ EA( t7q2/3(79)
3 \24/1+vAg¥3(0)

+0A( Sy, 0, A, %) — (aOﬁAS)))

and using (3.25) and (3.32) we further obtain, with 7, = 7,(vA, ), da7, = v¢*3(9)/(27,),

3/2 ¥? 1/3 s? a /3
(3.40) try+y 9 +7°2 (- +35(Eq W) - 4) - = - 5(%g (19)—A)>+Bo(y,19)
3 7 3 ¥
+(1-74) Ba(y, 9)+9*2 2 g3 (0)St(y, 0) 47T, = 20447 [t By(y, )+ 0 ( )B (y,9)
q 2\Y, ~ 3 27_(1 2\Y> e 2k\Y>
2

a0, (ryAr(w,y, VASG ) 70, 9/7,) ) by, (74Ar (0, 0, 5S4 (9) /70, 0/7,))| —573/2(2—5),4

with I', defined in (3.35). As, from (3.27), we obtain d,, (r,Ar) = —y¢**(9)(22 — A)u(y, 9)/72 +
H;>3, we define a smooth, bounded function IUTY

£, = 142(0) [Z%(%)sz@ﬂ

-
q k>2

T a
4 20n (ry (e, y, 750 0) o, 0 /72) ) = 2 0n (raAr(a,0, /350 0) 73,0/ 73) |
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Note that T, = %@((liﬁq) —z(3?* — Ap(y,9) + a(S* — A)v(0,9) + v 'H;>3), where terms in

H,>3 come with wights 47/2 and j > 3. Equation (3.40) becomes

1 1 o
t+y- 09—+ Byly,V) = —yAg?? () (t — By(y,? — ) =3I, -T
+y -0+ Bo(y,V) = —yAq*(9)(t — Ba(y, ))(1+rq 3%) v (I —1y)
¥3 x S3 2
— P =+ 2(=¢ P14 0y, 9)) — A) — = — S(=¢"P(W) — A) + (X - 9)A) .
(G ECAPO Uy 0) = A) = T = SCaPE) - )+ 50 5)4)
As 72— 1 =7A¢*3/(1 + 7,) and (1+T - %) T+ (7272(11)J(r1(72(7 1;/12))/4), we move the part of the

coefficient of (t — By(y, 1)) with factor 4 into the next term. Recall By(y,v) = 9 - VBy(y, V),
which eventually yields

11 (=D~ (7 —1)/4)
B i — —~A 2/3 - B - ~ \'gq q
3/2 ¥? 1/3 S? a 173 2 2T F
— (G A BCAPO+ y9) = A) = T = S P) = A) 4 (5= 8)4) (T, - 1),
As 4 is itself a critical point, we obtain, using the last statement of Lemma 3.8 and Remark 3.9,
that (3.33) holds with — sign on the left, and that ¥ - (y+ VBy(y,9)) = —|y+ VBy| +y?E_. Asa

result we obtain (3.38) with £ = (¢, z, v, Y7 9), defined as follows

ly+VBo| +VB [t
L 1 A2*3 () (1= (17 —1)/4)
=0,-T _+ = 1 t — Bs(y,v
£:=1y =L+ &+ 5 - ¢a+og—wm% 2(y, 7).,
which completes the proof of Lemma 3.10. O

Pick (t,z,y) with ¢ > 0 and N (t,z,y) # @&. As already noticed, we must have ||y|/t —
1| < ¢ (since otherwise N(¢t,z,y) = 0 by (3.38)). Let now N; € Nj(t,z,y), j € {1,2}.
Then there exist (¢;,z;,y;) such that N; € N(t;,z;,y;) and (¢;,2;,vy;) € C,(t,x,y); there ex-
ist (0, A;,%;,9;), j € {1,2}, Aj close to 1 such that (3.30) holds with (¢, z,y,0, A, %, S) replaced
by (tj,xj,yj,ﬁj,Aj, Ej, S]) Then we have, with 79]‘ = 9j/|0j|7

3 / 3/2 q2/3(79j> 1
3.41)  2N;(1— SBy/(|6,|\, A%%)) = —(t; = Bo(y;,9;)) + O1),
( ) i ints (1612 ] ) 2A]1./2\/1+7A-q2/3(29j)\/§<1 2(Y; J)) (1)

X, a
(3.42) 2+@$ﬂﬂmm1+a%ﬁp+ﬁpg Aj, 87+ 2 P01+ Hiza) = A

(3.43) %“*VB“Uﬁﬁﬂ::_§j+7AﬂwWﬁﬁ[a__Bﬂwﬂ%%<}ﬁ“_vmﬁﬁ)

) tj 27 3q(9;)
~3/2
+—NBMm )| +0E—).
J

Taking the difference between (3.41) for j = 1,2 yields

3 / /
@M)M—M:Z@meMﬁﬂ—mmwwﬂ?ﬁ+mm

(t = Ba(y1,01))@*°(01) (2 — Ba(ya, U2))q**(92)
LAATHAAGRED)  4yFAY T+ 7 Aq? 3 (0y)
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Using Remark 3.6, the first term in the RHS of (3.44) is O(%) We are reduced to proving

’(tl — Ba(y1,01))q(Vh)  (t2 — 32(?/2,?92))61(?92)‘ — O(7).
A1g*3 (V1) Azg*3 (V)
This will follow from the next lemma :
Lemma 3.11. Let (t,z,y) be fized, let (t;,x;,y;) satisfy (3.12), (3.13) and let (8; = 10;|9;, A;,2;,S;),
J € {1,2} with A; close to 1 such that (3.41), (3.42) and (3.43) hold true, then

(3.45) tlor — dal SV, A (0h) — AP (95)] S VA
Proof. If \iﬁ is bounded then both inequalities in (3.45) follow immediately. Suppose % is suffi-
ciently large. From (3.43) and (3.33) we get (as in (3.38))

ly; +VBo(y;,0;)| —t; 1 2/3 3/
(3.46) LBy, 0;) g b W)+ O

y; + V Bo(y;,7;) 2/3 Yq(0;) Bs(y;,9;)
3.47 9= — A, 1 - 2 t)
(8.41) T X AR Rl k7o s | Gl )

1 73/2
= 5 ¥ Bals,03)] + O —).

j
Taking the difference between (3.47) for j = 1 and j = 2 yields

y1 + VBo(y1,91) Y2 + VBy(ya, 92)

U —Us] = — + O(7).
1= 0 = | S B 9]~ T VBt gl O
As VBy(y,9) = O(|y]?), T | < 2Tfy“ﬁ from (3.12) and ﬁ ~ 1, the first inequality in (3.45)

holds true. We proceed with the second one, which is, as for the model, more delicate to handle.

3/2

Lemma 3.12. Let 9; = 9;(t;,y;) be the solution to (3.48) below, then [9; — V| < %
Y + VBoly; U;) _ _2<|yj + VBo(y;.9,)| 1) [VQ(@) _ 3YBa(y;.9)) ] '

. 9 . Ba(y;,9;
t q(0;) 251 — 2l

(3.48) 0, + ’
" yj + VBo(y;, ;)

Proof. The coefficient of vA; in (3.46) does not vanish as Bs(y;, ;) = O(|y;|?) and |y;|/t; ~ 1; we
replace yA; in (3.47) by its first approximation given in (3.46). We obtain

_ y;+ VBy(y;,9;)
ly; + VBo(y;, ;)]
. Bo(y:. 0, . Bo(1:. 0. 3/2
_ 2(|?/J + VBy(y;,9,) _ 1) [VQ(ﬁJ) _ 3y 2(3](7 @é?) ] O(L)
t; a(0;)  2ty(1 - 20ty

Taking the difference between (3.49) and (3.48), using VBs(y;,9) = O(|y;|?) and smallness of

ly;+VBo(y;,0,) 1
tj

(3.49) 0, =

, completes the proof of Lemma 3.12. O

Using (3.46), in order to achieve the proof of Lemma 3.11 we are reduced to proving that
t lyr+ VBo(y, V1) —t1  |ya+ VBo(ya, U2)| — 1o

— =0(1).
32 t1 — Ba(y1, 1) to — By (Y2, V) (1)
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Set §; = y; + VBy(y;,7;) and write

il =t B[t ‘ 91| — t1 +ta — |5
tp — Ba(y1,U1)  ta— Ba(ye,02)| = |t — Ba(y1,9h)
1 1

—(ts — |4 B
(2 |y2‘)t = Ba(y1,01)  ta— Ba(y2, U2)

< ’|y1 + VBo(ylﬂglﬂ —t1+to— |y + VBo(y2,1§2)| ‘ n ’|?J1| — |y + VBo(y1>?§1)| ’
- ty — Ba(y1, V1) — Bs(y1,Y1)

‘|§2| — |y2+VBo(y2,1§2)|‘ |T2| — to Ht2—B2 Us)
ty — Ba(y1, %) ty — Ba(y2,V2) 11ty — Ba(y1, %)

and using (3.11) and (3.13), Lemma 3.12 and (3.46) for j = 2 yields

-]

t 91| =t \ﬂ2| — 1o t " ro®/?
V21t = By(y1, 1) t2 — Ba(ya, )| ~ 4372 ty
t il y
*W < (02Ey 9, - 3y + oy, - i)
t |t2 = Ba(yz, U2) — t1 + B2(y17191)‘ v |? 3 |y2/? o
—7 —~ 2|9, =1, ) = O(1).
Foapx 0 x (P s O =0 | +O(E0 12 =a]) = O)

For d = 2 the proof is much simpler (no angle ¢/). In this case Lemma 3.11 reduces to obtaining
suitable estimates for |A; — As| ; this follows from the 2D equivalent of (3.46) which reads

|yj + BO(yj)| — 14+ é,ij (1 . B2t(yj)) + 0(73/2/t),

t j
and we are done with Lemma 3.11. O]
This completes the proof of Proposition 3.4 in the general case. O]

Proposition 3.13. Let (t,x,y) such that N'(t,z,y) # (0. Then,

> Vi (t, 2, y) = O(h).

NN} (b2,),INIS

Proof. We, again, consider first the model case: in rescaled variables T, X,Y | the Lagrangian AN

is defined by (3.16), (3.17), (3.18). We start with integration in 0 : WY/, = \Ifg{w 10| N A2 +
NBL((|9|)\ A%/2) and the last two terms do not depend on ¢; V3wl = V3w = |Y‘ xO0(1) =

% x O(1). Using Lemma 3.2, we have |y| > ¢o|t|, hence critical points with respect to ¢ are

non-degenerate and stationary phase applies (providing a factor (Aﬁ,%)_(d_z)/ 2 < (B)[@=2/2) | Let
t > 0, then using Lemma 3.8 with I' = 0 (hence By = By = [ = 0), there exists a smooth, bounded
function &y such that the critical point (associated to the — sign in (3.33)) is

YA T Yq(=dy) = v a) Ya(=dy) 2
3.50 V.= -0 ———7+— XX -8

(350 YT i) T T s T
where we set Jy = Y/|Y|. The critical point (up to its sign) is unique, and from Lemma 3.10 (in

the model case) we see that we recover (3.21). Let p := |f| and denote \PIVI%W(T, X, Y, 5,5, A, p) =

gM—>
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\II%M(T, X,Y, 2,5, A, pd.) the critical value of the phase at 9. given above, then

(3.51) WX, (T,X,Y,%,5,4,p) = + 5+ B(X ¢ A W.) — A)

¥ 3
N

4
el — A) — SN A3/? _
3 7Y 3 >+Aﬂ,

Y i+ Ty/1+~vA¢2R0.) X3
o
Br(p\,A%?).

Define sets of integers related to stationary points of this phase:

NMT,X,Y) = {N € Z,3(3,5, A, p) such that V(s 5.4, VN, (T.X,Y,%, S, A p) =0},
N\ile(Ta X> Y) = UCQ/I(T,X,Y)Né/w(T,> X,a Y,) :

One sees that NM(T, X,Y) = NM(t,z,y), which implies /\/\%}’M(T, X,Y) = N;M(t,2,y), where
T,X,Y , 2, ). indeed, if N is such that there exists a critical point (2, S, A4, p) for ¥
vAEiRv e
t (T,X,Y), then (2,5, A, p,9.(T, X,Y, %, S, A,a,v)) is a critical point for % and the converse
N,a,y
also holds. We now need to prove that

> VRL(T, X, Y) = O(h™),
NENZM(TXY)INIS 5
where V3’ (T, X,Y’) had phase ¥}/, that became \i/]]‘\/,[ o~ after the stationary phase in o.
Let first 4a < +: stationary phase applies in S. Indeed, WY N.a~ 18 stationary in S when S? +
2q ¢/3(9,.) = A and for £ small enough there are two non-degenerate critical points Sy (with main

contributions 4+v/A). We denote by Ul NM the critical values of the phase WY _ at Sy. For
e € {£}, we define

N,a,y

NPT, X,Y) :={N €Z : I, A,p) such that V(s 4, Vx5 (T, X,Y,5, A p) =0},
NGMET, XY ) o= Uemrxy N (T, X, Y') and - N NJW5(T, X,Y) = NJU(T, X, Y) .

If N e /\/'é/[(T, X,Y), then there exists a critical point 3, S., A., p. for the phase \IINM, Se
satisfies S? + %ql/?’(ﬂc) = A, hence S. € {Si}. Therefore (3., A, p.) is a critical point for
@%M(T, X, Y. 5,50, A,p0,s,.) = \Ifﬁw Conversely, let 3., Ay, p1 be a critical point for \I/Nm,
for each sign e € {£}, let ST denote both solutions to S2+3ql/3(19 |a.5..5) = Ae, then (3., SF, A., p.)
are critical points for \IINM and both inclusions hold. Using ﬂi./\/’éy’i(T, X, Y)=NJT, X, Y) we
obtain NN (T, X, V) = N™(T, X,Y) and therefore (N (T, X,Y))¢ = UL (N "(T, X, V)",
where (N, \ill’M)c is the complement set. Hence, the proof of Proposition 3.13 for Ay, (for 4a < )
rests on proving

> Vald (T, X,Y) = O(h™),

N¢Use{i}/\fl M1, X,Y), NS %
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where now VJ\JXI ;” has phase function \i/%;ﬁ/ and its symbol is obtained from the one of Vi’ after
stationary phase in S. Using (3.51), we obtain, with 1, satisfying (3.21)

. 2/3 3
Y i, + T/ 17+ 1ACREW) | R0 - A

2.a 43 32 4 3/2 N 3/2
—(— J.) — A —=NA — Br(pA, A7),

N (T, XY, A, p) =

Lemma 3.14. There exists a uniform constant ¢ > 0 such that, if N ¢ Uae{i}/\/’é’M’e(T, X,)Y)
then, for all (3, A, p) on the support of the symbol of ijgfi(T, X,Y),

(352) ‘V(E,A,p)\iﬁv,a;y(Ta Xv Yv 27 A7 p)‘ Z C.

Remark 3.15. The lemma allows to conclude the proof of Proposition 3.13 in the case 4a < 7 as,
using (3.52), we apply non stationary phase with respect to (3, A, p) and obtain a contribution

O(h®™) for each such VNM7 the sum over N is finite (up to |N| < \/_) and we can sum up.

Before dealing with the proof of Lemma 3.14, we go back to (3.16), (3.17) and (3.18): we set
S = S.(A,9) is such that S? + %ql/?’(ﬁ) = A. For each € € {£}, we explicitly obtain the integral
curves (T:, X¢, Y:)(A, %, 0) depending on the parameters (A, %, 0),

( Xs(Au 2,19)([1/3(19) =A- 22, S —c. /A — 1/3(&)7

2/3
(A2, 0] 0) s = 2N A2 (1 = 2BL<|9|A»YA3/2>> + (2 = S.(4,9)),
T.(A, 5,10, 9)¢**(9) 2 YAV q(9)
Y.(A, 3, 16],9) = — 1+~APP(9)) + L=
(3.53) ( 1.9) 1+ 7 A@B W) (q2/3(19)( TATT) + 3 q(V) ) v

£

¥3 2
3

4
(5 4 BP0 — A) — e282)0 + SN AV - ZB’L(|9|>\ A32y)

ay 173, 4 Yaq(9)
( —7<2X5(A,2,?9)_S€§>q/ o)

Taking the scalar product with ¥ in the last equation and using that ¥ - Yq(¢) = 0 yields

> »3 1 2 4 3 3, 3
Voo + To19agt ) + 2 (5 + B} 0) - 4) - e257) = Sanada - 2By, ah),

which is nothing but the derivative of the phase with respect to p = |6|.

Proof. (of (3.52)) Fix (T, X, Y). Let N ¢ Ueey Ny *(T, X, Y), hence N ¢ U.e(y N3 (17, X', Y")
for all (T", X", Y") € C}(T, X,Y’), which is equivalent to V(EAP)\II ST XY 5, A, p) # 0 for
all (T",X",Y") € C)(T,X,Y). Pick asign e € {£}, let (T", X’,Y’) € Cy(T,X,Y), and let
(A, %, p) be a given point (on the support of the symbol of VZ%EV) let S.(A,7,) and 9!, be solu-
tions to S? +2 ¢'/?(¥) = A and (3.50), where in (3.50) we replace (T, X,Y) by (1", X', Y’) and
where the 81gn of S. is e. We may compute V(4 x ‘if%fﬁ(T’,X’,Y’, ¥, A, p), taking advantage
of ¥, and S.(A,¥,) being stationary points for Wy, (---) to cancel their derivatives. Let now
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0 € 8772, using (3.53) and S.(A,¥) = £,/A — 2¢'/3(0)), we get

o VL) — T'q?/3(9.) _ Teq*/3(9) AN
aA\II (TaX aY> ) 2\/1+’YA‘12/3(19/¢) 2\/1+'yAq2/3(19) +S€(Aa190) S&(A>/l9)a

azxy% (T XY ) = Xg B(0L) — X' B (0),
(3:59) 0,035 (T, X, Y", ) = 7 (Y- 0+ T 1+ 9AGH (9) — Y9 — T/ 1+ 7Agh (9)

Na’y

/ / o g 3 y _ Q3
\ +2(X'gh W) — Xegh(9)) — 5 (SEA 0 - SHAL)).
Recall that v, is provided by (3.50) with (7', X, Y') replaced by (77, X', Y”); the same formula holds
for ¥ with (T, X,Y) replaced by (7%, X., Y:). For such ¢’, (resp. 9) we have Y’ -, = —|Y'| + O(?)

(resp. Y. -0 = —|Y.| + O(»?)). Setting vZ' := —|Y'| +T" and vZ. := —|Y.| + 1., O \If%jV may be
rewritten as

0B (T X' Y, ) = AQLUME (T X7 Y7, ) 4 S0 B (T X',V )

2 2 ASAD) - S (A - (T S | o)

where all the small terms O(7) come with differences 7"¢**(¥9.) — T.q*3(¥9), ¢'/*(¥.) — ¢'/3(¥9),
X'g"3(90) — X.q"/3(¥) etc. Using (3.54) we bound the gradient of \IINM

(3:55) (104, |+ 105V | + 10,V ns DT, X', Y 5, A, p) < 4(IT'g 2/‘?’(19‘/) — T.g**(9)]
+1g" 2 (00) = ¢ P ) + 1X'q P (0) = Xeg P + 12" = Z2)).
As N ¢ NgM5(T, X, Y) implies that V(g 4, Wy (T, XY, 5, A, p) # 0 for all (T', X",Y") €

CM(T, X,Y), it follows that the right hand side of (3.55) doesn’t vanish for any (A4, %, p,v). Hence,
for all (4,3, p) on the support of the symbol and for every ¢ € S4-2,

(3.56) (T-(A, %, p,9), X (A, X, p,9), Z(A, X, p,9)) ¢ B, (T, X, Z), ~vZ=—|Y|+T.
In fact, if the last statement does not hold, then there exist (A, X, p, ) such that
(1T = Te(A, 5, p, 0) | 4 | X = X (A, X, p, D) + |2 = Zo(A, X, p, 9)| < o
Taking (77, X", Y") = (1., X.,Y.)(A, X, p,0), vZ" = —|Y'| + T, then ¥, = 9 and therefore the
right hand side term in (3.55) vanishes which contradicts (7, X', Y") € C}(T, X,Y). As (3.56)
holds true for all ¥, it also holds for ¥ = ¥, from (3.50) (corresponding to (7, X,Y, %, A, p)), and
T —T.(A, 5, p,0c)| + [ X = Xo(A, 5, p,0e)| + 12 — Z.(A, 5, p,0e)| = 70
Moreover, at (T, X,Y, %, A, p) and ¥ = 9, we obtain from (3.54)
q2/3(196)
2\/1+7A¢?(0,)
Os U (T, X, Y, 5, A, p) = ¢ (0.)| X — X,
Ag**(9.)|T — T2
14+ /1 +vAg¥3(,)

|T - Ta(Aa Za P, 196)|a

|8A\I]Na'y|(T7X?KZaA7p) =

‘ap\il]]\\?,i«A(Ta X7 szvAap) Z |Z - Ze(szvpv 790)| - - |E|q1/3(190)‘X/ - X€|7
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and therefore there exists a uniform constant (depending only on ¢) such that

(0T |+ 100 TME | + 10,855 (T, X, Y., 4,p) > C(T = To(A, 5, p,0.)
+ |X - XE(A> Zapa 190)| + |Z/ - Za(Aa Za Ps 190)|) > CTO'
which allows to conclude the proof of Lemma 3.14. O

Let now a ~ . We rescale variables as follows s = \/a|0|'/3S, o1/a|0]'/*S, a = a|0*/3A, let A =
Ao = % and WY (T, X,Y,5,5,A,0) = &N, . (VaT,aX,/aY,/ald|'*S, /al0|'/2S, a|0]*2A).
The saddle points of WA satisfy S? = A — ¢'/*(d.) and they undergo coalescence when A =
¢*?(¥.). Let xo € O be a smooth cutoff, equal to 1 on [0,00] and equal to 0 on [—oo, —2].
Then (xoAi)(—(|0|\)*3(A — ¢*/3(¥..))) is a symbol of order 2/3 supported for values (|0]\)%/3(A —
¢2(9,)) < 2 and (1 — xo)Ai(—(|0|N\)*3(A — ¢"/3(9.))) is supported for A > ¢'/3(¥J,) and is equal
to 1 on (|0|A\)¥3(A — ¢*/3(9.)) > 2. Notice that on the support of (1 — xp) the Airy function can
be written as a sum of two contributions A4 ((|#]A\)?/3(A — ¢/3(¥.))) corresponding to the saddle
points Sy. We split the symbol of V! in two parts using xo + (1 — o) = 1 and notice that on the
support of xo the Airy function behaves as a symbol of order 2/3. Therefore we can write each

integral Vi’ (t,z,y) as a sum V' (t, 2, y) = Dec(o4) V]yf(t,:c,y) where for ¢ € {£}, Va'° has
phase ‘if%’ia(T, X, Y, %, A, p) while V]%O has phase function Uy, .(¢,z,y, 2,0, A, p). We are left
to prove that for ever € € {0, %} the following holds

> Vel (T, X,Y) = O(h™).
N¢NyM (T, X,Y),IN|S1/Va

For ¢ € {£} we act exactly like in the transverse case 4a < 7 since on the support of (1 — xo)
we obtain two distinct saddle points Si. For ¢ = 0 we use the fact that we got rid of variable S
hence 0sVUn (T, X,Y, 3,0, A, p) = 0 and act again as in the previous case, completing the proof
of Proposition 3.13 for the model Laplace A,;.

We can now proceed with the proof of Proposition 3.13 in the general situation. Recall that
the phase of Viy is @y~ (¢, 7,9, 0,8, @, 0) = t,(, 0)+®(x,y,0, o, o) —P(a, 0,0, v, s) = NhL(a3/?/h)
(see (3.9)). Rescaling s = /7|0|'/2S, a = 7|0|*® A we obtain a new phase ®n - (t, 7,9, %, S, A, 0) :=
Pnon(t, 2, y,0,5 a,0) whose saddle points S. are solutions to the third equation in (3.30) that
we re-write here, using (2.51),

(3.57) S? + %q1/3(19) (1 + 7‘[]21) = A,

where terms in H; come with factors O(77/2). As this equation is independent of ||, we recover
that Sy = Si(a,v,9, A) are independent of 0| or N.

Let first 4a < v; as A is close to 1 on the support of the symbol, critical points S are non-
degenerate and have opposite signs. Stationary phase in S yields (fN#m € {éi\,’w}, where for

e € {£} we set <i)§V7a’7(t,x,y, 2, A,0) = Oyt z,y, 5, 5., A 0). Assume t > 0. For £ € {#£}, let
Ne(t,z,y) == {(N € Z,3(, A,0) such that V(s 40P% -t z,y,3,A,0) =0},

then N(t,z,y) = Ne=xN(t,z,y). Indeed, if N € N(t,z,y), then there exists a critical point
e, S, Ae, 0, for the phase (fN#m; S. satisfies (3.57), hence S, € {Si}. Therefore (X, A.,0.)
is a critical point for <i>N7a,y(t,x,y,E,Si(a,%19, A),A0) = &)ﬁ,an' Conversely, if Y4, Ay, 01 is
a critical point for &)ﬁ,an/’ then (X4, St(a,v,94, Ay), Ay, 04) are critical points for @N,ap,. For
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e € {£}, let NJ°(t,2,y) = Ue, oy N(t',2',y'), then we have N} = NN, and therefore,
(N1)¢ = Ueeqany (N )¢, Proposition 3.13 will follow from proving
(

3.58) Ve € {£}, > Vo (tz,y) = O(h),

NEULN* (tay),INIS s

where V5 _(t,z,y) has phase function Ci)}:v’a,,y and symbol obtained from the one of Vy . after
stationary phase in S. For every N the phase Cffv,m has two critical points with respect to ¥,
which are non-degenerate. Indeed, Cfﬁ\,,m depends on N through —NRL(|0|\,A%?) and therefore
14

its dependence on ¥ comes only through (i)O,a,'y — ®gon|s—s.. Moreover, V?@QW = |y|O(1),

(V3®0.4-)"" = Jy|~'O(1) and using Lemma 3.2 it follows that |y| > co|t| and in particular y # 0.
Lemma 3.8 provide the explicit form of the critical point . and for ¢t > 0 we set 9.(t, z,y, X, A) =
v_(t,x,y,%, S, A). Let p:= || and set

- 4
\I]if,a,’y(t’ z,y, 27 A7 p) = (I)S,a,'y(tv z,y, 27 Av pﬁc) - ngfy3/2A3/2 + NhBL(pA’YA3/2) )

N (t, z,y) = {(N € Z,3(%, A, p) such that Vg 4 )V, (t,2,y,5, A, p) = 0}.
Remark again that Ny-(t,x,y) = N¢(t,x,y): indeed, if N is such that there exists a critical point
(3, A, p) for Uy, at (t,2,y), then (X, A, p,V.(t, 7, y,%, A)) is a critical point for &%, and the
reverse statement holds as well. Let ¢ € {£} and N ¢ N;°. Then N ¢ N=(t',2/,y') for all
(t',2',y') € C,(t,x,y) and therefore for all such (¥, 2’,y’) we have

Visan Py, .2y, 5, A4,0) #£0, V(A S, p).

This translates into N ¢ Ny (t',2',y) and V(s 4V, 2",y 5, A, p) # 0 for all (¢',2',y') €
C,(t,7,y) and all 3, A, p on the support of the symbol of V5 _(,z,y).
Lemma 3.16. There exists a uniform constant ¢ > 0 such that, for all N ¢ Uae{i}J\/’é’E(t,x, ),
(3.59) Vi an¥yaq 2,9, 38, A,p)| > cy?/?
for all (3, A, p) on the support of the symbol of V.

This lemma allows to perform non stationary phase in Vi _ (¢, x,y) with large parameter A, and
conclude that (3.58) holds true.

Remark 3.17. We need to define the integral curves of (i)?\f,a,'y : recall that (3.30) allows to pa-
rametrize the Lagrangian Ay; the projection mx(Ay) can be parametrized by (p, ¥, %, A), with
p~1 9 €S2 A S on the support of the symbol of Vy, and S € {Si(a,v,9, A)}. We
define the integral curves t. = t.(X, A, p,9,a,7), 7. = (X, A, p,9,a,7), 9 = §(Z, 4, p,9,a,7)
(as we did in Remark 3.14 in the model case) such that (3.30) holds at (f., ., J.). Therefore, at
a given point (p,9,%, A), (t.,Z.,7.) is defined such that (3.30) holds with (t,2,y) = (t., Z., Je),
S =S.(a,7,9,A) and § = pd). Using Lemma 3.8 with ¢ € {91} and (¢, z, y) replaced by (t., Z., J.),
we obtain (§. + VBo(f, 9))9 = —[ + VBo(f, 9)| +7*O(12).

Proof. Let (X, A, p) be a point on the support of the symbol of Vi (¢, 7,y), let ¥ € S92 and define
S:(a,7,9,A) to be the solution to the third equation in (3.30) (where 9 is replaced by ¥) with

sign €. Let (t., 7., 7.) == (t., %, 9.) (2, A, p, 9, a,7) denote the corresponding point on the integral
curve (as in Remark 3.17); then, by construction of the integral curves,

V(A,E,p)\ili\[’aﬁ(fsv 3%87 g&a 27 A7 p) = V(A,E,p)&)‘]g\/"a,»y((gsu '{i‘m g&)(27 e 77)7 27 A7 pﬁ) =0¢€ R3 .
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Using the explicit form of (3.30), this translates into

V63 (9)
2\/1 4 vAg?3(9)

- N 3 3 3, 3
(fe — Ba(3e,9)) +72(S — Se(a,y,9, A)) = 2Ny2 AY3(1 - 1 BulpAAz)) + 0%,

3%5(1 + g(ﬂ& 19) + O(ﬁ)) = 7(“4 - Ez) )

((?Je + VBy(y., 9))0 + t}) — (1 —71,(A,9))(t. — Ba(9e,9))
2[5+ (T @)1+ G 0) + 07 - 4) - 5 = 5. (S PO+ 01 - 4)]
= SiNAT( - 2By, ah) + 0(Y),

where the last equation is obtained using the second to last equation in the system (3.30), as
satisfied by (tc, Z., 9.)(2, 4, p, ¥, a,7), 3, Se(a, 7,9, A), A, p, 9. Let (t',2',y') € C,(t,z,y) and let
U5, = J.(t',2',y', 3, A) be the critical point of ®% ,_ (¥, 2", ', %, A, p), then, for any ¥ € Sé-2,

vq**(9)
2¢/14+7¢*3(0;)

VA(]2/3(19) 7 ~ 3/2 ' 2
- te_B 8719 - SE a,”, caA _SE a, 719714 _'_O )
5 1erlqz/gw)( 2(9e,0) = 77 (5:(a, 7, U, A) = Se(a, 7,0, A)) + O(77)

(3.60) 05, =23 (P00 (14 0 + 01 = P02 (14 £03.,9) + O1),

(3.60) D405, = (t' = Ba(y', 9,))

(3.62) 0pWiay = (¥ + VBo(y', 7)) - 9, + 1) = ((§ + VBo(Fe, 9)) -9 + 1)

'Vqu/s(ﬁ/c) r A ’VA(]2/3(19) o ~
2\/1+7Aq2/3(19/)(t By (y',97)) 2 /1 + AP (D) (t-: = Ba(ye, 1))

#9775 ( L P+ 1) + O — g @)+ 43,0) + Oy)

2

=72 (SHa 7. 0L A) = SHa 7.0, 4)) + O(7),

where in the last line we used 2= + Se ( "B+ 0G7)) - A) = 32 4 O(\/7).

Remark 3.18. All terms O(+?) are smooth functions of differences: ¥, — 1, ¢**(9.)(t' — By(y',9.)) —
PP (t. — By(e, 1)), q1/3(19’c)%l - ql/?’(ﬁ‘)“%s as well as (f(y',9.) — f(J.,9)) where f is either
By(y, V) or VBy(y,d) and such that f(y,9) = O(|y|*) or f € {Bax(y,9), VBax(y,9)} is such that
f(y,9) = O(Jy|) and coefficients O(y*™*) instead of O(y?), or f € {a;(y,¥),7v;(y,V)} (where a;,7;
are coefficients of homogeneous terms of degree 25 in Ar) with coefficients O(y%7/2).
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We then obtain and upper bound for V45 ,¥% , ., (similar to (3.55))

VP04V o+ 1005 5| + 10,050, D 2" . 2 A, p)
2/3(19/6)( — B2(y,719/c)) _ q2/3(19> (te - B2(ﬂ€779))
v v

100 = D1+ OWAN + I )DL+ 0y, 9) = ¢ PO 1+ g )

(W' +VBo(y' 0) -+t (§e+ VBo(§e, V) -0 + te
T ’ 73/2 N 73/2

§C<q

2|

O 7l ).

where the term |¢'/3(00.) — ¢*/3(9)| comes from (Sa(a,%ﬁ’c,A) — S.(a,~,, A)) and the term
O(VY — 3| comes from differences involving By, aj, ;. The constant C' > 0 depends on gq.

Lemma 3.19. Let (t,z,y) be fived, let (X, A, p, ) belong to the support of the symbol of V5, then
(t€7 :'%57 g€>(27 A7 p7 197 a7 /7) ¢ C’Y(t7 x’ y)'

Proof. 1f not, then taking (',2',y’) := (tey T, o) (X, A, p,9) we have ¥, = 9, (¢',2',y') € C, and
Vs, V., 2y, 5, A, p) = 0, which cannot happen for N ¢ Ny (t', 2, y). O

We now prove (3.59): from the previous lemma, for all A, ¥, p we have (., 7., §.)(Z, A, p, U, a, ) ¢
C,(t,z,y), where 9. = ¥.(t, x,y, X, A) is the critical point of @Nw(t x,y, %, A, pd) given in Lemma
8 (with ¥, =9_(t,x,y, %, A) for ¢t > 0). This yields

t— 32%19(157?/)) - te — B2(?\J~/E%Q9(t5’ga) + |§(1 + £(y,1§‘(t,y))) — 7(1 + ﬁ(yeﬂ?( €7y€)))‘

n |y+VBo(y, ( ))‘ —1 |ye+VBO(y€719( €7y€>)| E
73/2 73/2

(3.63)

> Tp.

As (3.60),(3.61) and (3.62) do hold for any ¥ € S92, taking (¢',2,y') = (t,z,y) and 0 = J.(=
U.) = Ve(t, 2,9, %, A) yields Sc(a,v,7;, A) = S.(a,7,9, A) and therefore, for all (4,3, p) on the
support of V5 _ (¢, z,y) and (., 2., J:) = (L, Tc, =) (5, A, p, ) we have

(t - B2(y7790)) . (‘l:e - B2(g€7790>>
VA ] VA

20505 o |t 2y, 2, A, p) = q1/3<m>|§<1 + 0y, 0.)) — %(1 + 0§, 9.)) | + O(VA)

‘ (y + VBO(yv 790)) ' 190 + t) - (ﬂe + VBO(gsa 190)) ' 190 + 56)

B - 1
V|04 ot 2y, B, A, p) = 54 ¢**(9,)

+0(/).

VIR0, W o (2, y, 5, AL p) >

73/2 73/2
1y (= Ba(y,9e) (e — Ba(3e, Ue))
54 (¥.) 7 ~ % ‘

- ql/?’(m)@(l + Uy, ,) — %(1 +0(5:,9.))| — O(vA),



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 53
and therefore there exists a uniform constant C' > 0 (depending only on ¢) such that

(3.64) Oy (10405 0| + 10505 01 10,050 D (E 2y, 5, A, p)

(t - BQ(ya 190)) i ({5 - B2(g€7 190)) E . % -
> [ TR Sy 90) (U 90)

(y + VBo(y, V) Ve +1t) (e + VBo(fe, V) - Ve + L)
+ ‘ 73/2 N 73/2

o).

As (y + VBo(y,¥e)) - ¥e = —ly + VBy(y,9.)| + O(v*) by Lemma 3.8, (g + VBo(¥,Ve)) - Ve =
—|9+V By(7e, V)| +O(~?) by construction and Lemma 3.8, the last line in (3.64) may be rewritten
as

|y+VB ( )‘_t ‘g€+VB (gsaﬁc”_ge
33/2 N 073/2 —0().

As (L., 7., 75.) = (Lo, T2, §-)(3, A , p,Uc) is the integral curve associated to (¥, 4, p, Uc(t, 2, y, ¥, A)),
it follows from the definition of J(¢,y) in (3.10) and Lemma 3.12 (applied to ¥, and J({, 7.)) that

(365) |1§(t~87 'gE) - ﬁc(t’ ZIZ', y> 27 A)| = 0(73/2/55) )

which further yields

2
e+ Bl )| — 5+ VBo(ie 00, 32))| = O %),

We now consider the difference between 9, and 9J(t,y) : the assumption of Proposition 3.13 is
N(t,z,y) # 0, hence there exists Ny € N (t,z,y) for which ®y, .- is stationary with respect to
A, p, ¥ and from Lemma 3.10 it follows that (3.38) must hold. Then ﬁ(t,y) is an approximation
modulo O(7%/2/t) of the critical point ¥ (when we consider all variables (4, p,1))) satisfying (3.39).
From the formulas (3.33) for ¥, and (3.39) for 9%, we always have |0, — 9.*| < 7, but this is not
small enough to conclude. If |0, — 9.F| < ~3?2/t, then, using (3.63), (3.64), (3.65), we obtain

(y+ VBo(y, 9e)) - P — (y + VBo(y, 9(t,9))) - 9(t, y)| = O(|y[*+*2 /1) = O(ly|+*?).
Suppose that, with 9.* given in (3.39) from Lemma 3.10, we have v > |0, —9.*| > 43/ /t such that
(3.66) [(y + VBo(y,90)) - Ve — (y + VBo(y, 95)) - 05| = ron™2.

Let Cy > 2 be such that [|g(J)[[ < Cy. If the first line in (3.63) is bounded from below by
70/(10C,), then using [, — I(t,y)| < |9, — 05| + [95 — D(t,y)| < v, the second line in (3.64) is
bounded from below by r¢/(20C,) (if \/7 is small compared to ry) and we are done. Therefore
we are reduced to considering the first line in (3.63) bounded from above by r¢/(10C,), which

is the same as assuming that [940(¢, 2,9, %, 4, p)| < 7¥/?r9/10 and |9sT% ., (t, 7y, 5, A, p)| <
v%2r4/10. We prove that, if, moreover, (3.66) holds, then v3/2|9, \IfNay(t x,y, %, A, p)| > ro/5.

As 7_3/2‘8A®E(t7 r,Y, 27 A7 p)‘ < ;87 we find

q2/3(790> (t — Ba(y,v.))
2 V7

(2= 8ula7, 0, A)) + O(y/7) ~ 2N AVA(1 = 2B (0, 4%)| < 010,
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Recall that
AP0, (t = Baly. v.)
2 Vi
+ (234 ZCAP@IL+ Uy, 90) + 35u(0 790 4)) = VAT = Bi(pA A7) + O(7)

VRO, =72 (0 + VBo(y,0) - b+ t) -

and therefore, by substitution in the NA%? term,
Aq2/3(190) (t B Bg(y, 190))

2005~ (7 (10 Bl 00) 0.+ 1) -

N
2 2
b (/34 SR 0 00) + 350700 ) = 52 = 5100700 4) ) | < v/ 10

With 9.* given by (3.39) in Lemma 3.10 (recall that it is independent of N), we have

AG(0) (¢ = Baly, 7))
6 Nl
3 i 1/3 8 2 8 2
(34250 POA + Uy, 0) + 55ula7, 95 4) = 5

7_3/2 <(y + VBO(y> ﬁcﬁ)) . ﬁcﬁ + t) -

S(Z— 8,7, 0% A))) +O(/7) = 0.

Taking the difference between the last two equations and using that [, — ﬁcﬁ| < v and that
differences always provide functions of ¥, — 9., we get, using (3.66)

V0, 0| = 77|y + VBo(y, 00)) - Ve — (y + T Boly, 9)) - 0

— O(/7) — r0/10 > %0

Therefore we always have ’V@ A,p)‘i"?\/,m 2 ro/5, which completes the proof in the case 4a < v. O

Let now v ~ a. We write ®n 4, := Py ~na and rescale variables as follows s = \/5|6’|1/ 33,
o\/al0]?8, a = alf|*?A and let A = )\, = # We define
(3.67) Dyaalt, 9,8, S, A, 0) = Dyt x,y,/alf]3%, Vald|/3S, al0|3 A, 6).

Let so(a, 0, a) be the unique solution to 92®(a, 0, 6, o, s) = 0 and let s4(a, §, a) be the critical points
of ®(a, 0,0, a) (see Lemma 6.9 from the Appendix for details on critical points s of ®(x,y, 6, a, 7)),
then after rescaling variables we obtain at most two critical points such that

Su(a,0, A) — So(a, 9, A) = 1) L20%4) 4 Lo a0 T aA))),

a

where ((a,0,9,aA)/a = A — eg(a,0,9,aA) is the phase function introduced in Theorem 2.1,
with eq elliptic and close to 1. In this case ((a,0,7,aA)/a is close to 0 and Sy are real only for
((a,0,9,aA) > 0. We now repeat the argument from the model case : let xo € C'™° be a smooth cut-
off, equal to 1 on [0, c0] and equal to 0 on [—oo, —2]. Then (xAi)(—(]0|\)*/3¢(a, 0,9, aA)) is a sym-
bol of order 2/3 supported for values (|0|A\)*3¢(a,0,9,aA) <2 and (1 — xo)Ai(—(|0|N)?/3¢(---)))
is supported on A > ey(a, 0,1, aA) with value 1 on (|8|A\)*?3¢(a,0,9,aA) > 2. On the support of
(1—x0) the Airy function may be written as a sum of two contributions AL ((|0|\)*3¢(a,0,9,aA)))
corresponding to critical points St. We split the symbol of Viy in two parts using xo+ (1 —xo) = 1
and on the support of xo the Airy function behaves as a symbol of order 2/3. Therefore we write
each integral Vivo(t, . y) as a sum Vo(t, 2,y) = >-_cqo4y VNa(t 2, y) where for € € {£}, V} has
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phase (vaa,a(t,:z,y, 3, S., A, 0) while V]%a has phase (vaa,a(t,:E,y, Y, So(a,9,A), A,0). It remains
to prove that, for each e € {0, £},

> Vot z,y) = O(h*).
N¢Nj(tz,y),|NISL/Va

For ¢ € {£} we act exactly like in the transverse case 4a < =, as on the support of (1 — xo)
we have two separate critical points Si. For ¢ = 0 we use that we got rid of variable S hence
8g<i>N7a,a(t,x,y, %, S0(a, 9, A), A,0) and act again as in the previous case, finally completing the
proof of Proposition 3.13. O

In the last part of this section we prove Theorem 3.1 : writing P, as the sum over v, we
evaluate each Py, o, and then sum up in a S v < 1. We deal separately with the cases v > 4a and
v ~ a when use the notation Py, 44 for P qq and Vi, for Viy 4o From (2.42) and (3.6) we have

Vv = Z VNy = VNa+ Z VN~ -

asyk1 4a<y

Remark 3.20. In (3.6) we set w = h™?/3a, and then a = A, which yields w = A3 A, with
A, = v¥2/h and A ~ 1 on the support of ¥. Since the "main” contribution in the parametrix
(2.37) comes from values w ~ \*/? with A = \, = % (or, in terms of Py, written as a sum (2.38)

with wy, ~ k%3, the main contribution comes from k ~ )), the part Py, , , will provide the ”worst”
case scenario.

Before stating estimates for Vi ., when |N| > 1 and a S 7, we recall that we have the free space
dispersion for 1}, assuming that ¢t > h so that the dispersive effect takes over:

d—1

(3.68) Vo(t,z,y)| < Ch™° G) o

Proposition 3.21. Assume ¢ > 0, a € [h¥*~ ap], and h € (0,1). Then there exists C(e, ag) such
that, fort = h,

W7 ()" ARG
(369) |V:|:1(t,l’,y)| < Ch_d (?) (?) + &1/4 <?) + hs .

Proposition 3.22. Assume ¢ > 0, a € [h?*37¢ qg], v > 4a, h € (0,1) and let X\, = v*/?/h. Then
there exists C(¢,ag) such that, fort 2 /7,

(3.70) S v <o (MY T s (22,
’ N,y ,x,y)|_ ? m‘i‘ﬁ .
Y

|N|=2

Proposition 3.23. Assume € > 0, a € [h*37 ag], h € (0,1) and let A\ = a®?/h. Then there
exists C(€,ag) such that for 0 < x < 2a,

a—2

I A A A
(3.71) | D Vwvalt,z,y)| <Ch74( A (Z) s )

IN|>2
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Our main estimate, (3.2) from Theorem 3.1, follows at once from the previous propositions, in
the regime a > h?/37¢. Recall that for a < v, Vi, was defined in (3.6) as

1 i _
Vi (t z,y) = W/eh(th(aﬁ)+<I>(m,y,€,a,o)—<I>(a,0,9,a,s)—NhL(h 2/3a))w(a/(|9|2/37))

X Xb(a/EO)Xﬂ(a/h’z/g)X(s)ph(xu Y, ‘97 «, U)th(ev a, S)dS dfdoda )
where the symbol of Vi, (the same for every N) is of order 0. Let |[N| > 1 and a < v, and set
Ay = % We rescale variables as follows

o If v~ a we set s = +/al0]'/3S, oy/al0|'?%, a = a|0|*>A and let A\ = “Shm;
o If 4a < vy we set s = /70|29, a/7]0]'3%, a = y|0)*/3 A.

We let éN,M(t, x,y, %, S, A, 0) be given by (3.67) when v ~ a and (vaW(t, x,y, %, S, A, 0) be given
by (3.28) when 4a < . We have (including the case where 7 is replaced by a)

- ~ 4
(I)N,a,’y(t> z,y, Za Sa A> 9) = (I)Oﬂ,’y(ta z,Y, Za S> Aa 9) - §N73/2|9|A3/2 + NhBL(|9|)\’YA3/2)

The phase &Do,m(t,x,y, 2,8, A,0), with 0 = pd, |9 = 1, has two critical points ¥+ and they are
non-degenerate. Indeed (see the proof of Proposition 3.4), V3® ., = |y|O(1) for any a < 7. From
Lemma 3.2 we have |y| > co|t| and stationary phase in 9 € S%~2 yields a decay factor

N N
(3.72) (ﬂ) sc(m) for [y] > colt].
Yy

Recall that the critical points (in @) of ®y 4~ are (3.33) (Lemma 3.8). According to Remark 3.9,
if we fix a sign for ¢, only one of these critical points provide non-trivial contributions. Let ¢ > 0
and denote ¥, = 9_(t,x,y, %, S, A) the critical point in 9J,and let

Unan(t, 2,9, 5,8, 4,p) = oyt 2,9, 5, S, A4, pd,) .
Recall from Lemma 3.8 that 9. doesn’t depend on N, neither on p = |6] (since (fo#m(t, x,y, %, S, A, 0)
is linear in |6]).
Lemma 3.24. The critical points 9. are such that
(3.73) O, = O(*2/t),  0s0. = O(v*/*/t).
Proof. We evaluate its derivatives in ¥ and S of ). using the equation (3.33) from Lemma 3.8. [

Remark 3.25. For |[N| < \,, the factor e®VBr(A4%%) does not oscillate. Indeed N By (ph,A%/2) ~
N/X, < 1, and moving this factor to the symbol, the phase becomes linear in p. On the other
hand, as soon as N > )\, we can take advantage of the stationary phase in p, as we shall see below.
Applying the stationary phase in p turns out to be of particular interest for N > A,zy, since in this
case for a given ¢ such that t/,/7 > )\3/, the cardinal of the set NVi(t, z,y) is not uniformly bounded
anymore but starts to increase like ﬁ;&

3.2. The tangent part v ~ a. Let first a ~ v and set A = \, = a*2/h. We apply stationary
phase to ¥y, , with respect to A.

Lemma 3.26. The equation 04V N4 = 0 has at most one solution on the support of the symbol
Y(A), that we denote A.. Then A, is a non-degenerate critical point and 03V a.ala=a, ~ Na®/2.
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Proof. The phase is stationary when 04V y 4, = 0A§>N,a7a|19:190 = 0. The equation @@NW =01is
the first in (3.30) and we easily see that for any N # 0 there exists a solution AV For
N ~ t/(4y/a) we have A, ~ 1. Moreover,

4Nf

a,24\I]N,a,'y = a?qéN,a,'yb:ﬁc + aAﬁcaAvﬁéN,a;yb:ﬁc .

The derivative with respect to A of the first term in the left hand side of (3.30) is t O(a?). Using
(3.32), 0%(®(x,y,0,al0|?2A, \/a|f|'PL) — ®(a,0,0,a|0>3A,/alf]|'/3S)) = |y|O(a?). As the de-
rivative of the coefficient of N in (3.30) is close to Na*? and |N| ~ |t|/4y/a, |t| ~ |y|, the main
contribution of 93 ® . q.q|9—v, is also Na*2. On the other hand,

(3.74) 8Avq9(i>]v,a,a|q9=ﬂc = 8Av'l9é0,a,a|'§:'ﬁc ~ tO(a).
Moreover, taking the derivative with respect to A of Vﬂéoﬂ,a\ﬂ:ﬁc = 0 gives 8A190V129<i>0,a7a =
—04Vy® a4 ; using (V%éo,aﬂ) = |y|7tO(1), |y| > colt| and (3.74) eventually yields
% % 2 -1 t? 2 2] 2
04004V 9P 4,0]9=0, ~ ’aAVﬁq)O,a,a X [yl O(1) ~ mO(@ ) S C—O(a ).
0
Therefore the main contribution of 3V ., , is Na®/2. O
Hence we may apply stationary phase in A and get another decay factor
1 1 1
3.75 X = .
(3.75) VA@PIN| 1k (AIN[)Y?
Lemma 3.27. Assume N+/a < 1. The critical point A. is
Y S \2 > S fo
. A= A3 = 280h + (= =) +0(a )+ 5o
(3.76) o1 + SN 9N +0 (N N) -|—N)\2,
2/3
q*°(Ve)|s=s=0 )3 S
3.77 Ay = t+ E A 1—2zFE) — —(1 —ak
(3.77) 0 INa (t+ Eo(y.a)), A= 2N( rEy) 2N( akly),

and fo is an asymptotic expansion in X7, Ey = O(|y|% aly|), E12 = O(1), Ey12 are independent
of ¥ and S.

Proof. At the critical point A., (3.30) holds (replacing ¢ with ¥, and + with a). Using (3.32),

30, (t — By(y,v.) + Zk22a ( T )ng(y, v >)

3
3.78) AY2(1 — ZB' (pAA¥?)) = —
(3.78) (1= Bilp ) INVav/T T adgB 0 |r=rq(adbe)
(—Z + S) qz/g(/ﬁ ) €T )
0. (7A 2q 2 (9e) /7,90/7) ) lr=ry(a
TN +2N\/1+aAq2/3(196) [a3/2 (7 r(@,y, VaZq " (0c)/T, /T)>|—q< Ae)

a

— 50 (TAr(0,0,V/aSq P (0.) /7, 0./7) ) lr=rytanon |

where we recall that Boy(y,9.) = O(|y|) for all £ > 2 and 1 — 7,(aA, V.) = (1(3:‘732(31953))

Remark 3.28. When |N| < A, according to Remark 3.25 we get rid of the factor (1— 3B} (pAA*/?))
in the LHS of (3.78), without which the equation satisfied by A, is independent of p, A.
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At ¥ =S5 =0, we get for Ai/2|2:5:0

@V%IEQ—ZBHMA%) AP V@NJU[ +§:8(1_7>B%@ﬂ)
1+ adqs (9.) k>2

+20( 20, (rAr(@,y,0,0./7)) = 20, (7Ar(a,0,0,0./7) ) )|

Using that 0,(TAr) = O(1) and the expansion (2.21) of By, by the implicit function theorem

applied to (3.79), we obtain that AY ?|s—g—o is of the form A given in (3.77). Taking the derivative
of (3.78) with respect to ¥ yields

|[T=7¢(aA,¥:),X=5=0 ’

3 9 ¢**(9.)
1/2 _ 2 S >/ , = c o _
Os(4) (1= 1B = 3B lempraos = [ et [0 (= VBl
(1—7)k , ((1—T)*
D W & L) N

139, (t — Ba(y,Ue) + D p0 Or ((ITZ—jk) Bay(y, 790)>
(g oW,

1 Va 7> (0.) z 1/3
-5 o () a0 (A v VA 00 /7.00/7) ) —reas

\/5 612/3(?9(;) x s
+ == oN \/1 n aA q2/3 (19 ) _aZ |:a7' (TAF (za Y, \/an ('190)/7_, ’195/7_)> |T:Tq(aA719c)i| ,

where a7, = ag?/*(9)/(27,), Bax(y,90) = Ollyl), Vor, = aAV(@3(9))/(27,) and Bs(0, (rAr)) —
O(a). At ¥ =S =0 we find

T=7q¢(aAc,0c)

(t+O(lyl*) + Olaly)) 1

Os(AVns-0 = 2050V q(0)g~ (1) o (1 0(@) + 0(\72)),

AN /a T 9N
which, together with (3.78) and (3.73), allows to obtain the explicit form of the derivative of A.
with respect to X (similar computations hold for 5). O

Remark 3.29. When |N| > A2, stationary phase in p turns out to be of particular interest: for a
given t such that ¢/y/a > A2, the cardinal of the set Ni(t,x,y) is large. Obtaining a bound of the
integral defining Vi , better than the one given by integrating only with respect to X, S turns out
to be crucial in order to obtain the desired dispersive estimates.

Let us consider the case |N| > CA? for some constant C' > 1. Let
vt 2,y 2,5, p) 1= Unoalt, 2,9, 5, 5, Ac, p)

denote the critical value of Uy, ,. We compute derivatives of ¢n , with respect to p. Since ¥, is
independent of p, the phase ¢y, is stationary in p when

0= apng,a = (ap\I]N,a,a + apAAcaA\IIN,a,a)|Ac = ap\IIN,a,a|Ac 5

with A. provided in (3.76), where the coefficients of ¢,3, S (in the first three terms of the sum) are
independent of p (notice that in the equation (3.78) verified by A, the only term containing p is B/,
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which amounts for the terms with factor O(A72) in (3.76)). Since Uy 40 = Wo 4,0 — 2a*/2pN A2 +
NhB(pAA%?), and since Vo, , — 3a%2pNA%? is linear in p, the second derivative is

Pona = (aixIJN,a,a + 0, A0(0,04T N 00 + apAcazxpN,a,a)) "

For |[N| > A% >> X, the only part that matters here is the contribution from ¥ By (pAA%?). Taking
into account that the support of the symbol of Vy, in A is a fixed, compact set of (0,00), the
contribution of 8[2)\11 N,a, Will be AN/A. The main contribution of 0,04V n 4.4/ 4. is also of size AN/ A,
but it comes with a factor 9,A., which, from (3.76), can be at most O(1/N), since the first three
terms in the sum defining A, do not depend on p. Eventually we obtain,

N
A )

1
(3-80) %\8§¢N,a\ ~

hence the stationary phase in p will produce a factor (%)_1/ 2 which is (of interest only in the
regime |N| > C\ and) particularly useful for |—];” > A Let oyp4(2, S, p) be obtained from

Y(A)pu(,y,0,al0]° A, Valb|'*) (0, al0]* A, V/al0]'*S)

after applying the stationary phase in both ¥ and A. We note that oy, is independent of
N, of order zero and has compact support in X,S5. We are left with estimating the oscillatory
integral [ en?Naogy,, ,d¥dSdp. Following the approach in [12] (see also [J]), we deal separately
with |[N| > A3 and |N| < A3, where we recall that A = \, = a®2/h.

3.2.1. Large number of reflections: |N| > \'/3.

Lemma 3.30. There exists C (independent of N) such that, if [N| > \Y/3,

(3.51) ‘ [ et ovaals. 5. pasasdp| <

Remark 3.31. The proof will be split in two parts: first, we consider A\'/3 < |N| < A?* where we
integrate with respect to S, and then bound the remaining integral in p owning to its compact
support; then for |[N| > \? we start with stationary phase in p, which provides additional decay;
then we integrate with respect to S, ¥ following closely the approach for A'/3 < |N| < 2.

Proof. We compute derivatives of ¢, with respect to X,.S. Start with A3 < |N| < A\? and follow
[12, Proposition 4] (see also [0, Lemma 2.24], where only the case N < A? is considered). Using
D¢ 4. as provided in (3.29) for N = 0 and v replaced by a, we compute

~ x
(382) 82¢N,a = aZ(I)O,a,a|19¢,Ac,p:\€| = 03/2P |:Z2 + aql/g(ﬁc) - Ac

L 7,(aA,9.) VaXq'3(9.) I )}
a a 1,(aA,9.) " 1(aA,I,.)

= a¥?p| 2+ 2¢'4(9,) = Ao+ =q"(9.) 0 Ar (. E,

82141“(36’7%

Ve

— ) st |-
Tq(aAaﬂC)H::%
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In the same way we have

aSQSN,a = aS(i)O,a,a|19¢,Ac,p=\€| = _a3/2p [52 + ql/g(ﬁc) - Ac

T4(aA, 9.) VaSq'3(9,) Je
A
* Va r (a, 0, 1,(aA,9.) " 1(aA, V) )]

= —a?’/zp[S2 +¢3(9.) — A + ¢"*(9.)0=Ar(a, 0, Z,

ey
— )= vasq/3we) | -
Tq(aA, 195) == \C:(ZA,ﬁ(j) )

The critical points are such that

) 9 -

> Ty, (1 0=A L ) A,

e St A Y Ty oy DA R AT |
9,

52 4¢3 (9, (1 O=Ar(a,0,3, — ¢ >:Ac,

+ q ( ) + 0= F( Tq(aA, 290))|E: \/f:(i:?ﬁ(f)d
where 0=z Ar(z,y,=,0) = {(y, V) + 22y, V) + Hj>2, £(0,9.) = 0, and where homogeneous terms
of order j come with small factors a//2. We will prove that, although the determinant of the matrix
of second derivatives may vanish, we can still use degenerate stationary phase with critical point
of order at most 2 to conclude. We compute the second derivative with respect to ¥ using (3.82) :
0

3.83) B = a¥’p|28 — O A, + =0 ( Y3(0,)0=A B 7”
( ) E¢N, a’ p P + a >\ 4 ( ) = F(Iaya 7Tq(aAc’ﬁc)”E:ﬁX(Jg;/:éi;) 5

where homogeneous terms of order j in d=Ar come with small factors a?/? and

U

1/3 . - c s — 1/3
(384) aZ (q (ﬁc)a:AF (ZL’, Yy, =, Tq(aAc, 190) ) |E: \{ring/c,éiﬁ) ) aE (q (ﬁc)(g(:% 190)
3 1/3 790
425y, 00 LD gy ) = 000,94 (£, 90 9) + 2/aSply, g (9) + O(@) oo,
T,(aAc, V)

+2v/ap(y, 9.)g**(9.) + O(a) .

Using that v/a < %, x < 2a, we obtain an estimation of the second derivatives of ¢y 4

(3.85) Bna = a*?p(25 + O(a®?/ly|) + O(1/N)),
dn.a = a*p(2S + O(a®?/|y|) + O(1/N)),
0% 50N, = O(a®?/N).

We rescale variables (3, 5) = (A\™1/3x, A™1/3y), so that we are left with proving

(3.86)

/e%m'“(’\l/g"”\1/3y’p)av,h7a()\_1/3x, A"y p)dxdy| < C.
From the compact support of oy, we obviously have, for any multi-index v,
0 ovna N, Ay, )] < €1+ [ + ly) .
Let Ag be the main term of Ay/? defined (3.77); we define (2, B) as follows
SN = S ) (1 Uy, 00)) — A —BAT = ¢ (0,) - A}
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and we also write (2,B) = r(sin &, cos &), where r? = A* + B2, In the new variables, since
9% — 95 — \=1/3 and using O=Ar as provided in (3.84), we find

Ox = Oy
3/2 -1/3
O = TN\ - 20) 222 (ha(1 — 2By) + L(NVauly, 9.)g* (0. )
>\_1/3y -1/3 Y x
-2 ON (Ao(l—CLEg)) + N O(N7N)+O(a>
= ((x2 —A) + AV (x(A (1— 2E) + O(NVa)) — yAo(l — aBy) + O(2, X)) + O(W?)a))
P N 0 1 YA 9 NN

=p(¢ — A+ O0(x,y) +O(1)),

where the term O(a) in the second comes from the terms homogeneous of order j > 2 in the
term 85Ap(a:,y,E,mﬂ:_ﬁsqua(m (see (3.84)). We have written O(A\?/3a) = O((A\Y/3/N x

Tq(aAc,Vc)
Ny/a)?) = O(1) since \'/3/N < 1 and (Na'/?) < 1. Similarly, derivatives with respect to x and y
are,

1 1
Eaxng,a = p(x2 — A+ O(X, y) + 0(1)) ) anQSN,a = p(y2 -5+ O(X, y) + O(l)) :
From (3.85), we obtain, in the new coordinates
1
(3.87) Oona = NU3p(2X Tk O(NT)) = pl2x + O(1)),
1

S 050na = NPp(207 Py + O(NTH) = p(2y + O(1)),

where we used |N| > A'/3 in the last step together with |y| > cot which yields a¥?/|y| < a2/t ~
a/N, as t/y/a ~ 4N when the phase is stationary in A. Now, going back to (3.86), the integral
is bounded for 0 < r < rg, for some ry > 0, by integration by parts for large (x,y) (recall that
the support of the integrand is now of radius A'/3). For ry < r < A3 set (x,y) = r'/2(x,y’),
Ona = T2ON .0, Fvna(X, ¥, .) = ovpa(rPAT3 P 12A71By p) and as r/2A71/3 is bounded, we

retain the decay |9, ,nGvna(,¥', )] < Co(1 4 [5| + |y'])~. Tt remains to prove
,3/2 -
7| /e’h‘z’N’“&V,h’a dx'dy'| < C'.

To begin with, notice that

302

O ( h ONa) = r3/2p<x’2 —sin & + 7 20(x,y') + 7’_10(1)) ,
312

Dy ( 7 ONa) = r3/2p(y’2 —cos & +r20(x¢,y) + 7‘_10(1)) .

If | sin &| > 1/100, then =2 dy , has two critical points in x', namely x, = | sin &|/2 + O(r~1/2),
R PN, +

and these critical points are non degenerate as |8§,(%Q~SN,G)| > p/10. By stationary phase, we get

,3/2 - ,3/2 - ,3/2 -
L ~ 2\—1/2 O ~ / _— a— = /
/6Z NGy g Ay = (rP2)7Y (/ TNt Gy oy dy +/€Z NGy g - dY')
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for some symbols Gy 44 of order 0. Using (3.87), one may check that |8§,7y/7y/(%<51v7a)\ >c >0,
and by degenerate stationary phase (or Van der Corput lemma) we get

3/2 ~
| / TGy s dy| < OO = Or 712,

and for » > 1, we get the desired decay, and even an extra r~%/* on the right hand side. If
| cos &| > 1/100, we proceed in the same way, exchanging x" and y’.
Let us now deal with |N| > A2, Stationary phase applies in p and from (3.80),

(3.88) Lozl ~ 21,

hence the stationary phase in p yields a factor (%)_1/ 2. In the following we apply exactly the
same method as in the previous step; the only difference is that now we have an additional function
pe which depends on the variables ¥, S and whose derivatives with respect to these variables are
small only for |N| > A? (which explains why we did not perform stationary phase with respect to
p earlier, for any |N| > AY3). Indeed, from 0,¢y., = =0 we get

 NhAY?
PPAAR

4
(3.89) Yoae 3 aPPN A2 = NWAAP2B) (pAA3/?) = (b1 +O(1/X), by #0,

where the term in the left hand side doesn’t depend on p. Since p = |f| ~ 1 and since the support
of the symbol in A, is a given compact set of (0, 00), we have

Nh 4 -1
Pg = \ 13/2 (bl + 0(1/)‘)) (\DO,a,a(ta T, Y, 27 57 1) - _a3/2NAZ)/2>
)\A 3
Taking the derivatives with respect to S, T of (3.89), with A, bounded, provides a factor \?/N
which is small in the regime we consider here, | N| > C'A\? for some C' > 1 sufficiently large (indeed,
the terms containing ¥, S in (3.89) come with a factor a®? = h)). Since dsp, and dgp. are now

sufficiently small, we can follow the same earlier steps to estimate the integral in the remaining
variables ¥, S. O

3.2.2. Moderately large 0 < |[N| < AY3. In this case the contribution from the integral in p is
uniformly bounded due to its compact support. According to Remark 3.25, we bring the factor
e'NBL into the symbol and work with the phase Wg, ,— %a?’/ 2pN A3/2 which is linear in p. Therefore,
the critical point A, satisfies an equation similar to (3.78), but without the factor 1— 32 B (pAA%/?),
which leads to an explicit expression of the form (3.76) where fy = 0. We start in the same way
as in the proof of Lemma 3.30, replacing A'/3 by |N|: we rescale variables with (X, 5) = (W %)

Lemma 3.32. For |[N| > 1, set A = A\|N|73 and assume A > 1, then we have

i X Y —3/4
(3.90) ' / erONa gy oo, oo ) dxdy| < CATHY
IN|" [N
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Proof. Here we need all the first three terms in the formula (3.76). In our new variables, Ag, as
defined in (3.77), does not change and Ay = 71> (x(1 — zE;) — y(1 — aF>)), hence, using (3.76)

1
FOx0na = Ar (x2 + N2(gql/3(190)(1 40y, 9.)) — A2)) + Ag <x(1 2By —y(1— aE2>)
ANy 002 (0) — —= (x— 912 + 02 x—2)+N20(a)>
alLl/ y’ c q Cc 4N2 y N27 N2 Y
1
Z0yéna = —Ar(y? + N2(q"H (D) — A + Ao (x(1 —2Ey) — y(1 - akh))
ANy (0. 906 (0) — s (2 9 + 025, 5) + N0(@)
/”L ) C (& 4N2 N2? N2 )

where N?O(a) in the last two formulas are homogeneous terms of order j > 2 in the expression of
d=Ar. Next, we compute the second derivatives : notice that (3.73) yields |V s9.| ~ O(a®?/|y|) ~
O(a/N) since |y| > cot and t/y/a ~ 4N. Using (3.83) and (3.77) we find

2

L 2o = e 2/3 B — - (x— Y ox
020na = Ap (2% + 2NV u(y, D)% (0) + Ao(l = 2B1) = 15 (x— ¥) + 035, ) ).
1 1
L6200 = ~Mp(2y + 2NVa(0, 9)g7 () (L+ O(Va)) + Aoll — aks) — )
2
y X
+0(55: )
1 _ (x—y) y X
EaxayQSN,a - AP<AO - 2N2 + O(ma m)) .
In fact, we infer that we can write
1 _ 2 1 2 x*
(3.91) P O30 = Ap (3 = A+ (bx = dy) = 5 (x— ¥+ 0(55,%5))
1 _ 2 1 2 xy?
7 yONa = —Ap(y — B+ (dx—cy) — W(x —y)+ O(m, m)),
where (2,8) and b, ¢, d are defined as follows
2A x B
e = SN+ Uy 0) ~ A~y = a0 - A3,

b= Ao(1+0(@)) + Nvazuly,0)q”*(9:)(1 + O(Va))

¢ = Ao(1+ O(a)) — Nv/au(0,9.)a?(9.) (1 + O(a)
d=Ay(1+0(z;a)).

This follows easily from writing the Taylor development for the first order derivatives of ¢, with
respect to x,y and use that 050,y . = 0,0x¢pn,.. We also have
2

1 B _ 1 B y* X
026na = Ap(2x+ b= S (x—y) + 035, 55)) -
1, B 1 y x?
Eﬁy@vﬂ = —Ap(2y —c+ Nz (x—y)+ O(—NQ’ Nz )) :
1 _ (x—y) y X
3 Oy e = —Ap(d = T+ Ol 1)) -
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Let ApM(x,y) denote the matrix of second order derivatives (i.e. the Hessian of r¢n,.); we
compute its determinant

2
-y Y
(3.92) det M (x,y) = —A?p? <4xy +2(by — ex) + d* — be + 2 x—y)” e ) + O(N2’ RE ))
Set (A, B) = r(sin &, cos G). We will again deal separately with r > rq, for some large ry > 1, and
then r < ro. We start with large r > rq > 1 and we prove

LN.a X < 5/6
/eh O'V,ha(| N’ |N|)dxdy' CA~

which has better decay than required. First, observe that from the hypothesis on r and (3.91), we
may integrate by parts in (x,y) in a region |(x,y)| < er'/? with ¢ small enough: for any k > 1,

i X
0l g ] < )™
x,y)<crl

Thus we are left with the region |(x,y)| > cr'/2. We rescale again (x,y) = r'/2(x,y’) and, in the
new variables, we prove the following

(3.93) r / en™ omagy, (XY, ) dxldy'| < CAT,

[(5y")
where we set, like in the previous section, dnq(x,y,.) = r¥2dn.(x,y',.) and Gypq(x,y) =
ovha(r/?¢/N, 712y /N, .). Taking b = /20, d = r'/2d’ and ¢ = r'/2¢/, we have

2

— 3/2( 2 o ' //_(X/_y/)
¢Na) Apr (x sin G 4 2(b'x" — d'y’) N

32

% (5

+ 0(1/N2))

3/2 (X/ . y/)2
( nga) = —Apr3/2< —cosG +2(d'x — y') — VTR —|—O(1/N2)> :

From these expressions of Ve o1 (5= ¢n.a), if (x',y’) is large, we get decay by integrations by parts,
as |[N| > 2. Therefore, we can assume that ¢ < |[(x/,y')] < C where C is a large, fixed constant
(we avoid a neighbourhood of (0,0) since we have assumed |(x,y)| > cr'/?). If |[N| > 2, a is small
and 7o is large, the set {det M(x,y) = 0} is a smooth curve which does not intersect the origin.
Away from this set, we may use stationary phase which will provide r(r*2A)~" decay on the left
of (3.93). In the region close to {det M (r'/2x',71/2y") = 0}, we can apply [J, Lemma 2.21 (a)], i.e.
degenerate stationary phase along a curve, to obtam

Lp3/2¢ N o 13
/ en” on, O-V,h,a(xay ’ ) dx dy
e<|(x",y")<C

r3/2 7

< C(r* AT,

and therefore we get (3.93) as the extra factor » on the lefthand side is canceled by the r—>/4 on
the righthand side (recall r > ry > 1).
We can now focus on r = |(2,B)| < rg. Notice that we may further restrict support again, this

time to |(x,y)| < 2r'/? < 27’(1]/2 as we get A~>° decay by integration by parts if |(x,y)| is larger
than this value, as we did before. We now aim at proving

i‘(1)Na X y _3/4
er?Nagyp o , )dxdy‘ < CA ,
'/( y)|<2r1/2 |N|"|N|

for which we will apply [9, Lemma 2.21 (b)]. The determinant of the Hessian M(x,y) of ¢y,
is given in (3.92) and the set {det M(x,y) = 0} is a smooth curve in {|(x,y)] < 2r'/?}, at
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least for small a: it will be close to (2x + b)(2y — ¢) + d* = —(x — y)? when |N| = 1 and
(2x +b)(2y — ¢) + d*> = —(x — y)?/N? for |[N| > 2 (and using b ~ ¢ ~ d ~ Ay(1 + O(a)), we see
that it is close to the hyperbola 4xy + 2A¢(x —y) = —(x —y)?/N? for |[N| > 1 and to the parabola
2A0(x —y) = —(x +y)? when |N| =1).

Let (xo,yo) such that |(xo,yo)| < 2r1/2: if det M(xo,yo) # 0, then the usual stationary phase
applies, unless we are in the special condition where [9, Lemma 2.21] takes over and we recall it
now: let H (&) be a smooth function defined in a neighborhood of (0,0) in R?, such that H(0) =0
and VH(0) = 0. We assume that the Hessian H” satisfies rank(H”(0)) = 1 and V det(H")(0) # 0.
Then det(H")(q,p) = 0 defines a smooth curve C near 0 € R? with 0 € C. Let s — £(s) be a
smooth parametrization of C, with £(0) = 0, and define the curve Z(s) := H’'({(s)) in R?.

Lemma 3.33. ([, Lemma 2.21]) Let K = {£ € R? |¢| < Ry} , and a(&, A) a classical symbol of
order 0 in A > 1 with a(§,A) =0 for £ ¢ K. Set for (P,Q) € R? close to 0

) = [ 1O, ).

Then for Ry > 0 small enough, the following holds true:

(a) If Z'(0) # 0, there exists C such that for all (P, Q) close to 0, |I(-, )| < CA=%/S.
(b) If Z(0) = 0 and Z"(0) # 0 there exists C such that for all - close to 0, |I(-,A)] < CA™3/%,
Moreover, if a is elliptic at £ = 0, there exists C" such that |1((0,0),A)] > C'A=3/4.

Let (xg,y0) be such |(xq,yo)| < 27“8/2 and det M(xg,y0) = 0. For (x,y) near (xo,yo), |(x,¥)| <
2rg* let € = (x — 30,y — ¥o) and let Ry = 4ry/*, then [¢] < Ro. We set

H(§) = On(x,y) — Pn(x0,¥0) — V¢N,a(xo7yo) &, (x,y) = (%0,¥0) +&.

We see that H(0) = 0, H'(0) = 0 and H"(0) = V?*@n.u(x0,Y0) = M(x0,¥0). The matrix M
has two eigenvalues, 0 with normalized eigenvector v(xo,yo) and Ay = tr(M (xo,yo)) with nor-
malized eigenvector u(xg,yo). Let @ be the matrix formed with column vectors w and v, then
FQM (x0,y0)Q = diag(A1/2,0), and Ay # 0 as the rank of M(xg,yo) > 1 (thanks to |[N| > 2 and
(t,z,y) close to 0). Using (3.92), a simple computation yields

Xg — 2 Xo — 2 X
IVdet H” (0)[2 = 16<x0 b2 — %) + 16<y0 — /2t %) +0(5 %).
We need to prove that there exists a positive constant Cy > 0 such that |VdetH"(0)|* > Cy > 0.
Since b = Ag(1 + O(a)) + O(a?N), ¢ = Ao(1 + O(a)) + O(a*?N) it follows that for (xg,yo) €
{M(x,y) = 0} we can write |VdetH”(0)|> = 8AZ + 16(xo — y0)*(1 — 53z) + O(a'/*N), provided
a'/?N is small enough and therefore |[Vdet H”(0)| > Cy > 0 for some positive constant Cyp. This is
enough to apply Lemma 3.33 (case [b]) and get the desired bounds. When N = 1, one may inspect
the previous proofs to check that, knowing from support conditions that (x,y) is bounded, for
large (2, B) integrations by parts provide decay. On the other hand, in the range (2, 8) bounded,

one may proceed as before, using Lemma 3.33. O

We moreover remark that the last statement in Lemma 3.33, together with ellipticity of the
symbol oy, 4, provides, at fixed § € S92, a sequence (ty, Ty, yy) where the bound (3.90) saturates,
which is exactly at the swallowtail singularity in space-time. This is a key point in proving Theorem
1.3: for now, we have Vy(tn,zn,yn) ~ ||VN|loo, and at (tn,xn,yn), we have A ~ B ~ 0, ie.
Ay ~ ¢/5(0), implying tx ~ 4Nq¢V%(y/|ly|)va, zx ~ a and yy/|lyn ~ D ~ 6. Moreover, at
(tar, xn, yn) with M # N and |[M — N| < My, B ~ CN and |Vy(tar, N, yn)| decays much faster
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(A=%/6 rather than A=3/%). Therefore when summing over M at fixed N, only Vy contributes to
saturating the bound and Theorem 1.3 holds.

3.2.3. The sum over 2 < N < \/a: completing the proof of Proposition 3.23. We now prove
(3.71). For N & Ni(t,z,y), Proposition 3.13 provides an Oge(h*) contribution. Recall that if
(0 = (p,9), A, %, S) is a critical point in the phase integral defining Vi ,, then t/(4\/a|N|) ~ A'/?
and on the support of the symbol )(A) we have A ~ 1. Set tN = |Ni(t,z,y)|. If 1N < 20,
the sum reduces to a finite sum, discarding all N & Nj(z,y,t). For those N € Ni(t,x,y), if
IN| < A3, then, collecting (3.72) (stationary phase in ¥J), (3.75) (stationary phase in A) and
(3.90) (degenerate stationary phase in (X, .5)),

d—2
1 (h\ % a 1
< (N a4y —3/4
|VN,a(t>I,y)| ~ hd <t) h |N|l/2)\1/2|N| )\
from which, with t ~ 4a'/?N we get the desired result:

a—2 d—2
1 M\ 2 a1/8h1/4 CO A\ 2 a1/4h1/4
Vvt 2z, y)| S ha (;) W < I ( ) B

t
If |IN| > A3, we collect the same bounds but with (3.90) replaced by (3.81):

d—2
1 /h\ 2 a? 1 1
Vot z,y)| S ha (;) T |N|1/2>\1/2 \2/3

and one easily checks that a'/2N=1/2)\71/6 < g/8pl/AN=1/4 is equivalent to |[N| > A3 (using
1/N < A7Y3 we get h'/? instead of al/8h'/4 /| N|Y/4)) Moreover, if only a finite number of Viy . (, 7, )
contributes, we have a > h*7. We proceed with large fN(> 2C): as N < C + Cﬁ, we have
t > cy/aX?. We also have |N| ~ t/(4y/a) and from ¢ < 1, we have a < h*/7. For those N,

d—2

2

d—2
1 h 1 1 h\ 2
Vial <= (= 1/231/3 N<_—_[Z RL/3\—4/3
2. N th(t) ¢ NS\ ’
NeN1(tz,y),|N|~t/a

and one checks that h'/3A\=%/3 < hl/3 for a > h?/3. This completes the proof of Proposition 3.23.

3.3. The transverse part 4a < 7 < 1. We go back to Wy~ (t,2,y,%, S, A, p), which is the
critical value of @y, - after the stationary phase in ¥: when 4a < v we start by applying stationary
phase in S, as in the proof of Proposition 3.13. The phase has two distinct saddle points Sy,

2, @ 13 . = Ve =
S:I: + 761 (190) (1 + a: <AF(a'> Oa — Tq(”)/A, 190) )) |E: \/iiﬁq;,/sc(fd) A.

Using (3.73), 9. (function of 3, S, A) does not affect the second derivative in S significantly and we
get 02U N oq|s. ~ 2. Moreover, the critical points Si depend on X only through ¥, and we have

Sy = Spx+/A—0O(a/v), where Sy is the unique solution to 02Uy .~ (t,z,vy,%,5, 4, p) =0 and it
satisfies Sy = O(a/\/7) (indeed, from Corollary 6.10, the unique solution sy to 9?®y ., satisfies
so = O(a); making the change of variables s = ,/7p'/3S gives Sy = O(a/\/7)). We are left with
an integral with respect to A, Y, p and we pick a factor )\»1/ 2,
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When 1 < |N| < )‘?y’ we ignore p : we first perform stationary phase with respect to A, and then
prove that the remaining phase has critical points that may be degenerate of order at most two in
Y. For each Sy, the critical point with respect to A, denoted A, is such that, with 7 = 7,(vA4, J.),

@ 00) (£ = Baly:90) + Xm0 00 (L5 ) Bar(y. 02))
2yAV 1+ 7A@ ()

570 (P Ar( VTR 00792/ 7))

@g@szﬂa—%&@MAW»:

4?3 (9.

S S
= T AR,

a

N Wé‘r (rAp(a, 0, v75:q"*(0e) /7, 9./ T)H '

The second derivative with respect to A behaves like N/ VA and with A ~ 1 on the support of the
symbol 1), stationary phase provides a factor Ay V2 N|-12,

When |N| > >‘*2y we apply stationary phase in A just like we did, and then stationary phase in
p. We then prove that the remaining integral can be degenerate of order at most two. To apply
(additional) stationary phase in p we act exactly like in the case v ~ a and obtain, as in (3.88)

1| V]
h 2!

Let ¢N,a,'y,+(ta x,Y, 27 P) = \IIN,a,'y(ta x,Y, Z> S—H A-‘m P) and> respeCtiveIYa ¢N,a,’y,—(t> €,Y, Za P) =
Unon(t,z,y, 2,5, A, p), denote the critical values of Wy, . after the the stationary phase
in S and then in A (notice that A, (and A_, respectively) is the critical point of the phase

Unaqy(t 2y, 54, A, p) (and Wy ,.4(t 2, y, S, A, p), respectively), so the critical points S and A
are paired with same sign, either 4+ or —). Let oy,+(2, p) be the symbol obtained from

G(A)pn(,y, 0,7[017° A, 1012 2)3(0, 7161/ A, /716012 S)
after applying stationary phase in ¢, A and S, evaluated at (S, A)y; oy~ is independent of N,

1
aille,a;y(t, z,Y, 27 S—H A+> p)| ~ E|a§\11N,a;y(t> x,Y, Za S-i—a A—H p)

of order zero and has compact support in X. We are left with estimating [ e%¢N»“’7’iaV,h7ﬁ,7id2dp.
Following [12], we state different estimates for |[N| > 2, N =0 and N = £1.

Lemma 3.34. For |N| > 2 and a given point (t, z,y) witht ~ 4N /7, the phase ¢y +(t, T,y, 2, p)
has at most one degenerate critical point, which is of order two.

Proof. The first derivative of the phase ¢y 4~ + is
(3'95> 8E¢N,am:|: = 8E\IIN,am/(ta z,y, 5,9, A, p)‘Ai,Si

v
= %2 4 2 30,) (1 + 0= (Ap(2,y, 5, —— g ) — Ae

‘l’ fyq (ﬁc)< + a_( F(za ya Y Tq(’}/A, 790>)) |E:\/qu((.1\/x4/yﬂ(f)(;))

Using (3.94) and then (3.95), we estimate derivatives w.r.t. X as follows
1 1

A2y 1 -2 _ 1
NE
a%¢N,a,’y,ﬂ: = 22(1 + O(ﬁ)) + 2N:|;F 1(1 + O(ﬁ)) ) 8%(?N,a,'y,:l: =2+ O(l/N> + O(ﬁ) :

For a given ¢, z,y, N, the equation 03¢y, .+ = 0 has at most one solution which is a saddle point
when Os¢n q~,+ = 0. Since the third order derivative stays close to 2, degenerate stationary phase

(or Van der Corput Lemma) in ¥ provides a factor A5/, O
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Lemma 3.35. Let N =0, [t| > v, then for |S| < 1 we have 03¢0.0+(t, 2, y, 2, p) ~ t/\/7.

Proof. Let N =0, [t| > =, then AL solve (3.94) where the term in the left hand side vanishes. The
main term containing A comes from Sy = Sy £+ /A — O(a/7) and AL satisfy

(t+O(y))
27
Taking the derivative of (3.96) with respect to ¥, using that Sy depends on 3 only through 9.

(which satisfies (3.73)), that A stays close to 1 and that ¢/,/7 is bounded yields

OnAs = £23/ A —Olaj7) + O(yA) + O/ Jy]) x LEOUD)

27
= 2(=0+ 0(v7) - 00 7 1 00) + 01,

and therefore, using that the saddle point ¥ is bounded since X2 < A, , we find

Bins sl o = 250+ 0L/7) = 05 = 50 I 1 03)) + (),

When |t| > v we obtain the result. When |t| < ~, the wave has no time to reach the boundary. [

(3.96) So£ /A —O(a/v) = (1 + 0(7)) — ¢**(V.) (1+0()).

Lemma 3.36. For N = £1: each phase function ¢41.4~+(t,2,y, %, p) has at most one degenerate
critical point X, of order exactly two; fort # 0, the equation 02¢41 4+ = 0 has an unique solution
¥ ~ F1/v, while for |X] < 1, we have 03 ¢11.045 ~ (t//7)(1+O0(7)).

Proof. For ¢41 4.+, the proof of Lemma 3.34 applies, for ¢4y q,+ the proof for N =0 does. [

Lemma 3.37. For |[N| > )\3, after stationary phase in p, the critical value ¢y q~+(t, 2, Y, %, pe)
has at most one degenerate critical point of order exactly two in 3.

Proof. The proof is essentially the same as the one of Lemma 3.34 since the contribution from
the derivatives of the critical point with respect to p do not affect significantly the third order
derivative of the phase with respect to X . O]

3.3.1. Estimates for the sum over N and end of the proof of Proposition 3.22. We now proceed
with estimating the sum over N, i.e. proving (3.70). Again, for N & Ni(t, x,y), Proposition 3.13
provides an Oge(h®°) contribution. With tN = |Ni(¢, z,y)|, if N < 2C, the sum reduces to a
finite sum. For those N € Ni(t, x,y), we have |[N| < A2, then, collecting (3.72) (stationary phase
in ¥), factors from stationary phase in S, A and from degenerate stationary phase in X,

1 (7T 2 1 1 1 1 (h\7Z n3
|VN,V(t>Iay)| S_d n e 1/2 1/2\1/3 ~7a\ 7 T~
ML) RXEINPNE NS ) VN

If IN| > )\3/, we collect the same bounds but with an additional stationary phase in p,

Wt y) < = (1 Tz AP 11 ()T REN2
xr J— o o .
NAL T, Y) S h,d h )\}/2 v N |N|1/2)\}/2 A}y/?; hd N

AsiN < C+ C’% and T~ N, we complete the proof of Proposition 3.22 with

d—2 d—2
1 (h\7 W)/ 1 (h\7 n'/3
S owelzp(f) evem () e
NeN; (t,x,y) )\7

t

t
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Remark 3.38. In this transverse regime, we used v > h?/37¢ rather than a > h?/3~°. As such, all
estimates hold with any a > 0. This will be of importance in the next section.

4. DISPERSION FOR SMALL a < h?/37¢

We now obtain dispersion for Py, for small a € (0, h%37¢) with a small 0 < e < 1/12 using
Propositions 2.18 and 2.19. Write Ppo(t,z,y) := Ps, + Pp,, where P)  is given by (2.39) with
Gh.a replaced by gnq;, j € {1,2}. Dispersion for P,zw easily follows using exactly the arguments
from the transverse case (for a > hg_e): w is large and stationary phase arguments apply. We are
left with P; .
Proposition 4.1. For h<t<Ty <1

2

(@) PLat s, S50 ()T (1)

Proof. We need the following lemma, relying on Corollary 2.31:

Lemma 4.2. There exists symbols o(n,wy) and r;(a,n,wy), of order 0, o,ry elliptic such that
(42) Koy(gnar)(t7,9) = / DG, y, 1, we)g () se(hn) ey (o, m)r (0, wr)o (7, 1)

X’ (&)q%(n) (roAi(—C(a, 0,7, wr)) + ig~s (n)r1 A’ (—(a, 0, n, wk))>dn,

wKE
where ¢ 1s the phase introduced in Theorem 2.1.

Proof. Replacing gp, 4.1 given by Corollary 2.31 in formula (2.24) yields
\/ L’(wk)
~——=1,(n,wr)dn,

with I,(n,wy) defined in (2.81). To compute I, use (2.63) and e(x,y,n,wy) = e~ "B (x,y, 1, wy)

(43) I, — /e—z‘(g-m—mn|Bo<g,%>>%(hﬁ)Xb(ﬂ)ek(a,ﬁ) U
WK, R

As in the proof of Lemma 2.28, the bracket term in (4.3) behaves like a symbol. For small a S h*/3~
and k < K., ex(a, 1) can also be included in the symbol, and with n = 6/h and 7} = 9/h stationary
phase applies in g, § for the phase — (3 -6+ |0|Bo(g,9)) + 7 - 0, with large parameter and symbol
1 w ~ ~ ~ C - -
X ( k ) s(6)xo(h 3w (6))en(a, B/h) ( / &7, 5, 0/h, won)ex(7, H/h)d:c) .
0

LUK€

Kwk (gh,a,l) = / eith(wkm)G(xa y,n, Wk)X# (wk>q% (n)%(h’n)%(h’Tq(wkv n))T(TL Wk)

é(:i'a g? m, Wk)€k (ja ﬁ)dj:| dﬁd?j .

+

Stationary points are such that § = 0, § = 6+ 10103 Bo(y, ) = 0 (as 0,Bo(0,9) = 0). All derivatives
with respect to § land on é(Z, 7, 0/h,wy,) and we can use Lemma 2.28. Derivatives with respect to
0 land either on cut-offs, e(Z,0/h) or ex(a,d/h) : using (2.76) for ey,

o0 (| T T een@n)dn) | < 105wl 107 eullia,, S nlal! )15,
0

As |n| ~ 1/h and k < K. < h=Y/%¢ we find wy|n|"/? < h=1/2+2/3 As one derivative on e (a,8/h)
yields at most %+/h*3w;, and we have %/h*3w;, < h7V1272/3 <« p=12 for € < 5/8, station-
ary phase apphes in §,0. After stationary phase, ex(a, 6’/ h) transforms into a linear combina-
tion of e, and its derivative : indeed, repeated derivatives in 6 lead to Ai(aq'/*(6/h) — w;) and
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Ad' (ag" 3(9 /h)—wy), and we denote rg, 1 the corresponding asymptotic expansions; rq, r; are func-
tions of (a,0/h,wy) and r¢ is elliptic with main contribution equal to 1. Taking the difference be-
tween phase functions of e;(a, 8/h) and e(a, 0,8/ h, wy,) yields ar,(h*3wy, 8) Ar(a, 0, sq*3(6) /74, 0/7,),
which behaves (at worst) like a(s? — h*3wiq??(0) + O(s?, s(h¥3wy)) (where s? < h*3wy); as
ah?/3wy, < hT/6=</3_ iiara(h?Pwr,6)Ar(a0,5q"/%(8)/70.6/70) qoes not oscillate and can be brought into the
symbol. The L2_, product in (4.3) becomes a new symbol o(6/h,wy), with main contribution oy

00 = / é(%,0,0/h, wi)ex(&,0/h)dE = h™>/* / eh(—F/3=HER O hA R e 3+a(8g'2(0) A Puse))
0 0

L2 ¢'P(0)
L/(wk) h2/3

for a symbol p;, obtained from p, in (2.17). For & > h*3w;, repeated integrations by parts in
s yield an O(h™) contribution. For # < h?3wy, apply stationary phase in s,7: as #¢'/3(6) =
h23wy, — 52 and sq/3(0) = 3¢'/3(0) + 7,(Ar + 03 Ar), we are left with an integral in § with phase
e (h*/wk=82)a" /2 (=0)7g (h*/ oy 0) Ar (h*/ Py —52)q™1/%(0).0,54'*(0)/74.0/70)  Ope derivative with respect to 6 on
this phase yields at most %(hw Swp)? < RSB for k < K, < h™/%¢ and therefore oy is of order 0.
Rewriting K, (gn.q1) after stationary phase, relabelling o and 71, we obtain (4.2). O

Pn(@, 0, h*Puwy, 3, h/t)e—%:?ffq(hz/?’wk,@)Ar(i70,0q1/3(9)/fq,G/Tq)dgdsdf’

Now we evaluate the L norm of P} (t,.). If d > 3, we perform stationary phase in (4.2) w.r.t

n/In| € S42: n=0/h, 0 = |0|9, 0 € supp(s), the phase of each K, (gh.a1)(t, z,y) is
t7,(h* 3wy, 0) + 0] (y - 9 + Bo(y,9)) + O(h*Pwy) = |0](t +y - 9 + Bo(y,9)) + O(h* 3wy,

where O(h?3wy,) contains contributions from Br — By, Ap and aAp. Critical points 9. are
given by (3.33) (with v = a, A = h*3wy/(al0]*?), S = s/(/a|0|'?), & = o/(\/alf|'/?)). As
V3(y -9+ Bo(y,9)) ~ |y| and |y| ~ |t| (Lemma 3.2), stationary phase in ¢ yields (h/|0]|y])* 2 <
C(h/|t])*=2 for ¥ near ¥5. For ¥ outside a small neighborhood of ¥, we get O(%)*. Stationary
phase yields new symbols as asymptotic expansions with small parameter %; the main contribu-
tion Ky, (91.a)(t,7,y) remains similar to (4.2), with a front factor (h/t){@=2/2 5 = |0|9./h and
integration over 7 replaced by integration over |6|.

Lemma 4.3. (|9, Lemma 3.5]) There exists Cy such that for L > 1,
(44) sup (37w AP —w)) < GLY L sup (30w RPAR (D - wy)) < CohPL.

beR 1<k<L beRL 1<k<L

Applying Cauchy-Schwarz, dispersion for small ¢ reduces to estimates like (4.4), as
L

2 h\ 5
(4.5) I Z#Kwk(ghﬂ,l)(t?l’?y)HLm < pd (_) 7 1/ <L1/3 NRYESS7E 0 h2/3L),
1 L (wk) t
where h=@=V(h/t)“" comes from stationary phase in ¢, while h=2/3 = h~'h'/3 arises from

q"/*(0/h) and L-related terms come from (4.4). Recall h=2¢ < K < h™V/*¥¢ hence h > h* > 4.
Let L = h™: for t < h¢ we bound L < § in (4.5) and get (4.1) for the sum up to h™*.

When h¢ < t, we apply stationary phase in each oscillatory integral in the sum over k for
k < h™“(<« K.). Using Corollary 6.10 in the Appendix, we reformulate the phase ¢ of Theorem
2.1 as

U(z,y,0,wp) =y -0+ Tq(h2/3wk, 0)Br(y,0/7,) + Y(x,y,0, h2/3wk).
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Lemma 4.4. The stationary phase theorem with respect to |0| applies in (4.2) with large parameter
twph™Y3, with phase function épx(t, x,v,0) = t1,(h* 2wy, 0) + ¥ (x,y,0,w,) and with symbol

(4.6)
ok = (PoAi(—=C(,y,0/hywn)) + ipr AT (=C(2,y, 0/, w)) )0 (0)30) sl (B3 n, 0))X ()

LUK€
X 0(8/ o)1 (8 h, o) (roAi(—C(a, 0,6/, x)) + iq ™ /o(0 /M)y Ai(—((a, 0,6/, 1)) )
where po, p1 were defined in (2.6) and 6 = |0|¢ with ¥ € {9+}.
Proof. Let r = |6] and recall ¥ € {¥1} (we already performed stationary phase in J). We have

Ok = 1y (W20, 0) + (. 0,00) = r(t+y 9+ Boly, )
1/3
+ g (@) (¢ + Boly, 9) = Ba(y,9) + O(lyl (h*w)) ) + (r)O((h**)?)

— 2(0(2) + O(h*Pwy)) = k¢ (C + O(ah®wy) + O((B* ) )

where, in the second line, O(|y|(h*3wy)) comes from Br — By — By, and (rt)O((h?/3wy,)?) comes
from t7,(h*3wy, ) and where the last line represents the contribution from T as given in (6.31).

Here the critical points ) are solutions to Equation (3.33), but with A replaced with h?/3wy, /r?/3
in the whole equation. Then, y - Y+ + By(y,V+) = £ly + VBy(y,9+)| + O(a?), a®> < h. Moreover,
0,91 = O(h*3wy) (deriving (3.33); originally in (3.33) we made a suitable change of variables and
got rid of r = |#|, which is no longer possible as we now work with fixed wy). A critical point with
respect to 7 for ¢ is such that

(4.7) 0=t=|y+ VBy(y,0+)| + O(a?) + rO(|y[HO(h*3wy,)
2
2 g (02) (4 Boly, 02) = Baly, vs) + Oyl () ) + tO((h*)?)

- arklgz(x> Y, 97 hz/swk) + O($2> I(h2/3wk)) )
where the last line is 0, Y, whose main contribution is —0,k1C?(xz, vy, 0, wy) : as h2/3¢(x,y,0/h, wy) =
C(x,y, 0, h?Bwy) = h2Bw, — 2¢'3(0)eo(x, y, 9, h*3wi/|0)), 0.¢ yields a factor z, which puts every-
thing else in O (22, x(h*?wy)). Moreover, set t(> h) > 0 as usual, only ¥_ is to be kept (at 9, the

phase will be non-stationary). As By(y, <) — Ba(y,9+) = O(|y|?) = O(t?) and x < h?/3~¢, the
main contribution of 92¢y, ;. comes from first terms on the second and last lines of (4.7)

— S PP 0201 (1 + Oy 1)+ Ogl/e) x (/%)) + O((W*Fr)?))

- 02]{51(2(1', Y, 97 hz/swk) + O(xza x(h'z/swk))‘

Observe that h? 3wyt > (%(x,y, 0, h?/3w;) for all t > h: indeed, k¢ > h*3wy, which holds true for
all wy < wg, < h™1/6+2¢/3 At the stationary point satisfying (4.7), |y| behaves like ¢, and therefore
O%¢p 1, behaves like th*3w;, there. We are left to prove that stationary phase indeed applies with
large parameter (th%3wy)/h ~ tw,h=/3, for h¢ <t and symbol o, ;, from (4.6). Computing 9%cy, &
yields at most wilﬂl which occurs when ((z,y,0/h,wy) is large, ((a,0,6/h,wy) is bounded and
when both derivatives fall on of the first Airy: hence, it suffices to check %/:w,il/ ‘< 1fort> he,
uniformly in & < h~¢ : this does hold as long as € < 2/13 and we already set € < 1/12. O
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1
We then sum up to k < h™¢, for ¢t > h° and € < 1/12, with L'(wy) ~ 2w}:

d—2

. hY3 /by %3 1 /hB\: 1 A\ bz, _ 1 /h\F h\3
1Phatt 2 )l S 5 () by o) ~ @) T O sn() TG
It remains to deal with h™¢ < k < K, and t € (h,Tp]. Taking L = K, in (4.5), we obtain (4.1)
exactly as before for all t < K! (up to k < K.). Hence we are left witht > K- 'and h™ < k < K..
It suffices to consider 0 < x,a < h3—e (as for z > hg_e, the arguments for the transverse case
a > h3~< apply). For small values of both z,a, |¢(z,y,n, wk)| > we/2 and |C(a,0,n, w)| > wy/2
(k> h™ is large so wy, > h™2/3 > h=¢ > a/h?/®). We can write Ai(—() = >, A+(¢) which give
rise to factors ((z,y, n, wr)~Y*¢(a,0,n,w,) /4. If we decide to ignore the integral with respect to
r € suppsx, we can immediately bound the sum of integrals with

h'3 rhy 432 11 hy 2
1Pt e S5 (5) © 2 s hi(3) (b
,a Y Y ~ /2 1/2 ~ Y
he At h—e<k<K. Yk Wk t
and as K, < h='/4*¢ (hK)'/3 < hY/*+</3 which is not optimal (a similar crude bound was obtained
in [9] in that regime.) To obtain sharper bounds when ¢t > K ' h™¢ < k < K., decompose
Ai(—z) = AL (2) + A_(2), with Ay(z) = U(eFm/32)e75 and 473/2|W(2)| ~ |27+ for large 2.
Then there are four different phases in K., (gn.q,1), where £ and 4, mean idependent signs,

1 2 2
E (tTQ(hz/gwka 9) + ¢(ZII’, Y, 97 wk) :l:l gg(x7 Y, 97 h2/3wk>3/2 :l:2 gC(av 07 97 h2/3wk)3/2>

and a symbol which behaves like A== =2/3¢1/3(0)3(0)|( (z, y, 0/ h, wi)| 71| (a, 0,0/, wi.)| "4, where
h=23¢(x,y,0,h*Bw,) = ((z,y,0/h,wy) = we — 2q"/3(0)/h*Peg(z,y,0/h,w;) > wp/2 and also
((a,0,0/h,wy) = wp — aq'/?(0/h)eo(a,0,0/h,wy) > wp/2. We prove that stationary phase applies
with the same ”large parameter” th?/3wy,/h but a new symbol. As in (4.7), we find

2 2 2.2 2
t=[y+V Boly, )| +70(y)O(hfw) +5r~F heng? (9) (1 Boly,0-) = Baly. v-) —an(y. v-)

+ O((h3wr)?) 1 20, (qH (9 )eo)\ < (5, . 10, heon) &2 B, (qF (9 )eo) /< (a0, 0,70, ) = 0.
The second derivative is
— SR GgP0)( + O(af)) + O ) F1 2O/ I (1 + O(H )

) CLO( \V h2/3wk)(1 —+ O((h2/3wk)2)),

and for t > K~ 1 h=¢ < k < K., the main contribution comes from the first term : indeed,
t/ h2Bwy, > K7ThY/301-9 > pi/12=4¢/3 5, p2/3=¢ hence t(h*/3wy,) > max{x, a}O(\/h*3w;) for all
z,a < h¥37¢. We then check that th?w;/h is a large parameter for t+ > K (recall that in
Lemma 4.4 we had t > h¢ > K_'): indeed, twy > K'h=2/3 > p1/4=5/3 » p1/3 We find

h'/3 rhy 52 1 hl/3\1/2 h\ %5 fh\1/2
1 —d 1
IPhat 2.9l < 5 (3) 2 L,(wk)w;/mm(mk) ~n(5) () een

where we use the symbol of both factors Ay to get |[¢|~1/* < 2/wi/4. We proved (4.1) and therefore
Theorem 3.1. O



DISPERSION FOR THE WAVE EQUATION INSIDE STRICTLY CONVEX DOMAINS 73

5. STRICHARTZ ESTIMATES

Standard duality and interpolation arguments would lead to Theorem 1.5 with y(d) = 1/4 if
one only uses dispersion formula (1.3). We aim at improving on this straightforward application
of our dispersion estimate, combining three ingredients, where the first two were already proven
earlier: in our estimates from Propositions 3.21, 3.22, 3.23 and 4.1, we either have better decay
or additional (small) factors of a or v; we also have the usual dispersion on time intervals with
lengh less than /7, in the sum of reflections regime (corresponding to dispersion on the Vj term
in the expansion over N); and finally, we claim that the additional cut-off that we introduced to
localize h?/3w ~ 7 is not only a useful technical device but also essentially commutes with the flow
itself. Assuming these facts, one can then prove Strichartz estimates at fixed v: on intervals of
length one, with the y(d) = 1/4 loss but with a constant that depends on a positive power of 7;
on intervals of size /7, one has the usual Strichartz estimates, with y(d) = 0, and by iteration,
one has a corresponding Strichartz estimate on time length one but with a constant that depends
on a negative power of 7; by interpolation, one recovers a Strichartz estimate, at fixed 7, that
improves upon y(d) = 1/4, and then summation over « yields the theorem, with strict inequality
on y(d) because of that last summation over 7. Such a strategy was implemented in [l 1] and
is facilitated there because the v localization commutes with the wave flow. Moreover, a refined
analysis of the dispersion estimates around the exceptional times that force y(d) = 1/4 allows for
a better Strichartz estimate to interpolate with, thus yielding a better result on the 2D model.
We expect such result to generalize to the 2D general convex case, while higher dimensions will
require additional arguments related to the space-time localization of swallowtails (which can no
longer be a set of discrete, exceptional, times). As such, we believe that Theorem 1.5 is of interest
as it illustrates, in a relatively simple way, that the rate of dispersion does tell the whole story as
far as Strichartz estimates are concerned.

We now turn to the details: we relabel Py(t, z,y, a,b) our parametrix but with source (a,b) €
R?, and similarly Ph~(t,x,y,a,b) where an additional cut-off in o was inserted. Inhomogeneous
Strichartz estimates follow from estimating the inhomogeneous operator P, (and/or P, ., with
obvious notations)

th(t,x,y) = /Ph(t -5y, a, b)f(s,a, b) dadbds .

We remark that, with such notations, the homogeneous operator approximating the half-wave flow
with data fo(a,b) at time ¢ = 0 is

(tho)(tv x, y) = Ph<6s:0f0(a7 b))(tv z, y) )

and we define similarly W,,.,. Now, suppose we restrict ourselves to P} = > eniss Pyt for Pry

with v < hY3, we have a'/*h'/* < h'/3 and, collecting all bounds from Propositions 3.21, 3.22,
3.23 and 4.1 in our regime, we do have

1 (d—2)/2 1/3
(5.1) Pt 2y, a,b)] < ﬁ(%) min (1, (%) ) .
Commuting the wave flow and the o ~ v localization in the parametrix is an issue, to be adressed
in Proposition 5.1 below; we already observe that P, is an approximate solution to the wave
equation, and as such, satisfies energy estimates. We then obtain inhomogeneous Strichartz esti-
mates but with y(d) = 1/6 rather than 1/4, after interpolation between (5.1) and energy estimates,
followed by the argument from [11] for the endpoint (only required for d > 4) and a dependence
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on h dictated by scaling, which we encode with <j,:

||me||L 234=4 Sh ||f|| 2 on ford =3, [T | T (1 (=

3d= L2 Lge L7

T

For now, we focus on a given v > h'/3. First, we remark that P, satisfies inhomogeneous
Strichartz estimates with y(d) = 1/4, but with a constant related to v (from the a'/*, v'/* factors
n (3.69), (3.70), (3.71))
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This follows from performing the usual duality and interpolation argument directly on P, , rather
than P, using Proposition 5.1 to handle commutation of the localization with the flow. At the
same time, W), , satisfies the usual short time dispersion (either from [2] or from (3.68) and close
inspection of the N = 1 cases, especially Lemma 3.36), hence homogeneous Strichartz estimates
on a time interval of size 4'/? (this may be seen as a direct consequence of short time Strichartz
estimates proven in a more general context in [2].) With the help of Proposition 5.1, one may sum
such L? estimates over y~1/2 intervals of length y~'/2, obtaining

_1
Whntoll | saz1 Sy~ 2 foll2

20,7

and then revert to inhomogenous estimates,

(5-3) I h,vf” 245 Sh 7_§||f||L 2d-1 -

d d+1

(abusing the enpoint for d = 3, for which exponents are to be shifted to avoid the forbidden
endpoint). One then interpolates between (5.2) and (5.3) to retain 4@, with £(q) > 0 dictated
by interpolation (to sum over ~y later),

| Poafllczee Sn VE(q)HfHLng’ , or, ford = 3, ||P;Wf||L5
t
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with 1/2—1/¢ > 2d/((d —1)(2d — 1)) for d > 4: this corresponds to y(d) > 1/4 — 1/4d for d > 3.
Taking advantage of ¢, we sum over dyadic ¥’s to get estimates for Pg =5 oni/3 Phys and the
resulting estimate is always worse than (5.2) for P, that is to say, ¢ > 2(3d — 4)/(3d — 7). As
such, P, = P}’f + P} satisfies the same set of estimates as Pﬁ, that is, Strichartz estimates with
v(d) >1/4—1/4d = 1/6 + (1/4)(1/3 — 1/d). In particular, for d = 3, we obtain (except for the
endpoint) the set of Strichartz estimates that would result from dispersion with a loss of only 1/6,
which is the loss resulting from cusp-like singularities in the wave front. This completes the proof
of Theorem 1.5, up to proving Proposition 5.1.

It remains to handle the issue of localization with respect to a in our parametrix. For this, we
check that we do have a suitable form of the group property for the operator W}, ,(t): assume that
W, ~ 1s the same operator (with kernel denoted by P, ~) but with a cut-off in «, denoted 1, which
is the identity on the support of the cut-off x; in Wj .

Proposition 5.1. We have Wi, - (t) oW, - (ta) = Wi (t1+t2), modulo O(h™). In terms of kernels,

7Dh,'y(tl + t2a z,y;a, b) = 75h,’y(t1> €,Y; :i'a g)Ph,’y(t% ja ga a, b) didg + O(hoo) .

"Eig
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Similarly, for v1 and 2 such that the corresponding cut-offs have disjoint support, Wi, ., (t1) o
Wi, (t2) = O(h>°) and

(5.4) Phow (t1, 2,95 &, §) Phry (t2, T, J; a,b) dzdyg = O(R™) .

T,y

Proof. Recall that Py, ., is given by (3.5) with K|, ., defined in (3.4). Then we rewrite

/ 75h,’¥(t17 €,Y; :i'a g)thYl (t2a :i'> 'gv a, b) d:i'dg = Z / 6_iN1L(UJ)Xb(h2/3w/€0)JN2,’Ylv’Yz (tla t2> x, Y, w)dw,
z,y

Ni,N2

where we set

JNQ,'yl,'yg (tla t2> €,Y, W) - / Kw,’h (gh,(i,g))(tla Z, y)FNQ,tQ,’yQ (:Z'a g)d‘%d?j )

z,9
FNz,tz,’yz ("Z’a ?j) :e_iNzL(a))Xb(h2/3a)/€0)K®,’yz (gh7(a7b))(t2a :i" ?j) ’

and K, (gh,z,5)) has the same form as (3.4) but with a cut-off Xl(W) instead of Xl(m),

supported near 1 and equal to 1 on the support of y;.
From (3.4), Fi, .4, (Z,7) expands as

S o ~ - - ~ = w —iNa L(@)+itarq (@,7) A S W
/ G(:c,y,n,w)x#(w)q1/6(n)%(hn)%(h7q(w,n))xl(%mwg)e NS D gy (1) (1, 575 ) o,

hence Fi, 154, (Z,9) = J(fNo.t2,72), Where we have set

5 . w w —iNy L(@)+itarq (@) A ~ W
(5.5) sz,tz,vz(% W) = x1( )e N2 L(@)itama( ’")gh,(a,b)(m W)

| 7[*/*
We turn to K, -, (gn.z.9)(t1, 2, y) which expands as
5:6) [ Gl @) n)elhn, o)

w
nlnl*?

it17q(w,m) 5 w

gh,(gz,g)(na m)dﬁ

Lemma 5.2. We have

| 909t (0,505 = T (Fr )0 0)
x,Y

Proof. Recall from (2.33) that, in the variables § = hn, o = h?/3w, we may write

1 Ly —&(F,7,0" ,,8)+pat(T—i)o+(G—7)-
960 () = T / o 0 BT ) bpart (T-2)o+(T-5)0)

X qn(T, 7,0, a, s)qg~ (0 Xo(0) 22(0) dTdzjdd’ dodsdods,
where g is supported near 0 and equals 1 on the support of yo (of Lemma 2.11). We thus obtain

~ N\ 5] 1 Ly .0 —&(z,5,0 ,a,s)+patTo+y- - = —
[~gh,(j,g)(y,,p)FNg,tz,'yg(x7y)dxdy = W/eh(y 0'—0(z,y,0",a,5)+pat+To+y e)qh(u‘c,y,ﬁ',a,s)q 1/6(0/)
T,y
1 (30+§.0) &

X e X0(0)22(0) F, 2.5, (0 /1, 6/ 1)
As 13}\;2,132 = )ZO(J)F]VZ,&,,2 (0/h,0/h) (which contains xo(c)), the last integral equals J~*(Fy, tos)-
|
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Using the lemma and Fi, 1,4, (%, §) = J(fNy t0,4,) vields
(57) [ - gh’(f@)(y,’ p)FNz,tz,’Yz (ia ﬂ)di’dﬂ = J_l o J(fN27t27'\/2)(y,a p) = sz,tzr\/z (y,a p) + O(hoo)>

hence taking the Fourier transform of g, 4 (v, p) (as needed in (5.6)) gives FNaitss(0/1, /)
modulo O(h™) terms. Hence, J, ~, ~,(t1, t2, z,y,w) becomes

TN s (t1, oy T, Y, w) = / G(x,y,n,w)x* (w)g"¢ (n)se(hn) s¢(hry(w, 7)) X1 ( )er T i e (0, w0/ B3,

Y |n|?/?

with sz,tmz given in (5.5). We find, modulo O(h*) terms from (5.7) (which stay O(h™) as the
sums over Ni, Ny below are finite),

(5.8)
o 75h,’71 (tla x,Y; i’, g)th“Q (tg, i’, g% a, b) di’dg — Z / €it17’q(w,n)—iNlL(w)Xb(h2/3w/€0)G(m7 4.1, (,u)
o N,N
~ w N
< X*(w)q"® (n) z(hm) se(hry (w, 77)>X1(W)f1\72,t27«/2(77a w/hY3)dw
= 3 [ et NG ., ) el e )
N1,N2

~ W w . w
Xl(,}/1|,)7|2/3)X1(,y2|77|2/3 )gh,(a,b) (777 h1/3 )

Recall that y; = 1 on the support of x;. Therefore, if v;,75 € 1/2Y with v, # 7, then

X1(71|:7‘)\2/3)X1(~/2\;)|2/3) = 0 and in this case we obtain (5.4).
It remains to deal with 73 = 75 =: v : in this case, as X1x1 = X1, the last sum in (5.8) equals
(5.9) D < e NN (B2 €0) Ky (gh () (1 + ta, 2,) >0 +O(R%),
Ni,N2

and we need to show that the double sum (over Ny, Ny) yields indeed Py, ,(t1 + t2, ,y; a,b). This
is the goal of the next lemma.

Lemma 5.3. The sum in (5.9) can be written as

(5.10) D < e™NHO (00 ) e0) Koy (ghay o) (B1 + T2, 7, Y) >0
N

Proof. We use arguments similar to those in Lemma 2.16, i.e. we check when the phase function
of [e ' WHNILWIK (g4 () )(t1 + t2, 2, y)dw may be stationary with respect to v = h*3w.

Recall first that, independently of the size of a (or ), the phase function of s (a) (or of Gn(z5))
equals that of G(a,b,n,w) (or of G(Z,y,7,&)) : this follows from Propositions 2.12 and and 2.35
in case @ > h*?~¢ and from Lemma 2.35 when a < h?3~¢ and w > h™¢ (for some ¢ > 0). (This
property also holds when a < h?37¢ and w is bounded). These constructions of gy, s (¥, p) (resp.
Gn,z5 (Y, p)) in both cases are very similar and these functions are compactly supported for p near
0. As in Lemma 2.16, the phase function of < e N \P(h*3w [e0) Koy o (Gn.(ap)) (t1 + ta, T, y) >,
(with n = 6/h, w = a/h*?3) is given by (2.45) and its critical points with respect to «,o satisfy
the equations (2.46) and (2.52). Therefore, taking o = vA, 0 = X, Ty = t1/(2\/7), X = z/v
we must have

Ty — ¥ = p+2N1VA, where 2 4+ X¢/3(0)(1+ ¢+ O(7)) = A and p is small.
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If there are two non-trivial contributions for the same t; > 0, corresponding to N; and Ny — 1,
then there exists A; ~ 1 and ¥, satisfying ¥2 + X¢'/?(0)(1 + ¢+ O(~)) = A, such that

Ty — $1 = p+2(N — 1)VA; = p+ 2N1/A; — 2/A;.
The only solutions satisfying the last equations verify ¥/v/A ~ —1 and ¥, /v/A; ~ 1. On the other
hand, there are no solutions if, instead of N; — 1 and N; we consider N; — 2, N;. Therefore, each
time that we obtain non-trivial contributions from two consecutive values of Nj in the sum (5.9),
the corresponding critical points in X satisfy $?/A ~ 1. In the same way, if, for fixed 5, N, and
N3 + 1 provide nontrivial contributions in f, ¢, (¥, p) and fx,+1.4,~(Y', p), then the (normalized)
Airy variable 3 in G(a, b, 7, &) has to satisfy ¥2/A ~ 1.

We introduce x, supported in [—3/4, 3/4] and equal to 1 on [-1/2,1/2] and x4 (z) := (1—x)(2) if
+2z > 0, and equal to 0 otherwise: then x+)__ x+ = 1 everywhere. If 0, s denote the Airy variables
of G(z,y,n,w) and G(a, b,n,w), we split its symbol in two parts, p, = ppx(?/a)+pn(1—x(0?/a))
and write K, ,(f) = K (f)+ K. (f). We then do the same with gy, (4,5)1, that we write as a sum
Ih(ab)r = I (apyy T gi(a,b)n’ where in the integral form of gy (44, we added the cut-offs x(s?/a)
and (1 — x)(s?*/a).

Using the same arguments as above, we notice that, with N, = [t/4,/7], the only non-trivial
contribution in last line of (5.8) comes from pairs (N¢, N;), (NeF1, Np), (N, N;£1), (N;F1, N;+1)
which corresponds to the following products of cutoffs (with respect to (o/a), (s/a)) @ (x,X),
(X+,X), (X, x+) and (x4, x+). Summing up all these contributions allows to obtain (5.10) (as we
recover (x + >, x+)(-)(x + D4 x+)(+)); the sum of the contributions coming from [N — N;| > 2
or |[N — N;| > 2 equals O(h™) by repeated integrations by parts and using that these sums stay
finite. This achieves the proof of Proposition 5.1. O

From the last Lemma we conclude the proof of Proposition 5.1. O

6. APPENDIX
We provide details on the proof of Lemma 2.28 and on obtaining x,, (from Proposition 2.4).
6.1. Proof of Lemma 2.28. We start with twisted modes é (see Definition 2.24):

Lemma 6.1. Let k such that wph?? < €y with €y < 1/100. There ezists constants lp > 0 and
0 < g < Cy independent of k, h,a such that, for all y such that |y| < lo,

(61) Co S Hé('hyunawk)“lxz S CO .

L .
Proof. By definition, é(z,y,n, wy) = \;%e_’(y'"ﬂm%(yv"/'"‘))G(:ﬂ, y,m,wy) and, using (2.22), L' (wy) =
W

2| Ai(- — wy) |32 ~ w,ip, for all £ > 1. From (2.6), with eg, po and p; from Theorem 2.1,

16
(6.2) &z, y,n,wy) = %aw(aym,wk)—y-n—n|Bo<y7n/|n>> <p0 Ai((=C) + iprg~Vo(n) Az"(—g)),
k

where C(xv Y, wk) = —Wwg + x|77|2/3€0($7 Y, 77/|77|7 Wk/|77|2/3) USil’lg Cauchy—Schwarz,

(6.3) /OOO 6z, 5, w2 < qu/(i()Z)) [/OOO ‘poAi(—C)‘zdx+2</ooo ‘poAz'(—g)fdx)l/Q
([ rmar-ofa) "+ [ et mar-o| a.
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For values z|n|*3ey > wy both Ai(—() and Ai'(—() are exponentially decreasing. Setting X :=
I60($>y>77/|77|awk/|77|2/3) ylelds T = f(X>y>77/|77|awk/|77|2/3) and

1/3 00 2 1/3
q’°(n) / , q°(n) / 2/3 2 dx
Ai(—QO)| d Ai(X — dX,
L'(wi) Jo ‘po i C)‘ v L' (wy) ‘po i(Xnl i) dX

where po(X, y. . wi) == po((X, y, n/Inl, we/[n[*?). Here wi/n|** < 1 from i ~ 1/h and h*/Pw;, <

1. Moreover 4 = 60(0 +0(X), e(0,-) is close to 1 and X ~ z < wr|n|?? < 1 (as for large X, Ai(-)

is exponentially decreasing.) With C' := sup |po|*| £ | < oo and rescaling variables X = X|n|*?,

1/3 00 2 1/3 2/3 -
o0 T[T aic-o[ r < DI [T ai(k - npax = o afia

For the integral with Ai’ we proceed similarly: p; is bounded, || Ai'(X —cuk)||2 Sw 3/ >and X < wy,

as for large values we have exponential decay. We compute, with X = zeq(z, ) then X = X|n|*/3,

q1/3( -1/6 y 2 ¢’ = o/ 2/3 2
©03) T [T ar-o) de < o [T XAV KPP - wn)Pax

C' 2/3
<2 |77| / X2|77| 4/3|AZ( _ Wk)| dX < C/|n| -2 3+1/2/L’(wk) - C”(wkh2/3)3 <

where we used |Az'/(z)2| < (1 + |2[)"/? and that pi|,—o = 0. Collecting all bounds yields the
upper bound in (6.1), which will be enough for proving Lemma 2.28 below. We now prove the
lower bound, which was used for the proof of Proposition 2.25. From (6.3), using (6.4), (6.5) and
wiph?/® < ¢, we have

/OOO &(z,y, n, wp)Pde > i,/;(]k [/ ‘poAZ C)rdfc - 2(/000 ‘poAi(—C)‘de)l/z
([ fema e mar-ofa) " = [ g o= aa)

q"3(n)
= Ten)

/OOO ’poAi(—C)rdx — O(wph®?)*2.

As wph?? < ¢y, we are left to prove that q, fo ’poAz( ()’20[1' can be bounded from below
by a constant independently of k&, h,a. From elhptlclty of pg ~ 1, there exists ¢; > 0 such
that po(x,y,n,wr) > 1/2 for all (x,y) such that |(z,y)] < ;. On the other hand, for values
z|n|*eo(x, y, n/|nl, wr/|n*?) > wy, with |n| ~ 1/h, Ai(—() is exponentially decreasing: thus, the
bulk of the L* norm of poAi(—() is located for = < wph®? < ¢ < 1 and [ [poAi(—¢)[dx =
O(h®™). Taking €, smaller if necessary such that ¢y < £1/4, we have, for all |y| < e,

‘2

1/3 1/3
(6.6) L/(Q(Jk) / ‘poAz 0O de > jL/(iZ))

/0 Ai(—O) P + O(h)

Ellipticity of ey near (z,y) = (0,0) provides ¢ > 0 and &5 > 0 such that eg(z,y,:) > ¢ for all
|(x,y)| < e9. Taken gy smaller if necessary (so that £y < 2/4), we can assume that eg(z,y,:) > ¢
for all ¥ < 2¢q and all |y| < ey, Let X = weg(z,y,m/|n|, we/In|*?) for < gp and |y| < Iy =
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min{ey, &2}, then [42] > L for all 0 < o < 4eq and |y| < I and

1/3 4eo 1/3 4eg|n|?/3 ~ R
) / |Ai(=()|*dz > m/ A (X — wy)dX.
0 0

4L/ (wy,) 4el (wy)
As wy < 4eg|n|?? for hln| € [1/2,2] and wyh?/? < g4, we find
deg|n|?/3 - - o0 - ~ b ~ ~
/ A (X —wp)dX = / A (X —wp)dX — A% (X —wp)dX = L'(wg) + O(R™)
0 0 4eo|n|?/3

and therefore the left hand side term in (6.6) is bounded from below by infgcga—2 ¢*/3(©)/(4c) for
all y with |y| <ly. As ¢ is positive definite, this completes the proof of Lemma 6.1. O

Proof. (of Lemma 2.28) Using Bs;(y,-) = O(y) for all j > 2 and Corollary 6.10, the phase
U,y m,wk) —y-n = nBo(y,n/n]) of é(x, y,n,w) reads (see (6.2))

(rq(wrm) = [0))(Bo + Ba) + 74(wr, n)(O(x)Hyza + O/ n]**) sz + O(y) Hjss).

wg®/3 ()

nl+7q(w,m)
wi/|In|*?3, taking derivatives with respect to y or n of the phase of (6.2) provides, at each step,
wi|n|*? ~ wi/h'3. On the other hand, taking the derivatives (with respect to y or n) in the last

factor of the right hand side of (6.2) and using that Ai"(—¢) = (Ai(—() provides

Using Lemma 6.1, [|é(.,wy)||r2@s0) < 1. From 74(w,n) — || = ~ wn|'? and = <

~

851852 (poAi(—C)+ip1q_1/6(U)Ai/(—C)> — (w|n|1/3)61+52 (péﬁl’ﬁ2)Ai(—C)-l—ipgﬁl’ﬁQ)q_l/G(T])Ai/(—C)>,

where p(()ﬁ 152) and pgﬁ 1%2) are asymptotic expansions with main contributions homogeneous of degree

0 and small parameter (wy|n|*/?)~'. Then, (2.76) follows from bounds like in (6.4) and (6.5). O

6.2. The generating function ¢r of x,,. We aim at proving (2.10). Set © = gt} with o = |O|
near 1 and ¥ = ©/|0|. Functions Ar, Br are to be defined near the glancing set GL = {x = 0,=Z =
0,0 —1 =0} and for (y,?9) near {0} x S¥~'. We work with formal Taylor expansions F' near GL
such that F'= 3, fabe(y, 9)Xn"(0 — 1)"6°. We attribute a degree to each factor z,0 — 1,Z: a
monomial of the form %(p—1)?Z¢ is homogeneous of degree k if and only if c+2(a+b) = k. For such
a formal serie F(z,y, Z, 0,7), defined near GL, we write F' = >, Fy, where F}, is homogeneous
of degree k; we also write F' € H>; if and only if F' = Zk>{Fk. Therefore, Fy = fo(y,?),
Fy=Zf(y, ), Fa = X f3(y,9) + (e = ) f5(y,9) + Z2f3(y, V), and so on. Replacing Xy, §, 7 by
their formulas (2.11) (as functions of (z,y,Z,0)) and using that from (2.9)

(6.7) &+ R(z,y,n) =1 ifand only if =%+ |0)*+ Xyq(0) =1,

(where we notice that there is no Y), in the second equation), we get

(6.8) Br =Y (0—1YBy(y,0), Ar=)_ Ay.

>0 k>1
Using the third equation from (2.11) and &|g, = 0, we have Ay = 0. We also have {(z,y,=,0) €
H>1 and Xy (z,y,E,0) € Hso. Moreover, from the proof of Melrose’s theorem [15], if formal

series of the form (6.8) satisfy (2.11) and (6.7), then there exist C'*° functions Ar, Br with the
same Taylor development near GL satisfying (2.11) and (6.7).

We first consider in (6.7) homogeneous terms of order < 5 in the expansion of I': using
Xu(z,y,=,0) € Hsy, we are to write the explicit form of Ap up to H;j<s and Br up to H;<s. Let
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A = :E(Y; 19)’ A2 = Oé(y, ’19)1’ + ﬁ(?ﬁﬁ)(g - 1) + ,[L(y,’l?)E2, Az = al(ya ’19)1’3 + ﬁl(y’ 19)(9 - 1)E +
p(y,0)Z% and Ar = Ay + Ay + Az + Hjsa.

Remark 6.2. Understanding this process will allow us to proceed with the expansion at any order.
Observe that Ay; and Ajjy; always have the same number of terms: the only way to obtain
homogeneous terms of order 2j+1 is to add a factor = to homogeneous terms of order 25. Moreover,
each Ay; and Agji; will have 25 4 1 terms. This is of importance to understand why all A; may
be obtained from the system of equations that will follow below.

Using these expansions for Ar and Br, and omitting variables for the functions ¢, u, «, 5, u,
aq, f1 and gy, (2.11) yields

(6.9) Xy =z(1+0+2u=+ 2+ Bi(o— 1)+ 3= + H;s3)
(6.10) E=(14+ 0=+ (2ax + Bo— 1) + p=?) + 2ayzZ= + Bi(0 — D)ZE + =] + Hjsa
(6.11) n=9+V,By+ (0 — 1)V + V,By) + 22V, + 2*°V,a + (0 — 1)V, 3

+ 222V u+ (0 — 1)*V,By + H;>s5 .

Using x € Hj>o we rewrite v = w9 + 23 + 24 + H;>5 where z; € H;; in the same way, n =
no +m + 12 + N3 + 4 + Hj>5, with n; € H;. From (6.11) we obtain

(612) o = 9 + VyBo, mh = O, T2 = (Q — 1)(’(9 + VyBg).
Then, from x € H,;>2, 73 is homogeneous of order 3 and 73 = 2,=V ¢, while
m = 23EV L+ 23V + 2(0 — 1)V, B+ 2:E*Vyu + (0 — 1)°V, By .

Similarly, £ = & + & + &3 + Hjsa, & € Hj, depending on 9, 23, x4 (notice that {, = 0). For &, an
expansion up to H;>3 is sufficient as we work with 2. From (6.10),

E=14+0Z, &=2ary+P(o—1)+uZ?, & =2ars+ 20102 + Bi(o — 1)Z + 1, =2

Lemma 6.3. Let L := {(z,y,9,0,Z), Xyq(0) =1 —Z2 —|0|?}, where X3y = Xy(2,y,9,0,2) is
giwen by (6.9), © = pv. If (x,y,9,0,Z) € L then v = x9 + 23 + x4 + H;>5, with

(6.13) = ‘(Ecj(g)?igfal Sk 2NE§<E;><+12+(3>; -
(6.14) Ty = q(ﬁ)(ll 0 [E4<(13f—1€) B (11{/:26)2 B q(ﬁ)(olélJr 5)2)
+(o- 1)2<(1 i ) (q(ﬁ;(Qloj— pr3t 51))
+2-1)(2+ 2(<13fg> - (1%2 - qw)gl+ @2)

s )]

(1+0) q(I)(1+¢
Proof. Using X ,q(0) =1— 22 — 0], ¢(0) = 0?¢(Y) and (6.9) yields
(6.15) T(L+ 0+ 2u=+ arx+ Bi(o— 1) + 3u=2 + Hjs3)0°q(9) = 1 — o — =2

which immediately provides x in terms of (y, %), = and ¢ — 1 up to H;>3 as follows

_0-g=) 2
0%q(0)(1+4) 147

oy + Hj22> ;
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hence, using 1 — 0> = —2(p — 1) — (0 — 1)?, we get (6.13). In order to obtain homogeneous terms
of order 4 we write x|, = 29 + x5 + x4 + H;>5 and replace xo, 23,24 in (6.15); using moreover
L =1-2(0—1)+3(e—1)*+0((¢—1)%), we find

(2o + 23 + 24 + Hjss) (1 + £+ 2u= + ayze + Bi(0 — 1) + 3= + Hjs3)

B Q(lﬂ) (E2+200 =1+ (0= 1)) x (1 =2(e=1)+3(0 = 1)* + H;z)
1

=~y (E 4200 = 1) = (0= DOZ 430~ 1) + Hyzg ).

Identifying homogeneous terms of order 2,3, 4, we obtain (again) xo, x3 as well as z4:

— — 1 —
(1 +0) +2u=xs + (1xe + P10 — 1) + 3u1:2)9:2 = m(g — 1)(2:2 +3(p—1)),

which yields (6.14) by substitution. This completes the proof of Lemma 6.3. O

We now replace (6.13) and (6.14) in (6.10) and (6.11) and then z,&, 7 in €2 + R(z,y,n) = 1 to
obtain a system of equations with unknown By, Bs, By, {, o, 3, i, o, 1, p11 as follows. First,

2=+ E+E+M)2 = (14072 +2(1 + 0220y + Blo— 1) + p=2)
+ 2(]_ —+ E)E(2CKE3 + 2@11’23 + 51(@ — ]_)E + ulEg) + (20&1’2 + 5(@ — 1) + ,UE2)2 + Hj25 .

Write &2 = (£2)g + (€%)3 + (€%)4 + Hj>5, where (£2); € H,;; replacing x5 and 3 by (6.13), we find

(6.16)(8%)2 =(1 + 0)*=* € Ha,

(6.17)(£%)3 =2(1 + £) E( q(;; 21Q+_£>1)) + B(o—1) +,LL52> € Hs,
(E2+2(0—1))

(6.18)(£2), —(—2 ()(1+£) +ﬁ(g—1)—|—,u52> 121+ 0=

2U=(2% +2(0— 1))
< (207 T

(=" + 200~ 1)) (n -

= +2(0- 1))
a1 +0)

2
) + 21+ O = +2(1 + 05 Z2% (0 — 1)

422 1 2ap —2
+ m(m —Oél>(~—‘ +2(Q— 1))

We do the same for n = 1y + 12 +n3 + 14+ H;>5, for which it remains to replace x5 and x5 obtained
in (6.13) in the expression of 73 and 7, that we have already obtained from (6.11). We get
(6.19)

- 20&15(

+ 610 — 1DE+ u153> € Ha
2
q(V)(1+ 1)

o E+20e-1) & +20-1)) [
=B g e e U - St (S (= V)
2u=2(Z2 4+ 2(0 — 1)) (22+2(0—1))?
TV o E TV @yt 0
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We expand R(l’, Y, n)RO(ya 77) + IRI (ya 77) + %$2R2(y, 77) + O(Ig) (770> T2 were obtained in (612))a

(6.20) R(z,y,n) = Ro(y,no) + (n2 + 03+ na) Vi Ro(y, 10) + 772V RO(y7 no) + Hj>s

1
§$§Rz(y, no) + Hjzs -

We set R(z,y,m) = (R)o+ (R)1 + (R)2+ (R)s + (R)4 + H;>5, with (R); the homogeneous term of
order j in R(z,y,n); from (6.20) and (6.12) we get (R)o = Ro(y, v + V,By), (R); =0, and

+ (w2 + 23 + 24) (R1(y,m0) + 12V R1(y,m0)) +

(6.21) (R)2 =mV Ro(y,m0) + 22 R1(y,m0), 1m0 =0+ VyBo(y, V),
(R)s =13V Ro(y,no) + 933Rl(y M)

1
(6.23) (R)s =14V, Ro(y,m0) + 772V2 Ro(y,no) + x2m2V Ry (y, o) + 595332(% o) -

Recall from (2.1) that we had set Ro(y,n) = R(0,y,7) = [n|*+ O(y) and Ri(y,n) = 2£(0,y,7n),
q(n) := R1(0,n). From (6.7) it follows that for (z,y,, o, =) € L we must have

(6.24) E+ R(z,y,m)=1.

On £ we have obtained z|, as a sum of homogeneous terms of the form (6.13), (6.14) which in turn
has allowed to do the same for £? and R(x,y,n); it remains to get homogeneous terms of order j
for j € {0,2,3,4} in (6.24) to obtain a system of equations whose unknown are the coefficients
of Ar and Br (notice there are no terms of order j = 1). First, we have Ry(y,?¥ + V,By) = 1,
(homogeneous terms of order 0). The next lemma easily follows from solving transport equations:

Lemma 6.4. For n € R¥1\ 0, there exists an unique function ¢(y,n), homogeneous of degree 1
in 1, solving the eikonal equation Ry(y, Vy®) = |n|?, with ¢y = 0.

We then obtain By: from Ry(y,n) = |n|* + O(y), we have ¢(y,n) =y - n(1+ O(y)), and

As a consequence we have By(0,7) = 0 and V,By(0,7) = 0. Back to (6.24), consider homogeneous
terms of order 2 such that (£2)y + (R)2 = 0; using (6.16) and (6.21), this translates into

(22 +2(0—1))

6.26 1+0)2=2 - 1) By) -V, R — R =0.
1/3
We first match coefficients of Z2 in (6.26): (1+/¢)* = qIZ;)?ITZ which yields 14+¢ = (W) :
As R1(0,9) = ¢(¥) and V,By(0,9) = 0, we obtain £(0, ) = 0. We now match coeflicients of p — 1,
211 (y,m0)
6.27 v By) -V, R =
( ) ( +vy 2) vn 0(?/7770) q<79)(1+£)’

which is a linear transport equation for By(y, ) and we can take Byyy—o = 0 : at y = 0, the
transport field is 20 - V,,, as V, Ro(y,n0) = 210 + O(y), no = ¥ + V,By(y, ) and V,By(0,9) = 0.
The first three equations involving By, By and ¢ can be solved explicitly using only homogeneous
contributions up to order 2. We consider now homogeneous terms of order 3 in (6.24), i.e. (£2)3+
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(R)3 = 0. This yields, using (6.17) together with (6.22), (6.19) and (6.13)

(22 +2(e—1)) =2
+ 8 + p=
ey e D)
(22 +2(0—1)) 2p=(22 +2(0 — 1))
Ri(y,mo) =0,
G0+ 7] @y
in which there are only 2% and Z(p — 1) terms. Exactly like we did for (6.26), we match coefficients

for these terms separately. Unknown functions are o, § and pu (we already chose ¢ and By, Bs.)
Using that ¢(9)(1+ €)* = Ry(y,no), we get

4,u(1 +€) = 43) + W V Ro(y 7’]0) terms n 53;
Cu+p)(1+10) = q(ﬂ) + (79716% V,Ro(y,mo), terms in Z(o — 1).

The last system of two equations and three unknown functions implies § = 2u, and provides a
relation between « and p (given by the first equation in (6.28)). Moreover, at y = 0, we have

q(¥) = R1(0,9) and 3V,£(0,9) = %ﬂ()o,m. We summarize what we obtained so far:

Proposition 6.5. The phase function I'(x,-) = Br + xAr is such that, near the glancing set GL,

Ar(z,y,=2,0) = Zl(y,9) + a(y, )z + p(y, 9)(Z2 + [0]* = 1) + H;>3,
Br(y,0) = By(y,V) + (0 — 1) Ba(y,9) + Hj>3,

where ¥ = ©/|0], o = |O| and the functions By By were defined in (6.25), (6.27). Morover,
« \Y Ro(y,ﬁ—F \Y% Bo) 1
=9 = — 0 L . .

We also have £(0,9) = 0, By(0,9) = 0, V,By(0,9) = 0, B2(0,9) = 0 and V,B2(0,9) = 0, By
(resp. Bs) is homogeneous of order 1 (resp. of order 0) in the second variable.

2(1+€)E<—

[I]

Vyg . vnRO(y> 770) +

(6.28)

(6.29)

Remark 6.6. The restriction of x,; to GLy is given by x = & = 0 and Yy, = y + Ve Br(y, )| =1,
n =0+ V,By(y,0)(y,0)|,=1. It preserves the canonical foliation: X, ({YM =Yy + 250,00 =

Vo, V2 }) is an integral curve of Hg, on Ry = 1.

To complete the proof of Proposition 2.4, we are to identify homogeneous terms of order at least
4 for Ar and Br in (6.7). One gets a cascade of linear equations (similar to those obtained by
identifying homogeneous terms of order 0,1,2,3 in order to chose «, 3, ) which may be solved
by induction. We only do it for homogeneous terms of order 4 in (6.24) as an example: let
(€2)4 + (R)4 = 0 and match coefficients for Z* and Z2(p — 1) using (6.18), (6.23), (6.19), (6.12),
(6.13),

4oy 9 Ry (y,mo) Vi, Ro(y,mo) V., Ro(y, o) 1
sy~ 2 O =0 s s Y (T W)
4oy iz, Belym)  ViRi(y,mo)

gy~ WO =100 G T i T v Ve

2V, Ro(y, m0) Vo Ro(y,m0) 1
Tonsn W V)
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where both RHSs only contain ;2 and known function such as ¢, By, By, Ry, Ri, Rs.

Remark 6.7. If we require 3; = 2u; (which implies Az = Z(za; + (22 + 2(0 — 1))1)), then
by difference between the last two equations p? is uniquely determined (and therefore « using
Proposition 6.5). Similarly, we could ask for

Agj = w4+ (E2+2(0 = D)py,  Agipn =28, 0+ (E2+2(0— 1))Zp1,  § > 2,
but this would determine By; in an unique way. Indeed, for j = 1 requiring 5, = 2p; provides a
unique p and then a unique a. Moreover, identifying the coefficients of (¢ — 1)? in homogeneous
terms of degree 4 in (6.24) does not involve oy, f1, p1, but only V, By (with V, Ro(y,n0 # 0) and
a, i, £ (this is the first occurrence of By.) Indeed, 1, does not contain «y, 51, pt1, which appear only
in (%), (with =% or Z%(¢ — 1)). Therefore for given «, u, this equation (obtained by identifying
coefficients of (9 — 1)?) determines V,B, (and therefore V,B4(0,9) # 0 unlike for By, Bs.)

Remark 6.8. That the formal expansion is not uniquely defined reflects that the group of canonical
transformations which preserves the model {X; = 0,2 + |0]* + X,,¢(0) = 1} is not trivial.

6.3. Equivalence of phase functions for G(z,y,n,w). Both phases ¢ + s3/3 — s (from (2.6)
in Theorem 2.1) and y-n+0%/3+0o(zq"?(n) —w) + 7,0 (z,y,0¢**() /74, n/7,) (from (2.12)) define
the same Lagrangian. We now explain how they are related. From a classical result (see [3]) on
the normal form of integrals whose phases have degenerate critical points of order 2, we have:

Lemma 6.9. Let ¢(v,y,0,a,0) = 0°/3 + o(2¢*/3(0) — a) + 27, Ar(z,y,06"3(0) /7,,0/7,). There
exists a unique map o — s and Y(z,y,0,a) € C> such that ¢(x,y,0,a,0) = s*/3—s((x,y,0,a)+
T(z,y,0,0) and %= ¢ {0,00}. Let w := (z,y,0,a) and denote oo(w) the unique solution to
827U¢(w, o) = 0; then the two saddle points of ¢, that we denote o (w), correspond to the critical
points sy (w) := im and such that oy (w) = oo(w) £ /C(w)k(E+/C(w), w), with k(u,w) =

1+ 2]21 kj(w)u?, where k; are smooth functions of w. Moreover,

3 1
(630)  {CR(w) = w0 () — d(w,or(w)), Tw) =3 (0w, 04 (w) + (w,0-(w)))
Corollary 6.10. We may write ¢¥(z,y,0,a) =y -0 + 7,(a,8)Br(y,0/7,) + T(x,y,0, «), with

(6.31) Y(2,y,0,a) = —z(zu(y, 0/10))q(0)/7,(ct, 0)(1+L(y, 0/10))+H;4) — k1 C((H+aH o+ (Hjs2) -

Proof. Compute oy: as 92 ,¢(w, o) = 20 + 2 (u(y, 0/10])q*(0) /7(cr, 0) + H;j>1) = 0, where H;—,
contains only multiples of o, we get oo(z,y, 0, a) = —z(u(y, 8/16])¢*3(0)/74(ct, ) + H;>2), where
all H;>2 in the RHS come with weights « and a. We develop ¢(w, o) near ¢ = 0 and replace o
by o4 (w): as 3(oy +0-) = 09 + ki (w)((w)(1 + O(((w))), using (6.30) yields (6.31). Moreover,
contains Br as it does not depend on o. O

7. INDEX OF NOTATIONS
Below is a commented list of the main notations, with reference to their very first occurence.

7.1. General notations (used consistently throughout the paper).

e (2, g) = d dimensional manifold, d > 2, A its Laplace Beltrami operator, section 1.

e Y(d) encodes the loss in Strichartz estimates w.r.t. the case without boundary, Theorem
1.5.

e (z,y), boundary normal coordinates; ¢ the time variable; locally, Q = {(z,y) : > 0,y €
R1} | section 2.
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e (&,1n,7), dual variables: (z,y,t,&,n,7) € T*(Q x R;). For (x,y) near (0,y), the metric is
&2+ R(x,y,n). In a neighborhood of (0,0) € 99,

RO(yvﬁy) = R(Ovyver) ) Rl(yﬂl) = 8$R(07y78) )
section 2 and (2.1).

o Ay =07+, Qi_ +x 2521:1 R{’k(O)ayj 0y, model Laplace operator, (2.2); Multipliers

d—1
a) = 3 RIFOmme, rolwn) =/ Inl? + wa(n)s
jk=1
o {er(x,n) k>0 in the spectral decomposition of —Aj, (section 2.3.1), an explicit orthonor-
mal base of eigenfunctions associated to eigenvalues Ai(n), where

Ae(n) = [ + wig(n)*? = 72(wi, ).

o {—wy >0 zeros of the Airy function in decreasing order. Everywhere in the paper w > 1
and serves as a substitute to the { variable: if @), is the differential operator with symbol
q, o = h*3w quantizes the operator z — Q192

s, o: integration variables in Airy type oscillatory integrals, (2.12), (2.4).

(a,b) coordinates of the source point, mostly set with b = 0, Theorem 1.1.

h € (0,1) (Theorem 1.1), v € (0,1) with 1/ € 2" (Section 3.1): small parameters.

A =a*?/h, \, = v*/?/h: large parameters, Section 3.1.

(X,Y,T), rescaled coordinates (using some combination of a, h or A, A, as rescaling pa-

rameters), Section 3.1.

e >, S, A: rescaled variables in Airy-type oscillatory integrals, Section 3.1.

e w: (2.2), parameter and integration variable, successively rescaled to « ((2.16)) and then
A (Section 3.1). Stationary phases in oscillatory integrals are performed with respect to «,
o, s or their rescaled versions A, ¥, S, less frequently 7, with a large parameter being 1/h,
Aor A,

e 0: (Section 2) rescaled n, near S*1, and p = ||, ¥ = 6/p.

7.2. Localisations in phase space.

e We localize 7,(w,n) ~ 1/h and |n| ~ 1/h. For small z, this corresponds to large frequencies
—A ~ —Ay; ~ 1/h? and "tangent” directions: the number of reflections on the boundary
may be quite large.

e A further localization is to values w/|n ~ 7. Informally, it relates to the angle of
incidence at the boundary for a ray starting tangentially from (v, 0).

e Cut-offs : 3¢ > 0 is a cut-off function in C§°(R™) with m = 1 or with m = d — 1, localizing
around a small neighbourhood of 1 (for d = 1), or near S™! for m = d — 1; s is a 1-d
». We also have x” € C*®(R) such that x* = 1 on (—o0,1] and ¥’ = 0 on [2,00) and
X' =1—x". Also, xo € C°(R) is supported is a small, fixed neighborhood of 0.

‘2/3

7.3. Operators, kernels and quasimodes.
e G(x,y,m,w): a quasimode, (2.7) or (2.12); satisfies (2.7) —AG = 177G + O (17,%°).
o K,(f)(t,z,y): operator related to wave flow (2.24), acting on smooth f.
e J(f)(z,y): Fourier integral operator, (2.19).
o Pna(t,x,y), (2.37) and (2.38), our parametrix for the wave equation
e Vy: a wave in the expansion over N of Py, 4, (2.42).
e Vy: further localized with x1(w/(y|n]*?)), (3.6).
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Pha~: the corresponding sum over N, (3.7).

En(+, wy): galery modes for the model Laplacian Ay, (2.63).

ex(z,n): eigenfunctions of F,(Ays), (2.60).

e(x,y,n,w): quasimodes for A,, (2.68).

Ghas Ghajs J € {1,2}: functions to serve as arguments to J and K, to construct a suitable
smoothed out Dirac data, (2.31), Propositions 2.18 and 2.19.

F,,.(9)(z,y): operator acting on functions g € L?(R%71), average (with density §(n)) of
quasimodes e(z,y, 1, wy), (2.69).

£(f)(y): operator actiong on f € L?(R¢"1) which allows to ”get rid” of the term By in the
phase of e(x,y,n,w), (2.70).

ka(f)(x, y) = F,, o £(f)(z,y): its main property is that it can be inverted.

7.4. Phase functions and canonical transformation.

C(z,y,n,w), ¥(x,y,n,w) : the phase functions of G(z,y,n,w) from Theorem 2.1.

Yo: (2.8), a neighborhood of a glancing point in the model case.

X (2.9),the canonical transformation defined in a conic neighborhood of ¥3 mapping the
model case (variables (X, Yas, 2, ©)) to the general case (variables (z,y,&,7n)).
or(z,y,2,0) =22+ y0 + ['(x,y, =, 0): Proposition 2.4, the generating function for x,,,
with I'(z,y,=,0) = Br(y, ©) + xAr(z,y, =, ©) from (2.10).

Ar, Br: phase functions that are formal series (6.8) from Section 6.2, defined near GL =
{x=0,Z=0,0—1=0} and for (y,?) near {0} x S, where © = gi). Their explicit form
is given in (6.29).

H>; = {F such that ' = >, . Fy, with Fj homogeneous of degree k& > 1}, where a
monomial of the form 2%(p — 1)°Z° is homogeneous of degree k if ¢ + 2(a + b) = k.

{(y,v) (which defines Ay = Z(), a(y,v), B(y,v), u(y,?) (which define Ay = a(y,¥)x +
B(y,9)(0—1) + u(y,9)=?) so that Ar = A; + Ay + H>3: other functions related to I' from
Section 6.2.

Br(y,©) = By(y,Y) + (0 — 1)Ba(y, V) + H;>3, whose properties are stated in Proposition
6.5.

L=A{(x,y,9,0,Z), prr2(Xnr, Yar, E,0) = 0} defined in Lemma 6.3.

WEF), the semiclassical wavefront set (see [25]).

Oy~ the phase function of Vi, defined in (3.9).

@}, the phase function in the model case (Q,Ay ). (In general, a notation with an
additional M indicates that we consider the model situation.)

Dy, a rescaled Py, (see (3.28)) with o = \/F]0]'/3%, a = 4|0|?2A, s = /7]0]'/2S.

o Uy, relabeled d N after rescaling z =X, t = AT, y = /Y.
o N(t,z,y): the set of N with significant contributions of the phase ®y (¢, z,v, "), defined

in (3.8).
,+ a cylinder defined by (3.15).

o Nj: enlargement of N defined by Nj(t,z,y) = Ue, (1a N (t',2',y') in (3.14).

T, T, (see (3.35)), Ex, € (see Lemma 3.8), £ (see Lemma 3.10): remainder terms in phase
functions (they do not influence the behaviour of the corresponding phase functions.)
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