Skip to main content
Log in

HIV-Associated Lipodystrophy: Impact of Antiretroviral Therapy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

In the late 1990s, reports of unusual changes in body fat distribution named ‘lipodystrophy’ (LD) began to appear in HIV patients mitigating the enormous enthusiasm about improvement of survival and quality of life provided by the combinations of antiretroviral (ARV) drug classes, the so-called highly active antiretroviral therapy (HAART), which had just become available at that time. The objective of this paper is to critically review the literature on LD and to discuss the impact of newer ARV agents, namely atazanavir, darunavir and raltegravir, as well as strategies of the late HAART era, including single-tablet regimens and nucleoside-sparing regimens. Studies in which LD was measured by dual-energy x-ray absorptiometry or by abdominal computed tomography or magnetic resonance imaging scan only, were included. We were unable to identify studies depicting a negative impact of drugs or ARV regimens on limb fat loss. On the contrary, a few studies identified a negative impact of atazanavir/ritonavir or darunavir/ritonavir on trunk fat increase. It should be noted that this anthropometric measure is a poor instrument since it cannot distinguish between subcutaneous and visceral fat. We conclude that presumably the body fat changes currently observed in HIV-infected patients is the net result of competing phenomena: on one side the natural history of lipohypertrophy as a result of HIV and HAART impact, and on the other side the physiological body fat changes observed in the aging population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mocroft A, Ledergerber B, Katlama C, Kirk O, Reiss P, D’Arminio Monforte A, et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet. 2003;362(9377):22–9.

    Article  PubMed  CAS  Google Scholar 

  2. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–60.

    Article  PubMed  Google Scholar 

  3. Bhaskaran K, Hamouda O, Sannes M, Boufassa F, Johnson AM, Lambert PC, et al. Changes in the risk of death after HIV seroconversion compared with mortality in the general population. JAMA. 2008;300(1):51–9.

    Article  PubMed  CAS  Google Scholar 

  4. Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12(7):F51–8.

    Article  PubMed  CAS  Google Scholar 

  5. Carr A, Miller J, Law M, Cooper DA. A syndrome of lipoatrophy, lactic acidaemia and liver dysfunction associated with HIV nucleoside analogue therapy: contribution to protease inhibitor-related lipodystrophy syndrome. AIDS. 2000;14(3):F25–32.

    Article  PubMed  CAS  Google Scholar 

  6. Engelson ES, Kotler DP, Tan Y, Agin D, Wang J, Pierson RN Jr, et al. Fat distribution in HIV-infected patients reporting truncal enlargement quantified by whole-body magnetic resonance imaging. Am J Clin Nutr. 1999;69(6):1162–9.

    PubMed  CAS  Google Scholar 

  7. Miller KD, Jones E, Yanovski JA, Shankar R, Feuerstein I, Falloon J. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet. 1998;351(9106):871–5.

    Article  PubMed  CAS  Google Scholar 

  8. Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr Metab (Lond). 2004;1(1):12.

    Article  CAS  Google Scholar 

  9. Vigano A, Mora S, Manzoni P, Schneider L, Beretta S, Molinaro M, et al. Effects of recombinant growth hormone on visceral fat accumulation: pilot study in human immunodeficiency virus-infected adolescents. J Clin Endocrinol Metab. 2005;90(7):4075–80.

    Article  PubMed  CAS  Google Scholar 

  10. Yin MT, Glesby MJ. Recombinant human growth hormone therapy in HIV-associated wasting and visceral adiposity. Expert Rev Anti Infect Ther. 2005;3(5):727–38.

    Article  PubMed  CAS  Google Scholar 

  11. Lo JC, Mulligan K, Tai VW, Algren H, Schambelan M. “Buffalo hump” in men with HIV-1 infection. Lancet. 1998;351(9106):867–70.

    Article  PubMed  CAS  Google Scholar 

  12. Roth VR, Kravcik S, Angel JB. Development of cervical fat pads following therapy with human immunodeficiency virus type 1 protease inhibitors. Clin Infect Dis. 1998;27(1):65–7.

    Article  PubMed  CAS  Google Scholar 

  13. Torres RA, Unger KW, Cadman JA, Kassous JY. Recombinant human growth hormone improves truncal adiposity and ‘buffalo humps’ in HIV-positive patients on HAART. AIDS. 1999;13(17):2479–81.

    Article  PubMed  CAS  Google Scholar 

  14. Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353(9170):2093–9.

    Article  PubMed  CAS  Google Scholar 

  15. Gervasoni C, Ridolfo AL, Trifiro G, Santambrogio S, Norbiato G, Musicco M, et al. Redistribution of body fat in HIV-infected women undergoing combined antiretroviral therapy. AIDS. 1999;13(4):465–71.

    Article  PubMed  CAS  Google Scholar 

  16. Carter VM, Hoy JF, Bailey M, Colman PG, Nyulasi I, Mijch AM. The prevalence of lipodystrophy in an ambulant HIV-infected population: it all depends on the definition. HIV Med. 2001;2(3):174–80.

    Article  PubMed  CAS  Google Scholar 

  17. Bacchetti P, Gripshover B, Grunfeld C, Heymsfield S, McCreath H, Osmond D, et al. Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr. 2005;40(2):121–31.

    Article  PubMed  Google Scholar 

  18. Lichtenstein KA, Delaney KM, Armon C, Ward DJ, Moorman AC, Wood KC, et al. Incidence of and risk factors for lipoatrophy (abnormal fat loss) in ambulatory HIV-1-infected patients. J Acquir Immune Defic Syndr. 2003;32(1):48–56.

    Article  PubMed  Google Scholar 

  19. Martin A, Mallon PW. Therapeutic approaches to combating lipoatrophy: do they work? J Antimicrob Chemother. 2005;55(5):612–5.

    Article  PubMed  CAS  Google Scholar 

  20. Parruti G, Toro GM. Persistence of lipoatrophy after a four-year long interruption of antiretroviral therapy for HIV1 infection: case report. BMC Infect Dis. 2005;5:80.

    Article  PubMed  Google Scholar 

  21. Ribera E, Paradineiro JC, Curran A, Sauleda S, Garcia-Arumi E, Castella E, et al. Improvements in subcutaneous fat, lipid profile, and parameters of mitochondrial toxicity in patients with peripheral lipoatrophy when stavudine is switched to tenofovir (LIPOTEST study). HIV Clin Trials. 2008;9(6):407–17.

    Article  PubMed  Google Scholar 

  22. Kitahata MM, Gange SJ, Abraham AG, Merriman B, Saag MS, Justice AC, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med. 2009;360(18):1815–26.

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen A, Calmy A, Schiffer V, Bernasconi E, Battegay M, Opravil M, et al. Lipodystrophy and weight changes: data from the Swiss HIV Cohort Study, 2000–2006. HIV Med. 2008;9(3):142–50.

    Article  PubMed  CAS  Google Scholar 

  24. Mutimura E, Stewart A, Rheeder P, Crowther NJ. Metabolic function and the prevalence of lipodystrophy in a population of HIV-infected African subjects receiving highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2007;46(4):451–5.

    Article  PubMed  CAS  Google Scholar 

  25. Mercier S, Gueye NF, Cournil A, Fontbonne A, Copin N, Ndiaye I, et al. Lipodystrophy and metabolic disorders in HIV-1-infected adults on 4- to 9-year antiretroviral therapy in Senegal: a case-control study. J Acquir Immune Defic Syndr. 2009;51(2):224–30.

    Article  PubMed  Google Scholar 

  26. Miller J, Carr A, Smith D, Emery S, Law MG, Grey P, et al. Lipodystrophy following antiretroviral therapy of primary HIV infection. AIDS. 2000;14(15):2406–7.

    Article  PubMed  CAS  Google Scholar 

  27. Martinez E, Mocroft A, Garcia-Viejo MA, Perez-Cuevas JB, Blanco JL, Mallolas J, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet. 2001;357(9256):592–8.

    Article  PubMed  CAS  Google Scholar 

  28. Study of Fat R, Metabolic Change in HIVI. Fat distribution in women with HIV infection. J Acquir Immune Defic Syndr. 2006;42(5):562–71.

    Article  Google Scholar 

  29. Wohl D, Scherzer R, Heymsfield S, Simberkoff M, Sidney S, Bacchetti P, et al. The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J Acquir Immune Defic Syndr. 2008;48(1):44–52.

    Article  PubMed  CAS  Google Scholar 

  30. Grunfeld C, Rimland D, Gibert CL, Powderly WG, Sidney S, Shlipak MG, et al. Association of upper trunk and visceral adipose tissue volume with insulin resistance in control and HIV-infected subjects in the FRAM study. J Acquir Immune Defic Syndr. 2007;46(3):283–90.

    Article  PubMed  Google Scholar 

  31. Lichtenstein KA, Ward DJ, Moorman AC, Delaney KM, Young B, Palella FJ Jr, et al. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS. 2001;15(11):1389–98.

    Article  PubMed  CAS  Google Scholar 

  32. Brinkman K, ter Hofstede HJ, Burger DM, Smeitink JA, Koopmans PP. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS. 1998;12(14):1735–44.

    Article  PubMed  CAS  Google Scholar 

  33. Blanch J, Rousaud A, Martinez E, De Lazzari E, Milinkovic A, Peri JM, et al. Factors associated with severe impact of lipodystrophy on the quality of life of patients infected with HIV-1. Clin Infect Dis. 2004;38(10):1464–70.

    Article  PubMed  Google Scholar 

  34. Blanch J, Rousaud A, Martinez E, De Lazzari E, Peri JM, Milinkovic A, et al. Impact of lipodystrophy on the quality of life of HIV-1-infected patients. J Acquir Immune Defic Syndr. 2002;31(4):404–7.

    Article  PubMed  CAS  Google Scholar 

  35. Collins E, Wagner C, Walmsley S. Psychosocial impact of the lipodystrophy syndrome in HIV infection. AIDS Read. 2000;10(9):546–50.

    PubMed  CAS  Google Scholar 

  36. Martin A, Smith DE, Carr A, Ringland C, Amin J, Emery S, et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS. 2004;18(7):1029–36.

    Article  PubMed  CAS  Google Scholar 

  37. McComsey GA, Ward DJ, Hessenthaler SM, Sension MG, Shalit P, Lonergan JT, et al. Improvement in lipoatrophy associated with highly active antiretroviral therapy in human immunodeficiency virus-infected patients switched from stavudine to abacavir or zidovudine: the results of the TARHEEL study. Clin Infect Dis. 2004;38(2):263–70.

    Article  PubMed  CAS  Google Scholar 

  38. Moyle GJ, Sabin CA, Cartledge J, Johnson M, Wilkins E, Churchill D, et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS. 2006;20(16):2043–50.

    Article  PubMed  CAS  Google Scholar 

  39. Mallon PW, Wand H, Law M, Miller J, Cooper DA, Carr A, et al. Buffalo hump seen in HIV-associated lipodystrophy is associated with hyperinsulinemia but not dyslipidemia. J Acquir Immune Defic Syndr. 2005;38(2):156–62.

    Article  PubMed  Google Scholar 

  40. He Q, Engelson ES, Ionescu G, Glesby MJ, Albu JB, Kotler DP. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV-infected men. Antivir Ther. 2008;13(3):423–8.

    PubMed  Google Scholar 

  41. Lo J, Abbara S, Rocha-Filho JA, Shturman L, Wei J, Grinspoon SK. Increased epicardial adipose tissue volume in HIV-infected men and relationships to body composition and metabolic parameters. AIDS. 2010;24(13):2127–30.

    Article  PubMed  CAS  Google Scholar 

  42. Albu JB, Kenya S, He Q, Wainwright M, Berk ES, Heshka S, et al. Independent associations of insulin resistance with high whole-body intermuscular and low leg subcutaneous adipose tissue distribution in obese HIV-infected women. Am J Clin Nutr. 2007;86(1):100–6.

    PubMed  CAS  Google Scholar 

  43. Torriani M, Thomas BJ, Barlow RB, Librizzi J, Dolan S, Grinspoon S. Increased intramyocellular lipid accumulation in HIV-infected women with fat redistribution. J Appl Physiol. 2006;100(2):609–14.

    Article  PubMed  Google Scholar 

  44. Caron-Debarle M, Lagathu C, Boccara F, Vigouroux C, Capeau J. HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol Med. 2010;16(5):218–29.

    Article  PubMed  CAS  Google Scholar 

  45. Lewis CE, Jacobs DR Jr, McCreath H, Kiefe CI, Schreiner PJ, Smith DE, et al. Weight gain continues in the 1990s: 10-year trends in weight and overweight from the CARDIA study. Coronary Artery Risk Development in Young Adults. Am J Epidemiol. 2000;151(12):1172–81.

    Article  PubMed  CAS  Google Scholar 

  46. Appay V, Boutboul F, Autran B. The HIV infection and immune activation: “to fight and burn”. Curr Infect Dis Rep. 2005;7(6):473–9.

    Article  PubMed  Google Scholar 

  47. Caron M, Auclairt M, Vissian A, Vigouroux C, Capeau J. Contribution of mitochondrial dysfunction and oxidative stress to cellular premature senescence induced by antiretroviral thymidine analogues. Antivir Ther. 2008;13(1):27–38.

    PubMed  CAS  Google Scholar 

  48. Clarke SG. HIV protease inhibitors and nuclear lamin processing: getting the right bells and whistles. Proc Natl Acad Sci USA. 2007;104(35):13857–8.

    Article  PubMed  CAS  Google Scholar 

  49. Coffinier C, Hudon SE, Farber EA, Chang SY, Hrycyna CA, Young SG, et al. HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc Natl Acad Sci USA. 2007;104(33):13432–7.

    Article  PubMed  CAS  Google Scholar 

  50. Coffinier C, Hudon SE, Lee R, Farber EA, Nobumori C, Miner JH, et al. A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin A in cells. J Biol Chem. 2008;283(15):9797–804.

    Article  PubMed  CAS  Google Scholar 

  51. http://www.idf.org/webdata/docs/MetSyndrome_FINAL.pdf. Accessed 13 Mar 2013.

  52. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.

    Google Scholar 

  53. Guaraldi G, Murri R, Orlando G, Squillace N, Stentarelli C, Zona S, et al. Lipodystrophy and quality of life of HIV-infected persons. AIDS Rev. 2008;10(3):152–61.

    PubMed  Google Scholar 

  54. Palella FJ Jr, Cole SR, Chmiel JS, Riddler SA, Visscher B, Dobs A, et al. Anthropometrics and examiner-reported body habitus abnormalities in the multicenter AIDS cohort study. Clin Infect Dis. 2004;38(6):903–7.

    Article  PubMed  Google Scholar 

  55. Guaraldi G, Orlando G, Murri R, Vandelli M, De Paola M, Beghetto B, et al. Quality of life and body image in the assessment of psychological impact of lipodystrophy: validation of the Italian version of assessment of body change and distress questionnaire. Qual Life Res. 2006;15(1):173–8.

    Article  PubMed  CAS  Google Scholar 

  56. Plank LD. Dual-energy X-ray absorptiometry and body composition. Curr Opin Clin Nutr Metab Care. 2005;8(3):305–9.

    Article  PubMed  Google Scholar 

  57. Joy T, Keogh HM, Hadigan C, Dolan SE, Fitch K, Liebau J, et al. Relation of body composition to body mass index in HIV-infected patients with metabolic abnormalities. J Acquir Immune Defic Syndr. 2008;47(2):174–84.

    Article  PubMed  Google Scholar 

  58. Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring). 2012;20(6):1313–8.

    Article  Google Scholar 

  59. Ross R, Shaw KD, Martel Y, de Guise J, Avruch L. Adipose tissue distribution measured by magnetic resonance imaging in obese women. Am J Clin Nutr. 1993;57(4):470–5.

    PubMed  CAS  Google Scholar 

  60. Ross R, Leger L, Morris D, de Guise J, Guardo R. Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol. 1992;72(2):787–95.

    PubMed  CAS  Google Scholar 

  61. Ross R, Shaw KD, Martel Y, de Guise J, Hudson R, Avruch L. Determination of total and regional adipose tissue distribution by magnetic resonance imaging in android women. Basic Life Sci. 1993;60:177–80.

    PubMed  CAS  Google Scholar 

  62. Koester RS, Hunter GR, Snyder S, Khaled MA, Berland LL. Estimation of computerized tomography derived abdominal fat distribution. Int J Obes Relat Metab Disord. 1992;16(8):543–54.

    PubMed  CAS  Google Scholar 

  63. Liu KH, Chan YL, Chan WB, Kong WL, Kong MO, Chan JC. Sonographic measurement of mesenteric fat thickness is a good correlate with cardiovascular risk factors: comparison with subcutaneous and preperitoneal fat thickness, magnetic resonance imaging and anthropometric indexes. Int J Obes Relat Metab Disord. 2003;27(10):1267–73.

    Article  PubMed  CAS  Google Scholar 

  64. Abate N, Burns D, Peshock RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res. 1994;35(8):1490–6.

    PubMed  CAS  Google Scholar 

  65. He Q, Engelson ES, Wang J, Kenya S, Ionescu G, Heymsfield SB, et al. Validation of an elliptical anthropometric model to estimate visceral compartment area. Obes Res. 2004;12(2):250–7.

    Article  PubMed  Google Scholar 

  66. Yang GZ, Myerson S, Chabat F, Pennell DJ, Firmin DN. Automatic MRI adipose tissue mapping using overlapping mosaics. MAGMA. 2002;14(1):39–44.

    PubMed  CAS  Google Scholar 

  67. Poll LW, Wittsack HJ, Koch JA, Willers R, Scherer A, Kapitza C, et al. Quantification of total abdominal fat volumes using magnetic resonance imaging. Eur J Med Res. 2002;7(8):347–52.

    PubMed  Google Scholar 

  68. Freitas P, Santos AC, Carvalho D, Pereira J, Marques R, Martinez E, et al. Fat mass ratio: an objective tool to define lipodystrophy in HIV-infected patients under antiretroviral therapy. J Clin Densitom. 2010;13(2):197–203.

    Article  PubMed  Google Scholar 

  69. O’Neil T, Ross R, Zona S, Orlando G, Carli F, Garlassi E, et al. Combined use of waist and thigh circumference to identify high-risk, abdominally obese HIV+ patients. J Int AIDS Soc Abstract Supplement n P37, pag 43, 11th International Congress on Drug Therapy in HIV infection, 11-15 Nov 2012, Glasgow, UK. 2012.

  70. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004;53(8):2087–94.

    Article  PubMed  CAS  Google Scholar 

  71. Marques MD, Santos RD, Parga JR, Rocha-Filho JA, Quaglia LA, Miname MH, et al. Relation between visceral fat and coronary artery disease evaluated by multidetector computed tomography. Atherosclerosis. 2010;209(2):481–6.

    Article  PubMed  CAS  Google Scholar 

  72. Miller J, Carr A, Emery S, Law M, Mallal S, Baker D, et al. HIV lipodystrophy: prevalence, severity and correlates of risk in Australia. HIV Med. 2003;4(3):293–301.

    Article  PubMed  CAS  Google Scholar 

  73. Mallon PW. Antiretroviral therapy-induced lipid alterations: in-vitro, animal and human studies. Curr Opin HIV AIDS. 2007;2(4):282–92.

    Article  PubMed  Google Scholar 

  74. van Leuven SI, Sankatsing RR, Vermeulen JN, Kastelein JJ, Reiss P, Stroes ES. Atherosclerotic vascular disease in HIV: it is not just antiretroviral therapy that hurts the heart! Curr Opin HIV AIDS. 2007;2(4):324–31.

    Article  PubMed  Google Scholar 

  75. Saves M, Raffi F, Capeau J, Rozenbaum W, Ragnaud JM, Perronne C, et al. Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis. 2002;34(10):1396–405.

    Article  PubMed  CAS  Google Scholar 

  76. Calmy A, Hirschel B, Cooper DA, Carr A. A new era of antiretroviral drug toxicity. Antivir Ther. 2009;14(2):165–79.

    PubMed  CAS  Google Scholar 

  77. Raffi F, Rachlis A, Stellbrink HJ, Hardy WD, Torti C, Orkin C, et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet. 2013;381(9868):735–43.

    Article  PubMed  CAS  Google Scholar 

  78. http://aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf. Accessed 7 July 2013.

  79. http://www.europeanaidsclinicalsociety.org/images/stories/EACS-Pdf/EACSGuidelines-v6.0-English.pdf. Accessed 7 July 2013.

  80. Molina JM, Andrade-Villanueva J, Echevarria J, Chetchotisakd P, Corral J, David N, et al. Once-daily atazanavir/ritonavir compared with twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 96-week efficacy and safety results of the CASTLE study. J Acquir Immune Defic Syndr. 2010;53(3):323–32.

    Article  PubMed  CAS  Google Scholar 

  81. Jemsek JG, Arathoon E, Arlotti M, Perez C, Sosa N, Pokrovskiy V, et al. Body fat and other metabolic effects of atazanavir and efavirenz, each administered in combination with zidovudine plus lamivudine, in antiretroviral-naive HIV-infected patients. Clin Infect Dis. 2006;42(2):273–80.

    Article  PubMed  CAS  Google Scholar 

  82. McComsey G, Rightmire A, Wirtz V, Yang R, Mathew M, McGrath D. Changes in body composition with ritonavir-boosted and unboosted atazanavir treatment in combination with Lamivudine and Stavudine: a 96-week randomized, controlled study. Clin Infect Dis. 2009;48(9):1323–6.

    Article  PubMed  CAS  Google Scholar 

  83. McComsey GA, Kitch D, Sax PE, Tebas P, Tierney C, Jahed NC, et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricitabine with atazanavir-ritonavir or efavirenz: ACTG Study A5224 s. Clin Infect Dis. 2011;53(2):185–96.

    Article  PubMed  CAS  Google Scholar 

  84. Vrouenraets SM, Wit FW, Fernandez Garcia E, Moyle GJ, Jackson AG, Allavena C, et al. Randomized comparison of metabolic and renal effects of saquinavir/r or atazanavir/r plus tenofovir/emtricitabine in treatment-naive HIV-1-infected patients. HIV Med. 2011;12(10):620–31.

    Article  PubMed  CAS  Google Scholar 

  85. Mills AM, Nelson M, Jayaweera D, Ruxrungtham K, Cassetti I, Girard PM, et al. Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis. AIDS. 2009;23(13):1679–88.

    Article  PubMed  CAS  Google Scholar 

  86. Aberg JA, Tebas P, Overton ET, Gupta SK, Sax PE, Landay A, et al. Metabolic effects of darunavir/ritonavir versus atazanavir/ritonavir in treatment-naive, HIV type 1-infected subjects over 48 weeks. AIDS Res Hum Retrovir. 2012;28(10):1184–95.

    Article  PubMed  CAS  Google Scholar 

  87. Lennox JL, Dejesus E, Berger DS, Lazzarin A, Pollard RB, Ramalho Madruga JV, et al.; STARTMRK Investigators. Raltegravir versus Efavirenz regimens in treatment-naive HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses [Erratum appears in J Acquir Immune Defic Syndr. 2011;58(4):e120]. J Acquir Immune Defic Syndr. 2010;55(1):39–48.

    Google Scholar 

  88. Rockstroh JK, Lennox JL, Dejesus E, Saag MS, Lazzarin A, Wan H, et al. Long-term treatment with raltegravir or efavirenz combined with tenofovir/emtricitabine for treatment-naive human immunodeficiency virus-1-infected patients: 156-week results from STARTMRK. Clin Infect Dis. 2011;53(8):807–16.

    Article  PubMed  CAS  Google Scholar 

  89. Reynes J, Trinh R, Pulido F, Soto-Malave R, Gathe J, Qaqish R, et al. Lopinavir/ritonavir combined with raltegravir or tenofovir/emtricitabine in antiretroviral-naive subjects: 96-week results of the PROGRESS study. AIDS Res Hum Retrovir. 2013;29(2):256–65.

    PubMed  CAS  Google Scholar 

  90. Carr A, Ritzhaupt A, Zhang W, Zajdenverg R, Workman C, Gatell JM, et al. Effects of boosted tipranavir and lopinavir on body composition, insulin sensitivity and adipocytokines in antiretroviral-naive adults. AIDS. 2008;22(17):2313–21.

    Article  PubMed  CAS  Google Scholar 

  91. Joly V, Fagard C, Grondin C, Descamps D, Yazdanpanah Y, Charpentier C, et al. Intensification of antiretroviral therapy through addition of enfuvirtide in naive HIV-1-infected patients with severe immunosuppression does not improve immunological response: results of a randomized multicenter trial (ANRS 130 Apollo). Antimicrob Agents Chemother. 2013;57(2):758–65.

    Article  PubMed  CAS  Google Scholar 

  92. Lalezari JP, DeJesus E, Northfelt DW, Richmond G, Wolfe P, Haubrich R, et al. A controlled Phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in non-nucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir Ther. 2003;8(4):279–87.

    PubMed  CAS  Google Scholar 

  93. van Lunzen J, Maggiolo F, Arribas JR, Rakhmanova A, Yeni P, Young B, et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect Dis. 2012;12(2):111–8.

    Article  PubMed  CAS  Google Scholar 

  94. Mills A, Mildvan D, Podzamczer D, Fatkenheuer G, Leal M, Than S, et al. Maraviroc once-daily nucleoside analog-sparing regimen in treatment-naive patients: randomized, open-label pilot study. J Acquir Immune Defic Syndr. 2013;62(2):164–70.

    Article  PubMed  CAS  Google Scholar 

  95. Cooper DA, Heera J, Goodrich J, Tawadrous M, Saag M, Dejesus E, et al. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naive subjects with CCR5-tropic HIV-1 infection. J Infect Dis. 2010;201(6):803–13.

    Article  PubMed  CAS  Google Scholar 

  96. Molina JM, Clumeck N, Orkin C, Rimsky L, Vanveggel S, Stevens M. Rilpivirine efficacy, virology and safety in ARV treatment-naive patients with viral load</=100,000 HIV-1 RNA c/mL: ECHO and THRIVE 96-week results. J Int AIDS Soc. 2012;15(6):18250.

    Google Scholar 

  97. Cohen C, Wohl D, Arribas J, Henry K, Van Lunzen J, Bloch M, et al. STAR Study: single tablet regimen emtricitabine/rilpivirine/tenofovir DF is non-inferior to efavirenz/emtricitabine/tenofovir DF in ART-naive adults. J Int AIDS Soc. 2012;15(6):18221.

    Google Scholar 

  98. Cohen CJ, Molina JM, Cassetti I, Chetchotisakd P, Lazzarin A, Orkin C et al.; ECHO, THRIVE study groups. Week 96 efficacy and safety of rilpivirine in treatment-naive, HIV-1 patients in two Phase III randomized trials. AIDS. 2013;27(6):939–50.

    Google Scholar 

  99. Molina JM, Cahn P, Grinsztejn B, Lazzarin A, Mills A, Saag M, et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. Lancet. 2011;378(9787):238–46.

    Article  PubMed  CAS  Google Scholar 

  100. Cohen CJ, Andrade-Villanueva J, Clotet B, Fourie J, Johnson MA, Ruxrungtham K, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naive adults infected with HIV-1 (THRIVE): a phase 3, randomised, non-inferiority trial. Lancet. 2011;378(9787):229–37.

    Article  PubMed  CAS  Google Scholar 

  101. Pozniak AL, Morales-Ramirez J, Katabira E, Steyn D, Lupo SH, Santoscoy M, et al. Efficacy and safety of TMC278 in antiretroviral-naive HIV-1 patients: week 96 results of a phase IIb randomized trial. AIDS. 2010;24(1):55–65.

    Article  PubMed  CAS  Google Scholar 

  102. Vernazza P, Wang C, Pozniak A, Weil E, Pulik P, Cooper DA et al. Efficacy and safety of lersivirine (UK-453,061) versus efavirenz in antiretroviral treatment-naive HIV-1-infected patients: week 48 primary analysis results from an ongoing, multicenter, randomized, double-blind, phase IIb trial. J Acquir Immune Defic Syndr. 2013;62(2):171–9.

    Google Scholar 

  103. Vernazza P, Wang C, Pozniak A, Weil E, Pulik P, Cooper DA, et al. Efficacy and safety of lersivirine (UK-453,061) versus efavirenz in antiretroviral treatment-naive HIV-1-infected patients: week 48 primary analysis results from an ongoing, multicenter, randomized, double-blind, phase IIb trial. J Acquir Immune Defic Syndr. 2013;62(2):171–9.

    Article  PubMed  CAS  Google Scholar 

  104. Fatkenheuer G, Duvivier C, Rieger A, Durant J, Rey D, Schmidt W, et al. Lipid profiles for etravirine versus efavirenz in treatment-naive patients in the randomized, double-blind SENSE trial. J Antimicrob Chemother. 2012;67(3):685–90.

    Article  PubMed  CAS  Google Scholar 

  105. Sax PE, Tierney C, Collier AC, Daar ES, Mollan K, Budhathoki C, et al. Abacavir/lamivudine versus tenofovir DF/emtricitabine as part of combination regimens for initial treatment of HIV: final results. J Infect Dis. 2011;204(8):1191–201.

    Article  PubMed  CAS  Google Scholar 

  106. Daar ES, Tierney C, Fischl MA, Sax PE, Mollan K, Budhathoki C, et al. Atazanavir plus ritonavir or efavirenz as part of a 3-drug regimen for initial treatment of HIV-1. Ann Intern Med. 2011;154(7):445–56.

    Article  PubMed  Google Scholar 

  107. Puls RL, Srasuebkul P, Petoumenos K, Boesecke C, Duncombe C, Belloso WH, et al. Efavirenz versus boosted atazanavir or zidovudine and abacavir in antiretroviral treatment-naive, HIV-infected subjects: week 48 data from the Altair study. Clin Infect Dis. 2010;51(7):855–64.

    Article  PubMed  Google Scholar 

  108. Elion R, Cohen C, Gathe J, Shalit P, Hawkins T, Liu HC, et al. Phase 2 study of cobicistat versus ritonavir each with once-daily atazanavir and fixed-dose emtricitabine/tenofovir df in the initial treatment of HIV infection. AIDS. 2011;25(15):1881–6.

    Article  PubMed  CAS  Google Scholar 

  109. Sax PE, DeJesus E, Mills A, Zolopa A, Cohen C, Wohl D, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet. 2012;379(9835):2439–48.

    Article  PubMed  CAS  Google Scholar 

  110. DeJesus E, Rockstroh JK, Henry K, Molina JM, Gathe J, Ramanathan S, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet. 2012;379(9835):2429–38.

    Article  PubMed  CAS  Google Scholar 

  111. Rockstroh JK, DeJesus E, Henry K, Molina JM, Gathe J, Ramanathan S et al.; GS-236-0103 Study Team. A randomized, double-blind comparison of coformulated elvitegravir/cobicistat/emtricitabine/tenofovir DF vs ritonavir-boosted atazanavir plus coformulated emtricitabine and tenofovir DF for initial treatment of HIV-1 infection: analysis of week 96 results. J Acquir Immune Defic Syndr. 2013;62(5):483–6.

    Google Scholar 

  112. Cohen C, Elion R, Ruane P, Shamblaw D, DeJesus E, Rashbaum B, et al. Randomized, phase 2 evaluation of two single-tablet regimens elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate versus efavirenz/emtricitabine/tenofovir disoproxil fumarate for the initial treatment of HIV infection. AIDS. 2011;25(6):F7–12.

    Article  PubMed  CAS  Google Scholar 

  113. Zolopa A, Sax PE, DeJesus E, Mills A, Cohen C, Wohl D et al.; GS US-236-0102 Study Team. A randomized double-blind comparison of coformulated elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate versus efavirenz/emtricitabine/tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: analysis of week 96 results. J Acquir Immune Defic Syndr. 2013;63(1):96–100.

    Google Scholar 

  114. Bernardini C, Maggiolo F. Triple-combination rilpivirine, emtricitabine, and tenofovir (Complera/Eviplera) in the treatment of HIV infection. Patient Prefer Adherence. 2013;7:531–42.

    PubMed  Google Scholar 

  115. Moyle G, Hardy H, Hu W, Yang R, Wirtz V, DeGrosky M, et al. Incidence of hypertriglyceridemic waist (HTW) phenotype in a randomized prospective trial comparing atazanavir/ritonavir (ATV/r) and lopinavir/ritonavir (LPV/r) each in combination with tenofovir DF/emtricitabine (TDF/FTC) in antiretroviral naive HIV-1 infected subjects, a sub-study of CASTLE. In: 14th International workshop on co-morbidities and adverse drug reactions (IWCADR), 19–21 July 2012, Washington. 2012.

  116. Moyle GJ, Andrade-Villanueva J, Girard PM, Antinori A, Salvato P, Bogner JR, et al. A randomized comparative 96-week trial of boosted atazanavir versus continued boosted protease inhibitor in HIV-1 patients with abdominal adiposity. Antivir Ther. 2012;17(4):689–700.

    Article  PubMed  CAS  Google Scholar 

  117. Stanley TL, Joy T, Hadigan CM, Liebau JG, Makimura H, Chen CY, et al. Effects of switching from lopinavir/ritonavir to atazanavir/ritonavir on muscle glucose uptake and visceral fat in HIV-infected patients. AIDS. 2009;23(11):1349–57.

    Article  PubMed  CAS  Google Scholar 

  118. Curran A, Martinez E, Saumoy M, del Rio L, Crespo M, Larrousse M, et al. Body composition changes after switching from protease inhibitors to raltegravir: SPIRAL-LIP substudy. AIDS. 2012;26(4):475–81.

    Article  PubMed  CAS  Google Scholar 

  119. Lake JE, McComsey GA, Hulgan TM, Wanke CA, Mangili A, Walmsley SL, et al. A randomized trial of Raltegravir replacement for protease inhibitor or non-nucleoside reverse transcriptase inhibitor in HIV-infected women with lipohypertrophy. AIDS Patient Care STDS. 2012;26(9):532–40.

    Article  PubMed  Google Scholar 

  120. Cooper DA, Cordery DV, Reiss P, Henry K, Nelson M, O’Hearn M, et al. The effects of enfuvirtide therapy on body composition and metabolic parameters over 48 weeks in the TORO body imaging substudy. HIV Med. 2011;12(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  121. Valantin MA, Kolta S, Flandre P, Algarte Genin M, Meynard JL, Ponscarme D, et al. Body fat distribution in HIV-infected patients treated for 96 weeks with darunavir/ritonavir monotherapy versus darunavir/ritonavir plus nucleoside reverse transcriptase inhibitors: the MONOI-ANRS136 substudy. HIV Med. 2012;13(8):505–15.

    PubMed  CAS  Google Scholar 

  122. Guaraldi G, Zona S, Cossarizza A, Vernacotola L, Carli F, Lattanzi A, et al. Impact of switching to darunavir/ritonavir monotherapy vs. triple-therapy on Body fat redistribution and bone mass in virologically suppressed HIV-infected adults. The MONARCH randomized controlled trial. European AIDS Conference, Belgrade, Serbia, October 2011 [abstr PE75/4]. 2011.

  123. Ofotokun I, Sheth AN, Sanford SE, Easley KA, Shenvi N, White K, et al. A switch in therapy to a reverse transcriptase inhibitor sparing combination of lopinavir/ritonavir and raltegravir in virologically suppressed HIV-infected patients: a pilot randomized trial to assess efficacy and safety profile: the KITE study. AIDS Res Hum Retrovir. 2012;28(10):1196–206.

    Article  PubMed  CAS  Google Scholar 

  124. Gallant JE, DeJesus E, Arribas JR, Pozniak AL, Gazzard B, Campo RE, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med. 2006;354(3):251–60.

    Article  PubMed  CAS  Google Scholar 

  125. Pozniak AL, Gallant JE, DeJesus E, Arribas JR, Gazzard B, Campo RE, et al. Tenofovir disoproxil fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and efavirenz in antiretroviral-naive patients: virologic, immunologic, and morphologic changes—a 96-week analysis. J Acquir Immune Defic Syndr. 2006;43(5):535–40.

    PubMed  CAS  Google Scholar 

  126. Madruga JR, Cassetti I, Suleiman JM, Etzel A, Zhong L, Holmes CB, et al. The safety and efficacy of switching stavudine to tenofovir df in combination with lamivudine and efavirenz in HIV-1-infected patients: three-year follow-up after switching therapy. HIV Clin Trials. 2007;8(6):381–90.

    Article  PubMed  Google Scholar 

  127. Fisher M, Moyle GJ, Shahmanesh M, Orkin C, Kingston M, Wilkins E, et al. A randomized comparative trial of continued zidovudine/lamivudine or replacement with tenofovir disoproxil fumarate/emtricitabine in efavirenz-treated HIV-1-infected individuals. J Acquir Immune Defic Syndr. 2009;51(5):562–8.

    Article  PubMed  CAS  Google Scholar 

  128. Cameron DW, da Silva BA, Arribas JR, Myers RA, Bellos NC, Gilmore N, et al. A 96-week comparison of lopinavir-ritonavir combination therapy followed by lopinavir-ritonavir monotherapy versus efavirenz combination therapy. J Infect Dis. 2008;198(2):234–40.

    Article  PubMed  CAS  Google Scholar 

  129. Kolta S, Flandre P, Van PN, Cohen-Codar I, Valantin MA, Pintado C, et al. Fat tissue distribution changes in HIV-infected patients treated with lopinavir/ritonavir. Results of the MONARK trial. Curr HIV Res. 2011;9(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  130. Meynard JL, Bouteloup V, Landman R, Bonnard P, Baillat V, Cabie A, et al. Lopinavir/ritonavir monotherapy versus current treatment continuation for maintenance therapy of HIV-1 infection: the KALESOLO trial. J Antimicrob Chemother. 2010;65(11):2436–44.

    Article  PubMed  CAS  Google Scholar 

  131. Bernardino JI, Pulido F, Martinez E, Arrizabalaga J, Domingo P, Portilla J et al.; GESIDA-6008-KRETA Study Group. Switching to lopinavir/ritonavir with or without abacavir/lamivudine in lipoatrophic patients treated with zidovudine/abacavir/lamivudine. J Antimicrob Chemother. 2013;68(6):1373–81.

    Google Scholar 

  132. Martinez E, Milinkovic A, Bianchi L, Gatell JM. Considerations about the value of sonography for the measurement of regional body fat. AIDS. 2006;20(3):465–6.

    Article  PubMed  Google Scholar 

  133. Cavalcanti RB, Cheung AM, Raboud J, Walmsley S. Reproducibility of DXA estimations of body fat in HIV lipodystrophy: implications for clinical research. J Clin Densitom. 2005 Fall;8(3):293–7.

  134. Scherzer R, Heymsfield SB, Lee D, Powderly WG, Tien PC, Bacchetti P, et al. Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection. AIDS. 2011;25(11):1405–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

A special thanks to Giovanni Dolci, who helped to built the table formatting.

Potential conflicts of interest

Giovanni Guaraldi received research funding and consultancy fees from Bristol-Myers Squibb, Gilead Sciences, VIIV Healthcare, Abbvie, Merck, Theratechnologies and Jansen.

Chiara Stentarelli, Stefano Zona and Antonella Santoro have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Guaraldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guaraldi, G., Stentarelli, C., Zona, S. et al. HIV-Associated Lipodystrophy: Impact of Antiretroviral Therapy. Drugs 73, 1431–1450 (2013). https://doi.org/10.1007/s40265-013-0108-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0108-1

Keywords

Navigation