Skip to main content
Log in

Efficacy and Safety of Mildronate for Acute Ischemic Stroke: A Randomized, Double-Blind, Active-Controlled Phase II Multicenter Trial

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

Mildronate, an inhibitor of carnitine-dependent metabolism, is considered to be an anti-ischemic drug. This study is designed to evaluate the efficacy and safety of mildronate injection in treating acute ischemic stroke.

Methods

We performed a randomized, double-blind, multicenter clinical study of mildronate injection for treating acute cerebral infarction. 113 patients in the experimental group received mildronate injection, and 114 patients in the active-control group received cinepazide injection. In addition, both groups were given aspirin as a basic treatment. Modified Rankin Scale (mRS) score was performed at 2 weeks and 3 months after treatment. National Institutes of Health Stroke Scale (NIHSS) score and Barthel Index (BI) score were performed at 2 weeks after treatment, and then vital signs and adverse events were evaluated.

Results

A total of 227 patients were randomized to treatment (n = 113, mildronate; n = 114, active-control). After 3 months, there was no significant difference for the primary endpoint between groups categorized in terms of mRS scores of 0–1 and 0–2 (p = 0.52 and p = 0.07, respectively). There were also no significant differences for the secondary endpoint between groups categorized in terms of NIHSS scores of >5 and >8 (p = 0.98 and p = 0.97, respectively) or BI scores of >75 and >95 (p = 0.49 and p = 0.47, respectively) at 15 days. The incidence of serious adverse events was similar between the two groups.

Conclusion

Mildronate injection is as effective and safe as cinepazide injection in treating acute cerebral infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Naylor AR. Letter by Naylor regarding article, “Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association”. Stroke. 2011;42(6):e385; author reply e386.

  2. Wood H. Stroke: could the neuroprotective drug NA-1 limit ischaemic brain damage after stroke? Nat Rev Neurol. 2012;8(12):658.

    Article  PubMed  Google Scholar 

  3. Blanco M, Castillo J. Stroke in 2012: major advances in the treatment of stroke. Nat Rev Neurol. 2013;9(2):68–70.

    Article  PubMed  Google Scholar 

  4. Kingwell K. Stroke: neuroprotection for patients with stroke moves one step closer to the clinic. Nat Rev Neurol. 2012;8(4):178.

    PubMed  Google Scholar 

  5. Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483(7388):213–7.

    Article  PubMed  CAS  Google Scholar 

  6. Bach A, Clausen BH, Moller M, et al. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc Natl Acad Sci USA. 2012;109(9):3317–22.

    Article  PubMed  CAS  Google Scholar 

  7. Vilskersts R, Liepinsh E, Mateuszuk L, et al. Mildronate, a regulator of energy metabolism, reduces atherosclerosis in apoE/LDLR−/− mice. Pharmacology. 2009;83(5):287–93.

    Article  PubMed  CAS  Google Scholar 

  8. Okunevich IV, Ryzhenkov VE. Anti-atherosclerotic action of mildronate in experiment [in Russian]. Patol Fiziol Eksp Ter. 2002;2:24–7.

    PubMed  Google Scholar 

  9. Dambrova M, Liepinsh E, Kalvinsh I. Mildronate: cardioprotective action through carnitine-lowering effect. Trends Cardiovasc Med. 2002;12(6):275–9.

    Article  PubMed  CAS  Google Scholar 

  10. Liepinsh E, Vilskersts R, Loca D, et al. Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction. J Cardiovasc Pharmacol. 2006;48(6):314–9.

    Article  PubMed  CAS  Google Scholar 

  11. Vilskersts R, Liepinsh E, Kuka J, et al. Myocardial infarct size-limiting and anti-arrhythmic effects of mildronate orotate in the rat heart. Cardiovasc Drugs Ther. 2009;23(4):281–8.

    Article  PubMed  CAS  Google Scholar 

  12. Statsenko ME, Poletaeva LV, Turkina SV, et al. Mildronate effects on oxidant stress in type 2 diabetic patients with diabetic peripheral (sensomotor) neuropathy [in Russian]. Ter Arkh. 2008;80(10):27–30.

    PubMed  CAS  Google Scholar 

  13. Sokolovska J, Rumaks J, Karajeva N, et al. The influence of mildronate on peripheral neuropathy and some characteristics of glucose and lipid metabolism in rat streptozotocin-induced diabetes mellitus model [in Russian]. Biomed Khim. 2011;57(5):490–500.

    PubMed  CAS  Google Scholar 

  14. Vilskersts R, Kuka J, Svalbe B, et al. Administration of l-carnitine and mildronate improves endothelial function and decreases mortality in hypertensive Dahl rats. Pharmacol Rep. 2011;63(3):752–62.

    PubMed  CAS  Google Scholar 

  15. Beketov AI, Mametova AN, Polevik IV, et al. Comparative characteristics of cerebrovascular protective effects of mildronate, riboxine, and their combination during modeling of cerebral hemodynamics disturbance [in Russian]. Eksp Klin Farmakol. 2000;63(6):18–21.

    PubMed  CAS  Google Scholar 

  16. Dziak LA, Golik VA. Use of mildronate for the treatment of patients with circulatory encephalopathy against a background of stenosis of major arteries of the head [in Russian]. Lik Sprava. 2003;5–6:98–101.

    PubMed  Google Scholar 

  17. Sjakste N, Baumane L, Boucher JL, et al. Effects of gamma-butyrobetaine and mildronate on nitric oxide production in lipopolysaccharide-treated rats. Basic Clin Pharmacol Toxicol. 2004;94(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  18. Sjakste N, Kleschyov AL, Boucher JL, et al. Endothelium- and nitric oxide-dependent vasorelaxing activities of gamma-butyrobetaine esters: possible link to the antiischemic activities of mildronate. Eur J Pharmacol. 2004;495(1):67–73.

    Article  PubMed  CAS  Google Scholar 

  19. Liepinsh E, Konrade I, Skapare E, et al. Mildronate treatment alters gamma-butyrobetaine and l-carnitine concentrations in healthy volunteers. J Pharm Pharmacol. 2011;63(9):1195–201.

    Article  PubMed  CAS  Google Scholar 

  20. Svalbe B, Zvejniece L, Vavers E, et al. Mildronate treatment improves functional recovery following middle cerebral artery occlusion in rats. Behav Brain Res. 2011;222(1):26–32.

    Article  PubMed  CAS  Google Scholar 

  21. Pupure J, Isajevs S, Skapare E, et al. Neuroprotective properties of mildronate, a mitochondria-targeted small molecule. Neurosci Lett. 2010;470(2):100–5.

    Article  PubMed  CAS  Google Scholar 

  22. Isajevs S, Isajeva D, Beitnere U, et al. Mildronate as a regulator of protein expression in a rat model of Parkinson’s disease. Medicina (Kaunas). 2011;47(10):552–9.

    Google Scholar 

  23. Sjakste N, Gutcaits A, Kalvinsh I. Mildronate: an antiischemic drug for neurological indications. CNS Drug Rev. 2005;11(2):151–68.

    Article  PubMed  CAS  Google Scholar 

  24. Fearon P, McArthur KS, Garrity K, et al. Prestroke modified Rankin Stroke Scale has moderate interobserver reliability and validity in an acute stroke setting. Stroke. 2012;43(12):3184–8.

    Article  PubMed  Google Scholar 

  25. Liu X, Xia J, Wang L, et al. Efficacy and safety of ginsenoside-Rd for acute ischaemic stroke: a randomized, double-blind, placebo-controlled, phase II multicenter trial. Eur J Neurol. 2009;16(5):569–75.

    Article  PubMed  CAS  Google Scholar 

  26. Liu X, Wang L, Wen A, et al. Ginsenoside-Rd improves outcome of acute ischaemic stroke - a randomized, double-blind, placebo-controlled, multicenter trial. Eur J Neurol. 2012;19(6):855–63.

    Article  PubMed  CAS  Google Scholar 

  27. Akashi A, Hirohashi M, Suzuki I, et al. Cardiovascular pharmacology of cinepazide, a new cerebral vasodilator (author’s transl) [in Japanese]. Nihon Yakurigaku Zasshi. 1979;75(5):507–16.

    Article  PubMed  CAS  Google Scholar 

  28. Baba M, Kitamura K. The effects of cinepazide on cerebral circulation (author’s transl) [in Japanese]. No To Shinkei. 1979;31(6):621–9.

    PubMed  CAS  Google Scholar 

  29. Warembourg G, Carre A, Ginestet A, et al. Clinical experimentation with a new vasodilator: cinepazide maleate in arterial diseases of the lower limbs [in French]. Lille Med. 1976;21(Suppl 4):898–901.

    PubMed  Google Scholar 

  30. Moritake K, Handa H, Takebe Y, et al. Effect of intravenous administration of Cinepazide on cerebral blood flow and evoked potentials [in Japanese]. Nihon Geka Hokan. 1983;52(2):207–17.

    PubMed  CAS  Google Scholar 

  31. Kitaoka H, Ohya K, Sano M. Interaction between cinepazide maleate, a new cerebral vasodilator, and water [in Japanese]. Yakugaku Zasshi. 1983;103(1):28–33.

    PubMed  CAS  Google Scholar 

  32. Fujishima M. Agents to improve cerebrovascular circulation and cerebral metabolism–cinepazide [in Japanese]. Nihon Rinsho. 1985;43(2):379-82.

  33. Muramatsu I, Sakakibara Y, Hong SC, et al. Effects of cinepazide on the purinergic responses in the dog cerebral artery. Pharmacology. 1984;28(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  34. Sesti C, Simkhovich BZ, Kalvinsh I, et al. Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodynamics. J Cardiovasc Pharmacol. 2006;47(3):493–9.

    PubMed  CAS  Google Scholar 

  35. Stanley WC. Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Investig Drugs. 2002;11(5):615–29.

    Article  PubMed  CAS  Google Scholar 

  36. Dambrova M, Daiia D, Liepin’Sh E, et al. Biochemical mechanisms of mildronate action during ischemic stress [in Russian]. Lik Sprava. 2004;2:68–74.

    PubMed  Google Scholar 

  37. Zvejniece L, Svalbe B, Makrecka M, et al. Mildronate exerts acute anticonvulsant and antihypnotic effects. Behav Pharmacol. 2010;21(5–6):548–55.

    Article  PubMed  CAS  Google Scholar 

  38. Liepinsh E, Vilskersts R, Skapare E, et al. Mildronate decreases carnitine availability and up-regulates glucose uptake and related gene expression in the mouse heart. Life Sci. 2008;83(17–18):613–9.

    Article  PubMed  CAS  Google Scholar 

  39. Sjakste N, Gutcaits A, Kalvinsh I. Mildronate: an antiischemic drug for neurological indications. CNS Drug Rev. 2005;11(2):151–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Ge-Lin Biopharmaceutical Co. Ltd., Shenyang, China. The authors have no potential conflicts of interest that are directly relevant to the content of this study. The Steering Committee for this study consisted of Prof. Su Xiuchu, Prof. Xu Dezhong, Prof. Wu Baoren, and Dr. Fan Fulin. The Safety Board consisted of Prof. Huang Yuangui, Prof. Li Huanzhang, and Prof. Li Kaizong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhao.

Additional information

Y. Zhu and G. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Zhang, G., Zhao, J. et al. Efficacy and Safety of Mildronate for Acute Ischemic Stroke: A Randomized, Double-Blind, Active-Controlled Phase II Multicenter Trial. Clin Drug Investig 33, 755–760 (2013). https://doi.org/10.1007/s40261-013-0121-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-013-0121-x

Keywords

Navigation