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Abstract Nanomaterials have been extensively studied for

heavy metal ions and dye removals from wastewater. This

article reviews the role of nanomaterials as effective

adsorbents for wastewater purification. In recent years,

numerous novel nanomaterial adsorbents have been

developed for enhancing the efficiency and adsorption

capacities of removing contaminants from wastewater. The

innovation, forthcoming development, and challenges of

cost-effective and environmentally acceptable nanomateri-

als for water purification are discussed and reviewed in this

article. This review concludes that nanomaterials have

many unique morphological and structural properties that

qualify them to be used as effective adsorbents to solve

several environmental problems.
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Introduction

Treatment processes for wastewater as well as drinking

water are one of the major prerequisites for developing,

growing the economy as well as health maintaining.

Therefore, it is crucial to develop and implement innova-

tive technologies for treating water at high efficiencies and

low energy consumption. On a global scale, waterborne

diseases are still a major cause of death in developing

countries where access to safe drinking water is often

limited. With the introduction of disinfection processes

(mainly using chlorine), waterborne infectious diseases

have been significantly reduced. However, it is known that

the application of disinfection agents such as chlorine,

chlorine dioxide or ozone is associated with the formation

of disinfection by-products (e.g., trihalomethanes, halo-

phenols, ketones, aldehydes) with a high mutagenic and/or

carcinogenic potential [1–4]. Chlorination also affects the

taste and odor of drinking water. Therefore, the reduction/

elimination of toxic by-products formation resulting from

disinfection processes is necessary. Further, many toxic

materials such as heavy metal ions and azo dyes in

wastewaters cannot be completely removed during

wastewater treatment processes that are commonly used on

a large scale [5–10]. Thus, these toxic materials are per-

manently introduced into rivers and streams by wastewater

discharges, while diffuse sources such as runoff from

agricultural fields are possible, but frequently contribute to

a much smaller extent to the overall pollution [7, 11, 12].

The most common toxic materials in wastewaters

responsible for particular problems are heavy metal ions and

azo dyes [13–18]. Despite the fact that the human body needs

low doses of metal ions such as for example Zn(II) ions, their

excess may cause eminent health problems such as depres-

sion, lethargy, neurological signs and increased thirst. In

addition, exposure tometal ions, often toxic, can cause health

problems such as liver or kidney damage, Wilson disease,

insomnia, cancer, diarrhea, nausea, vomiting, dermatitis,

chronic asthma, coughing and headaches [19–21].

Removal of toxic materials from wastewater is neces-

sary for health and environmental protection. For this

purpose, conventional methods such as reduction, precipi-

tation, adsorption, oxidation and ion exchange are com-

monly used. However, among them the adsorption process

is the most suitable method because of its high efficiency

and economic consideration [22–26]. Such adsorbents such

as activated carbon (AC), zeolites, biomaterials, polymers,

have been used extensively for wastewater treatment

[22–31]. However, the adsorption efficiency of these

materials is relatively low [26]. Therefore, it has become

essential to find more efficient adsorbents.

Recently, there has been a remarkable potential for the

remediation of environmental problems as a result of

nanoscience and nanotechnology developments [32, 33]. In

comparison to conventional materials, the nanostructured

adsorbents, mainly due to the exceptionally high surface

area, show much higher efficiencies and faster adsorption

rates in water treatment [34–36]. A variety of efficient, low-

cost and eco-friendly nanomaterials with unique function-

alities have been proposed for potential applications in

detoxification of industrial effluents, groundwater, surface

water and drinking water [34, 37]. An ideal adsorbent for

wastewater treatment purposes should satisfy the following

criteria [26]: (1) should be environmentally benign; (2)

should demonstrate a high sorption capacity and high

selectivity especially to the pollutants occurring in water at

low concentration; (3) the adsorbed pollutants can be easily

removed from its surface, and (4) should be recyclable. In

recent years, many studies have proved that the nanoma-

terials can satisfy most of these requirements [38–40].

It was demonstrated that the nanomaterials such as

carbon nanotubes (CNTs), graphene, ferric oxide (Fe3O4),

manganese oxide (MnO2), titanium oxide (TiO2), magne-

sium oxide (MgO) and zinc oxide (ZnO) may play an

important role in the waste water treatment processes

[41–49]. The nanomaterials may be successfully used as

efficient, cost-effective and environmentally friendly

adsorbents for the removal of various toxic substrates from

wastewater such as heavy metals, azo dyes, etc.

[2, 5–9, 34, 37–46, 49–51].

Adsorption phenomenon

The adsorption process is a surface phenomenon in which

the adsorbate is accumulated on the adsorbent surface.

When a solution containing absorbable solute comes into

contact with a solid with a highly porous surface structure,

liquid–solid intermolecular forces of attraction cause some

of the solute molecules from the solution to be concen-

trated or deposited on the solid surface [46–48]. In case of

bulk materials, all the bonding requirements (ionic, cova-

lent, or metallic) of the material constituent atoms are filled

by other atoms in the material. However, the atoms on the

surface of the adsorbent are not wholly surrounded by other

adsorbent atoms, therefore they can attract adsorbates

[48–52]. The exact nature of the bonding depends on the

details of the species involved, but the adsorption process is

generally classified as physisorption (an adsorbate bound to

the surface by weak van der Waals forces), chemisorption

(an adsorbate tethered through covalent bonding [53] or

due to electrostatic attraction [26]).
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The equilibrium stage of adsorption between the solu-

tion and adsorbent is attained (where the adsorption of

solute from the bulk onto the adsorbent is minimum) and

the adsorption amount (qe, mmol g-1) of the molecules at

the equilibrium could be calculated according to the fol-

lowing equation [48, 53]:

qe ¼
V C0 � Ceð Þ

m
; ð1Þ

where V is the solution volume (L); m is the mass of

adsorbents (g); and C0 and Ce are the initial and equilib-

rium adsorbate concentrations, respectively. In addition,

adsorption maybe defined as the mass transfer process by

which a substance is transferred from the liquid phase to

the surface of a solid, and becomes bound by physical and/

or chemical interactions [54]. It is worth pointing out that

the large surface area of adsorbent allows achieving a high

adsorption capacity and surface reactivity [54].

Adsorption isotherm models

The adsorption isotherm models present of the amount of

solute adsorbed per unit weight of adsorbent as a function

of the equilibrium concentration in the bulk solution at

constant temperature [52, 54–56]. There are many isotherm

models such as: Langmuir and Freundlich, Temkin, Har-

kin–Jura and Dubinin–Radushkevich. Among of them,

Langmuir and Freundlich models are commonly used for

the description of adsorption data [48, 55–57].

The Langmuir equation is expressed as [48, 56]:

Ce

qe
¼ 1

QmaxKl

þ 1

Qmax

� �
Ce; ð2Þ

where Ce is the equilibrium concentration (mg L-1), qe is

the amount of adsorbate adsorbed per unit mass of adsor-

bent (mg g-1), and Qmax and Kl are Langmuir constants

related to monolayer adsorption capacity and affinity of

adsorbent toward adsorbate, respectively.

On the other hand, Freundlich isotherm describes

heterogeneous surface adsorption. The energy distribution

for adsorptive sites (in Freundlich isotherm) follows an

exponential type function which is close to the real situa-

tion. The rate of adsorption/desorption varies with the

strength of the energy at the adsorptive sites. The Fre-

undlich equation is expressed as [48]:

log qe ¼ logKF þ
1

n
logCe; ð3Þ

where k (mg g-1) and 1/n are the constant characteristics of

the system [56, 58]. An example of the linear relation of

Freundlich and Langmuir isotherms is displayed in Fig. 1

for MB adsorption on Co3O4/SiO2 nanocomposites [57].

Kinetic models

An applicable kinetic model is necessary to analyze the

rate and the mechanism of adsorption processes (e.g., mass

transfer and chemical reaction). Several kinetic models

such as simple-first-order, pseudo-first-order, pseudo-sec-

ond-order and intra-particle diffusion models

[48, 53, 57, 59, 60] have been applied to disclose the

adsorbate-adsorption phenomenon.

The simple-first-order and pseudo-first-order rate equa-

tions are given by Eqs. (4) and (5), respectively [48, 56, 57]:

log qt ¼
ks

2:303
t þ log qe ð4Þ

logðqe � qtÞ ¼ log qe �
k1

2:303
t; ð5Þ

where qe and qt are the amounts of adsorbate (mg g-1) at

equilibrium and at time t, respectively. ks and k1 are the rate

constants (h-1).

Fig. 1 Freundlich (left) and

Langmuir (right) isotherms for

MB adsorption on Co3O4/SiO2

nanocomposite, The solid lines

are the linear fits (copied form

Ref. [57])
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On the other hand, the pseudo-second-order rate formula

is as following [48, 56, 57, 60]:

t

qt
¼ 1

k2q2e
þ 1

qe
t; ð6Þ

where k2 is the equilibrium rate constant (g mg-1 h-1).

The slopes and intercepts t/q versus t plot are used to

calculate k2.

In addition, intraparticle diffusion model which can be

described as follows [56, 57]:

qt ¼ kpt
1=2 þ C; ð7Þ

where C is the intercept and kp is the intra-particle-diffu-

sion rate constant (mg g-1 h1/2), which can be evaluated

from the slope of the linear plot of qt versus t
1/2.

Development of nanomaterials as adsorbent
for wastewater treatment

The most widely studied nanomaterials for wastewater

treatment are AC, CNTs, graphene, Fe3O4, MnO2, Co3O4,

TiO2, MgO and ZnO, etc. [22, 43, 46, 52, 57, 61–68]. They

may be prepared in different morphological forms such as

particles, tubes and sheets [26].

Hereby we review recent advances in heavy metals and

dye removal from wastewater using nanomaterials as

effective adsorbents and perspectives in this area of

research.

Carbon-based nanomaterials

Different types of carbon-based nanomaterials have been

used widely for heavy metals and dye removal in recent

decades due to their nontoxicity, abundance, ease of

preparation, high surface area and porosity, stable structure

and high sorption capacities [38, 41, 52, 69–71].

Activated carbon (AC)

AC was used initially as sorbents; however, due to the

difficulties associated with heavy metals and dye removal

at ppb levels, CNTs, fullerenes, and graphene were used as

nanosorbents to overcome this difficulty. AC typically has

high porosity, high surface area, and can be prepared from

readily available carbonaceous precursors such as coal,

wood, coconut shells and agricultural wastes [72–75]. AC

is extensively used for the removal of inorganic and

organic pollutants from effluent streams and in water

treatment [22]. In addition, it possesses a significantly

weak acidic ion exchange character, enabling it to remove

metal contaminants and to adsorb pollutants from

wastewater [22]. The sorption of pentavalent arsenic on

granular activated carbon (GAC) was experimentally

studied [75]. AC prepared from coconut tree sawdust was

used as an adsorbent for the removal of Cr(VI) from

aqueous solution [76]. Sorption and stability of mercury on

AC for emission control were also reported [72]. Powdered

activated carbon (PAC) prepared from Eucalyptus camal-

dulensis Dehn bark was studied and showed a sorption

capacities (qm) at 60 �C, of 0.85 and 0.89 mmol g-1 for

Cu(II) and Pb(II), respectively [73]. A novel sodium

polyacrylate grafted AC was produced using gamma radi-

ation to increase the number of functional groups on the

surface which increased the efficiency of metal ions sorp-

tion by AC [74]. Their high sorption ability and low price

make AC promising materials for heavy metals and dye

removal.

Carbon nanotubes (CNTs)

CNTs (Fig. 2), which were first developed by Iijima [77],

have a unique structural, electronic, optoelectronic, and

semiconductor, as well as mechanical, chemical and

physical properties [22, 23]. CNTs have been applied

widely to remove heavy metals and dyes in wastewater

treatment [6, 7, 9, 11–16, 41, 71, 78–82].

CNTs are considered to be one of the most promising

adsorbents for wastewater treatment because of their large

adsorption capacity for synthetic dyes [15]. Multi-walled

carbon nanotubes (MWCNTs) have been shown to surpass

cadmium hydroxide nanowire-loaded AC (Cd(OH)2–NW–

AC) with respect to their efficient removal of safranin O

(SO) from wastewater [83]. However, only few studies

were reported on the application of CNTs for dye removal

from aqueous solution [41, 69, 76, 84–86]. Moreover,

CNTs were typically used directly without further treat-

ment [41, 69, 85]. Therefore, CNT functionalization has

been initiated to introduce various functional groups that

provide new adsorption sites [15]. Among such modifica-

tions, oxidation is an easy method for introducing hydroxyl

and carbonyl groups to the sidewalls of CNTs. Oxidized

MWCNTs were found to be effective in the removal of

methylene red (MR) and methylene blue (MB) from

aqueous solutions [87, 88]. Yao et al. [89] reported an

adsorption capacity of 41.63 mg g-1 at 333 K for the

removal of MB onto CNTs. Shahryari et al. [90] performed

the same batch of experiments on MWCNTs having a

higher surface area of 280 m2 g-1 as compared to that of

CNTs (160 m2 g-1) used by Yao et al. and reported a

higher MB adsorption of 132.6 mg g-1 at 310 K. In

addition, cellulose grafted with soy protein isolate/hy-

droxyapatite rod-like nanocrystals showed a high MB

adsorption capacity of 454 mg g-1 [91].
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The adsorption capacity also depends on the experi-

mental conditions, nature and type of adsorbent. The

comparative adsorption of anionic orange II (OII) from

aqueous solution using MWNTs and carbon nanofibers

(CNF) as adsorbents was studied in batch experiments by

Rodrı́guez et al. [75]. They found that the adsorption of II

(OII) onto MWCNTs was slightly higher than CNF (the

adsorption capacity in case of MWCNTs was

77.83 mg g-1, while it was 66.12 mg g-1 in case of CNF

[75]). In addition, MWCNTs showed higher adsorption

than PAC for removal of reactive red M-2BE (RRM). The

maximum amounts of RRM uptake were 335.7 and

260.7 mg g-1 for MWCNTs and PAC, respectively [76].

The higher adsorption capacity can be explained on the

basis of higher average pore diameter of MWCNTs, which

was 7.62 nm as compared to 3.52 nm of PAC. It seems that

dye molecules can easily be diffused from the surface to

pores of MWCNTs due to larger pore size.

CNT-impregnated chitosan hydrogel beads (CSBs) have

been developed for the removal of congo red (CR). CSBs

demonstrated a higher maximum adsorption capacity

(450.4 mg g-1) than chitosan without impregnation

(200 mg g-1) based on Langmuir adsorption modeling

[72]. A new generation of CSBs has been prepared by

sodium dodecyl sulfate and MWCNTs to improve the

mechanical properties [73]. The new CSBs have demon-

strated a high maximum adsorption capacity for CR of

375.94 mg g-1 [73]. Compared to MWCNTs and hybrid

CNTs (HCNTs), single wall carbon nanotubes (SWCNTs)

can demonstrate better adsorption properties for organic

contaminants because of their higher specific surface area.

SWCNTs are more efficient for removing benzene and

toluene and have shown maximum adsorption capacities of

9.98 and 9.96 mg g-1, respectively [74]. A maximum

adsorption capacity of 496 mg g-1 was achieved when a

reactive blue 29 (RB29) has been removed from aqueous

solution by using SWCNTs [92].

On the other hand, CNTs showed high sorption effi-

ciency of divalent metal ions. The advantages and draw-

backs of Co(II) and Cu(II) removal using AC, CNTs, and

carbon-encapsulated magnetic nanoparticles were reported

by Pyrzyńska and Bystrzejewski [80]. The results showed

that the carbon nanomaterials have significantly higher

sorption efficiency compared to commercial AC. Mean-

while, Stafiej and Pyrzynska [79] found out that the solu-

tion conditions such as pH and metal ion concentrations

could affect the adsorption characteristics of CNTs. Oxi-

dized CNTs have also shown exceptionally high sorption

capacity and efficiency for Pb(II), Cd(II) and Cr(VI) from

water [78, 93, 94]. CNTs were also reported as good

adsorbents for multi-component sorption of metal ions

[71]. The sorption mechanisms were reported to be gov-

erned by the surface features, ion exchange process and

electrochemical potential [95]. The latter plays a significant

role in multi-component sorption where redox reactions,

not only on the adsorbent surface but also among the dif-

ferent adsorbates, are likely to occur. MWCNTs were

found to adsorb 243Am with extraordinarily high efficiency

by forming very stable complexes [96]. The sorption

characteristic of Pb(II) from aqueous solution was studied

using oxidized MWCNTs [81]. The reported results

showed a slope of V/m and intercept of Co V/m for the

same initial concentration of Pb(II) and the same content of

oxidized MWCNTs for each experimental data [81].

Fig. 2 Schematics of SWCNTs

(a) and MWCNTs (b) (copied
form Ref. [22])
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Oxidized MWCNTs were also applied to adsorb Ni(II)

from aqueous solution [41]. The predominant mechanism

of Ni(II) sorption onto MWCNTs was reported to be ion

exchanged at low pH values and by strong surface com-

plexation at high pH values [41]. It was also reported that

oxidized MWCNTs can be potentially promising materials

for the pre-concentration and solidification of heavy metal

ions [70].

The sorption and kinetic desorption of 152?154Eu(III) on

MWCNTs have also been studied [97]. It was found that

MWCNTs were a suitable material for pre-concentration of

lanthanides from large volumes of aqueous solutions in

radioactive nuclear waste management with the strong

surface complexation and/or chemisorption mechanism

[97]. With the aid of FITEQL 3.2, Chen et al. [82] char-

acterized the surface properties of MWCNTs at different

ionic strengths and pH values, and modeled Sr(II) and

Eu(III) sorption onto oxidized MWCNTs by applying

surface complexation model, and found that the diffuse

layer model (DLM) fit the experimental data very well. The

removal of divalent metal ions [Cd(II), Cu(II), Ni(II),

Pb(II), Zn(II)] from aqueous solution using various kinds of

CNTs have been studied [98]. It has been proved that the

CNTs are very promising adsorbents for environmental

protection applications because of their superior sorption

capacity and in the same time ability to effective desorp-

tion of divalent metal ions [98].

It is worth noting that the CNTs can be potentially

produced on a large scale using different methods such as

chemical vapor deposition to reduce the cost of production

and increase their future use in environmental protection

applications.

Graphene

Graphene (Fig. 3), which can be used as nanosorbents,

typically consists of one or more atomic-layered carbon

atoms, and possesses a unique two-dimensional structure

and excellent mechanical, thermal and electrical properties

[99, 100]. Using Van der Waals’ forces and p–p stacking

interactions, the adsorption of dyes on few-layered gra-

phene nanosheets can be realized (see Fig. 4). For modify

the chemical and physical properties and improve the

manufacturing of reduced graphene oxide (rGONSs) gra-

phene oxide nanosheets (GONSs), it can be first incorpo-

rated into composite materials. Both rGONSs layers and

single GONSs layers have high aspect ratios and large p-
electronic surfaces that provide strong intermolecular for-

ces among adsorbates [101]. Due to the opened-up layer

structure, rGONSs exhibit markedly faster adsorption

kinetics than CNTs [63, 102]. Among different carbon-

based materials (coal base AC (HD4000), SWCNTs and

MWCNTs), rGONSs exhibited better adsorption capacities

for two synthetic organic compounds (SOCs; phenanthrene

and biphenyl) in aqueous solutions [52]. More importantly,

rGONSs are much cheaper than SWCNTs [103]. rGONSs

have already been used as adsorbents for the removal of

cationic red X-GRL [104], MB [66, 105], methyl orange

(MO) [106], CR [107] and other organic materials from

aqueous solutions. The maximum adsorption capacities of

Fig. 3 Schematics structure of

graphene (a) and graphene

oxide (b) (copied form Ref.

[57])

Fig. 4 Schematic representation of possible interactions between

GONSs and pollutants (copied form Ref. [110])
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p-toluenesulfonic acid (p-TA), 1-naphthalenesulfonic acid

(1-NA) and MB on GNS reach up to 1430, 1460 and

1520 mg g-1 at 303 K, respectively, which are the highest

among all nanomaterials studied in this field to date [108].

The observed adsorption capacities for the adsorption of

three types of pesticides [chlorpyrifos (CP), endosulfan

(ES), and malathion (ML)] onto GONSs and rGONSs from

water are as high as 1200, 1100 and 800 mg g-1, respec-

tively, and GONSs and rGONSs were unprecedented sub-

strates for these adsorption technologies [109].

The few-layered GONSs through the modified Hum-

mers’ method have been synthesized [111]. These rGONSs

can be used as sorbents for the removal of Cd(II) and

Co(II) ions from aqueous solution [111]. It was reported

that heavy metal ions sorption on nanosheets is dependent

on pH and ionic strength [111]. The abundant oxygen-

containing functional groups on the surfaces of graphene

oxide nanosheets were reported to play an important role

on sorption [111].

Magnetite–graphene composite adsorbent with a particle

size of *10 nm was reported to give a high binding

capacity for As(III) and As(V) [112]. The high binding

capacity was due to the increased adsorption sites in the

graphene composite [112]. The strong functional groups on

the graphene oxide (GO) surface make it a potential

adsorbent for metal ion complexation through both elec-

trostatic and coordinate approaches. Generally, GO showed

high adsorption capacity for cationic metals. rGONSs can

be used for adsorption of both cationic and anionic metals.

After modification of GO with organics or metal oxides, its

composites can also be used for anionic metal removal due

to functionalization. Cu(II)–GO interaction in aqueous

solution showed that Cu(II) causes GO sheets to be folded

and form large aggregates [113]. The coordination between

Cu(II) and oxygen atoms on GO was the primary driving

force. GO has a Cu(II) adsorption capacity of 46.6 mg g-1,

which is higher than that of CNTs (28.5 mg g-1) and AC

(4–5 mg g-1) [113].

The removal of Cd(II) [71, 111], Co(II) [111], Pb(II)

[71, 114], and U(VI) [115] ions from aqueous solutions

have been studied using few-layered GONSs. It was found

that the abundant oxygen-containing functional groups on

GONSs surfaces play an important role in metal sorption,

which was in agreement with the results of Zhao et al.

[111]. It was also reported that Cd(II) and Co(II) sorption

on GONSs is strongly dependent on pH and weakly

dependent on ionic strength. The presence of humic acid

reduced Cd(II) and Co(II) sorption on GONSs at pH\ 8.

The maximum sorption capacities of Cd(II) and Co(II) on

GONSs at pH 6.0 and 303 K were about 106.3 and

68.2 mg g-1, respectively. For Pb(II), the maximum

adsorption capacities were about 842, 1150, and

1850 mg g-1 at 293, 313, and 333 K, respectively [114],

but sorption capacity of U(VI) at pH 5.0, 293 K was

97.5 mg g-1 [115].

Modification of GO with organic materials can change

the surface functional groups for better adsorption of various

metal ion species. A modified GO with thiol (SH) groups by

diazonium chemistry was reported to adsorb sixfold higher

concentration of Hg(II)ions than GO and AC [116]. When

N-(trimethoxysilylpropyl) ethylenediaminetriacetic acid

(EDTA-silane) was used to obtain a chelating GO for Pb(II)

removal, the adsorption was fast and completed within

20 min, with an adsorption capacity of 479 mg g-1 at pH

6.8 [117]. Compared to AC and CNTs, GO and GNs present

stronger adsorption for many water pollutants.

Metal oxide-based nanomaterials

Metal or metal oxide-based nanomaterials are other inor-

ganic nanomaterials, which are widely used to remove

heavy metal ions and dyes. Nanosized metals or metal

oxides, including Fe3O4 [118], MnO2 [62], TiO2 [43], MgO

[119], CdO [120] and ZnO [68], provide high surface area

and specific affinity. Metal oxides possess minimal envi-

ronmental impact, low solubility, and are not involved in

secondary pollution formation; they have also been adop-

ted as sorbents to remove heavy metals and dyes.

Iron is one of the most widespread elements in the earth.

The facileness of resource and ease of synthesis render

nanosized ferric oxides to be low-cost adsorbents for toxic

metal sorption. Since elemental iron is environmentally

friendly, nanosized ferric oxides can be pumped directly to

contaminated sites with negligible risks of secondary

contamination [121, 122]. Many reports discussed the

influence of different parameters on the removal of metal

ions by Fe3O4 magnetic nanoparticles [47, 123]. For

example, the adsorption efficiency of Ni(II), Cu(II), Cd(II)

and Cr(VI) ions by Fe3O4 nanoparticles was strongly

dependent on pH, temperature, amount of the adsorbent

and the incubation time [124–127]. Further, a higher

removal efficiency of these metal ions at a 3.5 mg mL-1

dose of nanoadsorbent with an optimum pH of 4 was

obtained. In comparison to bare Fe3O4 nanoparticles, sur-

face functionalized Fe3O4 nanoparticles have been exten-

sively used for the removal of toxic metal ions [124–127].

Singh et al. [46] reported the removal of toxic metal ions

from wastewater using carboxyl-, amine- and thiol-func-

tionalized Fe3O4 nanoparticles (succinic acid, ethylenedi-

amine and 2,3-dimercaptosuccinic acid, respectively).

Depending upon the surface functionality (COOH, NH2 or

SH), these magnetic nanoadsorbents capture metal ions

either by forming chelate complexes, by ion exchange

process or else through electrostatic interaction. It has been

reported that these surface-engineered Fe3O4 nanoparticles

have a strong affinity for the simultaneous adsorption of
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Table 1 Comparison of different nanomaterials of metal ions and dye removal in view of adsorption capacities and removal rates

Nanomaterials Adsorbent Adsorbate Adsorption capacity

(mg g-1)

Rate constants

(k1, h
-1)

References

Carbon-based nanomaterials AC Reactive red

M-2BE

260.7 1.503 [76]

PAC Nitrofurazone 50.8 0.1129 [128]

SWCNTs Reactive blue 29

(RB29)

496 – [92]

Acid red 18 166.67 21.12 [129]

Reactive red 120 426.49 – [130]

Cr(VI) 1.26 – [131]

MWCNTs Reactive red

M-2BE

335.7 2.860 [76]

Nitrofurazone 59.9 0.2082 [128]

MB 95.3 – [132]

CR 352.1 3.18 [133]

Maxilon blue 260.7 – [134]

Cr(VI) 2.35 0.42 [131]

Oxidized MWCNTs Bromothymol blue

(BTB)

55 0.042 [88]

Diethylenetriamine-MWCNTs Pb(II) 58.26 – [135]

Cd(II) 31.45 –

GO MB 714 – [66]

rGONSs Chlorpyrifos 1200 – [109]

Endosulfan 1100 – [109]

Malathion 800 – [109]

Graphene Cd(II) 106.3 – [111]

Co(II) 68.2 –

GONSs Pb(II) 842 – [114]

GNS Ni(II) 3.00 0.0576 [136]

Metal oxide-based nanomaterials Co3O4/SiO2 nanocomposite MB 53.87 1.821 [57]

TiO2 Cd(II) 16.69 2.244a [67]

Cu(II) 5.18 0.927a

MO 85.39 –

TiO2 nanotubes/CNT Cu(II) 83–124 – [137]

Pb(II) 192–588 –

Fe3O4 magnetic nanoparticles Cu(II) 61.07 – [124]

Modifying Fe3O4

microspheres

Hg(II) 37.4 (lmol g-1) – [126]

Ethylenediamine-

functionalized nano-Fe3O4

Cr(VI) 136.98 47.172a [51]

MgO Reactive blue 19 166.7 4.2 [138]

Reactive red 198 123.5 5.4

d-MnO2 Ni(II) 30.63 0.108 [136]

Carbon and metal oxide hybrid

nanomaterials

Graphene oxide–Fe3O4 hybrid

composite

MB 167.2 – [65]

Neutral Red (NR) 171.3 –

GNS/d-MnO2 composite Ni(II) 46.55 0.0432 [136]

RGO/TiO2 MB 467.6 3.1278 [139]

Al2O3/MWCNTs Trichloroethylene 19.84 1.1048a [140]

Cd(II) 27.21 5.7644a

MnO2/CNTs Pb(II) 78.74 0.816 [64]
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Cr(III), Co(II), Ni(II), Cu(II), Cd(II), Pb(II) and As3? from

wastewater [45, 47, 48, 51, 68, 118, 123–126]. In addition,

the adsorption process was found to be highly dependent

on the amount, surface functionality and pH of the med-

ium, which caused these nanoparticles to selectively adsorb

metal ions [125–127]. An almost 100% removal rate of

Cr(III), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from

water was reported at pH[ 8 by these functionalized

nanoparticles [124–127].

The removal efficiency of As(III) by carboxyl, amine and

thiol-functionalized Fe3O4 was found to be 91, 95 and 97%,

respectively, at pH 8 [43]. The adsorption–desorption

behaviorofmetal ionsonamine-functionalizedFe3O4 showed

an 85%desorption ratio in the first cycle,which indicates their

excellent regeneration capacity for their further use. It was

reported that ethylenediaminetetraacetic acid-functionalized

(EDTA) Fe3O4 nanomagnetic chelators (NMCs), show a

strong tendency towards the adsorption of Cr(III), Co(II),

Ni(II), Cu(II), Cd(II) and Pb(II) from wastewater [67].

Ozmen et al. [124] reported the use of 3-aminopropyltri-

ethoxysilane and glutaraldehyde-modified Fe3O4 nanopar-

ticles for the removal of Cu(II) from thewater. Ge et al. [125]

have studied the effective removal of heavy metal ions

[Cd(II), Zn(II), Pb(II)and Cu(II)] from an aqueous solution

using a polymer-modified magnetic nanoparticles. They

reported a higher removal efficiency of metal ions in acidic

pH 5.5 and a lower one in alkaline pH. Based on their results,

they have suggested that the polymer-modified Fe3O4 was

more efficient than bare Fe3O4. The reported studies suggest

that the functional groups present on the surface of magnetic

nanoparticles provide a large number of active sites aswell as

aqueous stability, which is necessary for the successful

adsorption of toxic metals from water. More specifically,

these surface-engineered magnetic nanoparticles are highly

effective, efficient, economically viable, and reusable mag-

netic nanoadsorbents for the removal of toxic metal ions

from water.

Magnetic nanoparticles were also successfully used as

adsorbents of toxic metal ions from different sources.

Rhodamine hydrazide modifying Fe3O4 microspheres

(Fe3O4-R6G) has been reported for the selective detection

and removal of mercury ions from different environmental

samples, such as tap water, lake water and river water

[126]. It was found that, 1.5 9 10-7 mol L-1 is the

detection limit for Hg(II) and that 37.4 l mol g-1 is the

maximum adsorption of Hg(II) in 3 mL sample with 5 mg

Fe3O4-R6G. In addition, the regeneration capability for up

to three cycles was studied, and observed that it could

reversibly bind with Hg ions repeatedly. Table 1 compares

the adsorption capacities and removal rates for some dyes

and metal ions on different kinds of nanomaterials. A

comparison between the removal of different dyes using

MWCNTs and the removal of methylene blue, Cd(II) and

Pd(II) by different nanomaterials is displayed in Fig. 5.

Conclusions

The presence of heavy metal ions and dyes in wastewater is

a major concern for environment conservation and human

health. The removal process of these ions has not reached

the optimum conditions. Based on the unique properties of

nanomaterials, they have been widely studied for heavy

metals and dye removals from wastewater due to their high

surface area, low particles size which leads to high num-

bers of adsorption active centers. Adsorption processes

Table 1 continued

Nanomaterials Adsorbent Adsorbate Adsorption capacity

(mg g-1)

Rate constants

(k1, h
-1)

References

Ni@C composite

nanostructures

Pb(II) 21.45 – [141]

Cu(II) 14.3 –

Cd(II) 6.43 –

Polymer-based nanomaterials Polyvinyl alcohol BTB 276.2 4.266 [56]

MB 123.3 4.854

Polyaniline (PAn)/rice husk

nanocomposite

Zn(II) 24.3 – [142]

Polypyrrole/Fe3O4 magnetic

nanocomposite

Cr(VI) 169.4 11.28 [143]

Polyacrylamide/Ni0.02Zn0.98O

nanocomposite

Malachite green

(MG)

– 6.12 [144]

Rhodamine B

(RB)

– 8.88

a (k2, g mg-1 h-1)
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using nanomaterials are highly effective, may be easily

performed and employed for the removal of organic and

inorganic pollutants. It seems very plausible that these

types of adsorbents may find wide commercial application

in wastewater treatment in the near future.

This article reviews the past, present and future

approaches for using nanomaterials as effective adsorbents

for the removal of heavy metal ions and dyes from

wastewater. The recent trends of using nanomaterials as

cost-effective and environmentally acceptable adsorbents

for water purification were discussed in this article. This

review highlights the promising future applications of

nanomaterials as adsorbents because of their unique mor-

phological and structural properties.
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