Skip to main content
Log in

Tidal Disruption Events

  • Texas 2012
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The majority of supermassive black holes in the Universe lie dormant and starved of fuel. These hidden beasts can be temporarily illuminated when an unlucky star passes close enough to be tidally disrupted and consumed by the black hole. Theorists first proposed in 1975 that tidal disruption events should be an inevitable consequence of supermassive black holes in galaxy nuclei and later argued that the resulting flare of radiation from the accretion of the stellar debris could be a unique signpost for the presence of a dormant black hole in the center of a normal galaxy. It was not until over two decades later that the first convincing tidal disruption event candidates emerged in the X-rays by the ROSAT All-Sky Survey. Since then, over a dozen total candidates have now emerged from searches across the electromagnetic spectrum, including the X-rays, the ultraviolet, and the optical. In the last couple of years, we have also witnessed a paradigm shift with the discovery of relativistic beamed emission associated with tidal disruption events. I review the census of observational candidates to date and discuss the exciting prospects for using large samples of tidal disruption events discovered with the next-generation of ground-based and space-based synoptic surveys to probe accretion disk and/or jet formation and black hole demographics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.M. Beloborodov et al., MNRAS 259, 209 (1992)

    ADS  Google Scholar 

  2. E. Berger et al., ApJ. 748, 36 (2012)

    Article  ADS  Google Scholar 

  3. J.S. Bloom et al., Science 333, 203 (2011)

    Article  ADS  Google Scholar 

  4. G.C. Bower, ApJ. 732, L12 (2011)

    Article  ADS  Google Scholar 

  5. G.C. Bower et al., ApJ. 763, 84 (2013)

    Article  ADS  Google Scholar 

  6. D.N. Burrows et al., Nature 476, 421 (2011)

    Article  ADS  Google Scholar 

  7. N. Cappelluti et al., A&A 495, 9 (2009)

    Article  ADS  Google Scholar 

  8. B. Cenko et al., ApJ. 753, 77 (2012)

    Article  ADS  Google Scholar 

  9. P. Esquej et al., A&A 489, 543 (2008)

    Article  ADS  Google Scholar 

  10. S. Gezari et al., ApJ. 653, L25 (2006)

    Article  ADS  Google Scholar 

  11. S. Gezari et al., ApJ. 676, 944 (2008)

    Article  ADS  Google Scholar 

  12. S. Gezari et al., ApJ. 698, 1367 (2009)

    Article  ADS  Google Scholar 

  13. S. Gezari et al., ApJ. 720, L77 (2010)

    Article  ADS  Google Scholar 

  14. S. Gezari et al., Nature 485, 217 (2012)

    Article  ADS  Google Scholar 

  15. S. Gezari et al., ApJ. 766, 60 (2013)

    Article  ADS  Google Scholar 

  16. D. Giannios, B.D. Metzger, MNRAS. 416, 2102 (2011)

    Article  ADS  Google Scholar 

  17. J. Guillochon, E. Ramirez-Ruiz. in press (arXiv:1206:2350) (2012)

  18. M. Kesden. PhysRevD. 85, 4037 (2012)

    ADS  Google Scholar 

  19. S. Kobayashi et al., ApJ. 615, 855 (2004)

    Article  ADS  Google Scholar 

  20. A.J. Levan et al., Science 333, 199 (2011)

    Article  ADS  Google Scholar 

  21. G. Lodato, E.M. Rossi, MNRAS 410, 359 (2011)

    Article  ADS  Google Scholar 

  22. P.W. Maksym et al., ApJ. 722, 103 (2010)

    Article  Google Scholar 

  23. N. Stone, A. Loeb, MNRAS. 422, 1933 (2012)

    Article  ADS  Google Scholar 

  24. N. Stone, R. Sari, A. Loeb, in press (arXiv:120.3374) (2012)

  25. L. Strubbe, E. Quataert, MNRAS 400, 207 (2009)

    Article  ADS  Google Scholar 

  26. S. van Velzen et al., ApJ. 741, 73 (2011)

    Article  ADS  Google Scholar 

  27. S. van Velzen et al., A&A 552, 5 (2013)

    Article  ADS  Google Scholar 

  28. B.A. Zauderer, Nature 476, 425 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvi Gezari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gezari, S. Tidal Disruption Events. Braz J Phys 43, 351–355 (2013). https://doi.org/10.1007/s13538-013-0136-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0136-z

Keywords

Navigation