Skip to main content
Log in

Photobiomodulation as a treatment for neurodegenerative disorders: current and future trends

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Photobiomodulation (PBM) is a rapidly growing as an innovative therapeutic modality for various types of diseases in recent years. Neuronal degeneration is irreversible process and it is proven to be difficult to slow down or stop the progression. Pharmacologic approaches to slow neuronal degeneration have been studied, but are limited due to concerns about the side effects. Therefore, it is necessary to develop a new therapeutic approach to stabilize neuronal degeneration and achieve neuronal protection against several neurodegenerative diseases. In this review, we have introduced several previous studies showing the positive effect of PBM over neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and different types of epilepsy. Despite excellent outcomes of animal researches, not many clinical studies are conducted or showed positive outcome of PBM against neurodegenerative disease. To achieve clinical application of PBM against neurodegenerative disorder, determination of exact mechanism and establishment of effective clinical protocol seems to be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hamblin MR. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 2016;6:113–24.

    Article  Google Scholar 

  2. Hennessy M, Hamblin MR. Photobiomodulation and the brain: a new paradigm. J Opt. 2017;19(1):013003.

    Article  Google Scholar 

  3. Naeser MA, Hamblin MR. Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg. 2011;29(7):443–6.

    Article  Google Scholar 

  4. Naeser MA, Hamblin MR. Traumatic brain injury: a major medical problem that could be treated using transcranial, red/near-infrared LED photobiomodulation. Photomed Laser Surg. 2015;33(9):443–6.

    Article  Google Scholar 

  5. Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18(6):794–9.

    Article  Google Scholar 

  6. Nelson L, Tabet N. Slowing the progression of Alzheimer’s disease; what works? Ageing Res Rev. 2015;23(Pt B):193–209.

    Article  Google Scholar 

  7. Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science. 2015;349(6248):1255555.

    Article  Google Scholar 

  8. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271–8 (discussion 8-84).

    Article  MathSciNet  Google Scholar 

  9. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314(5800):777–81.

    Article  Google Scholar 

  10. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.

    Article  Google Scholar 

  11. Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL, et al. Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res. 2011;89(7):1031–42.

    Article  Google Scholar 

  12. Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem. 2008;15(23):2321–8.

    Article  Google Scholar 

  13. Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015;16(2):109–20.

    Article  Google Scholar 

  14. Chaturvedi RK, Beal MF. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008;1147:395–412.

    Article  Google Scholar 

  15. Coppede F, Migliore L. DNA damage in neurodegenerative diseases. Mutat Res. 2015;776:84–97.

    Article  Google Scholar 

  16. Cullen KM, Kocsi Z, Stone J. Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab. 2005;25(12):1656–67.

    Article  Google Scholar 

  17. Cullen KM, Kocsi Z, Stone J. Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging. 2006;27(12):1786–96.

    Article  Google Scholar 

  18. de la Torre JC. Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 2004;3(3):184–90.

    Article  Google Scholar 

  19. Gonzalez-Lima F, Barksdale BR, Rojas JC. Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol. 2014;88(4):584–93.

    Article  Google Scholar 

  20. Stone J. What initiates the formation of senile plaques? The origin of Alzheimer-like dementias in capillary haemorrhages. Med Hypotheses. 2008;71(3):347–59.

    Article  Google Scholar 

  21. Stone J, Johnstone DM, Mitrofanis J, O’Rourke M. The mechanical cause of age-related dementia (Alzheimer’s disease): the brain is destroyed by the pulse. J Alzheimer’s Dis JAD. 2015;44(2):355–73.

    Article  Google Scholar 

  22. Swerdlow RH, Khan SM. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses. 2004;63(1):8–20.

    Article  Google Scholar 

  23. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ Res. 2012;111(9):1198–207.

    Article  Google Scholar 

  24. Begum R, Powner MB, Hudson N, Hogg C, Jeffery G. Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS ONE. 2013;8(2):e57828.

    Article  Google Scholar 

  25. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–33.

    Article  Google Scholar 

  26. Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, et al. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg. 2006;24(2):121–8.

    Article  Google Scholar 

  27. Gkotsi D, Begum R, Salt T, Lascaratos G, Hogg C, Chau KY, et al. Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Exp Eye Res. 2014;122:50–3.

    Article  Google Scholar 

  28. Liang HL, Whelan HT, Eells JT, Wong-Riley MT. Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience. 2008;153(4):963–74.

    Article  Google Scholar 

  29. Rojas JC, Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye Brain. 2011;3:49–67.

    Google Scholar 

  30. Ying R, Liang HL, Whelan HT, Eells JT, Wong-Riley MT. Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP + -induced neurotoxicity. Brain Res. 2008;1243:167–73.

    Article  Google Scholar 

  31. De Taboada L, Yu J, El-Amouri S, Gattoni-Celli S, Richieri S, McCarthy T, et al. Transcranial laser therapy attenuates amyloid-beta peptide neuropathology in amyloid-beta protein precursor transgenic mice. J Alzheimer’s Dis JAD. 2011;23(3):521–35.

    Article  Google Scholar 

  32. Grillo SL, Duggett NA, Ennaceur A, Chazot PL. Non-invasive infra-red therapy (1072 nm) reduces beta-amyloid protein levels in the brain of an Alzheimer’s disease mouse model, TASTPM. J Photochem Photobiol, B. 2013;123:13–22.

    Article  Google Scholar 

  33. Michalikova S, Ennaceur A, van Rensburg R, Chazot PL. Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light. Neurobiol Learn Mem. 2008;89(4):480–8.

    Article  Google Scholar 

  34. Purushothuman S, Johnstone DM, Nandasena C, Eersel J, Ittner LM, Mitrofanis J, et al. Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia. Neurosci Lett. 2015;591:155–9.

    Article  Google Scholar 

  35. Purushothuman S, Johnstone DM, Nandasena C, Mitrofanis J, Stone J. Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex—evidence from two transgenic mouse models. Alzheimers Res Ther. 2014;6(1):2.

    Article  Google Scholar 

  36. da Luz Eltchechem C, Salgado ASI, Zangaro RA, da Silva Pereira MC, Kerppers II, da Silva LA, et al. Transcranial LED therapy on amyloid-beta toxin 25–35 in the hippocampal region of rats. Lasers Med Sci. 2017;32(4):749–56.

    Article  Google Scholar 

  37. Sommer AP, Bieschke J, Friedrich RP, Zhu D, Wanker EE, Fecht HJ, et al. 670 nm laser light and EGCG complementarily reduce amyloid-beta aggregates in human neuroblastoma cells: basis for treatment of Alzheimer’s disease? Photomed Laser Surg. 2012;30(1):54–60.

    Article  Google Scholar 

  38. Cosgrove J, Alty JE, Jamieson S. Cognitive impairment in Parkinson’s disease. Postgrad Med J. 2015;91(1074):212–20.

    Article  Google Scholar 

  39. Bergman H, Deuschl G. Pathophysiology of Parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov Disord. 2002;17(Suppl 3):S28–40.

    Article  Google Scholar 

  40. Poewe W, Mahlknecht P, Jankovic J. Emerging therapies for Parkinson’s disease. Curr Opin Neurol. 2012;25(4):448–59.

    Article  Google Scholar 

  41. Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000;62(1):63–88.

    Article  Google Scholar 

  42. Rinne JO. Nigral degeneration in Parkinson’s disease. Mov Disord. 1993;8(Suppl 1):S31–5.

    Article  Google Scholar 

  43. Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol. 2012;2012:845618.

    Article  Google Scholar 

  44. Carvey PM, Hendey B, Monahan AJ. The blood–brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem. 2009;111(2):291–314.

    Article  Google Scholar 

  45. Corti O, Brice A. Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson’s disease. Curr Opin Neurobiol. 2013;23(1):100–8.

    Article  Google Scholar 

  46. Farkas E, De Jong GI, de Vos RA, Jansen Steur EN, Luiten PG. Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol. 2000;100(4):395–402.

    Article  Google Scholar 

  47. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, et al. Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet. 2009;41(3):308–15.

    Article  Google Scholar 

  48. Grammas P, Martinez J, Miller B. Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med. 2011;13:e19.

    Article  Google Scholar 

  49. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, et al. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57(2):176–9.

    Article  Google Scholar 

  50. Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31(14):3038–62.

    Article  Google Scholar 

  51. Fukae J, Mizuno Y, Hattori N. Mitochondrial dysfunction in Parkinson’s disease. Mitochondrion. 2007;7(1–2):58–62.

    Article  Google Scholar 

  52. Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8(1):67–81.

    Article  Google Scholar 

  53. Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov Disord. 2013;28(1):61–70.

    Article  Google Scholar 

  54. Olanow CW, Kieburtz K, Schapira AH. Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol. 2008;64(Suppl 2):S101–10.

    Google Scholar 

  55. Schapira AH, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet. 2014;384(9942):545–55.

    Article  Google Scholar 

  56. Vos M, Lovisa B, Geens A, Morais VA, Wagnieres G, van den Bergh H, et al. Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model. PLoS ONE. 2013;8(11):e78562.

    Article  Google Scholar 

  57. Quirk BJ, Desmet KD, Henry M, Buchmann E, Wong-Riley M, Eells JT, et al. Therapeutic effect of near infrared (NIR) light on Parkinson’s disease models. Front Biosci. 2012;4:818–23.

    Google Scholar 

  58. Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U. Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener. 2009;4:26.

    Article  Google Scholar 

  59. El Massri N, Johnstone DM, Peoples CL, Moro C, Reinhart F, Torres N, et al. The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice. Int J Neurosci. 2016;126(1):76–87.

    Article  Google Scholar 

  60. Johnstone DM, el Massri N, Moro C, Spana S, Wang XS, Torres N, et al. Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism—an abscopal neuroprotective effect. Neuroscience. 2014;274:93–101.

    Article  Google Scholar 

  61. Moro C, Massri NE, Torres N, Ratel D, De Jaeger X, Chabrol C, et al. Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. J Neurosurg. 2014;120(3):670–83.

    Article  Google Scholar 

  62. Moro C, Torres N, El Massri N, Ratel D, Johnstone DM, Stone J, et al. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: evidence from two mouse strains. BMC Neurosci. 2013;14:40.

    Article  Google Scholar 

  63. Peoples C, Spana S, Ashkan K, Benabid AL, Stone J, Baker GE, et al. Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(5):469–76.

    Article  Google Scholar 

  64. Reinhart F, Massri NE, Chabrol C, Cretallaz C, Johnstone DM, Torres N, et al. Intracranial application of near-infrared light in a hemi-parkinsonian rat model: the impact on behavior and cell survival. J Neurosurg. 2016;124(6):1829–41.

    Article  Google Scholar 

  65. Reinhart F, Massri NE, Darlot F, Torres N, Johnstone DM, Chabrol C, et al. 810 nm near-infrared light offers neuroprotection and improves locomotor activity in MPTP-treated mice. Neurosci Res. 2015;92:86–90.

    Article  Google Scholar 

  66. Shaw VE, Keay KA, Ashkan K, Benabid AL, Mitrofanis J. Dopaminergic cells in the periaqueductal grey matter of MPTP-treated monkeys and mice; patterns of survival and effect of deep brain stimulation and lesion of the subthalamic nucleus. Parkinsonism Relat Disord. 2010;16(5):338–44.

    Article  Google Scholar 

  67. El Massri N, Lemgruber AP, Rowe IJ, Moro C, Torres N, Reinhart F, et al. Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp Brain Res. 2017;235(6):1861–74.

    Article  Google Scholar 

  68. Ganeshan V, Skladnev NV, Kim JY, Mitrofanis J, Stone J, Johnstone DM. Pre-conditioning with remote photobiomodulation modulates the brain transcriptome and protects against MPTP insult in mice. Neuroscience. 2019;400:85–97.

    Article  Google Scholar 

  69. Purushothuman S, Nandasena C, Johnstone DM, Stone J, Mitrofanis J. The impact of near-infrared light on dopaminergic cell survival in a transgenic mouse model of parkinsonism. Brain Res. 2013;1535:61–70.

    Article  Google Scholar 

  70. Darlot F, Moro C, El Massri N, Chabrol C, Johnstone DM, Reinhart F, et al. Near-infrared light is neuroprotective in a monkey model of Parkinson disease. Ann Neurol. 2016;79(1):59–75.

    Article  Google Scholar 

  71. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365(10):919–26.

    Article  Google Scholar 

  72. Wiebe S. Epidemiology of temporal lobe epilepsy. Can J Neurol Sci. 2000;27(Suppl 1):S6–10 (discussion S20-1).

    Article  Google Scholar 

  73. ILAE Commission Report. The epidemiology of the epilepsies: future directions. International League Against Epilepsy. Epilepsia. 1997;38(5):614–8.

    Article  Google Scholar 

  74. Cherian A, Thomas SV. Status epilepticus. Ann Indian Acad Neurol. 2009;12(3):140–53.

    Article  Google Scholar 

  75. Knake S, Hamer HM, Rosenow F. Status epilepticus: a critical review. Epilepsy Behav E&B. 2009;15(1):10–4.

    Article  Google Scholar 

  76. DeLorenzo RJ, Pellock JM, Towne AR, Boggs JG. Epidemiology of status epilepticus. J Clin Neurophysiol. 1995;12(4):316–25.

    Article  Google Scholar 

  77. Olney JW. Inciting excitotoxic cytocide among central neurons. Adv Exp Med Biol. 1986;203:631–45.

    Article  Google Scholar 

  78. Sloviter RS, Dempster DW. “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res Bull. 1985;15(1):39–60.

    Article  Google Scholar 

  79. Patel MN. Oxidative stress, mitochondrial dysfunction, and epilepsy. Free Radic Res. 2002;36(11):1139–46.

    Article  Google Scholar 

  80. Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010;9(1):68–82.

    Article  Google Scholar 

  81. Berg AT, Shinnar S. Relapse following discontinuation of antiepileptic drugs: a meta-analysis. Neurology. 1994;44(4):601–8.

    Article  Google Scholar 

  82. Schmidt D, Loscher W. Uncontrolled epilepsy following discontinuation of antiepileptic drugs in seizure-free patients: a review of current clinical experience. Acta Neurol Scand. 2005;111(5):291–300.

    Article  Google Scholar 

  83. Ahmed NA, Radwan NM, Ibrahim KM, Khedr ME, El Aziz MA, Khadrawy YA. Effect of three different intensities of infrared laser energy on the levels of amino acid neurotransmitters in the cortex and hippocampus of rat brain. Photomed Laser Surg. 2008;26(5):479–88.

    Article  Google Scholar 

  84. Radwan NM, El Hay Ahmed NA, Ibrahim KM, Khedr ME, Aziz MA, Khadrawy YA. Effect of infrared laser irradiation on amino acid neurotransmitters in an epileptic animal model induced by pilocarpine. Photomed Laser Surg. 2009;27(3):401–9.

    Article  Google Scholar 

  85. Huang YY, Nagata K, Tedford CE, Hamblin MR. Low-level laser therapy (810 nm) protects primary cortical neurons against excitotoxicity in vitro. J Biophotonics. 2014;7(8):656–64.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Jin-Chul Ahn and Dr. Min Young Lee for helpful comments on the manuscript.

Funding

This research was a part of the project titled ‘Development of marine material based near infrared fluorophore complex and diagnostic imaging instruments’, funded by the Ministry of Oceans and Fisheries, Korea (Grant Number 20170263), and also supported by the Ministry of Trade, Industry & Energy, Republic of Korea (Grant Numbers 20002777 and 20002831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namgue Hong.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, N. Photobiomodulation as a treatment for neurodegenerative disorders: current and future trends. Biomed. Eng. Lett. 9, 359–366 (2019). https://doi.org/10.1007/s13534-019-00115-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-019-00115-x

Keywords

Navigation