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Abstract
Land degradation (LD) is a complex process affected by both anthropogenic and natural driving variables, and its preven-
tion has become an essential task globally. The aim of the present study was to develop a new quantitative LD mapping 
approach using machine learning techniques, benchmark models, and human-induced and socio-environmental variables. 
We employed four machine learning algorithms [Support Vector Machine (SVM), Multivariate Adaptive Regression Splines 
(MARS), Generalized Linear Model (GLM), and Dragonfly Algorithm (DA)] for LD risk mapping, based on topographic 
(n = 7), human-induced (n = 5), and geo-environmental (n = 6) variables, and field measurements of degradation in the Pole-
Doab watershed, Iran. We assessed the performance of different algorithms using receiver operating characteristic, Kappa 
index, and Taylor diagram. The results revealed that the main topographic, geoenvironmental, and human-induced variable 
was slope, geology, and land use change, respectively. Assessments of model performance indicated that DA had the highest 
accuracy and efficiency, with the greatest learning and prediction power in LD risk mapping. In LD risk maps produced using 
SVM, GLM, MARS, and DA, 19.16%, 19.29%, 21.76%, and 22.40%, respectively, of total area in the Pole-Doab watershed 
had a very high degradation risk. The results of this study demonstrate that in LD risk mapping for a region, topographic, and 
geological factors (static conditions) and human activities (dynamic conditions, e.g., residential and industrial area expan-
sion) should be considered together, for best protection at watershed scale. These findings can help policymakers prioritize 
land and water conservation efforts.
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Introduction

Land degradation (LD) is now a critical environmen-
tal issue worldwide, posing a threat to food security and 
socio-economic development, and the problem will worsen 
without rapid remedial action (Jiang et al. 2019; Shao et al. 
2020). Land degradation, defined as declining capability of 
the biological or economic productivity of land to provide 
ecosystem services, is closely connected to food security, 
human well-being, and development (Wieland et al. 2019; 
Crossland et al. 2018; Gichenje et al. 2019). It is caused by 
a combination of direct factors (land use/land cover changes 
(LULCC), climate change) and indirect factors (population 
pressure, socioeconomic, and social–ecological conditions, 
interactions between humans and nature, land management 
policy), and can vary in severity over time and with location 
(Riva et al. 2017; Okpara et al. 2018; Gichenje et al. 2019). 
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As a result of human activities, such as land use change, 
LD can alter hydrological conditions that are crucial for 
water resources and sustainable river basin management 
(Aladejana et al. 2018; Jiang et al. 2019; Haghighi et al. 
2020). Therefore, efforts to prevent land degradation must 
be taken by agencies and governments worldwide (Keesstra 
et al. 2016; Solomun et al. 2018). To assess LD, it is neces-
sary to consider both natural and human-induced factors, 
e.g., climate change, urbanization, and rising demand for 
food and fuel (AbdelRahman et al. 2018; Wunder and Bodle 
2019; Liniger et al. 2019). Owing to major concerns about 
conserving land for ecosystem services and the impact of LD 
on societies and the environment, soil, and water protection 
has become an important issue for international organiza-
tions working with sustainable development (Solomun et al. 
2018; Djanibekov et al. 2018). Identifying the causes of LD 
is essential for its prevention. Globally, LULCC (decline in 
rangeland area and conversion to farmland with low produc-
tivity) is recognized as a major driver of LD (Krkoška Lor-
encová et al. 2016). An increasing proportion of land with 
low productivity and a lack of financial resources for land 
managers in developing countries are exacerbating the risk 
of LD and lowering resilience within rangeland landscapes 
(Darabi et al. 2018; Pirnia et al. 2018; Cowie et al. 2019; 
Pirnia et al. 2019).

To our knowledge, most previous studies assessing LD 
conditions have used geographic information system (GIS) 
and remote sensing techniques in spatial assessments of 
LD risk based on the environmental conditioning variables 
(Prăvălie et al. 2017; Mariano et al. 2018; Cerretelli et al. 
2018). Spatiotemporal patterns of land use change (anthro-
pogenic factors) are the main factor in land degradation 
(Bewket and Sterk 2005; Gebremicael et al. 2018). Other 
researchers have reported that direct anthropogenic distur-
bances in environments and ecosystems can increase land 
degradation (Ahiablame and Shakya 2016; Davudirad et al. 
2016; Aladejana et al. 2018; Schwieger and Mbidzo 2020; 
Shao et al. 2020). Jaquet et al. (2015) found that outmigra-
tion has led to land degradation in a western Nepal water-
shed. Wei et al. (2020) examined the impacts of land deg-
radation on lake and reservoir water quality and showed a 
clear trend for degradation, with significant adverse impacts 
on lake/reservoir water quality. Yatheendradas et al. (2008) 
concluded that land degradation is the result of dynamic and 
complex interactions between LULCC, climate variables, 
and hydrological processes in a watershed.

The environmental problems associated with LD are par-
ticularly severe in dryland regions, which poses a threat to 
many people, especially in developing countries, such as 
Iran (Khosravi et al. 2015; Darabi et al. 2018). During the 
recent decades, land degradation in Iran (e.g., soil erosion, 
such as gully development) has accelerated in Iran due to 
many factors, such as increasing population, socio-economic 

development, LULCC (demand for agricultural products has 
resulted in large-scale conversion of rangeland and forest 
to cropland), over-exploitation of water resources, geology 
and topography, and climate change (Pour et al. 2009; Seraji 
et al. 2009; Davudirad et al. 2016; Bakhshandeh et al. 2019).

Owing to the many interacting factors causing LD, 
machine learning techniques could be useful in LD risk map-
ping. In this study, we applied four novel machine learning 
algorithms, namely Support Vector Machine (SVM), Mul-
tivariate Adaptive Regression Splines (MARS), General-
ized Linear Model (GLM), and Dragonfly Algorithm (DA). 
These have already been successfully applied in other fields, 
e.g., in flood risk and hazard mapping, fog-water harvest-
ing, agricultural drought assessment, and groundwater risk 
assessment (Zhao et al. 2019; Darabi et al. 2020; Karimidas-
tenaei et al. 2020; Rahmati et al. 2020; Choubin et al. 2020).

Many studies have pointed out that knowledge about 
LD conditions, especially in arid and semi-arid regions 
with rapid industrialization and urbanization, is important 
for achieving the global aim of sustainable development 
in the long term (Gu et al. 2016; Tripathi et al. 2017; Cao 
et al. 2018; Van Haren et al. 2019; Giuliani et al. 2020). 
Hence, the aim of the present study was to develop a new 
quantitative LD mapping approach using machine learning 
techniques, benchmark models, and selected socio-envi-
ronmental conditioning variables. Different types of data 
and information were used with the four different machine 
learning algorithms to develop distributed maps of LD risk 
for the case of a watershed in Iran. The novelty of the study 
lies in (1) comparing conventional algorithms (support vec-
tor machine (SVM), multivariate adaptive regression spline 
(MARS), and generalized linear model (GLM)) with new 
algorithms, including DA, for LD mapping applications; (2) 
developing a spatial framework for LD mapping by applying 
new conditioning factors; (3) considering and introducing 
important socio-environmental variables in land degrada-
tion; and (4) evaluating socio-environmental conditioning 
variables for creating useful LD maps based on the model 
results.

Materials and methods

Study area

The Pole-Doab watershed (49° 04′ 15′′–49° 52′ 12′′ E, 33° 
44′ 42′′–34° 12′ 13′′ N) covers an area of 1740 km2 in central 
Iran (Fig. 1). It lies within a semi-arid-moderate to semi-
arid-cold region based on the Domartan climate index, with 
maximum temperature in July (42 °C) and minimum tem-
perature in January (− 25.7 °C). The precipitation regime 
is rainfall–snow, with a mean annual total (1988–2017) of 
430 mm, which mainly falls during November, December, 
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and May. The topography of the Pole-Doab watershed con-
sists of rugged and mountainous terrain surrounding plains, 
with elevation varying from around 1809 m above sea level 
(asl) on the plains to 3342 m asl in the mountains. This 
complex topography and steep gradients create a high risk 
of LD, particularly when combined with human-induced 
activities such LULCC, urbanization, and industrialization 
in the watershed (Davudirad et al. 2016). The Pole-Doab 
watershed is one of the main sub-basins in headwaters of 
the Qareh–Chai river basin, which has been regulated by 
the Saveh reservoir since 1995. The Shazand plain, located 
in the center of the watershed, is used intensively for agri-
culture (Davudirad et al. 2016). In addition, considerable 
recent development of infrastructure, industries, and urban 
areas has altered lifestyles significantly. These rapid LULCC 
(increasing agriculture, urban expansion, industrial develop-
ment) have led to extensive land degradation (Davudirad 
et al. 2016; Sadeghi et al. 2019; Hazbavi et al. 2020).

Methods

Field measurements of land degradation

Several processes associated with LD, including water and 
wind erosion and soil fertility decline, were considered in LD 
risk mapping. Information on these processes in the Pole-Doab 
watershed was extracted from an inventory of LD sites in the 
region, based on field surveys and some documents from the 
Forest, Range, and Watershed Management Organization 
of Markazi Province, Iran. The LD sites, which represented 
different types of degradation (e.g., gully erosion, riverside 
erosion, surface erosion, and mining), were plotted in an LD 
inventory map (Fig. 2). In order to prepare an urban LD risk 
map, degraded areas and non-degraded areas were allocated a 
value of 1 and 0, respectively. Hence, the historical occurrence 
of LD was a source of essential information. In field surveys 
in the Pole-Doab watershed, 200 degraded sites (value = 1) 
and 200 non-degraded sites (value = 0) were chosen randomly 

Fig. 1  Location of the study area, the Pole-Doab watershed in central Iran
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for the analysis. For the purposes of the present study, the 
LD inventory map was randomly divided into two groups, 
training/learning and testing/validation datasets. The training 
dataset, which comprised 70% of the LD (140 points), was 
used for training/leaning of the machine learning algorithms. 
The validation dataset, which comprises 30% the LD inventory 

(60 points), was used for validation of the models. Non-land 
degraded locations were selected randomly at a distance from 
the land degraded areas, as suggested in the literature (Hong 
et al. 2018; Rahmati et al. 2020; Darabi et al. 2020). Therefore, 
200 non-land degraded locations were selected, with 70% of 
the non-land degraded inventory (140 points) used for model 

Fig. 2  Examples of land degradation in the Pole-Doab watershed: Riverside erosion (a, d, n), stream erosion (b, c, k, l), gully erosion (e, m, g), 
mining (f, i), badlands (j), and pollution and industrial causes (k)
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training and 30% (60 points) to validate the machine learning 
algorithms.

Dragonfly algorithm (DA)

A number of intelligence algorithms have been developed in 
the recent years and these have enormous potential to solve 
non-linear problems. Intelligence algorithms perform intel-
ligent behavior by collecting conditioning factors to solve 
problems. The Dragonfly Algorithm (DA), one of the pioneer 
intelligence algorithms, has been extensively studied in the 
recent years (Mirjalili 2016; KS and Murugan 2017; Jafari and 
Chaleshtari 2017; Díaz-Cortés et al. 2018; Shilaja and Arun-
prasath 2019; Li et al. 2020). It is a meta-heuristic optimization 
algorithm that was developed using the particle swarm opti-
mization technique with distinctive and extraordinary swarm-
ing behavior, which is intended to represent a tiny predator in 
nature, because of its simple and easy implementation. The 
main inspiration and purpose of the DA is to hunt and migrate 
through static and dynamic swarming, based on the unique and 
superior swarming behavior of dragonflies (KS and Murugan 
2017; Shilaja and Arunprasath 2019). The DA starts the opti-
mization procedure by generating a set of random solutions for 
a specific problem. The situation and stage vectors of dragon-
flies are booted by random values defined within the minimum 
and maximum values of the variables (Mirjalili 2016). In this 
study, the DA was used as an artificial intelligence algorithm 
to prepare a LD risk map based on socio-environmental con-
ditioning variables. DA can be described by the expression:

where N is size of the population of dragonflies, i = 1, 2, 3, 
… N, and Xd

i
 refers to the position of the ith dragonfly in dth 

dimension of the search space.
Based on the initial position values (randomly produced 

between the lower and upper limits of the variables), the fitness 
function is evaluated. For updating the velocity and position 
of the separation, alignment, cohesion, food, and enemy coef-
ficients are calculated as follows:

(1)Xi =
(
X1
i
,Xd

i
… ,XN

i

)

(2)Si = −

N∑
j=1

X − Xi

(3)Ai =

∑N

i=1
Vi

N

(4)Ci =

∑N

i=1
Xi

N
− X

where Si, Ai, Ci, Fi, and Ei are the weights for separation, 
alignment, cohesion, food, and enemy factors for each drag-
onfly; Vi and Xi refer to the velocity and position of the ith 
individual; X refers to the position of the current individual; 
and N indicates the number of individuals (KS and Murugan 
2017; Rahman and Rashid 2019; Debnath et al. 2020).

Support vector machine (SVM)

Support vector machine (SVM) model is a classification/
regression method with a set of linear indicator functions 
based on non-parametric statistical learning theory (Moun-
trakis et al. 2011). It specifies the boundary of classes by an 
optimization algorithm (Sajedi-Hosseini et al. 2018). The 
particular attributes of decision level in SVM enable high 
extension capability of the learning machine, which makes 
it effective in handling non-separable training datasets 
(Drucker et al. 1996). The main difficulty in SVM modeling 
lies in selecting important modeling variables. Transforma-
tion of data in SVM is carried out using kernel mathemati-
cal functions, and there are numerous standard transforma-
tions which can be applied for specific purposes. The SVM 
kernel functions were used here to transform data into two 
classes, consisting of land-degraded and non-land-degraded 
locations (0, 1). The ability of SVM is reliant on choosing 
suitable kernel functions (e.g., sigmoid kernel, radial basis 
function (RBF), linear kernel, polynomial kernel). Accord-
ing to the previous studies (Tien Bui et al. 2012; Hong et al. 
2018; Choubin et al. 2019), RBF provides the most accu-
rate results. It was therefore used in the present study in R 
software (‘e1071’ package) (Meyer et al. 2019). The RBF 
kernel is commonly used in SVM classification in various 
kernelized learning algorithms, and is defined as (Vert et al. 
2004; Cura 2020):

where xiandxj are two features for the RBF kernel ( K
(
xi, xj

)
 ); 

xi − xj is Euclidean distance between two features; and � 
is a free parameter. The RBF kernel value decreases with 
distance and ranges between 0 and 1 (x = x’).

Multivariate adaptive regression splines (MARS)

The Multivariate Adaptive Regression Splines (MARS) 
approach is an adaptive modeling process of machine learn-
ing techniques that can be used for identifying relationships 

(5)
Fi = X+ − X

Ei = X− − X

(6)K
�
xi, xj

�
= exp

⎛
⎜⎜⎜⎝
−

���xi,−xj
���
2

2 × �2

⎞⎟⎟⎟⎠
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between a set of independent variables and response vari-
ables with high-dimensional data (Friedman 1991). In 
MARS, relationship modeling between a response variable 
and independent conditioning factors is performed with sim-
ple functions (Darabi et al. 2020). In essence, it is a local 
regression procedure that utilizes a collection of foundation 
functions to model non-linear complex communications. 
The prognosticator space is splined into multiple overlap-
ping places, called spline functions, which are appropriate. 
The MARS model uses the following equation (Xu et al. 
2010; Zhang and Goh 2016; Serrano et al. 2020):

where Bi(x) shows the base function of the MARS model 
(which may be a sole spline function or a yield (interaction) 
of more than two spline functions); ci is a constant coeffi-
cient; and i is the size of the base function contained in the 
model. The base function is defined as:

For each dataset in MARS, m explanatory and n individ-
ual variables are defined (n × m basic functions). To obtain 
and prune the definitive model in MARS, a progressive 
selection of basic functions is used, which leads to a much 
overfitted model. In the present study, the method was built 
in R software, using the “earth” package.

Generalized linear model (GLM)

Generalized linear model (GLM), an extension of the pre-
dictable linear regression model, was formulated by Nelder 
and Wedderburn (1972) to produce answers based on the 
Maximum Likelihood (ML) of the training variables. The 
GLM allows the dataset to be overfitted by exponential dis-
tribution (normal, binomial, or gamma distribution) (Nordin 
et al. 2020). Regression methods, including linear, logistic, 
and log-linear regression, have been widely used to obtain 
the best model to illustrate the communication between a 
dependent parameter and multiple independent parameters 
(Ozdemir and Altural 2013; Karimidastenaei et al. 2020). 
The GLM approach can be used to process data of different 
types, such as normal data, Bernoulli success/failure data, 
Poisson count data, and others (McCullagh and Nelder 
1989). A detailed description of the GLM model is presented 
by Breslow (1996). In a GLM, each dependent variable (here 
Y) is assumed to be created from a distribution in an expo-
nential family. The mean of the distribution (μ) depends on 
the independent variables (X). In the GLM, the linear predic-
tor is given as (Nordin et al. 2020):

(7)f̂ (x) =

k∑
i=1

ci × Bi(x),

(8)Bi(x) =

{
x if x ≥ 0

0 otherwise
.

where E(Y), Xβ, and g are the value of Y, linear predictor, 
and the link function, respectively. In this context, the vari-
ance (V) is typically a function of �:

It is suitable if V tracks from an exponential distribution, 
but it may simplify matters if V is a function of the pre-
dicted value. The β parameter is naturally estimated with the 
maximum likelihood (ML) and maximum quasi-likelihood 
(MA-L), or Bayesian models. In this study, the GLM model 
was run in the R software environment.

Land degradation conditioning factors

There are many different types of LD worldwide and 
many different conditioning variables can be distinguished 
depending on the region and causes of LD. Thus in gen-
eral, there is no universal definition of LD or of condition-
ing factors (Sklenicka 2016). In the present study, based on 
land degradation conditions in the Pole-Doab watershed, 
18 biophysical conditioning variables were identified and 
categorized into three groups: topographic variables (eleva-
tion, slope, curvature, topographic wetness index, terrain 
ruggedness index, sky view factor, aspect); human-induced 
variables (land use, population density, population growth 
rate, residential and industrial expansion, distance to road); 
and geo-environmental variables (geology, soil type, precipi-
tation, wind effect, distance to river, C-factor). The scale and 
resolution of these land degradation conditioning factors, 
classified into three groups, are presented in Table 1.

Topographic variables

Digital elevation model (DEM) We used a 30-m resolution 
digital elevation model (obtained from the Forest, Range, 
and Watershed Management Organization of Markazi prov-
ince) which shows the 1809–3342 m asl altitude variation in 
the watershed (Fig. 3a).

Slope (%) We derived slope values from the 30-m DEM 
in ArcGIS 10.5 using the slope tool Spatial Analyst. The 
slope values in the watershed varied from 0% to more than 
67.60% (Fig. 3b).

Curvature Curvature was derived from the DEM and 
categorized into three classes (Fig. 3c): concave (< − 0.05, 
upwardly concave surface), flat (− 0.05 to 0.05), and convex 
(> 0.05, upwardly convex surface) (Karimidastenaei et al. 
2020; Tehrany et al. 2019).

Topographic wetness index (TWI) TWI, which indicates 
soil moisture content and spatial variability in surface satura-
tion, was used to quantify local topographical impacts on LD 

(9)E(Y) = � × g−1(X�),

(10)Var(Y) = V(�) = V
(
g−1(X�)

)
.
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conditions (Fig. 3d). It was calculated using ArcGIS 10.5 as 
(Zhu et al. 2018; Karimidastenaei et al. 2020):

where AS is the local upslope drainage area for a certain grid 
cell and β is the local slope.

Terrain ruggedness index (TRI) TRI, which was developed 
by Riley et al. (1999), was calculated using SAGA GIS to 
explain the elevation difference between a given point (cell) 
and the mean of surrounding points (eight-cell matrix cells). 
TRI quantifies surface roughness by including maximum 
elevation values in the surroundings of a given point or cell 
in a DEM (Riley et al. 1999; Karimidastenaei et al. 2020). 
In the Pole-Doab watershed, TRI values varied from highly 
rugged (46.00) to completely level surface (0 m) (Fig. 3e).

Sky view factor (SVF) SVF is the visible sky in a hemi-
sphere centered visible from the ground at a given point (cell 
in the raster map). It varies significantly with the topography 
of different regions and is used to account for obstruction of 
the overlying sky hemisphere by surrounding land surface 

(11)TWI = Ln

(
AS

tan �

)
,

as an adjustment factor, with regions with lower visibility 
related to lower LD risk (Zakšek et al. 2011; Bernard et al. 
2018). It is defined as:

where N is the number of directions, �i and ∅ are horizon 
angle and azimuth in the ith direction, respectively, around 
each cell in an elevation map, and α and β are the slope 
aspect and angle, respectively. In the present study, SVF 
was calculated using SAGA GIS, and the value for the study 
watershed varied from absolutely horizontal surface (= 1) to 
absolutely obstructed land surface (= 0) (Fig. 3f).

Aspect Aspect affects solar radiation received in a moun-
tainous watershed and plays an important role in environ-
mental changes. As the Pole-Doab watershed is located in 
the northern hemisphere, its north-facing slopes are less 
exposed to sunlight than south-facing slopes and thus have 
a higher moisture content, which influences the temperature 

(12)

SVF =
1

N
×

N∑
i=1

[
cos � × cos2 ��

i
+ sin � × cos

(
�
i
− �

)

×
(
90 − �

i
− sin�

i
× cos�

i

)]
,

Table 1  Land degradation conditioning factors

Topographic factors Scale Spatial 
resolution 
(m)

Elevation 1:25,000 30
Slope 1:25,000 30
Aspect 1:25,000 30
Terrain ruggedness index 1:25,000 30
Topographic wetness index 1:25,000 30
Sky view factor 1:25,000 30
Curvature 1:25,000 30

Human-induced factors Scale Spatial 
resolution 
(m)

Distance to road 1:25,000 30
Land use 1:25,000 30
Residential and industrial area expansion 1:25,000 30
Population density 1:25,000 30
Population growth rate 1:25,000 30

Geo-environmental factors Scale Spatial 
resolution 
(m)

Geology 1:25,000 30
Land type 1:25,000 30
Distance to river 1:25,000 30
Precipitation 1:25,000 30
C-factor 1:25,000 30
Wind effect 1:25,000 30
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Fig. 3  Topographic variables used in land degradation risk mapping: a elevation, b slope aspect, c curvature, d topographic wetness index, e ter-
rain ruggedness index, f sky view factor, and g aspect
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gradient and surface warming and leads to differences in ero-
sion pattern (Darabi et al. 2014, 2016) (Fig. 3g).

Human‑induced variables

A number of human-induced conditioning factors of LD 
have been identified in previous studies (Huber-Sannwald 
et al. 2006; Lu et al. 2007; Prăvălie et al. 2017; Mekonnen 
et al. 2018; Speranza et al. 2019). We selected five of these 
for use in LD risk mapping in the study watershed.

Land use Land use information was prepared using 
Operational Land Imager (OLI) images from the Landsat 8 
satellite, with path 165 and row 036-037. The images were 
acquired from the USGS dataset for 04 June 2019. In a pre-
processing step, atmospheric correction of Landsat-OLI 
data was carried out using QUick Atmospheric Correction 
(QUAC) in ENVI 5.3 software. Using the maximum like-
lihood method (supervised classification), a land use map 
was then prepared in the ENVI 5.3 software (El-Khoury 
et al. 2015; Pullanikkatil et al. 2016; Torabi Haghighi et al. 
2018). In the Pole-Doab watershed, there are seven land use 
types: Bare land, dry farming, irrigation farming, orchard, 
rangeland, residential, and rock zones, occupying an area 
of 59.86 km2 (3.44%), 441.78 km2 (25.39%), 205.49 km2 
(11.81%), 666.739 km2 (38.32%), 89.85 km2 (5.16%), and 
140.80 km2 (8.09%), respectively (Fig. 4a).

Population density The impact of  population den-
sity on LD is unclear, but it is obvious that higher population 
density (population per unit area) would lead to more land 
degradation, with more serious degradation in areas with 
higher population density (Li et al. 2015). In this study, the 
impact of population density on LD risk in the Pole-Doab 
watershed was estimated based on human-induced changes 
in 10 counties within the watershed (Amiriyeh, Astaneh, 
Pole-Doab, Khorram dasht, Sadeh, Shamsabad, Gharehkah-
riz, Kazzaz, Koohsar, and Nahremian) (Fig. 4b).

Population growth rate Population growth rate is mainly 
responsible for population pressure on natural ecosystems 
(rangeland) and also conversion of rangeland to farmland 
and residential areas, which can affect flooding, sediment 
yield, and soil erosion, and consequently land degradation 
conditions. Population growth leads to increasing demand 
for housing and other facilities, which in turn leads to 
increased area of impervious surface as a result of urban 
development, infrastructure construction, and deforestation 
(Li et al. 2015). According to census data for Iran, the popu-
lation growth rate in counties in the Pole-Doab watershed 
has increased rapidly in the recent decades (1976–2016) 
(Davudirad et al. 2016). We therefore assessed the impact of 
population pressure on LD risk in the Pole-Doab watershed 
by considering the population growth rate in the 10 counties 
in the watershed (Fig. 4c).

Residential and industrial area expansion Rapid urbani-
zation and industrialization and conversion of neutral land 
to impervious land can affect LD conditions by increasing 
surface runoff and flooding conditions (Li et al. 2015). In 
this study, we used residential and industrial area expansion 
in the Pole-Doab watershed 1973–2016 (produced using 
TerrSet software) as a human-induced variable in LD risk 
mapping (Fig. 4d).

Distance to road Distance to road as impervious surface, 
and also as an indicator of development and infrastructure 
construction, is an important factor in LD risk mapping (Li 
et al. 2015). Here it was derived using the distance module 
in GIS 10.5 for each raster cell (Fig. 4e).

Geo‑environmental variables

Geology The geology of a watershed can affect soil erosion 
and land degradation in two ways: (1) As an intrinsic effect 
related to the geological formation; and (2) as an effect of 
external and indirect factors such as climate (e.g., weather-
ing). In this study, the geology of the watershed was divided 
into four formations: Quaternary, limestone, granite-grano-
diorite, and sandstone-shale (Fig. 5a).

Soil type Land type is typically defined by soil type and 
land form, which can affect soil erosion and land degradation 
(Nunes et al. 2011; Qiang et al. 2016). In this study, water-
shed soil types were divided into seven categories: alluvial 
fans, colluvium fans, hills, lowland, mountains, piedmont 
plains, and plateau and upper terraces (Fig. 5b).

Precipitation Annual precipitation data for 13 stations 
run by the Iranian Meteorological Organization (IRIMO) 
were used to produce a precipitation map for the Pole-Doab 
watershed. Analysis of the interpolation accuracy was car-
ried out based on root mean square error (RMSE) in Arc-
GIS GIS 10.5, so the simple Kriging interpolation method 
was selected as it has the lowest RMSE (0.96) (Darabi et al. 
2016). Mean annual precipitation varied from 461 mm in the 
west and southwest to 298 mm in the east and northeast of 
the study area (Fig. 5c).

Wind effect Land degradation by wind is one of the most 
serious environmental problems related to soil erosion, 
threatening environmental quality, ecosystem services, and 
land productivity (Chi et al. 2019). Wind effect assessments 
are relatively rare in the literature, due to poor data avail-
ability. Because the amount of evapotranspiration is greatly 
affected by high winds and high temperatures in summer 
(Fenta et al. 2020), wind effect was included as a biophysical 
variable for LD risk mapping in the present study (Fig. 5d). 
Information on wind effect in the study watershed was 
obtained based on the DEM in the SAGA GIS software.

Distance to river According to data on riverside and river-
bed erosion obtained from local authorities and in field sur-
veys, distance to river plays an important role in LD in the 
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Pole-Doab watershed. The Euclidean distance to the river was 
calculated using the distance module in GIS 10.5 (Fig. 5e).

C-factor C-factor, a surface cover and roughness factor 
considered to show the effect of cropping and management 
practices on erosion conditions, is a critical indicator char-
acterizing LD. C-factor mapping can provide suitable infor-
mation for improving spatial and temporal modeling of land 
degradation and soil erosion. It is one of the most sensitive 
spatiotemporal factors, as it follows plant growth dynamics 
(Berendse et al. 2015; Vaverková et al. 2019). In this study, 

C-factor used to consider the impact of soil and vegetation in 
LD risk mapping. It was derived using Landsat OLI (165-036 
and 165-037) images for 04 June 2019 (Fig. 5f), which were 
obtained from the USGS website (Almagro et al. 2019). In a 
first step, Normalized Difference Vegetation Index (NDVI), 
which has a direct linear correlation to C-factor, was computed 
using Landsat data:

(13)NDVIOLI =
�band5OLI − �band4OLI

�band5OLI + �band4OLI
.

Fig. 4  Human-induced variables used in land degradation risk mapping: a land use, b population density in the 10 counties in the Pole-Doab 
watershed, c population growth rate in the different counties, d residential and industrial area expansion, and e distance to road
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C-factor was then calculated as:

where ρ is the reflectance value of spectral bands for Land-
sat-OLI image: band  4OLI: Red, band  5OLI: NIR. C-factor 
varies in value from 0 to +1, representing good to bad condi-
tions for soil erosion.

(14)C = ((1 − NDVI)∕2),

Calculation of land degradation index

Machine learning methods automate analytical model build-
ing, based on the idea that the model can learn from data, 
identify patterns, and make decisions (here prediction of 
LD index) with minimal human intervention. In this study, 
calculations of LD index were carried out using GIS layers 
(with ascii format), which were categorized into three groups 

Fig. 5  Geo-environmental variables used in land degradation risk mapping: a geology, b soil type, c annual precipitation, d wind effect, e dis-
tance to river, and f C-factor
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(topographic, human-induced, and geo-environmental vari-
ables), prepared in the same way in Arc map (with the same 
resolution, scale, and coordinate system), and considered as 
independent variables. Information related to LD (as point 
data) was considered as other input for the machine learning 
algorithms. Hence, after learning based on the above inputs, 
the models used in this study proceeded to predict the LD 
index as a final map with ascii format. All 18 conditioning 
variables, together with the 200 points selected as LD loca-
tions, were used in the R program to produce LD risk maps 
by the machine learning models. Using the natural break 
method (Tehrany et al. 2015; Choubin et al. 2019; Darabi 
et al. 2020) in ArcGIS 10.5, the LD risk was then classified 
into five classes: very low, low, moderate, high, and very 
high.

Model assessment

All machine learning models used in this study were 
assessed using the receiver-operator characteristic-area 
under the curve (ROC–AUC), which has been widely used 
for evaluating model performance (Frattini et  al. 2010; 
Choubin et al. 2018; Darabi et al. 2020). The ROC–AUC 
value ranges from 0 to 1, with a value of 0.5–0.6, 0.6–0.7, 
0.7–0.8, 0.8–0.9, and 0.9–1 indicating weak, average, good, 
very good, and excellent model performance, respectively 
(Choubin et al. 2018). The Kappa index, which employs 
model classification probabilities based on the null hypoth-
esis to calculate the agreement by chance, was also used 
in model assessment. According to Monserud and Lee-
mans (1992), the Kappa index is divided into five classes, 
with values of k < 0.4, 0.4 < k  <  0.55, 0.55 < k  <  0.85, 
0.85 < k < 0.99, and 0.99 < k < 1.00 indicating poor, moder-
ate, good, excellent, and perfect model performance, respec-
tively. All model assessments were carried out in R software.

The importance of the 18 selected conditioning variables 
was evaluated for models showing high accuracy and preci-
sion. Visual assessment of model performance was carried 
out using a Taylor diagram (Taylor 2001) and three statis-
tics: correlation coefficient, normalized standard deviation, 
and root mean square error (RMSE). In the Taylor diagram, 
models with high accuracy are close to the observations 
(Choubin et al. 2018).

Importance of variables

The importance of the conditioning variables was cal-
culated from the results obtained through applying the 
selected model based on the ROC–AUC and Kappa index. 
The importance of independent variables (here topographic, 
human-induced, and geo-environmental variables) was cal-
culated based on the frequency of dependent variables (here 
degraded locations) and spatial variation in the independent 

variables, using the instructions of the selected model. In the 
selected model, importance of variables was considered as 
the reduction in node impurity weighted by the probability 
of reaching that node. The probability of the node was con-
sidered as the number of points influencing the node divided 
by the sum for the points (the more important the variable, 
the higher the value).

Results

Spatial distribution of land degradation

The spatial distribution maps of land degradation, obtained 
using the SVM, GLM, MARS, and DA algorithms, indi-
cated that most parts of the Pole-Doab watershed were 
affected by LD, with high and low degradation conditions 
(Fig. 6a–d). All models showed the same overall spatial 
pattern, with high degradation in the south and southwest 
of the watershed. However, the spatial resolution at local 
scale derived from the different models varied. Regions 
with the highest (1.00) and lowest (0.00) risk of land deg-
radation were successfully recognized by the DA, SVM, 
GLM, and MARS algorithms. In the spatial distribution 
of LD, the risk value ranged from 0.00 to 1.00. Using the 
natural break method in ArcGIS 10.5, the LD risk was 
divided into five classes: very low, low, moderate, high, 
and very high, the spatial distribution zones for which are 
presented in Fig. 6e–h. The LD risk maps obtained with all 
four algorithms indicated that the south of the Pole-Doab 
watershed is most exposed to degradation conditions. Based 
on degraded area obtained from SVM, GLM, MARS, and 
DA (Fig. 6e–h), the land area with a very high degrada-
tion risk represented 19.16%, 19.29%, 21.76%, and 22.40%, 
respectively, of the total area of the Pole-Doab watershed 
(Table 2). The LD risk maps also showed that most of the 
watershed was affected by some type of degradation, with 
more than 40% of the area falling into high and very high 
zones according to all algorithms. It is worth mentioning 
that some of the predictive variables used in the analysis 
may vary over time, leading to uncertainty in the results. 
Precipitation is one such variable, but since long-term pre-
cipitation data from 13 meteorological stations were used 
in the present analysis, the associated uncertainty was con-
sidered to be minimized.

Model performance

Validation is an important phase in evaluation of model 
accuracy. For quantitative comparison of the mod-
els, ROC–AUC and Kappa index were used. The maps 
obtained for LD risk were compared with the validation 
data, to assess the performance of each model. ROC–AUC 
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Fig. 6  Land degradation maps based on the benchmark algorithms: a SVM, b GLM, c MARS, and d DA, and e–h the respective risk zone clas-
sification
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determines the probability of correctly and incorrectly 
labeled pixels, with values close to 1 indicating a perfect 
model with maximum precision and values ≤ 0.5 indicating 
that the model is not suitable for the analysis. The accu-
racy and efficiency of the SVM, GLM, MARS, and DA 
models, based on ROC–AUC and Kappa index, are shown 
in Table 3. The highest ROC–AUC values were obtained 
for DA (0.880), followed by SVM (0.864), GLM (0.829), 
and MARS (0.825) (Table 3). The ROC–AUC curves of 

Table 2  Area of the study 
watershed falling within 
different land degradation zones 
according to the SVM, GLM, 
MARS, and DA models

SVM GLM MARS DA

Area  (km2) Area (%) Area  (km2) Area (%) Area  (km2) Area (%) Area  (km2) Area (%)

Very low 157.35 9.06 211.64 12.19 423.14 24.37 213.90 12.32
Low 293.60 16.91 313.44 18.05 327.06 18.84 343.01 19.76
Moderate 455.34 26.23 409.55 23.59 300.49 17.31 387.14 22.30
High 497.20 28.64 466.71 26.88 307.76 17.72 403.36 23.23
Very high 332.75 19.16 334.97 19.29 377.86 21.76 388.83 22.40

Table 3  Performance of the SVM, GLM, MARS, and DA models, 
based on ROC–AUC and Kappa index (higher values indicate greater 
model accuracy)

Models ROC–AUC Kappa index

SVM 0.864 0.866
GLM 0.829 0.823
MARS 0.825 0.812
DA 0.880 0.892

Fig. 7  Receiver-operator characteristic-area under the curve (ROC–AUC) for the SVM, GLM, MARS, and DA models, and the validation data-
set
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the SVM, GLM, MARS, and DA models for the valida-
tion dataset are presented in Fig. 7. In terms of Kappa 
index, SVM, GLM, MARS, and DA achieved a value of 
0.886, 0.823, 0.812, and 0.892 rates, respectively, indicat-
ing excellent performance in all cases (Fig. 7). The results 
obtained in this study cannot be directly compared with 
those reported in previous studies, because the models we 
used have not been employed previously in LD risk map-
ping. An advantage of the machine learning algorithms used 
in this study was that interactions between natural hazards 
and biophysical factors causing LD were uncovered.

The Taylor diagram of model performance in producing 
land degradation risk maps indicated that the DA algorithm 
had a lower RMSE and higher correlation than the other 
algorithms (Fig. 8), which were approximately equal in this 
regard. Comparing the standard deviation of the models 
revealed that the DA and SVM algorithms were closer to 
observed values and more in agreement than the others. The 
standard deviation of the algorithms ranked the models in 
the order: DA, SVM, GLM, and then MARS. This indi-
cates that DA had the highest accuracy and the other models 
(SVM, GLM, MARS) could not satisfactorily predict the 
LD risk map.

Rank variables

According to the aims of the study, the variables were 
classified into two types, (1) independent variables and 
(2) dependent variables. The importance of the differ-
ent variables in LD risk mapping was assessed based on 
the results obtained with the DA model (selected model), 
due to its high efficiency and precision. Among the 
topographic variables, slope (first rank) had the highest 
importance value (5.842), followed by elevation (3.960), 
aspect (1.363), terrain ruggedness index (1.294), topo-
graphic wetness index (1.215), sky view factor (1.095), 
and curvature (0.963) (Table  4). Among the human-
induced variables, land use (second rank) was the most 
important (2.974), followed by residential and industrial 
area expansion (1.539), population density (1.287), popu-
lation growth rate (1.254), and distance to road (1.222) 
(Table 3). Among the geo-environmental variables, geol-
ogy (third rank) had the highest importance value (2.168), 
followed by C-factor (2.020), precipitation (1.998), land 
type (1.723), distance to river (1.341), and wind effect 
(1.086) (Table 4).

Fig. 8  Taylor diagram compar-
ing the performance of the 
SVM, GLM, MARS, and DA 
models in land degradation risk 
mapping
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Discussion

Assessment of land degradation status is important for 
watershed planning and management to protect water 
quality in lakes and reservoirs. Since LD has accelerated 
during recent years, precise spatial LD risk mapping is 
needed to assist authorities in making reliable and rea-
sonable decisions on rehabilitation or restoration of eco-
systems and in prioritizing investments. Land degradation 
problems can arise at three levels: (1) local (field) level, 
which leads to decreased land productivity and impacts 
on local businesses, (2) regional level, which causes many 

problems for downstream infrastructure regarding decreas-
ing water quality, changes in the hydrological process and 
flood damage, and also reduced dam capacity by sedi-
mentation, and (3) global level, increasing emissions of 
greenhouse gases and global warming in the long term 
(Kust et al. 2018; Chasek et al. 2019; Smetanova et al. 
2019). The importance and causes of LD problems vary 
at each level and differ from case to case. Each individual 
case at each level involves different types of land use and 
land cover (e.g., riversides, hills, agricultural areas, steep 
slopes, deforested areas). Therefore, planners and manag-
ers must know the capability and potential of different 
land uses in interacting with different conditioning factors 
(such as social and environmental variables) in order to 
prevent or reduce LD. In previous studies, LD assessments 
have been performed using different methodologies and 
scales of analysis. However, machine learning algorithms 
have not been used previously for this purpose, although 
they are widely used in assessments of other environmen-
tal issues, e.g., flood risk, groundwater pollution, and 
landslide risk (Tehrany et al. 2015; Termeh et al. 2018; 
Choubin et al. 2018; Moghaddam et al. 2020; Pourgha-
semi et al. 2020; Bozdağ et al. 2020). In the present study, 
we employed four different machine learning algorithms 
(SVM, MARS, GLM, and DA, advantages and disadvan-
tages of models has been provided in appendix) to generate 
high quality and accurate LD risk maps for the Pole-Doab 
watershed in central Iran. Assessments of model perfor-
mance indicated that DA had the highest accuracy and 
efficiency, with the greatest learning and prediction power 
in LD risk mapping. The analysis also clearly revealed the 
role of different conditioning factors in the LD process. 
Overall, the models and selected biophysical variables 
applied in this study provided excellent results and can be 
recommended for studies in other regions with different 
conditions and types of land degradation. Land degrada-
tion is caused by multiple forces (Cowie et al. 2019), but 
in this study the main conditioning variables in different 
categories were found to be slope (topographic variable), 
land use (human-induced variable), and geology (geo-
environmental variable).

Table 4  Relative importance of different topographic, human-
induced, and geo-environmental variables as land degradation condi-
tioning factors

Topographic variables Impor-
tance

Slope 5.842
Elevation 3.960
Aspect 1.363
Terrain ruggedness index 1.294
Topographic wetness index 1.215
Sky view factor 1.095
Curvature 0.963

Human-induced variables Impor-
tance

Land use 2.974
Residential and industrial area expansion 1.539
Population density 1.287
Population growth rate 1.254
Distance to road 1.222

Geo-environmental variables Impor-
tance

Geology 2.168
C-factor 2.020
Precipitation 1.998
Land type 1.723
Distance to river 1.341
Wind effect 1.086
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Conclusions

Land degradation is an important environmental issue 
that threatens the sustainability of economic growth and 
the welfare of the many people, especially rural societies 
depending on agriculture for their livelihoods. It can also 
have significant harmful effects globally, e.g., on biodi-
versity, climate change, and water resources. Good knowl-
edge about the rate of LD would thus be helpful at local, 
national, and global scale. To this end, we applied machine 
learning algorithms in LD risk mapping for the Pole-Doab 
watershed, Iran. We charted the existing conditions for LD 
and assessed the future trajectory of LD status, as deci-
sion support for soil and water resources conservation. 
Using a novel framework employing socio-environmental 
conditioning variables in LD risk mapping, based on field 
measurements and documents describing LD conditions, 
we showed that serious LD is occurring in the study area. 
We also showed that this increase in LD is the result of 
unplanned urbanization with population explosion, devel-
opment of multiple industries, and agricultural expansion 
involving conversion of natural rangeland to agricultural 
land, leading to more frequent flood events. These results 

demonstrate the significant role of unsustainable develop-
ment in LD in the study area. Additional long-term moni-
toring, considering climatic change and anthropogenic dis-
turbances, is recommended to provide accurate decision 
support for future LD prevention efforts.
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Appendix: Advantages and disadvantages of model used

Advantages and disadvantages of the four used models

SVM GLM MARS DA

Advantages
Works well with clear margin 

between classes
Easy to understand Works with both categorical and 

continuous data
Possesses static and dynamic 

behaviors
More effective for high dimen-

sional dataset
Easy to organize for any database 

formats
Automatic and flexible predictive 

variable selection
Works with few parameters for 

tuning
Effective for number of dimen-

sions dataset which is greater 
than the number of samples

Manage different distributions of 
response

Suitable for large datasets Contributes in different applications 
and suitable for large datasets

Memory efficient. Despite complexity it is fast 
algorithm

Very fast in predictions Reasonable time for processing

Disadvantages
Takes long training time for large 

dataset
Unable to detect non-linearity 

directly
Sensitive to overfitting Sensitive to overflowing

Overlapping in target classes by 
has noise in dataset

Long processing time and com-
plex algorithm

Low performance with missing 
data

Premature convergence for the local 
optimum due to lack of internal 
memory

SVM will underperform, when 
number of features exceeds the 
number of training data

Low predictive authority and 
needs computing hardware with 
high power

Difficult to understand Due to high exploitation rate easily 
stuck into local optima

Selection of a suitable kernel is 
challenging

Large number of training and test-
ing runs

Not suitable for missing dataset

http://creativecommons.org/licenses/by/4.0/
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