Skip to main content

Advertisement

Log in

Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

pH is a critical parameter for biological and technological systems directly related with electrical charges. It can give rise to peculiar electrostatic phenomena, which also makes them more challenging. Due to the quantum nature of the process, involving the forming and breaking of chemical bonds, quantum methods should ideally by employed. Nevertheless, due to the very large number of ionizable sites, different macromolecular conformations, salt conditions, and all other charged species, the CPU time cost simply becomes prohibitive for computer simulations, making this a quite complex problem. Simplified methods based on Monte Carlo sampling have been devised and will be reviewed here, highlighting the updated state-of-the-art of this field, advantages, and limitations of different theoretical protocols for biomolecular systems (proteins and nucleic acids). Following a historical perspective, the discussion will be associated with the applications to protein interactions with other proteins, polyelectrolytes, and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31 (2):459–466

    CAS  Google Scholar 

  • Alexov EG, Gunner MR (1997) Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J 74:2075–2093

    Google Scholar 

  • Alexov E, Mehler EL, Baker N, Baptista A, Huang Y, Milletti F, Nielsen JE, Farrell D, Carstensen T, Olsson MHM, Shen JK, Warwicker J, Williams S, Word JM (2011) Progress in the prediction of pKa values in proteins. Proteins 79(12):3260–3275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MP, Tildesley DJ (1989) Computer Simulation of Liquids. Oxford University Press, Oxford

    Google Scholar 

  • Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulation. Nucleic Acids Res 40(W1):E537—541

    Google Scholar 

  • Andermatt S, Cha J, Schiffmann F, VandeVondele J (2016) Combining linear-scaling DFT with subsystem DFT in Born-Oppenheimer and Ehrenfest molecular dynamics simulations: From molecules to a virus in solution. J Chem Theory Comput 12:3214–3227

    CAS  PubMed  Google Scholar 

  • André I, Kesvatera T, Jönsson B, Åerfeldt KS, Linse S (2004) The role of electrostatic interactions in calmodulin-peptide complex formation. Biophys J 87:1929–1938

    PubMed  PubMed Central  Google Scholar 

  • Antonsiewicz J, McCammon JA, Gilson MK (1994) Prediction of pH-dependence properties of proteins. J Mol Biol 238:415–436

    Google Scholar 

  • Antonsiewicz J, McCammon JA, Gilson MK (1996) The determinants of pK as in proteins. Biochemistry 35:7819–7833

    Google Scholar 

  • Archontis G, Simonson T (2005) Proton binding to proteins: A free-energy component analysis using a dielectric continuum model. Biophys J 88:3888–3904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins PW (1995) Physical Chemistry, 5th edn. Oxford University Press, London

    Google Scholar 

  • Autreto PAS, Figueiredo FV, Nonato MC, Barroso da Silva FL (2003) Application of the Poisson–Boltzmann approach on structural biology: An initial study of the complex trypsin-BPTI. Braz J Pharm Sci Supl 2(39):203

    Google Scholar 

  • Bacquet RJ, McCammon JA, Allison SA (1988) Ionic strength dependence of enzyme-substrate interactions. Monte Carlo and Poisson–Boltzmann results for the superoxide dismutase. J Phys Chem 92(25):7134–7141

    CAS  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10,037–10,041

    CAS  Google Scholar 

  • Baptista AM (2002) Comment on ”explicit-solvent molecular dynamics simulation at constant pH: Methodology and application to small amines. J Chem Phys 116(17):7766–7768. J Chem. Phys. 114, 9706 (2001)

    CAS  Google Scholar 

  • Baptista AM, Soares CM (2001) Some theoretical and computational aspects of the inclusion of proton isomerism in the protonation equilibrium of proteins. J Phys Chem B 105:293–309

    CAS  Google Scholar 

  • Baptista AM, Marte PJ, Petersen SB (1997) Simulation of protein conformational freedom as a function of pH: Constant-pH molecular dynamics using implicit titration. Proteins: Struc Func, and Genetics 27:523–544

    CAS  Google Scholar 

  • Baptista AM, Teixeira VH, Soares CM (2002) Constant-pH molecular dynamics using stochastic titration. J Chem Phys 117(9):293–309

    Google Scholar 

  • Barroso da Silva FL (1999) Statistical Mechanical Studies of Aqueous solutions and Biomolecular Systems. Reproenheten SLU Alnarp, Lund University, Sweden

    Google Scholar 

  • Barroso da Silva FL (2013) Peculiaridades nos mecanismos moleculares de proteínas em solução aquosa: Exemplo da importância do equilíbrio ácido-base para aplicações em biotecnologia. Química 131 (oct-dez):43–48

    Google Scholar 

  • Barroso da Silva FL, Jönsson B (2009) Polyelectrolyte–protein complexation driven by charge regulation. Soft Matter 5(15):2862–2868

    CAS  Google Scholar 

  • Barroso da Silva FL, Jönsson B, Penfold R (2001) A critical investigation of the Tanford-Kirkwood scheme by means of Monte Carlo simulations. Prot Sci 10:1415–1425

    Google Scholar 

  • Barroso da Silva FL, Bogren D, Söderman O, Jönsson B (2002) Titration of fatty acids solubilized in cationic, nonionic and anionic micelles: Theory and experiment. J Phys Chem B 106:3515–3522

    Google Scholar 

  • Barroso da Silva FL, Linse S, Jönsson B (2005) Binding of charged ligands to macromolecules. Anomalous salt dependence. J Phys Chem B 109:2007–2013

    Google Scholar 

  • Barroso da Silva FL, Lund M, Jönsson B, Åkesson T (2006) On the complexation of proteins and polyelectrolytes. J Phys Chem B 110:4459–4464

    Google Scholar 

  • Barroso da Silva FL, Boström M, Persson C (2014) Effect of charge regulation and ion–dipole interactions on the selectivity of protein–nanoparticle binding. Langmuir 30(14):4078–4083

    CAS  PubMed  Google Scholar 

  • Barroso da Silva FL, Pasquali S, Derreumaux P, Dias LG (2016) Electrostatics analysis of the mutational and pH effects of the n-terminal domain self-association of the major ampullate spidroin. Soft Matter 12:5600–5612

    CAS  PubMed  Google Scholar 

  • Barroso da Silva FL, Derreumaux P, Pasquali S (2017a) Fast coarse-grained model for RNA titration. J Chem Phys 146(3):035,101 +

  • Barroso da Silva FL, MacKernan D (2017b) Benchmarking a fast proton titration scheme in implicit solvent for biomolecular simulations. J Chem Theory Comput 13(6):2915–2929

  • Barroso da Silva FL, Derreumaux P, Pasquali S (2017c) Protein-RNA complexation driven by the charge regulation mechanism, Biochem. Biophys. Res. Commun., in press

  • Bartik K, Redfield C, Dobson CM (1994) Measurement of the individual pKa values of acidic residues of hen and turkey lysozymes by two-dimensional 1H NMR. Biophys J 66(4):145

    Google Scholar 

  • Bashford D (1988) An object-oriented programming suite for electrostatic effects in biological molecules. an experience report on the mead project. ISCOPE meeting

  • Bashford D (1997) An object-oriented programming suite for electrostatic effects in biological molecules. An experience report on the MEAD project. Springer Berlin Heidelberg, Berlin, pp 233–240

    Google Scholar 

  • Bashford D, Gerwert K (1992) Electrostatic calculations of the pK a values of ionizable groups in Bacteriorhodopsin. J Mol Biol 224:473–486

    CAS  PubMed  Google Scholar 

  • Bashford D, Karplus M (1990) pKa’s of ionizable groups in proteins: Atomic detail from a continuum electrostatic model. Biochemistry 29:10,219–10,225

    CAS  Google Scholar 

  • Bashford D, Karplus M, Canters GW (1988) Electrostatic effects of charge perturbations introduced by metal oxidation in proteins—a theoretical analysis. J Mol Biol 203:507–510

    CAS  PubMed  Google Scholar 

  • Becconi O, Ahlstrand E, Salis A, Friedman R (2017) Protein–ion interactions: Simulations of bovine serum albumin in physiological solutions of NaCl, KCl and LiCl. Isr J Chem 57(5):403– 412

    CAS  Google Scholar 

  • Bell RP (1959) The Proton in Chemistry. Cornell University Press, New York

    Google Scholar 

  • Bennett WD, Chen AW, Donnini S, Groenhof G, Tieleman DP (2013) Constant pH simulations with the coarse-grained martini model—application to oleic acid aggregates. Can J Chem 91:839–846

    CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interactions models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular Forces. Reidel, Dordrecht, pp 331–342

  • Beresford-Smith B, Chan DYC (1983) Electrical double-layer interactions in concentrated colloidal systems. Faraday Disc Chem Soc 76:65–75

    Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beroza P, Fredkin DR, Okamura MY, Feher G (1991) Protonation of interacting residues in a protein by a Monte Carlo method: Application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 88:5804–5808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee N, Rani P, Biswas P (2013) Capturing molten globule state of α-lactalbumin through constant pH molecular dynamics simulations. J Chem Phys 138:095,101

    Google Scholar 

  • Börjesson U, Hünenberger P H (2001) Explicit-solvent molecular dynamics simulation at constant pH: Methodology and application to small amines. J Chem Phys 114:9706– 9719

    Google Scholar 

  • Boese A, Doltsinis N, Handy N, Sprik M (2000) New generalized gradient approximation functionals. J Chem Phys 112:1670– 1678

    CAS  Google Scholar 

  • Borkovec M, Jönsson B, Koper G (2001) Ionization processes and proton binding in polyprotic systems: Small molecules, proteins, interfaces, and polyelectrolytes. In: Matijević E (ed) Surface and Colloid Science, Surface and Colloid Science, vol 16, Springer US, pp 99–339

  • Böttcher C J F (1973) Theory of Electric Polarization. Elsevier, Amsterdam

    Google Scholar 

  • Brémond E, Ciofini I, Sancho-García J, Adamo C (2016) Nonempirical double-hybrid functionals: An effective tool for chemists. Acc Chem Res 49:1503–1513

    PubMed  Google Scholar 

  • Burger SK, Ayers PW (2011) A parameterized, continuum electrostatic model for predicting protein pKa values. Proteins 79:2044–2052

    CAS  PubMed  Google Scholar 

  • Calixto T M R (2010) Análises de propriedades eletrostáticas e estruturais de complexos de proteínas para o desenvolvimento de preditores de complexação em larga escala, Master thesis, University of So Paulo, Ribeirão Preto, SP

  • Campos SRR, Machuqueiro M, Baptista AM (2010) Constant-pH molecular dynamics simulations reveal a β-rich form of the human prion protein. J Phys Chem B 114(39):12,692–12,700

    CAS  Google Scholar 

  • Capelle K (2006) A bird’s-eye view of density-functional theory. Braz J Phys 36:6378–6396

    Google Scholar 

  • Carlsson F, Linse P, Malmsten M (2001a) Monte Carlo simulations of polyelectrolyte–protein complexation. J Phys Chem B 105:9040–9049

  • Carlsson F, Malmsten M, Linse P (2001b) Monte Carlo simulations of lysozyme self-association in aqueous solution. J Phys Chem B 105:12,189–12,195

  • Carlsson F, Hyltner E, Arnebrant T, Malmsten M, Linse P (2004) Lysozyme adsorption to charged surfaces. A Monte Carlo study. J Phys Chem B 108:9871–9881

    CAS  Google Scholar 

  • Carnal F, Claviera A, Stoll S (2015) Modelling the interaction processes between nanoparticles and biomacromolecules of variable hydrophobicity: Monte Carlo simulations. Environ Sci: Nano 2:327–339

    CAS  Google Scholar 

  • Carstensen T, Farrell D, Huang Y, Baker NA, Nielsen JE (2011) On the development of protein pka calculation algorithms. Proteins 79(12):3287–3298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casasnovas R, Ortega-Castro J, Frau J, Donoso J, Munoz F (2014) Theoretical pka calculations with continuum model solvents, alternative protocols to thermodynamic cycles. Int J Quantum Chem 114:1350–1363

    CAS  Google Scholar 

  • Case D, Darden T, Cheatham T III, Simmerling C, Wang J, Duke R, Luo R, Merz K, Pearlman D, Crowley M, Walker R, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong K, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews D, Schafmeister C, Ross W, Kollman P (2006) Amber 9. University of California, San Francisco

    Google Scholar 

  • Chen Y, Roux B (2015) Constant-pH hybrid nonequilibrium molecular dynamics Monte Carlo simulation method. J Chem Theory Comput 11:3919–3931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Brooks CL III, Khandogin J (2008) Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol 18:140–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Xu Y, Rana S, Miranda OR, Dubin PL, Rotello VM, Sun L, Guo X (2011) Electrostatic selectivity in protein–nanoparticle interactions. Biomacromolecules 12(7):2552–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Wallace JA, Yue Z, Shen JK (2013) Introducing titratable water to all-atom molecular dynamics at constant pH. Biophys J 105:L15—L17

    PubMed Central  Google Scholar 

  • Chen W, Morrow BH, Shi C, Shen JK (2014) Recent development and application of constant pH molecular dynamics. Mol Sim 40:830–838

    CAS  Google Scholar 

  • Chen W, Huang Y, Shen JK (2016) Conformational activation of a transmembrane proton channel from constant pH molecular dynamics. J Phys Chem Lett 7(19):3961–3966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Creighton TE (1983) Proteins—Structures and Molecular Principles. W. E. Freeman and Company, New York

    Google Scholar 

  • Dashti DS, Meng Y, Roitberg AE (2012) pH-Replica exchange molecular dynamics in proteins using a discrete protonation method. J Phys Chem B 116:8805–8811

    Google Scholar 

  • Davies MN, Toseland CP, Moss DS, Flower DR (2006) Benchmarking pKa prediction. BMC Biochemistry 7(1):1–12

    Google Scholar 

  • Davis ME, McCammon JA (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 90:509–521

    CAS  Google Scholar 

  • Davis ME, Madura JD, Luty BA, McCammon JA (1991) Electrostatics and diffusion of molecules in solution. Simulations with the University-of-Houston-Brownian dynamics program. Comp Phys Commun 62:187–197

    CAS  Google Scholar 

  • de Carvalho SJ, Ghiotto RT, Barroso da Silva FL (2006) Monte Carlo and modified Tanford–Kirkwood results for macromolecular electrostatics calculations. J Phys Chem B 110:8832– 8839

    PubMed  Google Scholar 

  • de Carvalho SJ, Fenley MO, Barroso da Silva FL (2008) Protein–ion binding process on finite macromolecular concentration. A Poisson–Boltzmann and Monte Carlo study. J Phys Chem B 112(51):16,766–16,776

    Google Scholar 

  • Degrève L, Barroso da Silva FL (1999a) Large ionic clusters in concentrated aqueous NaCl solution. J Chem Phys 111:5150–5156

  • Degrève L, Barroso da Silva FL (1999b) Structure of concentrated aqueous NaCl solution: a Monte Carlo study. J Chem Phys 110(6):3070–3078

  • Degrève L, Barroso da Silva FL (2000) Detailed microscopic study of 1M aqueous NaCl solution by computer simulations. J Mol Liquids 87:217–232

    Google Scholar 

  • Degrève L, Lozada-Cassou M, Sánchez E, González-Tovar E (1993) Monte Carlo simulation for a symmetrical electrolyte next to a charged spherical colloid particle. J Chem Phys 98(11):8905–8909

    Google Scholar 

  • De Groot BL, Frigato T, Helms V, Grubmuller H (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biology 333(2):279–293

    CAS  Google Scholar 

  • Delboni L, Barroso da Silva FL (2016) On the complexation of whey proteins. Food Hydrocolloids 55:89–99

    CAS  Google Scholar 

  • Demchuk E, Wade RC (1996) Improving the continuum dielectric approach to calculating p K as of ionizable groups in proteins. J Phys Chem B 100:17,373–17,387

    CAS  Google Scholar 

  • Derjaguin BV, Landau L (1941) Acta Phys Chim URSS 14:633

    Google Scholar 

  • Devlin T M (ed) (1997) Textbook of Biochemistry with Clinical Correlations. Wiley-Liss, New York

  • Dobrev P, Donnini S, Groenhof G, Grubmüller H (2017) Accurate three states model for amino acids with two chemically coupled titrating sites in explicit solvent atomistic constant ph simulations and pKa calculations. J Chem Theory Comput 13:147–160

    CAS  PubMed  Google Scholar 

  • Donnini S, Tegeler F, Groenhof G, Grubmüller H (2011) Constant pH simulations with the coarse-grained martini model—application to oleic acid aggregates. J Chem Theory Comput 7:1962– 1978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donnini S, Ullmann RT, Groenhof G, Grubmüller H (2016) Charge-neutral constant pH molecular dynamics simulations using a parsimonious proton buffer. J Chem Theory Comput 12:1040–1051

    CAS  PubMed  Google Scholar 

  • Dudev T, Lim C (2000) Metal binding in proteins: The effect of the dielectric medium. J Phys Chem B 104:3692–3694

    CAS  Google Scholar 

  • Egan T, O’Riordan D, O’Sullivan M, Jacquier JC (2014) Cold-set whey protein microgels as pH modulated immobilisation matrices for charged bioactives. Food Chem 156:197–203

    CAS  PubMed  Google Scholar 

  • Eike BHMDM, Murch BP, Koenig PH, Shen JK (2014) Predicting proton titration in cationic micelle and bilayer environments. J Chem Phys 141:084,714

    Google Scholar 

  • Enciso M, Schutte C, Site LD (2013) A pH-dependent coarse-grained model for peptides. Soft Matter 9:6118–6127

    CAS  Google Scholar 

  • Evans DF, Wennerström H (1994) The Colloidal Domain. VCH Publishers, New York

    Google Scholar 

  • Fennell CJ, Li L, Dill KA (2012) Simple liquid models with corrected dielectric constants. J Phys Chem B 116(23):6936–6944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández M S, Fromherz P (1977) Lipoid pH indicators as probes of electrical potential and polarity in micelles. J Phys Chem 81:1755–1761

    Google Scholar 

  • Fernández DP, Mulev Y, Goodwin ARH, Levelt-Sengers JMH (1995) A database for the static dielectric constant of water and steam. J Phys Chem Ref Data 24(1):33–70

    Google Scholar 

  • Florián J, Warshel A (1997) Langevin dipoles model for ab initio calculations of chemical processes in solution: Parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution. J Phys Chem B 101:5583–5595

    Google Scholar 

  • Forsyth WR, Gilson MK, Antonsiewicz J, Jaren OR, Robertson AD (1998) Theoretical and experimental analysis of ionization equilibria in ovomucoid third domain. Biochemistry 37:8643–8652

    CAS  PubMed  Google Scholar 

  • Freitas A, Shimizu K, Dias L, Quina F (2007) A computational study of substituted flavylium salts and their quinonoidal conjugate- bases: S0 ®;s1 electronic transition, absolute pka and reduction potential calculations by DFT and semiempirical methods. J Braz Chem Soc 18:1537–1546

    CAS  Google Scholar 

  • Friedman HL (1977) Introduction. Faraday Discuss of the Chem Soc 64:7–15

    Google Scholar 

  • Friedman HL (1981) Electrolyte solutions at equilibrium. Ann Rev Phys Chem 32:179–204

    CAS  Google Scholar 

  • Fuentes-Azcatl R, Barbosa MC (2016) Thermodynamic and dynamic anomalous behavior in the tip4p/ 𝜖 water model. Physica A 444:86–94

    CAS  Google Scholar 

  • Garcia-Moreno B (1995) Probing structural and physical basis of protein energetics linked to protons and salt. Methods in Enzymnology 259:512–538

    CAS  Google Scholar 

  • Garrett R, Grisham C (1999) Biochemistry. Harcourt Brace & Company, EUA

    Google Scholar 

  • Genova A, Ceresoli D, Kishtal A, Andreussi O, DiStasio RA Jr, Pavanello M (2017) eQE: An open-source density functional embedding theory code for the condensed phase. Int J Quantum Chem pp e25,401–n/a, e25401

  • Goh GB, Knight JL, Brooks CL (2013a) pH-dependent dynamics of complex RNA macromolecules. J Chem Theory Comput 9(2):935–943

  • Goh GB, Knight JL, Brooks CL (2013b) Toward accurate prediction of the protonation equilibrium of nucleic acids. J Phys Chem Lett 4(5):760–766

  • González-Tovar E, Lozada-Cassou M (1989) The spherical double layer: A hypernetted chain mean spherical approximation calculation for a model spherical colloid particle. J Phys Chem 93:3761–3768

    Google Scholar 

  • Gordon M, Fedorov D, Pruitt S, Slipchenko L (2012) Fragmentation methods: A route to accurate calculations on large systems. Chem Rev 112:632–672

    CAS  PubMed  Google Scholar 

  • Greberg H, Kjellander R (1994) Electric double-layer properties calculated in the anisotropic reference hypernetted chain approximation. Mol Phys 83:789–801

    CAS  Google Scholar 

  • Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  PubMed  Google Scholar 

  • Gu W, Frigato T, Straatsma TP, Helms V (2007) Dynamic protonation equilibrium of solvated acetic acid. Angew Chem Int Ed (English) 46(16):2939–2943

    CAS  Google Scholar 

  • Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liquids 101(1-3):219–260

    CAS  Google Scholar 

  • Harano Y, Kinoshita M (2006) On the physics of pressure denaturation of proteins. J Phys: Condens Matter 18:L107—L113

    Google Scholar 

  • Harris TK, Turner GJ (2002) Structural basis of perturbed pK a values of catalytic groups in enzyme active sites. Life 53:85–98

    CAS  PubMed  Google Scholar 

  • Harvey SC (1989) Treatment of electrostatic effects in macromolecular modeling. Proteins: Struc. Func and Genetics 5:78–92

    CAS  Google Scholar 

  • Hassanali A, Prakash MK, Eshet H, Parrinello M (2011) On the recombination of hydronium and hydroxide ions in water. Proc Natl Acad Sci USA 108(51):20,410–20,415

    CAS  Google Scholar 

  • Havranek JJ, Harbury PB (1999) Tanford–Kirkwood electrostatics for protein modeling. Proc Natl Acad Sci USA 96:11,145–11,150

    CAS  Google Scholar 

  • He X, Jr KM (2010) Divide and conquer Hartree–Fock calculations on proteins. J Chem Theory Comput 6:405–411

  • He Y, Xu J, Pan XM (2007) A statistical approach to the prediction of pK a values in proteins. Proteins: Struc Func, and Bioinformatics 69:75–82

    CAS  Google Scholar 

  • Hess B, van der Vegt NFA (2006) Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. J Phys Chem B 110(35):17,616–17,626

    CAS  Google Scholar 

  • Hill TL (1955) Approximate calculations of the electrostatic free energy of nucleic acids and other cylindrical macromolecules. Arch Biochem Biophys 57:229–239

    CAS  PubMed  Google Scholar 

  • Hill TL (1956a) Influence of electrolyte on effective dielectric constants in enzymes, proteins and other molecules. J Chem Phys 60:253–255

  • Hill TL (1956b) Statistical Mechanics. McGraw-Hill, New York

  • Hill TL (1986) An Introduction to Statistical Thermodynamics. Dover Publications Inc., New York

    Google Scholar 

  • Ho J, Coote M (2009a) pka calculation of some biologically important carbon acids—an assessment of contemporary theoretical procedures. J Chem Theory Comput 5:295–306

  • Ho J, Coote M (2009b) A universal approach for continuum solvent pka calculations: are we there yet Theor Chem Acc 125:3–21

  • Ho J, Ertem M (2016) Calculating free energy changes in continuum solvation models. J Phys Chem B 120:1319–1329

    CAS  PubMed  Google Scholar 

  • Holst M (1993) Multilevel methods for the Poisson–Boltzmann equation. PhD thesis, Numerical Computing Group, Department of Computer Science. University of Illinois at Urbana-Champaign, USA

    Google Scholar 

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    CAS  PubMed  Google Scholar 

  • Horinek D, Mamatkulov SI, Netz RR (2009) Rational design of ion force fields based on thermodynamic solvation properties. J Chem Phys 130:124,507

    Google Scholar 

  • Hünenberger P H, McCammon JA (1999) Ewald artifacts in computer simulations of ionic solvation and ion–ion interactions: A continuum study. J Chem Phys 110:1856–1872

    Google Scholar 

  • Hurtley SM (2015) New players in Lou Gehrig’s disease. Science 347(6229):1432

    CAS  Google Scholar 

  • Hyltegren K, Skepö M (2017) Adsorption of polyelectrolyte-like proteins to silica surfaces and the impact of pH on the response to ionic strength. A Monte Carlo simulation and ellipsometry study. J Colloid Interface Sci 494:266–273

    CAS  PubMed  Google Scholar 

  • Jin Y, Hoxie RS, Street TO (2017) Molecular mechanism of bacterial hsp90 ph-dependent ATPase activity. Protein Sci 26(6):1206–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jönsson B (1981) The Thermodynamics of Ionic Amphiphilie–Water Systems—A Theoretical Analysis. PhD thesis. Lund University, Sweden

    Google Scholar 

  • Jönsson B, Åkesson T, Woodward C (1996) Theory of interactions in charged colloids. In: Arora AK, Tata BVR (eds) Ordering and phase transitions in charged colloids, VCH, New York, pp 295–313

  • Jönsson B, Lund M, Barroso da Silva FL (2007) Electrostatics in macromolecular solution. In: Dickinson E, Leser M E (eds) Food Colloids: Self-Assembly and Material Science, Royal Society of Chemistry, Londres, pp 129–154

  • Juffer AH (1992) Melc—The Macromolecular Electrostatics Computer program. Laboratory of Physical Chemistry. University of Groningen, The Netherlands

    Google Scholar 

  • Juffer AH (1993) On the modelling of solvent mean force potentials—from liquid argon to solvated macromolecules. PhD thesis, Rijkuniversiteit Groningen, The Netherlands

    Google Scholar 

  • Juffer AH (1998) Theoretical calculations of acid-dissociation constants of proteins. Biochem Cell Biol 76:198–209

    CAS  PubMed  Google Scholar 

  • Juffer AH, Botta EFF, van Keulen BAM, van der Ploeg A, Berendsen HJC (1991) The electric potential of a macromolecule in a solvent: A fundamental approach. J Comp Phys 97:144–171

    CAS  Google Scholar 

  • Kamerlin SL, Haranczyk M, Warshel A (2009) Progresses in ab initio QM/MM free energy simulations of electrostatic energies in proteins: Accelerated QM/MM studies of pKa, redox reactions and solvation free energies. J Phys Chem B 113:1253–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karplus M, McCammon JA (1979) Protein structural fluctuations during a period of 100 ps. Nature 277:578

    CAS  PubMed  Google Scholar 

  • Karplus M, Gelin BR, McCammon JA (1977) Dynamics of folded proteins. Nature 267:585–590

    PubMed  Google Scholar 

  • Kesvatera T, Jönsson B, Thulin E, Linse S (1996) Measurement and modelling of sequence-specific pK a values of calbindin D 9k. J Mol Biol 259:828

    CAS  PubMed  Google Scholar 

  • Kesvatera T, Jönsson B, Thulin E, Linse S (1999) Ionization behavior of acidic residues in calbindin D 9k. Proteins: Struc Func, and Genetics 37:106–115

    CAS  Google Scholar 

  • Kesvatera T, Jönsson B, Thulin E, Linse S (2001) Focusing of the electrostatic potential at EF-hands of calbindin D 9k: Titration of acidic residues. Proteins: Struc Func, and Genetics 45:129–135

    CAS  Google Scholar 

  • Khandogin J, Brooks CL III (2005) Constant pH molecular dynamics with proton tautomerism. Biophys J 89:141–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MO, McCammon JA (2016) Computation of pH-dependent binding free energies. Biopolymers 105:43–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • King G, Lee FS, Warshel A (1991) Microscopic simulations of macroscopic dielectric constants of solvated proteins. J Chem Phys 95:4366–4377

    CAS  Google Scholar 

  • Kirkwood JG (1934a) Solutions containing zwitterions: Erratum. J Chem Phys 2:713

  • Kirkwood JG (1934b) Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J Chem Phys 2:351–361

  • Kirkwood JG, Shumaker JB (1952) Forces between protein molecules in solution arising from fluctuations in proton charge and configuration. Proc Natl Acad Sci USA 38:863–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkwood JG, Westheimer FH (1938) The electrostatic influence of substituents on the dissociation constant of organic acids. I J Chem Phys 6:506–512

    CAS  Google Scholar 

  • Klamt A (1995) Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    CAS  Google Scholar 

  • Ko J, Murga LF, Wei Y, Ondrechen MJ (2005) Prediction of active sites for protein structures from computed chemical properties. Bioinformatics 21(suppl 1):i258—i265

    Google Scholar 

  • Kong X, Brooks CL III (1996) λ-dynamics: a new approach to free energy calculations. J Chem Phys 105:128–141

    Google Scholar 

  • Koukiekolo R, Sagan SM, Pezacki JP (2007) Effects of pH and salt concentration on the siRNA binding activity of the RNA silencing suppressor protein p19. FEBS Lett 581:3051–3056

    CAS  PubMed  Google Scholar 

  • Krieger E, Nielsen JE, Spronk CAEM, Vriend G (2006) Fast empirical pKa prediction by Ewald summation. J Mol Graph Model 25:481–486

    CAS  PubMed  Google Scholar 

  • Kukic P, Farrell D, McIntosh LP, García-Moreno JKS, Toleikis Z, Teilum K, Nielsen JE (2013) Protein dielectric constants determined from NMR chemical shift perturbations. J Am Chem Soc 135 (45):16,968–16,976

    CAS  Google Scholar 

  • Kurut A, Persson BA, Åkesson T, Forsman J, Lund M (2012) Anisotropic interactions in protein mixtures: Self assembly and phase behavior in aqueous solution. J Phys Chem Lett 3(6):731–734

    CAS  PubMed  Google Scholar 

  • Kurut A, Dicko C, Lund M (2015) Dimerization of terminal domains in spiders silk proteins is controlled by electrostatic anisotropy and modulated by hydrophobic patches. ACS Biomater Sci Eng 1(6):363–371

    CAS  PubMed  Google Scholar 

  • Labbez C, Jönsson B (2007) A new Monte Carlo method for the titration of molecules and minerals. In: gström B K (ed) Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp 66–72

  • Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12,562–12,566

    CAS  Google Scholar 

  • Lee MS, Jr FRS, Brooks CL (2004) Constant-pH molecular dynamics using continuous titration coordinates. Proteins 56:738–752

  • Lee J, Miller BT, Damjanovi A, Brooks BR (2015) Enhancing constant-pH simulation in explicit solvent with a two-dimensional replica exchange method. J Chem Theory Comput 11:2560–2574

    CAS  PubMed  Google Scholar 

  • Lee J, Miller BT, Brooks BR (2016) Computational scheme for pH-dependent binding free energy calculation with explicit solvent. Prot Sci 25:231–243

    CAS  Google Scholar 

  • Legault P, Pardi A (1994) In situ probing of adenine protonation in RNA by 13C NMR. J Am Chem Soc 116(18):8390–8391

    CAS  Google Scholar 

  • Levesque D, Weis JJ, Hansen JP (1986) Simulation of classical fluids. In: Binder K (ed) Monte Carlo Methods in Statistical Physics, vol 5. Springer-Verlag, Berlin, pp 47–119

  • Levitt M, Lifson S (1969) Refinement of protein conformations using a macromolecular energy minimization procedure. J Mol Biol 46:269

    CAS  PubMed  Google Scholar 

  • Lewis M, Bamforth C (2006) Essays in Brewing Science. Springer

  • Li H, Hains A, Everts J, Robertson A, Jensen J (2002) The prediction of protein pka’s using qm/mm: The pka of lysine 55 in turkey ovomucoid third domain. J Phys Chem B 106:3486–3494

    CAS  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins: Struct Funct Bioinf 61(4):704–721

    CAS  Google Scholar 

  • Lill MA, Helms V (2001) Molecular dynamics simulation of proton transport with quantum mechanically derived proton hopping rates (Q-HOP MD). J Chem Phys 115(17):7993–8005

    CAS  Google Scholar 

  • Linderstrøm-Lang K (1924) Om proteinstoffernes ionisation. C R Trav Lab Carlsberg [Meddelelser fra Carlsberg Lab] 15(7):1–28

    Google Scholar 

  • Linse P, Jönsson B (1983) A Monte Carlo study of the electrostatic interaction between highly charged aggregates. A test of the cell model applied to micellar systems. J Chem Phys 78:3167–3176

    CAS  Google Scholar 

  • Linse P, Lobaskin V (1999) Electrostatic attraction and phase separation in solutions of like-charge colloidal particles. submitted

  • Linse S, Jönsson B, Chazin WJ (1995) The effect of protein concentration on ion binding. Proc Natl Acad Sci USA 92:4748–4752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lizatović R, Aurelius O, Stenström O, Drakenberg T, Akke M, Logan DT, André I (2016) A de novo designed coiled-coil peptide with a reversible ph-induced oligomerization switch. Structure 24(6):946–955

    PubMed  Google Scholar 

  • Löffler G, Screiber H, Steinhauser O (1997) Calculation of the dielectric properties of a protein and its solvent: Theory and a case study. J Mol Biol 270:520–534

    PubMed  Google Scholar 

  • Lovett RA, Mou CY, Buff FP (1976) The structure of the liquid–vapor interface. J Chem Phys 65:570–572

    CAS  Google Scholar 

  • Lund M, Jönsson B (2003) A mesoscopic model for protein–protein interactions in solution. Biophys J 85:2940–2947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lund M, Jönsson B (2005) On the charge regulation of proteins. Biochemistry 44(15):5722–5727

    CAS  PubMed  Google Scholar 

  • Lund M, Jönsson B (2013) Charge regulation in biomolecular solution. Q Rev Biophys 46:265–281

    CAS  PubMed  Google Scholar 

  • Lyklema J (1991) Fundamentals of Interface and Colloid Science. Academic Press, San Diego

    Google Scholar 

  • Lyubartsev AP, Laaksonen A (1996) Concentration effects in aqueous NaCl solutions. A molecular dynamics simulation. J Phys Chem 100:16,410–16,418

    CAS  Google Scholar 

  • Machuqueiro M, Baptista AM (2007) The pH-dependent conformational states of kyotorphin: A constant-pH molecular dynamics study. Biophys J 92:1836–1845

    CAS  PubMed  Google Scholar 

  • Machuqueiro M, Baptista AM (2011) Is the prediction of pka values by constant-pH molecular dynamics being hindered by inherited problems?. Proteins: Struct Funct Bioinf 79(12):3437– 3447

    CAS  Google Scholar 

  • Madura JD et al (1994) Biological applications of electrostatic calculations and Brownian dynamics simulations. In: Lipkowitz K B, Boyd D B (eds) Reviews in Computational Chemistry, vol 5. VCH Publishers, Inc, New York, pp 229–267

  • Magalhães P R, Oliveira ASF, Campos SRR, Soares CM, Baptista AM (2017) Effect of a pH gradient on the protonation states of cytochrome c oxidase: A continuum electrostatics study. J Chem Inf Model 57 (2):256–266

    PubMed  Google Scholar 

  • Mahadevan TS, Garofalini SH (2008) Dissociative water potential for molecular dynamics simulations. J Phys Chem B 111(30):8919–8927

    Google Scholar 

  • Marenich A, Cramer C, Truhlar D (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    CAS  PubMed  Google Scholar 

  • McQuarrie DA (1976) Statistical Mechanics. Harper Collins, New York

    Google Scholar 

  • Medda L, Barse B, Cugia F, Boström M, Parsons DF, Ninham BW, Monduzzi M, Salis A (2012) Hofmeister challenges: Ion binding and charge of the BSA protein as explicit examples. Langmuir 28:16,355–16,363

    CAS  Google Scholar 

  • Meyer TD, Ensing B, Rogge S, Clerck KD, Meijer E, Speybroeck VV (2016) Acidity constant (pKa) calculation of large solvated dye molecules: Evaluation of two advanced molecular dynamics methods. ChemPhysChem 17:3447–3459

    PubMed  PubMed Central  Google Scholar 

  • Mongan J, Case DA (2005) Biomolecular simulations at constant pH. Curr Opin Struct Biol 15:157–163

    CAS  PubMed  Google Scholar 

  • Mongan J, Case DA, McCammon JA (2004) Constant pH molecular dynamics in generalized born implicit solvent. J Comp Chem 25:2038–2048

    CAS  Google Scholar 

  • Mukerjee P, Banerjee K (1964) A study of the surface pH of micelles using solubilized indicator dyes. J Phys Chem 68:3567–3574

    CAS  Google Scholar 

  • Noid WG (2013) Perspective: Coarse-grained models for biomolecular systems. J Chem Phys 139:090,901

    CAS  Google Scholar 

  • Northrup SH, McCammon JA (1980) Simulation methods for protein structure fluctuations. Biopolymers 19:1001–1016

    CAS  PubMed  Google Scholar 

  • Nozaki Y, Tanford C (1967) Examination of titratation behavior. Methods Enzymol 11:715–734

    CAS  Google Scholar 

  • Nylander KHT, Lund M, Skepö M (2017) Adsorption of the intrinsically disordered saliva protein histatin 5 to silica surfaces. A Monte Carlo simulation and ellipsometry study. J Colloid Interface Sci 467:280–290

    Google Scholar 

  • Oliveira ASF, Campos SRR, Baptista AM, Soares CM (2016) Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. Biochimica et Biophysica Acta 1857:759–771

    CAS  PubMed  Google Scholar 

  • Olsson MH, Sondergard CR, Rostkowski M, Jensen JH (2011) PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7(2):525–537

    CAS  PubMed  Google Scholar 

  • Orttung WH (1977) Direct solution of the Poisson equation for biomolecules of arbitrary shape, polarizability density and charge distribution. Ann N Y Acad Sci 303:22–37

    CAS  Google Scholar 

  • Outhwaite C, Bhuiyan L (1991) A modified Poisson–Boltzmann analysis of the electric double layer around an isolated spherical macroion. Mol Phys 74(2):367–381

    CAS  Google Scholar 

  • Overbeek JTG (1982) A fascinating subject: Introductory lecture in Colloidal Dispersion. The Royal Society of Chemistry. Ed. J. W. Goodwin, London

    Google Scholar 

  • Pechlaner M, Donghi D, Zelenay V, Sigel RKO (2015) Protonation-dependent base flipping at neutral pH in the catalytic triad of a self-splicing bacterial group II intron. Angew Chem Int Ed Engl 54(33):9687–9690

    CAS  PubMed  Google Scholar 

  • Penfold R, Warwicker J, Jönsson B (1998) Electrostatic models for calcium binding proteins. J Phys Chem B 102:8599–8610

    CAS  Google Scholar 

  • Persson B, Lund M, Forsman J, Chatterton DEW, Åkesson T (2010) Molecular evidence of stereo-specific lactoferrin dimers in solution. Biophys Chem 3(3):187–189

    Google Scholar 

  • Perutz MF (1978) Electrostatic effects in proteins. Science 201:1187–1191

    CAS  PubMed  Google Scholar 

  • Piper DW, Fenton BH (1965) pH stability and activity curves of pepsin with special reference to their clinical importance. Gut 6:506–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Project CSE (1995) Direct and Inverse Bioelectric Field Problems. http://csep1.phy.ornl.gov/bf/bf.html

  • Radak BK, Roux B (2016) Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations. J Chem Phys 145:124,109

    Google Scholar 

  • Reitz JR, Milford FJ, Christy RW (1986) Fundamentos da teoria eletromagnética. Rio de Janeiro, Editora Campus

    Google Scholar 

  • Rossini E, Knapp EW (2016) Proton solvation in protic and aprotic solvents. J Comput Chem 37:1082–1091

    CAS  PubMed  Google Scholar 

  • Roxby R, Tanford C (1971) Hydrogen ion titration curve of lysozyme in 6 M guanidine hydrochloride. Biochemistry 10:3348–3352

    CAS  PubMed  Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1989) Colloidal Dispersions. Cambridge University Press, Cambridge

    Google Scholar 

  • Sakalli I, Knapp EW (2015) pKa in proteins solving the Poisson–Boltzmann equation with finite elements. J Comput Chem 36(29):2147–2157

    CAS  PubMed  Google Scholar 

  • Santos HAF, Cosa DVV, Teixeira VH, Baptista AM, Machuqueiro M (2015) Constant-pH MD simulations of DMPA/DMPC lipid bilayers. J Chem Theory Comput 11(12):5973–5979

    CAS  PubMed  Google Scholar 

  • Schaller W, Robertson AD (1995) pH, ionic strength, and temperature dependences of ionization equilibria for the carboxyl groups in turkey ovomucoid third domain. Biochemistry 34(14):4714–4723

    CAS  PubMed  Google Scholar 

  • Schlichter CP (1980) Principles of Magnetic Resonance. Springer, Berlin

    Google Scholar 

  • Schmitz KS (ed) (1994) Macro-ion Characterization: From Dilute Solutions to Complex Fluids. American Chemistry Society, Washington

  • Schönichen A, Webb BA, Jacobson MP, Barber DL (2013) Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 42:289–314

    PubMed  PubMed Central  Google Scholar 

  • Schutz CN, Warshel A (2001) What are the dielectric “constants” of proteins and how to validate electrostatic models?. Proteins: Struc Func, and Genetics 44:400–417

    CAS  Google Scholar 

  • Sham YY, Chu ZT, Warshel A (1997) Consistent calculations of pK a’s of ionizable residues in proteins: Semi-microscopic and microscopic approaches. J Phys Chem B 101:4458–4472

    CAS  Google Scholar 

  • Sharp KA, Honig B (1990) Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equation. J Phys Chem 94:7684–7692

    CAS  Google Scholar 

  • Sharp KA, Fine R, Honig B (1987) Computer simulations of the diffusion of a substrate to an active site of an enzyme. Science 236:1460–1463

    CAS  PubMed  Google Scholar 

  • Shaw DJ (1992) Introduction to Colloid and Surface Chemistry, 4th edn. Butterworths, London

    Google Scholar 

  • Sheinerman FB, Norel R, Honig B (2000) Curr Opin Struct Biol 10:153–159

    CAS  PubMed  Google Scholar 

  • Shimizu K, Freitas AA, Farah JPS, Dias LG (2005) Predicting hydration free energies of neutral compounds by a parametrization of the polarizable continuum model. J Phys Chem A 109:11,322–11,327

    CAS  Google Scholar 

  • Shukla A, Mylonas E, Di Cola E, Finet S, Timmins P, Narayanan T, Svergun DI (2008) Absence of equilibrium cluster phase in concentrated lysozyme solutions. Proc Natl Acad Sci USA 105(13):5075–5080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonson T (2013) What is the dielectric constant of a protein when its backbone is fixed J Chem Theory Comput 9(10):4603–4608

    CAS  PubMed  Google Scholar 

  • Simonson T, Perahia D (1995) Microscopic dielectric properties of cytochrome c from molecular dynamics simulations in aqueous solution. J Am Chem Soc 117:7987–8000

    CAS  Google Scholar 

  • Simonson T, Brooks CL III (1996) Charge screening and the dielectric constant of proteins: Insights from molecular dynamics. J Am Chem Soc 118:8452–8458

    CAS  Google Scholar 

  • Smith N, Witham S, Sarkar S, Zhang J, Li L, Li C, Alexov E (2012) Delphi web server v2: Incorporating atomic-style geometrical figures into the computational protocol. Bioinformatics 28(12):1655–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soares RO, Torres PHM, da Silva ML, Pascutti PG (2016) Unraveling HIV protease flaps dynamics by constant pH molecular dynamics simulations. J Structural Biology 195:261–226

    Google Scholar 

  • Socher E, Stich H (2016) Mimicking titration experiments with MD simulations: A protocol for the investigation of pH-dependent effects on proteins. Scientific Reports 22523:1–12

    Google Scholar 

  • Sorensen SPL (1909) Biochem Z 21:131

    CAS  Google Scholar 

  • Sorensen SPL, Hempel MHJ, Palitzsch S (1917) Studies on proteins. II. the capacity of egg-albumin to combine with acids or bases. C R Trav Lab Carlsberg [Meddelelser fra Carlsberg Lab] 12:68–163

    CAS  Google Scholar 

  • Srivastava D, Santiso E, Gubbins KE, Barroso da Silva FL (2017) Computationally mapping pKa shifts due to the presence of a polyelectrolyte chain around whey proteins. http://dx.doi.org/https://doi.org/10.1021/acs.langmuir.7b02271

  • Stanton CL, Houk KN (2008) Benchmarking pKa prediction methods for residues in proteins. J Chem Theory Comput 4(6):951–966

    CAS  PubMed  Google Scholar 

  • Steiner E, Gastl M, Becker T (2011) Protein changes during malting and brewing with focus on haze and foam formation: a review. Eur Food Res Technol 232:191–204

    CAS  Google Scholar 

  • Stern HA (2007) Molecular simulation with variable protonation states at constant pH. J Chem Phys 126:164,112

    Google Scholar 

  • Stigter D, Dill KA (1990) Charge effects on folded and unfolded proteins. Biochemistry 29:1262–1271

    CAS  PubMed  Google Scholar 

  • Stoll S (2014) Computer simulations of soft nanoparticles and their interactions with DNA-like polyelectrolytes. In: Callejas-Fernandez J (ed) Soft Nanoparticles for Biomedical Applications. Royal Society of Chemistry, Londres, pp 342–371

  • Svensson B, Jönsson B, Woodward CE (1990) Electrostatic contributions of the binding of Ca 2+ in calbindin mutants. A Monte Carlo study. Biophys Chem 38:179–183

    CAS  PubMed  Google Scholar 

  • Svensson BR, Woodward CE (1988) Widom’s method for uniform and non-uniform electrolyte solutions. Mol Phys 64:247–259

    CAS  Google Scholar 

  • Swails JM, York DM, Roitberg AE (2014) Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: Implementation, testing, and validation. J Chem Theory Comput 10:1341–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo A, Ostlund NS (1989) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. McGraw-Hill, New York

    Google Scholar 

  • Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77

    PubMed  Google Scholar 

  • Tanford C (1957a) The location of electrostatic charges in Kirkwood’s model of organic ions. J Am Chem Soc 79:5348–5352

  • Tanford C (1957b) Theory of protein titration curves II. Calculations for simple models at low ionic strength. J Am Chem Soc 79:5340–5347

  • Tanford C, Kirkwood JG (1957) Theory of protein titration curves I. General equations for impenetrable spheres. J Am Chem Soc 79:5333–5339

    CAS  Google Scholar 

  • Tanford C, Roxby R (1972) Interpretation of protein titration curves. Application to lysozyme. Biochemistry 11:2192–2198

    CAS  PubMed  Google Scholar 

  • Tang CL, Alexov E, Pyle AM, Honig B (2007) Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. J Mol Biol 366(5):1475–1496

    CAS  PubMed  Google Scholar 

  • Taylor D, Ángyán J, Galli G, Zhang C, Gygi F, Hirao K, Song J, Rahul K, von Lilienfeld A, Podeszwa R, Bulik I, Henderson T, Scuseria G, Toulouse J, Peverati R, Truhlar D, Szalewicz K (2016) Blind test of density-functional-based methods on intermolecular interaction energies. J Chem Phys 145:124,105

    Google Scholar 

  • Teixeira AA, Lund M, Barroso da Silva FL (2010) Fast proton titration scheme for multiscale modeling of protein solutions. J Chem Theory Comput 6(10):3259–3266

    CAS  PubMed  Google Scholar 

  • Teleman O, Svensson B, Jönsson B (1991) Efficiency in statistical mechanical simulations of biomolecules—computer programs for molecular and continuum modelling. Comput Phys Commun 62(2-3):307–326

    CAS  Google Scholar 

  • Terán L M, Dí az-Herrera E, Lozada-Cassou M, Saavedra-Barrera R (1989) A comparison of numerical methods for solving nonlinear integral equations found in liquid theories. J Comp Phys 84:326–342

    Google Scholar 

  • Thaplyal P, Bevilacqua PC (2014) Experimental approaches for measuring pKa’s in RNA and DNA. Methods Enzymol 549:189–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thurlkill RL, Grimsley GR, Scholtz JM, Pace CN (2006) pK values of the ionizable groups of proteins. Prot Sci 15:1214–1218

    CAS  Google Scholar 

  • Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459

    CAS  Google Scholar 

  • Tummanapelli A, Vasudevan S (2015) Ab initio molecular dynamics simulations of amino acids in aqueous solutions: Estimating pka values from metadynamics sampling. J Phys Chem B 119:12,249–12,255

    CAS  Google Scholar 

  • Usui S (1984) Electrical double layer. In: Kitahara A, Watanabe A (eds) Electrical Phenomena at Interfaces – Fundamentals, Measurements, and Applications. Marcel Dekker, Inc., New York, pp 15–46

  • van Gunsteren WF, Berendsen HJC (1990) Computer simulation of molecular dynamics: Methodology, applications, and perspective in chemistry. Angew Chem Int Ed Engl 29:992–1023

    Google Scholar 

  • Varma S, Jakobsson E (2004) Ionization states of residues in OmpF and mutants: Effects of dielectric constant and interactions between residues. Biophys J 86(2):690–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys Rev 159(1):98–103

    CAS  Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company Inc., Amsterdam

    Google Scholar 

  • Vicatos S, Roca M, Warshel A (2009) Effective approach for calculations of absolute stability of proteins using focused dielectric constants. Proteins 77(3):670–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vila-Viçosa D V V, Campos SRR, Baptista AM, Machuqueiro M (2012) Reversibility of prion misfolding: Insights from constant-pH molecular dynamics simulations. J Phys Chem B 116(30):8812–8821

    PubMed  Google Scholar 

  • Wagoner T, Vardhanabhuti B, Foegeding EA (2016) Designing whey protein–polysaccharide particles for colloidal stability. Annu Rev Food Sci Technol 7:93–116

    CAS  PubMed  Google Scholar 

  • Wallace JA, Shen JK (2009) Predicting pKa values with continuous constant pH molecular dynamics. Methods Enzymol 466:455–475

    CAS  PubMed  Google Scholar 

  • Wallace JA, Shen JK (2011) Continuous constant pH molecular dynamics in explicit solvent with pH-based replica exchange. J Chem Theory Comput 7:2617–2629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace JA, Shen JK (2012) Unraveling a trap-and-trigger mechanism in the ph-sensitive self-assembly of spider silk proteins. J Phys Chem Lett 3(5):658–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li L, Alexov E (2015) pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa. Proteins 83:2186–2197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang M, Alexov E (2016) DelPhiPKa web server: predicting pKa of proteins, RNAs and DNAs. Bioinformatics 34(4):614– 615

    Google Scholar 

  • Warshel A (1981) Calculations of enzymatic reactions: Calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. Biochemistry 20:3167–3177

    CAS  PubMed  Google Scholar 

  • Warshel A (2014) Multiscale modeling of biological functions: From enzymes to molecular machines (Nobel Lecture). Angew Chem Int Ed 53:10020–10031

    CAS  Google Scholar 

  • Warshel A, Åqvist J (1991) Electrostatic energy and macromolecular function. Annu Rev Biophys Biophys Chem 20:267–298

    CAS  PubMed  Google Scholar 

  • Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biology 103(2):227– 249

    CAS  Google Scholar 

  • Warshel A, Papazyan A (1998) Electrostatic effects in macromolecules: Fundamental concepts and practical modeling. Curr Opin Struct Biol 8:211–217

    CAS  PubMed  Google Scholar 

  • Warshel A, Russel ST, Churg AK (1984) Macroscopic models for studies of electrostatic interactions in proteins: Limitations and applicability. Proc Natl Acad Sci USA 81:4785–4789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warshel A, Sharma PK, Kato M, Parson WW (2006) Modeling electrostatic effects in proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1764(11):1647–1676

    CAS  Google Scholar 

  • Warwicker J (1999) Simplified methods for pK a and acid pH-dependent stability estimation in proteins: Removing dielectric and counterion boundaries. Prot Sci 8:418–425

    CAS  Google Scholar 

  • Warwicker J, Watson HC (1982) Calculation of the electric potential in the active site cleft due to α-helix dipoles. J Mol Biol 157:671– 679

    CAS  PubMed  Google Scholar 

  • Westheimer FH, Kirkwood JG (1938) The electrostatic influence of substituents on the dissociation constant of organic acids. II. J Chem Phys 6:513–517

    CAS  Google Scholar 

  • Williams SL, de Oliveira CAF, McCammon JA (2010) Coupling constant ph molecular dynamics with accelerated molecular dynamics. J Chem Theory Comput 6:560–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward CE, Svensson B (1991) Potentials of mean force in charged systems: Application to Superoxide Dismutase. J Phys Chem 95:7471–7477

    CAS  Google Scholar 

  • Xiao K, Yu H (2016) Rationalising pKa shifts in Bacillus circulans xylanase with computational studies. Phys Chem Chem Phys 18:30,305–30,312

    CAS  Google Scholar 

  • Ye K, Malinina L, Patel D (2003) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426:874– 878

    CAS  PubMed  PubMed Central  Google Scholar 

  • You TJ, Bashford D (1995) Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. Biophys J 69(5):1721–1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Lopes PEM, Roux B, MacKerell Jr AD (2013) Six-site polarizable model of water based on the classical drude oscillator. J Chem Phys 138:034,508

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Fundação de Amparo à Pesquisa do Estado de São Paulo [Fapesp 2015/16116-3 (FLBDS), Fapesp 2013/08166-5 and 2017/03204-7 (LGD)], the University Global Partnership Network (UGPN) Research Collaboration Fund (FLBDS) and the University College Dublin (UCD) through a visiting professors grant - Seed Funding (FLBDS). FLBDS also thanks the support of the University of São Paulo through the NAP-CatSinQ (Research Core in Catalysis and Chemical Synthesis), the computing hours at Rice University through the international collaboration program with USP and at The Swedish National Infrastructure for Computing (SNIC 2015/10-6), and the hospitality of the UCD School of Physics, UCD Institute for Discovery and CECAM/IRL. It is also a pleasure to acknowledge the collaboration in previous works and/or fruitful discussions with Bo Jönsson, Bo Svensson, Torbjörn Åkesson (in memoriam), Mikael Lund, Aatto Laaksonen, Erik Santiso, Samuela Pasquali, Philippe Derreumaux, Catherine Etchebest, and Donal MacKernan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Luís Barroso daSilva.

Ethics declarations

Conflict of interests

Fernando Luís Barroso da Silva declares that he has no conflicts of interest. Luis Gustavo Dias declares that he has no conflicts of interest.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroso daSilva, F., Dias, L. Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems. Biophys Rev 9, 699–728 (2017). https://doi.org/10.1007/s12551-017-0311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0311-5

Keywords

Navigation