Skip to main content
Log in

Preliminary analysis to target pyruvate phosphate dikinase from wolbachia endosymbiont of Brugia malayi for designing anti-filarial agents

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Filariasis causing nematode Brugia malayi is shown to harbor wolbachia bacteria as symbionts. The sequenced genome of the wolbachia endosymbiont from B.malayi (wBm) offers an unprecedented opportunity to identify new wolbachia drug targets. Genome analysis of the glycolytic/gluconeogenic pathway has revealed that wBm lacks pyruvate kinase (PK) and may instead utilize the enzyme pyruvate phosphate dikinase (PPDK; ATP: pyruvate, orthophosphate phosphotransferase, EC 2.7.9.1). PPDK catalyses the reversible conversion of AMP, PPi and phosphoenolpyruvate into ATP, Pi and pyruvate. Most organisms including mammals exclusively possess PK. Therefore the absence of PPDK in mammals makes this enzyme as attractive wolbachia drug target. In the present study we have modeled the three dimensional structure of wBm PPDK. The template with 50% identity and 67% similarity in amino acid sequence was employed for homology-modeling approach. The putative active site consists of His476, Arg360, Glu358, Asp344, Arg112, Lys43 and Glu346 was selected as site of interest for designing suitable inhibitor molecules. Docking studies were carried out using induced fit algorithms with OPLS force field of Schrödinger’s Glide. The lead molecules which inhibit the PPDK activity are taken from the small molecule library (Pubchem database) and the interaction analysis showed that these compounds may inhibit the function of PPDK in wBm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PPDK:

pyruvate phosphate dikinase

PK:

pyruvate kinase

PEP:

phosphoenol pyruvate

OPLS-AA:

optimized liquid solution all atoms

ATP:

adenosine triphosphate

wBm :

Wolbachia Brugia malayi

References

  1. Acosta, H., Dubourdieu, M., Quiñones, W., Cáceres, A., Bringaud, F., Concepción, J.L. 2004. Pyruvate phosphate dikinase and pyrophosphate metabolism in the glycosome of trypanosoma cruzei epimastogotes. Comp Biochem Mol Biol 138, 347–356.

    Article  Google Scholar 

  2. Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths, J.S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., Eddy, S.R. 2004. The Pfam protein families’ database. Nucleic Acids Res 32, 138–141.

    Article  Google Scholar 

  3. Castrignanò, T., De Meo, P.D., Cozzetto, D., Talamo, I.G., Tramontano, A. 2006. The Pfam protein families database. Nucleic Acids Res 34, 306–309.

    Article  Google Scholar 

  4. Cherie, A.M., David, G.B., James, N.B., Jason, R.D., Dianne, S.H., Catherine, H.L., Lyndon, E.L., Shilo, L., Andrew, M., Dianne, M.T. 2007. Screening marine fungi for inhibitors of the C4 plant enzyme pyruvate phosphate dikinase: Unguinol as a potential novel herbicide candidate. Appl Environ Microbiol 73, 1921–1927.

    Article  Google Scholar 

  5. Cosenza, L.W., Bringuad, F., Baltz, T., Vellieux, F.M. 2002. The 3.0 Å resolution crystal structure of glycosomal pyruvate phosphate dikinase from trypanosoma brucei. J Mol Biol 318, 1417–1432.

    Article  PubMed  CAS  Google Scholar 

  6. Feng, X.M., Cao, L.J., Adam, R.D., Zhand, X.C., Lu, S.Q. 2008. The catalyzing role of PPDK in Giardia lamblia. Biochem Biophys Res Commun 367, 394–398.

    Article  PubMed  CAS  Google Scholar 

  7. Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., Banks, J.L. 2004. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47, 1750–1759.

    Article  PubMed  CAS  Google Scholar 

  8. Harland, G.W., O’Brien, W.E., George, M. 1977. Properties of carboxytranphosphorylase; pyruvate phosphate dikinase, pyrophosphate-phosphofructokinase and phosphate acetate kinase and their roles in metabolism of inorganic phosphate. Adv Enzymol Relat Areas Mol Biol 45, 85–155.

    Google Scholar 

  9. Herzberg, O., Chen, C.C., Kapadia, G., McGuire, M., Carroll, L.J., Noh, S.J., Dunaway, M.D. 1996. Swiveling-domain mechanism for enzymatic phosphotransfer between reaction sites. Proc Natl Acad Sci USA 93, 2652–2657.

    Article  PubMed  CAS  Google Scholar 

  10. Herzberg, O., Chen, C.C., Liu, S., Tempczyk, A., Howard, A., Wei, M., Ye, D., Dunaway, M.D. 2002. Pyruvate site of pyruvate phosphate dikinase: Crystal structure of the enzyme phosphonopyruvate complex and mutant analysis. Biochemistry 41, 780–787.

    Article  PubMed  CAS  Google Scholar 

  11. Holm, L., Park, J. 2000. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567.

    Article  PubMed  CAS  Google Scholar 

  12. Jeremy, F., Mehul, G., Ibrahim, K., Jennifer, W., Kira, M., Natalia, I., Anamitra, B., Vinayak, K., Sanjay, K., Janos, P., Tamas, V., Jessica, I., Laurie, M., Alla, L., Marina, O., Nikos, K., Elodie, G., Shiliang, W., Eugene, G., Victor, J., Olga, O., Kiryl, T., Mikhail, M., Donald, C., Eugene, K., Barton, S. 2005. The Wolbachia genome of Brugia malayi: Endosymbiont evolution with a human pathogenic nematode. PLos Biol 3, 121.

    Article  Google Scholar 

  13. Jeyaprakash, A., Hoy, M.A. 2000. Long PCR improves Wolbachia DNA amplification: WSP sequences found in 76% of 63 arthropod species. Insect Mol Biol 9, 393–405.

    Article  PubMed  CAS  Google Scholar 

  14. Kozek, W.J., Marroquin, H.F. 1977. Intracytoplasmic bacteria in Onchocerca volvulus. Am J Trop Med Hyg 26, 663–678.

    PubMed  CAS  Google Scholar 

  15. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G. 2007. ClustalW and ClustalX version 2.0. Bioinformatics 23, 2947–2945.

    Article  PubMed  CAS  Google Scholar 

  16. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK — a program to check the stereochemical quality of protein structures. J App Cryst 26, 283–291.

    Article  CAS  Google Scholar 

  17. Laurie, A.T., Jackson, R.M. 2005. Q-Site Finder: An energy-based method for the prediction of proteinligand binding sites. Bioinformatics 21, 1908–1916.

    Article  PubMed  CAS  Google Scholar 

  18. Lin, Y., Lusin, J.D., Ye, D., Dunaway, M.D., Ames, J.B. 2006. Examination of the structure, stability and catalytic potential in the engineered phosphoryl carrier domain of pyruvate phosphate dikinase. Biochemistry 45, 1702–1711.

    Article  PubMed  CAS  Google Scholar 

  19. Lipinski, C.A., Lombardo, F., Dominy, B., Wand Feeney, F.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 23, 3–25.

    Article  CAS  Google Scholar 

  20. McLaren, D.J., Worms, M.J., Laurence, B.R., Simpson, M.G. 1975. Micro-organisms in filarial larvae (Nematoda). Trans R Soc Trop Med Hyg 69, 509–514.

    Article  PubMed  CAS  Google Scholar 

  21. Mertens, E. 1993. ATP versus pyrophosphate: Glycolysis revisited in parasitic protists. Parasitol Today 9, 122–126.

    Article  PubMed  CAS  Google Scholar 

  22. Pfarr, K.M., Hoerauf, A. 2007. A niche for Wolbachia. Trends Parasitol 23, 5–7.

    Article  PubMed  Google Scholar 

  23. Raverdy, S., Foster, J.M., Roopenian, E., Carlow, C.K. 2008. The wolbachia endosymbiont of Brugia malayi has an active pyruvate phosphate dikinase. Mol Biochem Parasitol 160, 163–166.

    Article  PubMed  CAS  Google Scholar 

  24. Saavedra-Lira, E., Perez-Montfort, R. 1996. Energy production in Entamoeba histolytica: New perspective in rational drug design. Arch Med Res 27, 257–264.

    PubMed  CAS  Google Scholar 

  25. Sali, A., Blundell, T.L. 1993. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  26. Werren, J.H., Windsor, D.M. 2000. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc Biol Sci 267, 1277–1285.

    Article  PubMed  CAS  Google Scholar 

  27. World Health Organization. 2010. Global programme to eliminate Lymphatic Filariasis. whqlibdoc.who.int/publications/2010/9789241500722_eng.pdf

  28. Ye, D., Wei, M., McGuire, M. 2001. Investigation of catalytic site within the ATP-grasp domain of clostridium symbiosum. Pyruvate phosphate dikinase. J Mol Chem 276, 37630–37639.

    CAS  Google Scholar 

  29. Yuan, X., Linda, Y., Li, S., Young-Shik, J., Patrick, S.M., Dunaway, M.D., Brian, M.M. 1995. Location for the catalytic site for phosphoenolpyruvate formation within the primary structure of Clostridium symbiosum pyruvate phosphate dikinase. Biochemistry 34, 2181–2187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunasekaran Krishnaswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palayam, M., Lakshminarayanan, K., Radhakrishnan, M. et al. Preliminary analysis to target pyruvate phosphate dikinase from wolbachia endosymbiont of Brugia malayi for designing anti-filarial agents. Interdiscip Sci Comput Life Sci 4, 74–82 (2012). https://doi.org/10.1007/s12539-011-0109-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-011-0109-2

Key words

Navigation