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Abstract
Understanding pedestrian proxemic utility and trust will help autonomous vehicles to plan and control interactions with
pedestrians more safely and efficiently. When pedestrians cross the road in front of human-driven vehicles, the two agents
use knowledge of each other’s preferences to negotiate and to determine who will yield to the other. Autonomous vehicles
will require similar understandings, but previous work has shown a need for them to be provided in the form of continuous
proxemic utility functions, which are not available from previous proxemics studies based on Hall’s discrete zones. To fill
this gap, a new Bayesian method to infer continuous pedestrian proxemic utility functions is proposed, and related to a new
definition of ‘physical trust requirement’ (PTR) for road-crossing scenarios. The method is validated on simulation data then
its parameters are inferred empirically from two public datasets. Results show that pedestrian proxemic utility is best described
by a hyperbolic function, and that trust by the pedestrian is required in a discrete ‘trust zone’ which emerges naturally from
simple physics. The PTR concept is then shown to be capable of generating and explaining the empirically observed zone
sizes of Hall’s discrete theory of proxemics.

Keywords Proxemics · Autonomous vehicles · Trust · Pedestrians · Mathematical models of human behaviour

1 Introduction

Autonomous vehicles (AVs) are claimed by many organisa-
tions to be close to commercial reality, but their lack of human
behaviour understanding is raising concerns. While robotic
localisation and navigation in static environments [76] and
pedestrian detection [9] are well understood, AVs do not yet
have the social abilities of human drivers—who can read the
intentions of other road users, predict their future behaviour
and then interact with them [10]. Pedestrians, unlike other
road users such as cyclists, do not usually follow specific
traffic rules, in particular when crossing the road at unsigned
crossing points, making them especially difficult to model,
predict, and interact with. Pedestrians and human drivers
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communicate and interact with one another via nonverbal
signals including their positions and speeds, which are used
to transmit intent information as well as to make progress on
the road [66]. For example, a vehicle which drives deliber-
ately close to a pedestrian to scare them is telling them to
yield, while a vehicle which maintains a larger distance from
them is inviting them to cross.

Recent trials of autonomous minibuses in La Rochelle
(France) and Trikala (Greece) [52], highlighted the major
drawback of perfectly safe self-driving cars: it was found that
pedestrianswere intentionally stepping in front of theAVsev-
eral times in a day, delaying their progress in the knowledge
that they would always yield to the pedestrian. This abuse of
perfect safety systems is known as the ‘big problemwith self-
driving cars’ [8], and in the limiting case of optimal pedes-
trian behaviour and large crowd size becomes the ‘freezing
robot problem’ of vehicles making no progress at all, as they
are constantly forced to yield in every interaction [78].

Tomakeprogress towards suchunderstanding,we recently
proposed and solved a game-theoretical mathematical model
of the road-crossing scenario represented in Fig. 1, based on
the famous game of ‘chicken’ and called ‘sequential chicken’
[27]. In this model, the pedestrian and vehicle compete for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-020-00717-x&domain=pdf
http://orcid.org/0000-0002-2655-1228
http://orcid.org/0000-0002-6695-8081


1930 International Journal of Social Robotics (2021) 13:1929–1949

Fig. 1 Road-crossing scenario

space in the road as they move towards one another and
threaten to collide with one another, by making a tempo-
ral series of game theoretic decisions to advance or yield.
The model’s utility parameters for collisions and value of
time were fit to human behaviours in a series of labora-
tory experiments [11–13,16]. We also analysed real-world
pedestrian–vehicle interactions through sequence analysis
[15] to learn the most important features and how their order-
ing could be predictive of the outcome of an interaction [14].
The simplest mathematical solution of this game theoretic
model was found to require the AV to deliberately hit the
pedestrian with a small probability, in order to create a cred-
ible threat which discourages other pedestrians from taking
advantage of it in the rest of the interactions [27]. This is
not an ethical or legal arrangement for programming AVs in
practice [79]. But the model then also suggested the possi-
bility of an alternative solution: if the rare, large penalty of
collisions could be replaced with more frequent but smaller
negative utilities inflicted on pedestrians, then the same aver-
age penalty could be created and progress made by AVs
without having to hit any pedestrians.

This motivates a new search for ways in which an AV
could inflict smallnegative utilities ontopedestrians.Humans
have evolved a sense of comfort and discomfort around one
another as part of their social interaction mechanisms, which
could provide a convenient and legal source of small neg-
ative utilities. For example, two pedestrians who actually
collide with one another while trying to reach their desti-
nations will obviously experience a real, physical negative
utility, but it is found empirically that they also experience
discomfort—a purely internally generated, psychological
negative utility—when they are close but not actually touch-
ing. The study of this relationship was named proxemics

by Hall [30]. Hall classified four discrete distance zones
between people—intimate, personal, social and public—
corresponding to distances where most people feel distinct
levels of comfort or discomfort during interactions. If humans
have evolved to feel real psychological negative utilities in
the presence of only a possibility of collision, without it actu-
ally having to take place, then simply invading their personal
space could be sufficient to penalise them enough to satisfy
the game theory requirements.

It is not necessary for the reader of the present study to
understand the game theory model, which provides only the
motivation for the present study rather than any methods.
The key motivation, taken only from its conclusions, is that
it requires a utility function to directly assign numerical util-
ities to agents as a function of their positions. Positions are in
general continuous values so a continuous proxemic utility
function is required. Section 2 reviews the proxemic litera-
ture and finds that this is not yet available, which motivates
the present study to develop new methods to infer it in the
required form.

Themethod in Sect. 3 then forms a first step towards infer-
ring pedestrian proxemic preferences for autonomous vehicle
interaction control. It consists in directly inferring the con-
tinuous proxemic utility function of pedestrians from offline
data from human driver–pedestrian interactions. This is the
function that could then be programmed into autonomous
vehicles using the sequential chicken game theory model to
provide small negative utilities.

To link continuous proxemic utility functions to the more
conventional views andmodels of proxemics from this litera-
ture, which are mostly based on Hall’s discrete zones, Sect. 4
then introduces a new concept: ‘physical trust requirement’.
We show that this concept partitions the set of possible states
of theworld during interactions into three subspaces, for each
agent. In the first, a negative utility such as a collision will
happen and there is nothing either agent can do to prevent
it. In the second, the negative utility may happen but only
the other agent can choose to act to prevent it—this is the
‘trust zone’. In the third, the negative utility may happen but
the pedestrian themself can act to prevent it, without need-
ing to trust the other agent. This definition of physical trust
requirement may be general to many human–robot interac-
tions in physical or abstract state spaces, but in the case of
autonomous vehicle interactions with pedestrians, we pro-
vide results showing that it maps cleanly and numerically to
Hall’s physical proxemic zones, offering an explanation for
why they emerge as discrete zones even when the proxemic
utility function itself is continuous.

Section 5 finally applies both the proxemic utility function
inference and physical trust requirement concept to existing
public datasets, to report a real world continuous proxemic
utility and physical trust requirements for the first time.
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2 RelatedWork

This section gives a survey of related work, to search for
any existing reports of numerical proxemic functions, or for
any related results which might be used to infer such func-
tions without the need for a new experiment. In particular,
Hall’s influential work has encouraged most studies to mea-
sure and report results in terms of discrete zones, discarding
the continuous distance information which we now require.
Thismotivates the present study to infer continuous proxemic
utility functions for the first time.

2.1 Proxemics in Social Sciences

Measuring interpersonal distances during social interactions
is a well-studied topic in the social sciences since the intro-
duction of the concept by Hall [30]. For example, it was
found for human–human interactions that the intimate space
is up to 0.45 cm, the personal space is up to 1.2 m, the social
space is up to 3.6 m, and the public space is beyond this [45].
Thompson et al. [75] measured individuals’ interaction pref-
erences via the rating of videotapes. This study showed that
people have a distance where they feel comfortable during
their interactions and when the distance is smaller or greater
than that, they feel more discomfort. Hayduk [31] showed
via a study with university students that personal space is
a two-dimensional noncircular and flexible space that can
vary in shape and size. Hecht et al. [32] performed two labo-
ratory experiments (including one in a virtual environment)
with subjects and found that personal space has a circular
shape with about a 1-m radius. However, we believe that
personal space can be modelled using only one dimension
in the present road-crossing scenario. Stamps [72,73] whose
work is based on the theory of permeability, i.e. how people
perceive (e.g. their safety) and make preferences within an
environment, studied the effects of distance on participants’
perception of threat. These results showed that the perceived
threat decreases with larger distances.

2.2 Proxemics in Human–Robot Interactions

Proxemics is also an active research area in human–robot
interaction (HRI), as shown in the review proposed by Rios-
Martinez et al. [65] which focuses on social cues, signals and
proxemics for robot navigation.A recent reviewon nonverbal
communication for human–robot interactionwas proposed in
[69].

Walters et al. [81] proposed a framework that shows how
to measure proxemic features in HRI. Their study involved
participants interacting with different robots and their pref-
erences were measured. It is explained that factors that
may change human proxemics even by 20 to 150 mm can
be significant. In [3], a mobile robot was developed with

an autonomous proxemic system that could approach and
avoid people using the distances from [81]. Koay et al. [42]
measured participants’ proxemics preferences using comfort
level device during an HRI task.

Mead et al. [55] proposed an automatic method for anno-
tating spatial features from 3D data of indoor human–robot
interactions. In [56], the same data was used to train a Hid-
denMarkovModel (HMM) to classify the interactions either
as initiating or terminating based on the extracted physi-
cal Mehrabian’s metric [59] or psychophysical Hall’s metric
[30]. In [57], the sameauthors studied the interaction between
a robot and more participants, one by one. The interactions
consisted in moving the robot towards the participants and
backwards several times. The results showed that individ-
uals’ pre-interaction proxemic preference (mean = 1.14 m,
std = 0.49 m) was consistent with previous studies. With a
uniform performance in the robot behaviour, the proxemic
preference reached a mean = 1.39m and a std = 0.63 m, the
participants adapted their proxemic preferences to improve
the robot performance. Mead et al. [58] also investigated
the influence of proxemics on human speech and gestures
and measured how that impacts on the robot speech and
gesture production. Their study consisted in recruiting 20
participants interacting by pairs (10 in total) who didn’t know
each other and each participant had to interact with the robot
(PR2). Their result for human–human interactions (HHI),
with a mean = 1.44 m and a std = 0.34 m, was consistent
with previous studies but the HRI result (mean = 0.94 m, std
= 0.61 m) was much larger than in previous studies, which
could be explained by the presence of robot gestures.

Heenan et al. [33] used proxemics and Kendon’s greet-
ing observations [40] for a Nao robot interacting with human
encounters. They applied Takayama and Pantofarou’s [74]
empirical results for proxemics, which are 0.4–0.6 m (aver-
age interpersonal distances) with a 1.35 m robot’s height.
They observed a larger distance between women partici-
pants and the robot, while men kept the same distance in
HHI and HRI. In these experiments, the researchers also
found an improvement of the robot’s social skills thanks
to the proxemic behaviour and its greeting manner. Warta
et al. [83] measured levels of social presence in HRI in a
hallway. Participants were given a questionnaire to complete
after interacting with a robot for a navigation task. In [39],
Joosse et al. used a coding system to detect a set of attitudinal
(likeability, human-likeness, trust) and behavioural attributes
including non-verbal behaviour (eye-gaze, proxemics, emo-
tion etc.) fromparticipants interactingwith a robot. The study
showed some stronghuman reactions to a robot invading their
personal space.

Kostavelis et al. [44] proposed a dynamic Bayesian net-
work on top of an interaction unit to model human behaviour
for a robot. Their method takes proxemic distances into
account, allowing the robot to approach people at differ-
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ent distances depending on their current activity. Torta et
al. [77] performed two psychometric experiments with sub-
jects interacting with a small humanoid robot and proposed a
parametric model of the personal space based on the results
of these experiments. The model takes into account the dis-
tance and the direction of approach, and was evaluated with
a user study where subjects are sitting and approached by the
robot.

Henkel et al. [35] evaluated two predefined proxemic
scaling functions (linear and logarithmic) for human–robot
interactions. Their approach is different from ours in that
the robot computes a gain value based on the proxemic dis-
tance with the human and then moves accordingly. Their
experiments with participants in a search and rescue sce-
nario and followed by a questionnaire showed a preference
for a logarithmic proxemic scaling function. Patompak et al.
[63] developed an inference method to learn human prox-
emic preferences. Their method is based on the social force
model and reinforcement learning. They argued that prox-
emic spaces can be limited to two zones, the first being the
quality interaction area where a robot could go without cre-
ating discomfort, and the private area which is the personal
space. In addition, we believe that one more area is needed
to model the trust relationship between humans and robots.

2.3 Proxemics in Pedestrian–AV Interactions

Acomprehensive reviewonpedestrianmodels for autonomo-
us driving is proposed in [9,10], ranging from low-level
sensing, detection and tracking models [9] to high-level
interaction and game theoretic models [10]. In the con-
text of autonomous vehicles, more work has been focused
on pedestrian crossing behaviour [53], trajectory prediction
[84] and for eHMI (external Human–Machine Interface)
[20,29,50,54]. Very few studies have investigated interper-
sonal distances for pedestrian-vehicle interactions.

Risto et al. [66] studied the use of drivers’ movement to
signal intent and how these signals were understood by other
road users. They video recorded pedestrian–vehicle interac-
tions at different intersections and observed that pedestrian
discomfort can be created by the vehicle approaching very
close to the crosswalk boundary, which leads the pedestrian
to slightly change their trajectory towards the other edge of
the crosswalk. It was also noted that drivers tend to stop
short, i.e. those who intended to stop used to do so much
earlier than required by the law (i.e. at the white line for stop
or crosswalk). Interview responses and observations showed
that pedestrians use to understand ‘some forms of movement
from the vehicle as communicating amessage’. For example,
[15] and [47] showed evidence that such implicit signalling
through speed and positioning are themain formof signalling
used in road-crossing interactions, as explicit forms of sig-

nalling such as hand gestures and facial expressions are not
often used.

Domeyer et al. [24] investigated the quantitative param-
eters (i.e. time) of pedestrian–vehicle interactions at four
pedestrian crossings, using annotated videos. In particular,
the authors were interested in the effects of vehicle stopping
short time (i.e. their proximity with the pedestrians). Their
results showed that the median short stop time was around
1 s. They also found that vehicles, that had higher short stop
times, were creating more safety margins, thus were more
delayed. However, it was found that the stopping short time
did not increase the overall time that the vehicle and the
pedestrian would spend at an intersection.

2.4 Trust in Human–Robot Interactions

Various definitions of trust have been used for human–robot
interactions.This section introduces someof these definitions
and reports findings from several studies.

For instance, Lee and See [46] reviewed the concept of
trust in automation. They defined trust as an ‘attitude that
an agent will help achieve an individual’s goals in a situa-
tion characterised by uncertainty and vulnerability’. In [71],
Smithson described trust as ‘a psychological state that entails
thewillingness to take risks by placing oneself in a vulnerable
positionwith respect to the trustee’. He described uncertainty
as being prevalent to a trust relationship, there is no trustwith-
out any risks. Henschke [36] described trust as a ‘key value’
in the development of autonomous systems. This paper dis-
cussed the ethical issues with autonomous systems but also
referred to trust in these systems as a complex concept which
could be defined as either reliability, predictability, goodwill,
affect or public trust.

Floyd et al. [26] introduced the idea of inverse trust. They
proposed a mathematical decision model for an autonomous
system to measure the level of trust of a human team-mate
and then adapts its own behaviour accordingly. Devitt et al.
[23] described that with complex and intelligent autonomous
systems, humans could become ‘overly trusting or overly
skeptical’, especiallywhen robots become intelligent enough
and could manipulate their trust. Agrigoroaie and Tapus
[2] focused their work on human informal behaviour and
proxemics. The study showed that autonomous systems that
are capable of understanding the processes behind human
decision-making can have better interactions with them and
are more likely to be trustworthy.

In [80], van den Brule et al. argued that not only the robot
performance is important but also its behavioural style can
have some influence on people’s level of trust. Their exper-
iments in video and in VR showed that task performance is
key for trustworthiness but that the robot behavioural style
was also significant in the videos. Lewis et al. [48] explained
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that trust is dynamic (i.e. changing over time), and in [62]
trust towards automation is directly related to reliance.

2.5 Trust in Human–AV Interactions

The study of pedestrian trust inAVs is a recent research topic.
Previous work has mainly investigated the concept of trust
for passengers of autonomous vehicles during shared-driving
mode [4,19]. More often, pedestrian trust in AVs has been
investigated via the design and testing of external Human–
Machine Interfaces [20,54]. Rothenbuecher et al. [67] found
that pedestrians lacked trust when interacting with a vehicle
‘disguised’ into an AV because they could not see a human
driver inside, but at the same time they expected to trust
more the AV because of its algorithmic capabilities. Deb et
al. [22] performed a study using questionnaires to evaluate
pedestrian receptivity towards autonomous vehicles, show-
ing that males trust AVs more than females. The authors also
warn that pedestrians could take advantage of perfectly safe
autonomous vehicles.

Saleh et al. [68] proposed a framework that relies on
social cues, e.g. intent understanding, to model trust between
vulnerable road users and autonomous vehicles. Reig et al.
[64] studied pedestrian trust in autonomous vehicles via
interviews, showing for example that participants who were
favourable to AVs were more likely to trust them and that the
lack of knowledge about AV technology leads to mistrust.
Using the definition of trust in [46] introduced above, Jayara-
man et al. [38] studied pedestrians’ trust in autonomous
vehicles in a VR experiment followed by a questionnaire
using a Likert scale. It is argued that human trust increases
with the increase of available information, and found that
the AV’s driving behaviour and the presence of light can
influence the trust of pedestrians. This study also showed
correlations between pedestrian behaviour (distance to col-
lision, gaze and jaywalking time) and their trust towards the
AV.

2.6 Research Aims

Despite the numerous reviewed studies on proxemics and
trust from the social science and human–robot interaction
research communities, many works rely on qualitative or
discretized findings fromhuman experiments using question-
naires, interviews and video analyses. Pedestrian proxemics
and trust are very recent topics in the context of autonomous
vehicles research. No found studies have inferred continu-
ous valued human proxemic utilities as now required by AV
controllers, or linked these to trust concepts. There is little
agreement on the definition of trust and new trust concepts
are regularly proposed, which are mostly informal rather
than directly implementable as mathematics and software
for autonomous vehicles. Thus, the rest of the paper will

contribute towards filling these gaps.
Summary of contributions This paper proposes:

– AnovelBayesian approach to infer proxemic utility func-
tions;

– A new concept and mathematisation of ‘physical trust
requirement’ for pedestrian–AV interactions, and also
applicable to more general human–robot interactions
which can numerically generate and explain Hall’s prox-
emic zones;

– Empirical results of our method on two public datasets
to infer pedestrian proxemic utility functions and trust
zones.

3 Proxemic Utility Modelling

Ourmethod consists in inferring the proxemic utility function
of pedestrians from existing public datasets from interactions
between human drivers and pedestrians. No new empirical
experiments are performed in this study. Bayesian theory is
used to fit parameters and compare competing models. The
approach is first validated on simulated data whose ground
truth correct answer is available, before running on empirical
data from two public datasets in Sect. 5.

3.1 Proxemic Utility Definition

It is possible to measure the utilities (i.e. perceived costs
and/or benefits) which humans assign to states of the world,
by asking for or otherwise observing their preferences
between states. Such preference orderings for rational agents
can be shown to be mathematically equivalent to the assign-
ment of a single number to each state, which is defined as
the utility. This mapping from states to numbers is called the
utility function [6].

We consider utility functionsU as models M with param-
eters θ = {a0, . . . , an},

U = M(X , a0, . . . , an), (1)

that assigns a real value U to the state X .
We assume that human proxemic utility can be described

by such a parametric model with the state X being the
physical distance between the two agents. Based on our
prior knowledge from Hall’s theory, we expect the size of
the negative utilities to roughly reduce with distance, so
we choose several candidate parametric models, M , with
a variable number of parameters, θ , including a hyperbolic
function (2), a Gaussian function (3) and different degrees of
polynomials (4),

Mhyperbolic(X , θ) = a0X
−1, (2)

MGaussian(X , θ) = N (X , a1 = μ, a0 = σ 2), (3)
Mpolynomial(n)(X , θ) = an X

n + an−1X
n−1 + · · · + a1X + a0. (4)
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We chose these candidate functions via three considera-
tions. First, if we assume very little about the form of the
function—just that it is reasonably smooth—then we need
to have at least one highly flexible generic model which
is able to fit to any smooth function. This is delivered by
the polynomial candidate. Second, we have a prior scien-
tific intuition—a hypothesis to test—that the function will
be roughly hyperbolic shaped, starting high and falling off
with distance. We include a hyperbolic model for this rea-
son. Finally, the Gaussian is included just because it is a
common function which often emerges in solutions of phys-
ical processes and easy to include. If additional candidates
are proposed in the future, they can also be tested against the
ones included here.

Throughout this paper, we assume that all agents are ratio-
nal and that utility can be measured in units of seconds
(roughly equivalent to ‘time is money’). Human pedestri-
ans and drivers assign a value of travel time in their journeys
[1,5,17,37,82], and using this as the unit will simplify the
analysis. We do not model the negative utility of a crash as
an additional explicit term because the proxemic model is
already able to include it as the utility of a zero distance
contact.

3.2 Proxemic Utility InferenceMethod

A Bayesian inference method is used to infer the proxemic
utility functions from observed data. It consists in fitting dif-
ferent parametric models to the data in order to obtain the
best parameters for eachmodel. The observations are the dis-
tances between the two agents, X , their speeds, v and vped ,
and the outcomes of the interactions (pedestrian crossing
or stopping). We used nonlinear least squares optimisation
(implemented via the Python Scipy.optimize package) for
the model fitting. At each optimisation iteration, we used the
candidate model parameters proposed by the optimiser to
compute optimal actions for the pedestrian for every possi-
ble distance X . These optimal actions are compared against
the actual actions seen in the data, for the particular distances
in the data, and this comparison is used to compute the prob-
ability that given the model, the proposed parameters are the
true ones.

This is done using Bayes’ theorem as follows: under a
given model, M , with parameters θ and data D, we have,

P(θ |M, D) = P(D|θ, M)P(θ |M)
∑

θ ′ P(D|θ ′, M)P(θ ′|M)
. (5)

We assume a flat prior over θ so that,

P(θ |M, D) ∝ P(D|θ, M), (6)

which is the data likelihood, given by,

P(D|θ, M) =
∏

i

P(Ai |xi , xped i , v, vped , θ, M ′), (7)

where Ai is the pedestrian observed action choice, e.g. cross-
ing or stopping, xi and xped i are observed car and pedestrian
locations at the start of an interaction and v and vped are
observed car and pedestrian speeds. M ′ is a noisy version
of the optimal model M , which plays actions from M with
probability (1 − s) and maximum entropy random actions
(0.5 probability of each speed) with probability s. This is
a standard noise modification, used for example in psycho-
logical Bayesian data analysis [11,16,49], which allows the
model to fit data where agents have made deviations from
perfectly optimal strategies. Without this noise term, the
model would assign probability zero to any deviation from
perfect behaviour.But humans—andmost other objectsmod-
elled using statistics—rarely behave exactly according to any
mathematical model, so the noise term enables the models to
fit approximate behaviours.

3.3 Model Comparison

To select the best fitting proxemic utility function from the
set of candidate models Mi , we would like to compute and
take themaximumof P(Mi |D). This is computationally hard
due to a required integral over the parameters of the models,

P(Mi |D) = P(Mi )

∫

θi

P(D|Mi , θi )P(θi |Mi )θi . (8)

We instead compute and use the Bayesian Inference Cri-
terion, (BIC) [70] which is a standard approximation to this
integral,

BIC = log(n)K − 2 log(L) ≈ P(Mi |D). (9)

The integral, and the BIC approximation to it, are able to
correctly compare competing models Mi in cases where
the models have differently (K ) sized parameter spaces, by
combining the likelihood L = P(D|Mi , θ̂i ) of n observa-
tions in data D under the model Mi with the Occam factor
arising from the prior over the model’s parameter space,
P(θi |Mi ), assuming a flat prior on the models themselves,
P(Mi ) = P(Mj ). This automatically and correctly penalises
models with many parameters for potentially overfitting to
data [70].

3.4 Validation via a Simulation Study

To validate our proxemic utility inference method, we devel-
oped a simulation with a simple crossing scenario with a
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Fig. 2 Pedestrian–vehicle interaction simulation

pedestrian and a car on a road with a width w, as shown in
Fig. 2. We simulate the internal reasoning of a pedestrian
based on a known (ground-truth) proxemic utility function
and the vehicle time utility for a crossing decision. Simulated
pedestrian behaviour data is generated, and used to infer back
the proxemic function. Validation occurs if the inferred prox-
emic function matches the input proxemic function used to
generate the behaviour.

3.4.1 Assumptions

The purpose of the simulation is only to validate that the sys-
tem is able to recover the ground truth (i.e. infer the ground
truth values used as inputs to the simulation back from the
output of the simulation). It does not matter which particular
ground truth is used for validation. So to create the simu-
lated data, we choose the following arbitrary settings: the
car moves at a constant speed (2 m/s) and the pedestrian is
standing at the edges of a crosswalk, ready to cross. The
pedestrian also moves at constant speed, 1 m/s. The pedes-
trian is assumed to have an internal reasoning about the utility
of crossing and avoid a potential crash with the car. They
compare the negative utility (effects) caused by the proxim-
ity with the car with the time delay that would occur if they
wait for the car. If the proximity cost (measured in seconds,
assuming time is a currency) is less than the time delay, i.e. if
they are able to cross before the car reaches the intersection,
then they are incentivised to do so.

3.4.2 Data Generation and Inference Results

Wegenerated data from a pedestrian–vehicle interaction sim-
ulation, using a predefined proxemic utility function. We
defined random starts for the vehicle, to create 1000 different
pedestrian–vehicle interactions. We then used the data col-
lected to implement and test our inference method to recover
the original proxemic utility function. Examples of functions
that we tested are shown below.

Hyperbolic Function Firstly, we evaluated our inference
method with a ground truth hyperbolic proxemic function,

Mhyberbolic(X , a0) = a0X
−1, (10)

with a0 = 1, as shown in Fig. 3a along with the time utility
function and the crossing decision for the interactions. As
we can see in the results of the model fitting, in Fig. 3b,

the best model is the hyperbolic function with the maximum
likelihood (loglik =−105.36) and the lowest BIC value (BIC
= 217.629). All other models have a lower likelihood and a
higher BIC value, for example, the second best model is the
quadratic function with a likelihood of −107.55 and a BIC
equal to 235.839.

Quadratic Function Secondly, we used an arbitrary
quadratic function,

Mquadratic(X , a2, a1, a0) = −X2 + 5X + 25, (11)

as the ground truth. Figure 4a shows the ground truth
quadratic proxemic and time utility functions with the pedes-
trian crossing decisions. As shown in Fig. 4b, the best model
is the quadratic functionwith themaximum likelihood (loglik
=−1089.72) and the lowest BIC value (BIC= 2200.158). All
other models have a lower likelihood and a higher BIC value,
for example, the second best model is the cubic function with
a likelihood of −1109.49 and a BIC equal to 2246.615.

Quartic Function Thirdly and lastly, we evaluated our
method with an arbitrary quartic function, (i.e. polynomial
function of degree 4),

Mpolynomial(4)(X , a4, a3, a2, a1, a0) = −0.08X4−X3+3X+0.5,

(12)

as the ground truth as shown in Fig. 5a along with the time
utility function and the crossing decision for the interactions.
The results of themodel fitting are shown inFig. 5b.Thequar-
tic and septic functions have the maximum likelihood (loglik
= −122.93) but the quartic function is ranked as the second
best model according to the BIC values with a BIC equal
to 280.415. Instead, the Gaussian model (loglik = −129.52,
BIC = 272.875) is selected as the best model due to its lower
number of parameters. However, we can note here that the
shape of the ground truth function shown in Fig. 5a looks
very similar to a Gaussian, so the selection of the Gaussian
model for this case is perfectly understandable.

The above results show that our proposedmethod for infer-
ring proxemic utility function works on simulated data and
with different ground utility functions.

4 Physical Trust Requirement

4.1 Trust Definition

Refining Lee and See’s concept of trust [46] reviewed above,
where trust is defined as an attitude in ‘a situation charac-
terised by uncertainty and vulnerability’, we define a new
related concept: physical trust requirement (PTR), a Boolean
property of the physical state of the world (not of the psy-
chology of the agents) with respect to one agent during an
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Fig. 3 Simulation with a hyperbolic proxemic function

interaction, true if and only if the agent’s future utility is
affected by an immediate decision made by another agent.

We thus measure the need for trust from pedestrian
behaviour in uncertain situations. The PTR divides the prox-
emic function into three zones as shown in Fig. 6, as the PTR
is true in the trust zone and false in the crash and escape

zones. We made some assumptions and used numerical val-
ues to obtain specific equations and numbers for the three
zones in our road crossing case:

1. Crash zone This is the region very close to the human
agent, where they will be affected by negative conse-
quences and no-one can prevent them from occurring, so
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Fig. 4 Simulation with a quadratic proxemic function

no trust is involved. In the road-crossing case, this occurs
when the pedestrian is in the road and the car is very close,
with neither able to run or brake to prevent the collision.
The crash zone, {d : 0 < d < dcrash}, is the region
delimited by the reaction and braking distances of the
vehicle, given by the standard stopping distance equa-
tion [51],

dcrash = vtdriver + v2

2μg
, (13)

where the first term depends on the human driver’s
psychological thinking reaction time, tdriver , and the
second term represents the physical braking distance
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Fig. 5 Simulation with a quartic proxemic function

(depending on the physical friction between tyres and tar-
mac, and equal to the length of any physical skid marks
left by the vehicle after the driver begins to apply the
brakes), v is the vehicle speed, μ the coefficient of fric-
tion and g the gravity of Earth.

2. Escape zoneThis defines the area where the human agent
is able to choose their own action to avoid the negative
utility, rather than relying on the other agent. As such, it
does not need to trust the other agent. In our road-crossing
case, this occurs when the vehicle is further away from
the pedestrian, so that the pedestrian has time to act and
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Fig. 6 Proxemics–trust relation in pedestrian–vehicle interaction

save themself without trusting the vehicle to yield.
The escape zone, {d : descape < d}, is the set of dis-
tances beyondwhich pedestrians do not fear any potential
danger from the vehicle. In this zone, pedestrians can
complete their crossing before the vehicle arrives. The
escape distance descape is theminimumdistance at which
this is the case. Consider the time tcross = w/vped it takes
for the pedestrian to cross, during this time, the vehicle
moves by distancewv/vped , where vped is the pedestrian
speed and w is the width of the road. When we also add
the distance moved by the vehicle during tped , the human
pedestrian’s reaction time tomake their crossing decision
before starting to walk or not walk, then we obtain the
escape distance,

descape = vtped + vtcross

= vtped + w
v

vped
. (14)

This escape distance then defines the start of the escape
zone.

3. Trust zone We define the trust zone as the region of the
proxemic functionwhere the PTR is true. The other agent
(e.g. the car) can choose (e.g. by slowing down) to pre-
vent them from receiving negative effects (e.g. collision),
but the human is incapable of making any action to affect
the utility outcome themself. In the road crossing case,
this occurs when the pedestrian cannot get out of the
car’s way in time to avoid collision, but the car is able
to brake and yield to prevent the collision if it chooses
to do so. This excludes the crash zone in which nei-
ther agent has any available choice to avert collision,
and also excludes the escape zone. So the trust zone
is {d : dcrash < d < descape}, the intermediate space
between the crash and escape zones.

When the pedestrian is in the crash zone, the vehicle has no
possibility to avoid an accident, whereas in the escape zone

the pedestrian can always cross safely. When the pedestrian
is in the trust zone, the vehicle has the sole power to decide if
a collision will occur. It is thus in the trust zone that it would
be important to study whether and how people do or should
trust autonomous vehicles or not.

4.2 Zones Analysis: Comparison with Hall’s Zones

We here derive some mathematical results from our zone
definitions and link them to previous results on Hall’s prox-
emic zones. Figure 7 shows the distances dcrash and descape
and the zones defined by equations 13 and 14, for vari-
able vehicle speeds v. We here assume: w = 2 m for
the road width, tdriver = 1 s as the driver reaction time
[21,28], vped = 1.1 m/s as the average walking speed of the
pedestrian [25,41,60], tped = 1.5s as the pedestrian reaction
time (chosen to be similar to the driver reaction time but a lit-
tle larger because drivers may be more focussed on their task
than pedestrians) [18], μ = 1 for the coefficient of friction
[34,61] and g = 9.8 m/s2 for the gravity of Earth.

By comparison, the related work review found that Hall
zones for human–human interactions are usually reported to
be around: intimate up to 0.45 cm, personal up to 1.2 m,
social up to 3.6 m, and public beyond this [45].

The vertical line in Fig. 7 shows the case v = 1.1 m/s in
which the vehicle has the same speed as the pedestrian, i.e. the
vehicle is behaving as if it was a second pedestrian interacting
with the first. In this case, the size of the Hall personal zone,
1.2 m, closely matches that of our crash zone in Fig. 7a,
dcrash = 1.16 m when v = 1.1 m/s (as would be the case
when the other is another human rather than a vehicle) and
retaining other parameters (including, quite unrealistically,
retaining the friction model and coefficient walking rather
than wheels). The size of the Hall social zone, 3.6 m, also
closely matches our descape = 3.65 m from the graph.

We also note that Fig. 7a predicts that social human–robot
interactions in which the robot is slower than a human, as is
the case formost humanoids,will have smaller crash and trust
zones, which matches the related work reviewed in which
personal and social zones were found to reduce compared to
human–human proxemics. Also, the trust region in Fig. 7b
gets smaller with speed, reaching zero width when linear and
quadratic curves meet at around 45 m/s = 162 km/h. This is
quite close to official and unofficial speed limits on most
countries’ motorways/freeways.

If we further define and consider R, the zone ratio given
by the size of the trust zone relative to the speed of the car,

R = Descape

Dcrash
= vtped+v(w/vped)

vtdriver + v2/2μg
= tped+(w/vped)

tdriver +v/2μg
. (15)

Then we see that as vehicle speed increases, the effect of
tdriver becomes negligible, and the zone ratio tends to zero,

123



1940 International Journal of Social Robotics (2021) 13:1929–1949

(a) At lower speeds. (b) At higher speeds.

Fig. 7 Distances and zones predicted by the PTR model for different car speeds v (7a is a close-up of 7b)

Fig. 8 The ratio of escape zone size to crash zone size, R, decreases
as the car speed v increases, showing that the crash zone dominates at
high speeds

meaning that the crash zone’s size comes to dominate the
others:

v → ∞ ⇒ R → 2μg(tped + (w/vped))

v
→ 0, (16)

and as vehicle speed decreases, the zone size ratio converges
to a constant:

v → 0 ⇒ R → tped + (w/vped)

tdriver
, (17)

which shows that if the ratio of zone sizes is consid-
ered rather than their absolute size, then all dependency

on friction and gravity has vanished in the high and
low speed limits. Thus, all road and car specific con-
cepts have vanished to leave a more general proxemic
relationship which may be of interest in general human
interaction cases rather than only road-crossings. Figure 8
shows the variation of R relative to the speed of the
car, and that the value of R in Eq. (17) tends to the constant
3.5.

5 Empirical Data Study

To demonstrate the inference of empirical pedestrian prox-
emic utility functions, we then apply the method to data from
real-world pedestrian interactions with manual driven vehi-
cles. We used two public datasets containing tracking data
from multiple road users. We only considered the interac-
tions where the pedestrian crosses or stops for utility, i.e.
when the gap is greater than the safety distance so that we
can learn how the pedestrian adjusts their comfort zone. We
then compute the PTR zones for these datasets.

5.1 Datasets

5.1.1 Daimler Pedestrian Benchmark

The Daimler dataset [43] contains 58 pedestrian–vehicle tra-
jectory data and annotations, such as pedestrian crossing
decisions. The dataset was not collected from real-world
interactions, the pedestrians and drivers were actors. The
authors created these interaction scenarios for their work,
44 of these were pedestrian crossing scenarios and the other
14 interactions were stopping scenarios. Figure 9 shows a
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Fig. 9 Pedestrian intention with a vehicle, from its dashcam, in the
Daimler dataset [43]

Fig. 10 Histogramsof vehicle andpedestrian speeds inDaimler dataset,
showing that average speeds v ≈ 5.25m/s and vped ≈ 1.60m/s are
good approximations

Fig. 11 Crosswalk in inD dataset [7]

Fig. 12 Histograms of vehicle and pedestrian speeds in inD dataset,
showing that average speeds v ≈ 4.79m/s and vped ≈ 0.99 m/s are
good approximations
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dash cam image of one interaction scenario. The distribution
of vehicle and pedestrian speeds in the dataset is shown in
Fig. 10.

5.1.2 inD (Intersection Drone Dataset)

The inD dataset [7] is a newly released dataset which pro-
vides road users (cars, trucks, cyclists, pedestrians) tracking
data. There are 32 videos recording data from 4 different
intersections in the dataset, which contains thousands of real-
world interactions. But as the videos were not released with
the trajectory data, we decided to focus on one intersection,
where there is clearly a pedestrian crosswalk, thus pedes-
trians crossing the road would necessarily interact with the
upcomingvehicles. Twelve recordings (n◦18 to n◦29) contain
data from the crosswalk shown in Fig. 11. The distribution
of vehicle and pedestrian speeds in the dataset is shown in
Fig. 12.

5.1.3 Criteria for interactions’ selection

As inD dataset contains multiple classes of road users but we
were interested in pedestrian–vehicle interactions only, we
extracted them from the rest of the data in a semi-automatic
manner and annotated them. For each given pedestrian, we
find the car that appeared a few frames earlier and then
we select the frames where they both appear together. We
only kept interactions where the vehicle and the pedestrian
were encountering somewhere near the coordinates (x = 62,
y = −27), to make sure the pedestrians cross at the cross-
walk, not any other locations, where they would jaywalk and
we would have no possibility to know the hidden factors
behind that decision. We selected trajectories where cars and
pedestrians followed a straight path until their encounter, in
order to match with our simulation model. We kept pedes-
trians walking from the bottom right, we didn’t consider
pedestrians coming from the top right because most of them
were not crossing, as there was a car park.

In total, we used the 58 interactions from the Daimler
dataset and we collected 48 more interactions from inD
dataset, with 24 where the car came from the top right of
the image, and the other 24 where cars came from the bot-
tom left of the image. Figure 13 shows some examples of
pedestrian–vehicles trajectories from both datasets.

5.2 Proxemic Utility Model Selection

5.2.1 Proxemic Utility Implementation

First, we applied our proxemic utility inference method on
the two datasets, similar to the simulation study in Sect. 3.4,
except that here we would not know the ground truth func-
tion for final comparison. The goal here is thus to infer the

unknown proxemic utility function from the data and select
the best model with the lowest BIC value.

5.2.2 Proxemic Utility Results

Results of the proxemic utility inference method on the
Daimler and inD datasets are shown in Figs. 14 and 15,
respectively. They show that a hyperbolic function best
describes pedestrian proxemic behaviour in both cases, with
the lowest BIC values (Daimler BIC = 174.482, inD BIC
= 62.325). The proxemic utility costs increases with shorter
proxemic distances, and with a steep growth near the col-
lision point. These results are consistent with the human
experiments in [72,73], where participants’ perception of
threat (negative utilities) increases at shorter distances and
decreases at longer distances.

5.3 Zones Computation

5.3.1 Zones Implementation

Second, we computed two different estimates of the zone
distances, called ‘theoretical’ and ‘empirical’ zones. Both
estimates make use of the data. The theoretical estimate
makes use only of average speeds from the data, and
the empirical estimate makes use of extreme individual
behaviours from the data.

We define theoretical zones as the solutions of the equa-
tions in Sect. 4.1 given by assuming that all vehicles move at
the average speed of the vehicles in the dataset, and all pedes-
trians move at the average speed of pedestrians in the dataset.
This assumption is justified approximately by the histograms
of these speeds in the datasets, as shown in Figs. 10 and 12,
which show that vehicles are all moving at similar urban
speeds of 0–30 km/h and pedestrians are all moving at simi-
lar walking speeds. The average speed of vehicles in Daimler
was v 	 5.25 m/s; and in inD: v 	 4.79 m/s. The average
speed of pedestrians was in Daimler: vped 	 1.60 m/s; and
in inD: vped 	 0.99 m/s. We here use the same constants as
in Sect. 4.2, with w = 2 m for the road width, tdriver = 1 s
as the driver reaction time, tped = 1.5s, μ = 1 for the coef-
ficient of friction and g = 9.8 m/s2 for the gravity of Earth.

We define empirical zones by finding in the datasets the
maximum distance below which pedestrians always stop
and the minimum distances above which they always cross.
This is intended to provide only an exploratory measure.
It is not a true statistical estimator, because its error increases
rather than decreases with sample size due to its dependency
on only the most extreme individuals.
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Fig. 13 Examples of interactions from the datasets

5.3.2 Zones Results

Results of the theoretical zone experiments are shown in dark
blue in Fig. 14 for Daimler dataset and in Fig. 15 for inD
dataset. The empirical zones are shown in dark red in Fig.14
for Daimler dataset and in Fig. 15 for inD dataset.

For the Daimler dataset, the theoretical trust zone is
between 7–15 m and the empirical trust zone is between 14–
45m.For the inDdataset, the theoretical trust zone is between
6–17 m and the empirical trust zone is between 10–31 m.

The theoretical and empirical zones for the two data sets
are roughly in agreement which suggests the effect of the
actors in Daimler is not important. The boundaries of these
zones, both theoretical and empirical, would change if the
vehicle drives at a higher or lower speed.

The width of all of our theoretical (crash, trust and escape)
zones are smaller than the empirical zones.We found that our
theoretical zones were underestimated relative to the empir-
ical zones, by about three times in Daimler dataset and by
two times in inD dataset. We compute these coefficients by
iteratively updating by increments the theoretical crash and
trust zone boundaries. This underestimation of the theoretical

zones is expected because we computed them under many
simplifying assumptions, including using average speeds
across the datasets and guessed other parameters such as
the driver reaction time (tdriver ), the pedestrian reaction time
(tped ) and the coefficient of friction (μ). If all the interactions
were performed with these average speeds and parameters
(tdriver , tped and μ), then the theoretical zones might match
the empirical zones. In fact, Figs. 16 and 17 show the time
utilities and outcomes (pedestrian crossing decisions) for
each interaction in the Daimler and inD datasets, respec-
tively. In particular, the timeutility graphs show the variations
of vehicle speeds across the interactions. This may explain
why our theoretical trust zones do not match the empirical
trust zones. Moreover, if we had computed the theoretical
zones for each interaction (with their corresponding speeds),
it would not be possible to analyse and to make a general dis-
cussion on these zones with respect to the proxemic utility
function, which was drawn from all the interactions in each
dataset.

For this reason, we will base the rest of our analysis of
trust on the empirical zones. We can see that the trust zone is
the area of the proxemic utility function where the gradient
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Fig. 14 Model fitting results for Daimler dataset

Fig. 15 Model fitting results for inD dataset
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changes more. This reflects the high uncertainty that lies in
the trust zone. The decision of a pedestrian to cross is
uncertain here because the pedestrian has to rely on the
vehicle to make a decision. In contrast, in the crash and
escape zones, we see that the gradient of the proxemic utility
function changes less, this is due to the more determinis-
tic outcome in these areas. In the crash zone, the distance
and the speed of the vehicle give enough information to the
pedestrian for not crossing and in the escape zone, the vehi-
cle behaviour does not interfere into their crossing decision
because the danger cannot be perceived by the pedestrian as
found in [72,73], therefore they will cross.

Finally, for the actual average car speeds in the two
datasets, equation 15, computed by the ratios of the theo-
retical zones Descape/Dcrash from Figs. 14 and 15 , gives for
Daimler R = 15/7 = 2.1, and for inD R = 17/6 = 2.8.
Using the empirical zone boundaries from the same figures,
we obtain Daimler empirical R = 45/14 = 3.2; and inD
empirical R = 31/10 = 3.1. These results closely match the
ratio found for Hall’s zones in Sect. 4.2.

6 Discussion

Although the proxemic utility inference method has proven
successful on simulation and real-world interactions, several
simplifying assumptions were made in order to present and
test the basic principles of the method, from which future
work should try tomove away in order to obtainmore reliable
results. In particular, we assumed that all vehicles move at
an average vehicle speed rather than their individual speeds,
which is a likely cause of the observed discrepancy between
the theoretical and empirical trust zones. This discrepancy
is a useful self-test of the model’s assumptions, so if future
work brings them closed that would give some confidence in
the proxemic utility results.

The basic premise of this study, as taken from the game
theory model conclusions, was that a proxemic function
captures the feeling of discomfort from space invasion by
vehicles. However, speed considerations might be extended
into the utility function itself: a pedestrian might feel com-
fortable standing 10m from a car if it ismoving towards them
at 1 m/s, but not at 10 m/s. Including the speed of the vehicle
as an additional parameter in the pedestrian’s utility function
would formally move future models from being proxemic
functions to include a kinesic component (i.e. involving speed
aswell as proximity) as suggested in [24] and thismay further
improve interaction control.

Weassumed that the pedestrian and the vehiclewere solely
interacting with each other, ignoring simultaneous interac-
tions with other individuals. We also assumed that the agents
alwaysmoved along straight, orthogonal paths as in the game
theory model, thus we did not include the interactions where

pedestrians were not crossing straight away. We used only
parametric models to infer the proxemic utility function,
future work could explore the use of non-parametrics such as
Gaussian Processes and compare their performance against
the present models, which is possible via the BIC. Reviewed
previous work on proxemics has shown that demographics,
social, cultural and environmental factors can have an influ-
ence on the proxemic distances [55], therefore it would be
important to incorporate some of this additional informa-
tion and to build a more precise inference model on them.
Reviewed previous work on human–robot interactions has
shown that the physical size such as height of the other agent
also affects proxemics zone sizes, which suggests a similar
role for physical car sizes in modifying proxemic utilities. In
particular, it provides a further explanation for how buying
expensive sports utility vehicles (SUVs) can be rational via
their infliction of stronger proxemic penalties onto other road
users, thus allowing the driver to win more interactions and
reduce their own journey times [27].

Additional future work could look into testing our method
on human–AV interactions in virtual reality experiments, and
demonstrates its effectiveness on a real autonomous system
for better interactions with people. In these settings, it would
be possible to collect causal data rather than the passive data
used in the present study, as the vehicle can be actively con-
trolled as an independent variable in order to measure the
dependent behaviour of the pedestrian, more clearly sepa-
rating the causal logic between the two agents during their
interaction.

We have mainly focused on pedestrian–vehicle interac-
tions, but the concepts and methods here could be applied
to other human–robot interaction tasks. For example, human
factoryworkers collaboratingwith a robot arm could bemod-
elled by a trust zone in which the arm is able to hit them
without time or space to escape.

We have merged Hall’s intimate and personal zones to
map jointly into our collision zone, and did not attempt to
explain any theory of intimacy within this zone. In general
proxemics, our collision zone would be the distance at which
a physical attack such as a punch or grab (analogous to the
vehicle collision) may (a) have already happened or (b) be
in unstoppable progress. Possibly this would subdivide with
(a) as Hall’s intimate zone and (b) as Hall’s personal zone,
with the width of the intimate zone being the collision area
width w.

Using space invasion to inflict small negative utilities via
discomfort on members of the public may still be considered
unethical or illegal in some cases. Inmany jurisdictions, such
as in the UK, this is an ongoing dilemma under active debate
by authorities [79].We hope the present study will contribute
to this debate, by showing how this option trades off against
other possible negative utilities, including those inflicted
on passengers of such vehicles whose journeys would be
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Fig. 16 Time utility and ground truth interaction outcomes for Daimler dataset

Fig. 17 Time utility and ground truth interaction outcomes for inD dataset

delayed by overly assertive pedestrians pushing in front of
them. Human drivers already use many such credible threats
to encourage pedestrians to get out of the way. In many
cases, these threats result in actual collisions. Replacing
these threats by automated systems which only invade space
rather than potentially collide would improve safety.

7 Conclusion

A previous game theoretic model has suggested that autono-
mous vehicles must either risk making no progress at all
by yielding to all road-crossing pedestrians to stay safe, or
maintain a credible threat of actually colliding with them
to encourage them to yield. Neither of these are desirable
outcomes. The new method developed in the present study

now enables the inference of continuous pedestrian proxemic
utility functions from pedestrian–driver interaction data. The
game theory model shows that this can be used to make their
interactions both safe and efficient. This can be done by
de-escalating the severe threat of collision to much milder
and legally permissible threat of merely invading their per-
sonal space to create discomfort as a weaker but still effective
penalty for non-collaboration in interactions.

We also defined and mathematically formalised a new
concept of trust based on the proxemic function for
human–autonomous vehicle interactions. These new, quanti-
tatively defined, zones for the physical trust requirement may
assist autonomous vehicle designers in understanding what
is meant and required by the concept of trust. The mathemat-
ical and empirical results of Sect. 4.2 are evidence that our
concept can explain the existence of the classicHall intimate-
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personal, social and public zones, quite precisely generating
their sizes and ratios, which emerge as a special case for two
low speed agents interacting.

Our concept generalises these Hall zones beyond their
usual use in human–human interactions to allow for larger
zones as the speed of the other agent increases from human
to vehicle speed, and shows how trust zones become rela-
tively smaller at higher (e.g. freeway/motorway) speeds. It
also generalises to interactions with agents moving slower
than humans and predicts smaller zones in these cases, which
is consistent with the human–robot proxemics studies previ-
ously reviewed.
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55. Mead R, Atrash A, Matarić MJ (2011) Proxemic feature recog-
nition for interactive robots: automating metrics from the social
sciences. In: International conference on social robotics. Springer,
pp 52–61
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