Skip to main content

Advertisement

Log in

Major bone defect treatment with an osteoconductive bone substitute

  • Case Report
  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

A bone defect can be provoked by several pathological conditions (e.g. bone tumours, infections, major trauma with bone stock loss) or by surgical procedures, required for the appropriate treatment. Surgical techniques currently used for treating bone defects may count on different alternatives, including autologous vascularized bone grafts, homologous bone graft provided by musculoskeletal tissue bank, heterologous bone graft (xenograft), or prostheses, each one of them dealing with both specific advantages and complications and drawbacks. The main concerns related to these techniques respectively are: donor site morbidity and limited available amount; possible immune response and viral transmission; possible animal-derived pathogen transmission and risk of immunogenic rejection; high invasiveness and surgery-related systemic risks, long post-operative. physical recovery and prostheses revision need. Nowadays, an ideal alternative is the use of osteoconductive synthetic bone substitutes. Many synthetic substitutes are available, used either alone or in combination with other bone graft. Synthetic bone graft materials available as alternatives to autogeneous bone include calcium sulphates, special glass ceramics (bioactive glasses) and calcium phosphates (calcium hydroxyapatite, HA; tricalcium phosphate, TCP; and biphasic calcium phosphate, BCP). These materials differ in composition and physical properties fro each other and from bone (De Groot in Bioceramics of calcium phosphate, pp 100–114, 1983; Hench in J Am Ceram Soc 74:1487–1510, 1994; Jarcho in Clin Orthop 157:259–278, 1981; Daculsi et al. in Int Rev Cytol 172:129–191, 1996). Both stoichiometric and non-stoichiometric HA-based substitutes represent the current first choice in orthopedic surgery, in that they provide an osteoconductive scaffold to which chemotactic, circulating proteins and cells (e.g. mesenchymal stem cells, osteoinductive growth factors) can migrate and adhere, and within which progenitor cells can differentiate into functioning osteoblasts (Szpalski and Gunzburg in Orthopedics 25S:601–609, 2002). Indeed, HA may be extemporarily combined either with whole autologous bone marrow or PRP (platelet rich plasma) gel inside surgical theatre in order to favour and accelerate bone regeneration. A case of bifocal ulnar bone defect treated with stoichiometric HA-based bone substitute combined with PRP is reported in here, with a 12-month-radiographic follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Groot K (1983) Ceramics of calcium phosphates: preparation and properties. In: De Groot K (ed) Bioceramics of calcium phosphate. CRC Press, Boca Raton, FL, pp 100–114

  2. Hench LL (1994) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  3. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278

    PubMed  CAS  Google Scholar 

  4. Daculsi G, Bouler JM, Legeros RZ (1996) Adaptive crystal formation: in normal and pathological calcification, in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 172:129–191

    Article  Google Scholar 

  5. Szpalski M, Gunzburg R (2002) Bone void fillers in trauma surgery. Orthopedics 25S:601–609

    Google Scholar 

  6. Eijkelkamp MF, Hayen J, Veldhuizen AG, van Horn JR, Verkerke GJ (2002) Improving the fixation of an artificial intervertebral disc. Int J Artif Organs 25:327–333

    PubMed  CAS  Google Scholar 

  7. Taylor GI (1983) The current status of free vascularized bone grafts. Clin Plast Surg 10:185–209

    PubMed  CAS  Google Scholar 

  8. Vail TP, Urbaniak JR (1996) Donor-site morbidity with use of vascularized autogenous fibular grafts. J Bone Joint Surg Am 78(2):204–211

    PubMed  CAS  Google Scholar 

  9. Marcacci M (2004) Impiego della bioingegneria per la rigenerazione del tessuto osseo e cartilagineo. Minerva Ortop Traumatol 55(5):209–226

    Google Scholar 

  10. Martinetti R, Belpassi A, Nataloni A, Biasimi V, Martignani G (1999) Porous hydroxyapatite as synthetic bone graft: physico-chemical characterisation. Atti Biomateriali, Roma

    Google Scholar 

  11. Donati D, Giacobini S, Gozzi E, Di Bella C, Mercuri M (2003) The results of the surgical treatment of bone tumors using massive homoplastic grafts. Chir Organi Mov 88(2):115–122

    PubMed  CAS  Google Scholar 

  12. Nizard R, Bizot P, Kerboull L, Sedel L (1996) Biomatériaux orthopédiques. Encyclopédie Médico Chirurgicale 44-003:1–15

  13. Martinetti R, Belpassi A, Nataloni A, Piconi C (2001) Porous hydroxyapatite cell carrier for tissue engineering. Key Engineering Materials 192–195:507–510

    Article  Google Scholar 

  14. Martinetti R, Dolcini L, Belassi A, Quarto R, Mastrogiacomo M, Cancedda R, Labanti M (2004) Inspired porousity for cells and tissues. Key Engineering Materials 254–256(109):5–1098

    Google Scholar 

  15. Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R (2005) Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res 8:277–284

    Article  PubMed  CAS  Google Scholar 

  16. Cazalbou S, Bastiè C, Chatainier G, Theilgaard N, Svendsen N, Martinetti R, Dolcini L, Hamblin J, Stewart G, Di Silvio L, Gurav N, Quarto R, Overgaard S, Zippor B, Lemure A, Combes C, Reyi C (2004) Processing of Ca–P ceramics, surface characteristics and biological performance. Key Engineering Materials 254–256(83):3–836

    Google Scholar 

  17. Boyde A, Corsi A, Quarto R, Cancedda R, Bianco P (1999) Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24(6):579–589

    Article  PubMed  CAS  Google Scholar 

  18. Casabona F, Martin I, Muraglia A, Berrino P, Santi P, Cancedda R, Quarto R (1998) Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery. Plast Reconstr Surg 101(3):577–581

    Article  PubMed  CAS  Google Scholar 

  19. Mastrogiacomo M, Cedola A, Komlev VS, Peyrin F, Burghammer M, Giannoni P, Cancedda R, Rustichelli F, Lagomarsino S (2004) Advanced X-ray micro-analysis of bone regenerated by bone marrow stromal cells. In: Proceeding 9th meeting ceramics, cells and tissues

  20. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bone. J Biomed Mater Res 49:328–337

    Article  PubMed  CAS  Google Scholar 

  21. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursor from human bone marrow. Endocrinology 138(10):4456–4462

    Article  PubMed  CAS  Google Scholar 

  22. Fabbri M, Nataloni A, Celotti GC, Ravaglioli A (1995) Production and characterization of hydroxyapatite-based porous bodies for medical applications. Fourth Euro Ceramics 810:9–116

    Google Scholar 

  23. Ferraz MP, Mateus AY, Sousa JC, Monteiro FJ (2007) Nanohydroxyapatite microspheres delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res A 81(4):994–1004

    PubMed  CAS  Google Scholar 

  24. Carey LE, Xu HH, Simon CG Jr, Takagi S, Chow LC (2005) Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 26(24):5002–5014

    Article  PubMed  CAS  Google Scholar 

  25. Staffa G, Servadei F, Nataloni A, Martinetti R (2003) Design of custom-made porous hydroxyapatite devices for the reconstruction of the skull: 6 years multicentric experience. J Appl Biomater Biomech 1:214

    Google Scholar 

  26. Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir 149:161–170

    Article  CAS  Google Scholar 

  27. Van Havenbergh T, Berghmans D, De Smedt K, Arcangeli E, Nataloni A (2007) One step neuronavigated cranial vault tumor resection and porous hydroxyapatite custom made prosthesis reconstruction: a case report. In: Proceeding 11th meeting ceramics, cells and tissues

  28. Marcacci M, Kon E, Quarto R, Kutepov SM, Mukhacev V, Lavroukov A, Cancedda R (2001) Repair of large bone defects by autologous human bone marrow stromal cells. Key Engineering Materials 192–195(105):3–1056

    Google Scholar 

  29. Marcacci M, Kon E, Mukhacev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955

    Article  PubMed  CAS  Google Scholar 

  30. Huber FX, McArthur N, Hillmeier J, Kock HJ, Baier M, Diwo M, Berger I, Meeder PJ (2006) Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch Orthop Trauma Surg 126(8):533–540

    Article  PubMed  Google Scholar 

  31. Helbert MU, Ulrich C (2000) Metaphyseal defect substitute: hydroxylapatite ceramic. Results of a 3 to 4 year follow up. Unfallchirurg 103(9):749–753

    Article  Google Scholar 

  32. Baer W, Schaller P, Carl HD (2002) Spongy hydroxyapatite in hand surgery—a five year follow-up. J Hand Surg (Br) 27(1):101–103

    CAS  Google Scholar 

  33. Yamamoto T, Onga T, Marui T, Mizuno K (2000) Use of hydroxyapatite to fill cavities after excision of benign bone tumours. Clinical results. J Bone Joint Surg Br 82(8):1117–1120

    Article  PubMed  CAS  Google Scholar 

  34. Fujishiro T, Nishikawa T, Niikura T, Takikawa S, Nishiyama T, Mizuno K, Yoshiya S, Kurosaka M (2005) Impaction bone grafting with hydroxyapatite: increased femoral component stability in experiments using Sawbones. Acta Orthop 76(4):550–554

    Article  PubMed  Google Scholar 

  35. Nich C, Sedel L (2006) Bone substitution in revision hip replacement. Int Orthop 30(6):525–531

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Paderni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paderni, S., Terzi, S. & Amendola, L. Major bone defect treatment with an osteoconductive bone substitute. Musculoskelet Surg 93, 89–96 (2009). https://doi.org/10.1007/s12306-009-0028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-009-0028-0

Keywords

Navigation