Skip to main content
Log in

Effects of Geomorphology on the Distribution of Metal Abundance in Salt Marsh Sediment

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the effects of salt marsh geomorphology on the distribution of surface metal content. Surface sediment samples (46) were taken along two transects across an intertidal salt marsh island. Abundance of Ca, Al, Fe, Ni, Cr, Cu, Zn, Rb, Sr, As, and Zr vary up to 300 % with statistically significant differences along transects and between transects. Along transect, metal abundances are strongly influenced by elevation and distance from the subtidal channel. Between transects, salt marsh morphodynamics, relative marsh age, and water sources seem to affect metal distribution. These observations lead us to hypothesize that at least three scales of variability can be expected for assessing salt marsh sediment metal distributions. Larger-scale variations associated with salt marsh sediment sources and age, and another related to local salt marsh geomorphic structure. Therefore, studies that characterize salt marsh metal loading should explicitly consider the variability imposed over a range of spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Absil, M., and Y. Van Scheppingen. 1996. Concentrations of selected heavy metals in benthic diatoms and sediment in the Westershelde estuary. Bulletin of Environmental Contamination and Toxicology 56: 1008–1015.

    Article  CAS  Google Scholar 

  • Acevedo-Figueroa, D., B.D. Jimenez, and C.J. Rodriguez-Sierra. 2006. Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environmental Pollution 141: 336–342.

    Article  CAS  Google Scholar 

  • Allen, J.R.L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19: 1155–1231.

    Article  Google Scholar 

  • Basaham, A.S. 2008. Mineralogical and chemical composition of the mud fraction from the surface sediments of Sharm Al-Kharrar, a Red Sea coastal lagoon. Oceanologia 50: 557–575.

    Google Scholar 

  • Benoit, G., E. Wang, W. Nieder, M. Levandowsky, and V. Breslin. 1999. Sources and history of heavy metal contamination and sediment deposition in Tivoli South Bay, Hudson River, New York. Estuaries and Coasts 22: 167–178. doi:10.2307/1352974.

    Article  CAS  Google Scholar 

  • Bothner, M.H., P.W. Gill, W.S. Boothman, B.B. Taylor, and H.A. Karl. 1998. Chemical gradients in sediment cores from an EPA reference site off the farallon islands—assessing chemical indicators of dredged material disposal in the deep sea. Marine Pollution Bulletin 36: 443–457.

    Article  CAS  Google Scholar 

  • Bryan, G.W., and W.J. Langston. 1992. Bioavailability, accumulation and effects of heavy metals in sediment with special reference to United Kingdom estuaries: a review. Environmental Pollution 76: 89–131.

    Article  CAS  Google Scholar 

  • Buzzelli, C., O. Akman, T. Buck, E. Koepfler, J. Morris, and A. Lewitus. 2004. Relationships among water quality parameters from the North Inlet-Winyah Bay National Estuarine Research Reserve, South Carolina. Journal of Coastal Research 45: 59–74.

    Article  Google Scholar 

  • Chassereau, J.E., J.M. Bell, and R. Torres. 2011. A comparison of GPS and lidar salt marsh DEMs. Earth Surface Processes and Landforms 36: 1770–1775.

    Google Scholar 

  • Christiansen, C., J. Bartholdy, and H. Kunzendorf. 2002. Effects of morphological changes on metal accumulation in a salt marsh sediment of the Skallingen peninsula, Denmark. Wetlands Ecology and Management 10: 11–23.

    Article  CAS  Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Coastal and Shelf Science 50: 315–331.

    Article  Google Scholar 

  • Cundy, A.B., et al. 2005. Heavy metal distribution and accumulation in two Spartina sp.-dominated macrotidal salt marshes from the Seine Estuary (France) and the Medway Estuary (UK). Applied Geochemistry 20: 1195–1208.

    Article  CAS  Google Scholar 

  • D’alpaos, A., S. Lanzoni, M. Marani, and A. Rinaldo. 2007. Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research 112: F01008.

    Article  Google Scholar 

  • Daskalakis, K.D., and T.P. Oconnor. 1995. Normalization and elemental sediment contamination in the coastal United States. Environmental Science and Technology 29: 470–477.

    Article  CAS  Google Scholar 

  • Doyle, M.O., and M.L. Otte. 1997. Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environmental Pollution 96: 1–11.

    Article  CAS  Google Scholar 

  • Feng, H., J. Cochran, D. Hirschberg, and R. Wilson. 1998. Small-scale spatial variations of natural radionuclide and trace metal distributions in sediments from the Hudson River estuary. Estuaries and Coasts 21: 263–280. doi:10.2307/1352474.

    Article  CAS  Google Scholar 

  • Fletcher, C.A., J.M. Bubb, and J.N. Lester. 1994. Magnitude and distribution of anthropogenic contaminants in salt marsh sediments of the Essex coast, UK: II. Selected metals and metalloids. Science of the Total Environment 155: 47–59.

    Article  CAS  Google Scholar 

  • Glooschenko, W.A., J. Capocianco, J. Coburn, and V. Glooschenko. 1981. Geochemical distribution of trace metals and organochlorine contaminants of a Lake Ontario shoreline marsh. Water, Air, and Soil Pollution 15: 197–213.

    Article  CAS  Google Scholar 

  • Goni, M., M.W. Cathey, Y. Kim, and G. Voulgaris. 2005. Fluxes and sources of suspended organic matter in an estuarine turbidity maximum region during low discharge conditions. Estuarine, Coastal and Shelf Science 63: 683–700.

    Article  CAS  Google Scholar 

  • Guerzoni, S., M. Frignani, P. Giordani, and F. Frascari. 1984. Heavy metals in sediments from different environments of a northern Adriatic Sea area, Italy. Environmental Geology and Water Sciences 6: 111–119.

    Article  CAS  Google Scholar 

  • Hansel, C.M., S. Fendorf, S. Sutton, and M. Newville. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology 35: 3863–3868. doi:10.1021/Es0105459.

    Article  CAS  Google Scholar 

  • Hirschberg, D., P. Chin, H. Feng, and J. Cochran. 1996. Dynamics of sediment and contaminant transport in the Hudson River estuary: evidence from sediment distributions of naturally occurring radionuclides. Estuaries and Coasts 19: 931–949. doi:10.2307/1352309.

    Article  CAS  Google Scholar 

  • Hung, G., and G. Chmura. 2007. Metal accumulation in surface salt marsh sediments of the Bay of Fundy, Canada. Estuaries and Coasts 30: 725–734. doi:10.1007/bf02841968.

    CAS  Google Scholar 

  • Johnson, D.M., P.R. Hooper, and R.M. Conrey. 1999. XRF analysis of rocks and minerals for major and trace elements on a sinle low dilution Li-tetraborate fused bead. Advances in X-ray Analysis 41: 843–867.

    CAS  Google Scholar 

  • Koretsy, C.M., A. Cuellar, M. Haveman, L. Beuving, T. Shattuck, and M. Wagner. 2008. Influence of Spartina and Juncus on saltmarsh sediments: II. Trace element geochemistry. Chemical Geology 255: 100–113.

    Article  Google Scholar 

  • Krumgalz, B.S., G. Fainshtein, and A. Cohen. 1992. Grain-size effect on anthropogenic trace-metal and organic-matter distribution in marine-sediments. Science of the Total Environment 116: 15–30.

    Article  CAS  Google Scholar 

  • Lindau, C.W., and L.R. Hossner. 1982. Sediment fractionation of Cu, Ni, Zn, Cr, Mn and Fe in one experimental and three natural marshes. Journal of Environmental Quality 11: 540–545.

    Article  CAS  Google Scholar 

  • Long, E., D. Macdonald, S. Smith, and F. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19: 81–97.

    Article  Google Scholar 

  • Marmolejo-Rodriguez, A.J., R. Prego, A. Meyer-Willerer, E. Shumilin, and A. Cobelo-Garcia. 2007. Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific Coast of Mexico): influence of an iron mine. Marine Pollution Bulletin 55: 459–468.

    Article  CAS  Google Scholar 

  • Marshalonis, D., and J.L. Pinckney. 2007. Respiration rates of dominant hydromedusae in the North Inlet tidal estuary during winter and summer. Journal of Plankton Research 29: 1031–1040. doi:10.1093/plankt/fbm077.

    Article  CAS  Google Scholar 

  • Mcgill, R., J.W. Tukey, and W.A. Larsen. 1978. Variations of box plots. American Statistician 32: 12–16.

    Google Scholar 

  • Mckelvey, V.E., and J.J.R. Balsley. 1948. Distribution of coastal black-sands in North Carolina, South Carolina, and Georgia, as mapped from an airplane. Economic Geology 43: 518–524.

    Article  CAS  Google Scholar 

  • Novakowski, K.I., R. Torres, L.R. Gardner, and G. Voulgaris. 2004. Geomorphic analysis of tidal creek networks. Water Resources Research 40: 14.

    Google Scholar 

  • Pedersen, J.B.T., and J. Bartholdy. 2007. Exposed salt marsh morphodynamics: an example from the Danish Wadden Sea. Geomorphology 90: 115–125.

    Article  Google Scholar 

  • Rodríguez-Barroso, M., Y. Benhamou, B. El Moumni, I. El Hatimi, and J. García-Morales. 2009. Evaluation of metal contamination in sediments from north of Morocco: geochemical and statistical approaches. Environmental Monitoring and Assessment 159: 169–181.

    Article  Google Scholar 

  • Rozema, J., M.L. Otte, R.A. Broekman, and H. Punte. 1985. Accumulation of heavy metals in estuarine salt marsh sediment and uptake of heavy metals by salt marsh halophytes. In International Conference Heavy Metals in the Environment, 545–547. Edinburgh: CEP Consultants.

    Google Scholar 

  • Ruiz-Fernández, A., et al. 2009. Trace Metals (Cd, Cu, Hg, and Pb) Accumulation recorded in the intertidal mudflat sediments of three coastal lagoons in the Gulf of California, Mexico. Estuaries and Coasts 32: 551–564. doi:10.1007/s12237-009-9150-3.

    Article  Google Scholar 

  • Sanders, J.G., and R.W. Osman. 1985. Arsenic incorporation in a salt marsh ecosystem. Estuarine, Coastal and Shelf Science 20: 387–392.

    Article  CAS  Google Scholar 

  • Sanger, D.M., A.F. Holland, and G.I. Scott. 1999. Tidal creek and salt marsh sediments in South Carolina costal estuaries: I. Distribution of trace metals. Archives of Environmental Contamination and Toxicology 37: 445–457.

    Article  CAS  Google Scholar 

  • Schropp, S., F. Graham Lewis, H. Windom, J. Ryan, F. Calder, and L. Burney. 1990. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries and Coasts 13: 227–235. doi:10.2307/1351913.

    Article  CAS  Google Scholar 

  • Silva, N., J. Haro, and R. Prego. 2009. Metals background and enrichment in the Chiloe Interior Sea sediments (Chile). Is there any segregation between fjords, channels and sounds? Estuarine, Coastal and Shelf Science 82: 469–476. doi:10.1016/j.ecss.2009.02.005.

    Article  CAS  Google Scholar 

  • Traynum, S., and R. Styles. 2007. Flow, stress and sediment resuspension in a shallow tidal channel. Estuaries and Coasts 30: 94–101.

    Google Scholar 

  • Walling, D.E., and P.W. Moorehead. 1987. Spatial adn temporal variation of the particle-size characteristics of fluvial suspended sediment. Geografiska Annaler 69S: 47–59.

    Article  Google Scholar 

  • Wargo, C.A. 2005. Along channel flow and sediment dynamics of North Inlet. South Carolina: University of South Carolina.

    Google Scholar 

  • Williams, T.P., J.M. Bubb, and J.N. Lester. 1994. Metal accumulation within salt marsh environments: a review. Marine Pollution Bulletin 28: 277–290.

    Article  CAS  Google Scholar 

  • Windom, H.L., et al. 1989. Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environmental Science and Technology 23: 314–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was funded by NSF Grant OCE-0628372. We thank all the staff and faculty in the Belle W. Baruch Institute for Marine and Coastal Sciences for their support of field facilities. We are grateful of Dr. Miguel Goni in Oregon State University COAS for his support in field sampling. We thank Dr. Gene Yogodzinski and his lab members in USC Department of Earth and Ocean Science for their generous lab support. Dr. Timothy Shaw and Dr. Howie Scher provided helpful comments on an earlier draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Torres, R. Effects of Geomorphology on the Distribution of Metal Abundance in Salt Marsh Sediment. Estuaries and Coasts 35, 1018–1027 (2012). https://doi.org/10.1007/s12237-012-9494-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9494-y

Keywords

Navigation