Skip to main content

Advertisement

Log in

Photochemistry and photocatalysis

  • Concepts in catalysis
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Photocatalysis is an important branch of catalysis and much more than that. To understand the potential applications and the working mechanisms of photocatalysis, it is necessary to know some important concepts of photochemistry, the branch of science that deals with the interaction of light and matter: (1) light excitation with a photon of suitable energy promotes a molecule or a semiconductor from the ground state to an electronically excited state that exhibits its own chemical and physical properties; (2) the most relevant consequence from the viewpoint of photocatalysis is that the excited state is both a better oxidant and a better reductant than the ground state; (3) some molecules or semiconductors can serve as photosensitizers, i.e., they can absorb light and then make available the excited state energy to promote reactions of non-absorbing species. Photosensitization and photocatalysis play an important role in nature and technology and they may take place in homogeneous or heterogeneous phase. Such processes can use sunlight (1) to convert solar energy into chemical or electrical energy, (2) to perform organic synthesis that cannot be achieved by thermal activation, and (3) to remedy pollution. Water splitting using sunlight and suitable photosensitizers and catalysts (artificial photosynthesis) is perhaps one of the most thoroughly investigated chemical processes. Breakthrough in this area can contribute to solve the energy and climate crisis, but substantial technological development is still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from (Balzani et al. 2014)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from (Mordini and Faigl 2008)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Adapted from (Xuan et al. 2015)

Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Adapted from (Balzani et al. 2014)

Fig. 23

Adapted from (Balzani et al. 2015)

Fig. 24
Fig. 25
Fig. 26

Adapted from (Balzani et al. 2015)

Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Albini A (2016) Photochemistry. Past, present and future. Springer, Berlin

    Google Scholar 

  • Armaroli N, Balzani V (2016) Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem Eur J 22:32–57. doi:10.1002/chem.201503580

    Article  CAS  Google Scholar 

  • Balzani V (ed) (2001) Electron transfer in chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Balzani V, Juris A (2001) Photochemistry and photophysics of Ru(II) polypyridine complexes in the Bologna group. From early studies to recent developments. Coord Chem Rev 211:97–115. doi:10.1016/S0010-8545(00)00274-5

    Article  CAS  Google Scholar 

  • Balzani V, Scandola F (1991) Supramolecular photochemistry. Horwood, New York

    Google Scholar 

  • Balzani V, Credi A, Venturi M (2008) Molecular devices and machines: concepts and perspectives for the nanoworld, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Balzani V, Bergamini G, Ceroni P, Marchi E (2011) Designing light harvesting antennas by luminescent dendrimers. New J Chem 35:1944–1954. doi:10.1039/C1NJ20142E

    Article  CAS  Google Scholar 

  • Balzani V, Ceroni P, Juris A (2014) Photochemistry and photophysics: concepts, research, applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Balzani V, Bergamini G, Ceroni P (2015) Light: a very peculiar reactant and product. Angew Chem Int Ed 54:11320–11337. doi:10.1002/anie.201502325

    Article  CAS  Google Scholar 

  • Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75. doi:10.1016/0047-2670(79)80037-4

    Article  CAS  Google Scholar 

  • Berardi S, Drouet S, Francas L et al (2014) Molecular artificial photosynthesis. Chem Soc Rev 43:7501–7519. doi:10.1039/C3CS60405E

    Article  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  • Bolletta F, Juris A, Maestri M, Sandrini D (1980) Quantum yield of formation of the lowest excited state of Ru(bpy)2 + 3 and Ru(phen)2 + 3. Inorg Chim Acta 44:L175–L176. doi:10.1016/S0020-1693(00)90993-9

    Article  CAS  Google Scholar 

  • Ciamician G (1908) Sur les actions chimiques de la lumière. Bull Soc Chim Fr [4] 3:i–xxvii

    Google Scholar 

  • Ciamician G (1912) The photochemistry of the future. Science (80-) 36:385–394

    Article  CAS  Google Scholar 

  • Flamigni L, Barbieri A, Sabatini C et al (2007) Photochemistry and photophysics of coordination compounds: Iridium. Top Curr Chem 281:143–204

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9:1–12. doi:10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285. doi:10.1143/JJAP.44.8269

    Article  CAS  Google Scholar 

  • Hidalgo MC, Maicu M, Navío JA, Colón G (2008) Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of TiO2. Appl Catal B 81:49–55. doi:10.1016/j.apcatb.2007.11.036

    Article  CAS  Google Scholar 

  • Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. doi:10.1039/C3CS60378D

    Article  CAS  Google Scholar 

  • Jacobsson TJ, Fjällström V, Edoff M et al (2014) Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ Sci 7:2056. doi:10.1039/c4ee00754a

    Article  CAS  Google Scholar 

  • Juris A, Balzani V, Barigelletti F et al (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277. doi:10.1016/0010-8545(88)80032-8

    Article  CAS  Google Scholar 

  • Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes. Academic Press, London

    Google Scholar 

  • Kisch H (2013) Semiconductor photocatalysis—mechanistic and synthetic aspects. Angew Chem Int Ed 52:812–847. doi:10.1002/anie.201201200

    Article  CAS  Google Scholar 

  • Kisch H (2015) Semiconductor photocatalysis. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Klán P, Wirz J (2009) Photochemistry of organic compounds: from concepts to practice. Wiley, Chichester

    Book  Google Scholar 

  • Li X, Yu J, Low J et al (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534. doi:10.1039/C4TA04461D

    Article  CAS  Google Scholar 

  • Luo J, Im J-H, Mayer MT et al (2014) Water photolysis at 12.3 % efficiency via perovskite photovoltaics and earth-abundant catalysts. Science (80-) 345:1593–1596. doi:10.1126/science.1258307

    Article  CAS  Google Scholar 

  • Maestri M, Balzani V, Deuschel-Cornioley C, von Zelewsky A (1992) Photochemistry and luminescence of cyclometallated complexes. Adv Photochem 17:1–68

    CAS  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 911:265–322

    Article  Google Scholar 

  • Maxwell KA, Sykora M, DeSimone JM, Meyer TJ (2000) One-pot synthesis and characterization of a chromophore–donor–acceptor assembly. Inorg Chem 39:71–75. doi:10.1021/ic990512i

    Article  CAS  Google Scholar 

  • McKone JR, Lewis NS, Gray HB (2014) Will solar-driven water-splitting devices see the light of day? Chem Mater 26:407–414. doi:10.1021/cm4021518

    Article  CAS  Google Scholar 

  • Mordini A, Faigl F (2008) New methodologies and techniques for a sustainable organic chemistry. Springer, Dordrecht

    Book  Google Scholar 

  • Nielander AC, Shaner MR, Papadantonakis KM et al (2015) A taxonomy for solar fuels generators. Energy Environ Sci 8:16–25. doi:10.1039/C4EE02251C

    Article  CAS  Google Scholar 

  • Protti S, Albini A, Serpone N (2014) Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature. Phys Chem Chem Phys 16:19790–19827. doi:10.1039/C4CP02828G

    Article  CAS  Google Scholar 

  • Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42:2568–2580. doi:10.1039/C2CS35355E

    Article  CAS  Google Scholar 

  • Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011. doi:10.1039/b714786b

    Article  CAS  Google Scholar 

  • Ravelli D, Protti S, Fagnoni M (2016) Application of visible and solar light in organic synthesis. In: Bergamini G, Silvi S (eds) Applied photochemistry when light meets molecules. Springer, Berlin

    Google Scholar 

  • Sala X, Maji S, Bofill R et al (2014) Molecular water oxidation mechanisms followed by transition metals: state of the art. Acc Chem Res 47:504–516. doi:10.1021/ar400169p

    Article  CAS  Google Scholar 

  • Sartorel A, Bonchio M, Campagna S, Scandola F (2013) Tetrametallic molecular catalysts for photochemical water oxidation. Chem Soc Rev 42:2262–2280. doi:10.1039/C2CS35287G

    Article  CAS  Google Scholar 

  • Serpone N, Emeline AV (2012) Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 3:673–677. doi:10.1021/jz300071j

    Article  CAS  Google Scholar 

  • Serpone N, Pelizzetti E (1989) Photocatalysis: fundamentals and applications. Wiley-Interscience, New York

    Google Scholar 

  • Shih H-W, Vander Wal MN, Grange RL, MacMillan DWC (2010) Enantioselective α-benzylation of aldehydes via photoredox organocatalysis. J Am Chem Soc 132:13600–13603. doi:10.1021/ja106593m

    Article  CAS  Google Scholar 

  • Shu X, Zhang M, He Y et al (2014) Dual visible light photoredox and gold-catalyzed arylative ring expansion. J Am Chem Soc 136:5844–5847. doi:10.1021/ja500716j

    Article  CAS  Google Scholar 

  • Siegbahn PEM (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880. doi:10.1021/ar900117k

    Article  CAS  Google Scholar 

  • Skorb EV, Antonouskaya LI, Belyasova NA et al (2008) Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2: In2O3 nanocomposite. Appl Catal B 84:94–99. doi:10.1016/j.apcatb.2008.03.007

    Article  CAS  Google Scholar 

  • Stochel G, Brindell M, Macyk W et al (2009) Bioinorganic photochemistry. Wiley, Chichester

    Book  Google Scholar 

  • Suga M, Akita F, Hirata K et al (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Article  CAS  Google Scholar 

  • Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376. doi:10.1016/S0013-4686(00)00337-6

    Article  CAS  Google Scholar 

  • Turro NJ, Ramamurthy V, Scaiano JC (2010) Modern molecular photochemistry of organic molecules. University Science Books, Sausalito

    Google Scholar 

  • Ueno A, Takahashi K, Osa T (1980) Photoregulation of catalytic activity of β-cyclodextrin by an azo inhibitor. J Chem Soc, Chem Commun 17:837–838. doi:10.1039/C39800000837

    Article  Google Scholar 

  • Vallavoju N, Sivaguru J, Breslow R et al (2014) Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem Soc Rev 43:4084. doi:10.1039/c3cs60471c

    Article  CAS  Google Scholar 

  • Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J Photochem Photobiol C 24:64–82. doi:10.1016/j.jphotochemrev.2015.07.001

    Article  CAS  Google Scholar 

  • Vione D (2016) Photochemical reactions in sunlit surface waters. In: Bergamini G, Silvi S (eds) Applied photochemistry when light meets molecules. Springer, Berlin

    Google Scholar 

  • Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473. doi:10.1021/cr1002326

    Article  CAS  Google Scholar 

  • Wang J, Feringa BL (2011) Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331:1429–1432. doi:10.1126/science.1199844

    Article  CAS  Google Scholar 

  • Wilson DP, Sporleder D, White MG (2012) Final state distributions of methyl radical desorption from ketone photooxidation on TiO2(110). Phys Chem Chem Phys 14:13630–13637. doi:10.1039/C2CP42628E

    Article  CAS  Google Scholar 

  • Xuan J, Zeng T-T, Feng Z-J et al (2015) Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis. Angew Chem Int Ed 54:1625–1628. doi:10.1002/anie.201409999

    Article  CAS  Google Scholar 

  • Young RC, Meyer TJ, Whitten DG (1975) Kinetic relaxation measurement of rapid electron transfer reactions by flash photolysis. Conversion of light energy into chemical energy using the tris(2,2′-bipyridine)ruthenium(3+)-tris(2,2′-bipyridine)ruthenium(2+*) couple. J Am Chem Soc 97:4781–4782. doi:10.1021/ja00849a064

    Article  CAS  Google Scholar 

  • Youngblood WJ, Lee S-HA, Kobayashi Y et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927. doi:10.1021/ja809108y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Nick Serpone for useful discussions. We gratefully acknowledge the European Commission ERC Starting Grant (PhotoSi, 278912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Balzani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balzani, V., Bergamini, G. & Ceroni, P. Photochemistry and photocatalysis. Rend. Fis. Acc. Lincei 28 (Suppl 1), 125–142 (2017). https://doi.org/10.1007/s12210-016-0575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0575-x

Keywords

Navigation